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ABSTRACT

We investigate the incidence of major mergers creatingMstar > 1011M⊙ galaxies in the
dense environments of present-day groups and clusters moremassive thanMhalo = 2.5 ×

1013M⊙. We identify 38 pairs of massive galaxies with mutual tidal interaction signatures se-
lected from> 5000 galaxies withMstar ≥ 5×1010M⊙ that reside in a halo mass-limited sample
of 845 groups. We fit the images of each galaxy pair as the line-of-sight projection of symmetric
models and identify mergers by the presence of residual asymmetric structure associated with
both progenitors, such as nonconcentric isophotes, broad and diffuse tidal tails, and dynami-
cal friction wakes. At the resolution and sensitivity of theSDSS, such mergers are found in
16% of the high-mass, galaxy-galaxy pairs with≤ 1.5 r-band magnitude differences and≤ 30

kpc projected separations. Relying on automated searches of major pairs from the SDSS spec-
troscopic galaxy sample will result in missing 70% of these mergers owing to spectroscopic
incompleteness in high-density regions. We find that 90% of these mergers are between two
nearly equal-mass progenitors with red-sequence colors and centrally-concentrated morpholo-
gies, in agreement with numerical simulations that predictthat an important mechanism for the
formation of massive elliptical galaxies is the dissipationless (gas-poor or so-called dry) ma-
jor merging of spheroid-dominated galaxies. We identify seven additionalMstar > 1011M⊙

mergers with disturbed morphologies and semi-resolved double nuclei. Mergers at the centers

http://arXiv.org/abs/0710.2157v2
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of massive groups are more common than between two satellites, but both types are morpho-
logically indistinguishable and we tentatively conclude that the latter are likely located at the
dynamical centers of large subhalos that have recently beenaccreted by their host halo, rather
than the centers of distinct halos seen in projection. We findthat the frequency of central and
satellite merging diminishes with group mass in a manner that is consistent with dynamical
friction. Based on reasonable assumptions, the centers of these massive halos are gaining stel-
lar mass at a rate of 1–9% per Gyr on average. Compared to the merger rate for the overall
population of luminous red galaxies, we find that the rate is 2–9 times greater when restricted
to these dense environments. Our results imply that the massive end of the galaxy population
continues to evolve hierarchically at a measurable level, and that the centers of massive groups
are the preferred environment for the merger-driven assembly of massive ellipticals.

Subject headings:galaxies: evolution — galaxies: fundamental parameters (luminosities, stel-
lar masses, radii) — galaxies: general — surveys

1. Introduction

Understanding the formation of the most-massive galaxies (Mstar > 1011M⊙) remains an important
challenge in astrophysics. The tip of the stellar mass function is dominated by elliptical galaxies with intrin-
sically spheroidal mass distributions that are supported by anisotropic stellar motions (Kormendy & Bender
1996; Burstein et al. 1997). Numerical simulations have long demonstrated that “major” mergers between
smaller galaxies of comparable mass could produce the observed shapes and dynamics of ellipticals (Toomre
1977; Barnes & Hernquist 1996; Naab & Burkert 2003; Cox et al.2006). Moreover, massive ellipticals
are found in greater abundance in high-density structures like large groups and clusters of galaxies (e.g.,
Dressler 1980; Postman & Geller 1984; Hashimoto & Oemler 1999; Smith et al. 2005), which naturally
grow through the hierarchical merging of dark-matter halosover cosmic time as expected in theΛCDM cos-
mological model (Blumenthal et al. 1984; Davis et al. 1985; Cole et al. 2000). There is, therefore, a clear ex-
pectation for galaxy-galaxy and halo-halo merging to be physically linked (Maller et al. 2006; Hopkins et al.
2006; De Lucia & Blaizot 2007). Indeed, modern galaxy formation models predict that massive ellipticals
form by major dissipationless (so-called “dry”) merging oflikewise spheroidal and gas-poor progenitors
(Boylan-Kolchin et al. 2006; Naab et al. 2006b), that a largefraction of today’s massive ellipticals had their
last major merger since redshiftz = 0.5 (e.g., De Lucia et al. 2006), and that the most-massive systems form
at the centers of large dark-matter halos (Dubinski 1998; Aragon-Salamanca et al. 1998). Yet, direct evi-
dence for the major-merger assembly of massive galaxies at present times has been lacking, and finding such
systems is needed to place constraints on their rates, progenitor properties, and environmental dependencies.
To this end we look for close pairs of massive interacting galaxies within a complete and well-defined sam-
ple of over 5000 galaxies withz ≤ 0.12 andMstar ≥ 5×1010M⊙, selected from galaxy groups in the Sloan
Digital Sky Survey (SDSS) with dark-matter halo masses aboveMhalo = 2.5 × 1013M⊙.

Ellipticals galaxies make up the bulk of the massive end of the red-sequence population with optical
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colors indicative of their non-star-forming and old stellar nature. Despite a quiet star-formation history over
the last 6–8 billion years (Bell et al. 2005), the total stellar mass density on the red sequence has roughly
doubled over this interval (Bell et al. 2004b; Blanton 2006;Borch et al. 2006; Faber et al. 2007; Brown et al.
2007) and now accounts for more than half of the present-day budget (Hogg et al. 2002; Bell et al. 2003),
providing strong observational evidence for the ongoing hierarchical growth of the massive galaxy popula-
tion. These results were derived from red galaxy number densities over a wide range of stellar masses above
and below1011M⊙. Owing to the scarcity of the highest-mass galaxies, cosmicvariance, and systematic
uncertainties in stellar mass estimates, any increase in the number density ofMstar > 1011M⊙ galaxies is
poorly constrained, resulting in controversy over whetherthis population has continued to grow slowly (e.g.,
Brown et al. 2007) or has been effectively static (e.g., Scarlata et al. 2007), sincez ∼ 1.

Besides number density evolution, mergers of sufficiently massive galaxies could provide a more clear
indication for some continued stellar mass growth in the high-mass galaxy population. The existence of a
handful of massive red mergers over the redshift interval0.1 < z < 0.9 (van Dokkum et al. 1999; Tran et al.
2005; Bell et al. 2006a; Lotz & et al. 2006; Rines et al. 2007) proves that the growth is non-zero at high
stellar masses and implies that this mechanism does contribute to the assembly of galaxies at the top of the
food chain. Yet, the importance of this process and the related rate of mass growth are highly uncertain given
the tiny samples over this large cosmic time interval. Indirect measures such as the presence of faint tidal
debris or shells around many local massive ellipticals (vanDokkum 2005; Mihos et al. 2005), the isophotal
properties of giant ellipticals (Kang et al. 2007), the lackof evolution of the stellar mass-size relation of red
spheroids sincez = 1 (McIntosh et al. 2005), and the lack of morphological evolution on the red sequence
sincez = 0.7 (Bell et al. 2004a) provide a variety of limits to the importance of dissipationless mergers.
Perhaps the most powerful method for obtaining estimates for the stellar mass growth rate via major merging
is based on small-scale clustering statistics that providean accurate measurement of close pair frequencies
in real space (Masjedi et al. 2006; Bell et al. 2006b; Masjediet al. 2007). However, this method likely yields
an overestimate of the merger frequency because it assumes that all close pairs will merge. All estimates
of merger-driven growth rates are limited by uncertaintiesin the time interval over which a pair will merge,
and over what duration an object could be identified as interacting. Masjedi et al. (2007) find a very small
growth rate (1–2% per Gyr) atz ∼ 0.25 for major mergers involving at least one progenitor drawn from the
SDSS Luminous Red Galaxy sample (LRG, Eisenstein et al. 2001); LRGs have typical masses of several
times1011M⊙. To date there remains no direct evidence of ongoing merger-driven assembly of massive
galaxies atz < 0.1, and the LRG result implies that this formation process is nolonger important. These
facts motivate a thorough search for the existence/nonexistence of ongoing examples in the present-day
universe.

While the aforementioned statistical method for finding close physical pairs is powerful, it does not
isolate actual merging systems and thus provides no information on the progenitor properties of massive
merger remnants. Recent numerical simulations and models make a range of predictions regarding the pro-
genitor morphologies at the time of the last major merger (Khochfar & Burkert 2003; Naab et al. 2006b;
Kang et al. 2007), yet robust observational constraints aremissing forMstar > 1011M⊙ systems. Many
studies have identified major-merger candidates by either close pairs (Carlberg et al. 1994; Patton et al.
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2000; Carlberg et al. 2000; Patton et al. 2002; Bundy et al. 2004; Lin et al. 2004) or disturbed morphologies
(Le Fèvre et al. 2000; Conselice et al. 2003; Lotz & et al. 2006), but these samples mostly contain major
mergers between lower-luminosity galaxies that tend to be gas-rich spiral disks. Numerical simulations
show that such dissipative merging of disk galaxies will notproduce massive pressure-supported ellipti-
cals (e.g., Naab et al. 2006a). As mentioned above, only circumstantial evidence and a small number of
red galaxy pairs withz < 0.9 support the existence of mergers likely to produce massive ellipticals. Our
understanding of the progenitors is therefore very limited. Here we present a thorough census of 38 mas-
sive merger pairs from SDSS, providing an order-of-magnitude increase in the number of such detections at
z < 0.5 and allowing an improved understanding of their progenitorproperties.

While many estimates of major merger rates are found in the literature, to date no measure of the
environmental dependence of merger-driven mass growth hasbeen attempted. In the standard cosmological
model, there is a trade off between the expansion of the universe and the gravitational collapse of dark and
luminous matter. Therefore, the rate at which stellar mass is assembled at the centers of the largest dark
matter halos over recent cosmic history is a fundamental aspect of the ongoing formation of large-scale
structure, and the rate that high-mass galaxies form by mergers as a function of halo mass constrains galaxy
formation theories. Some theories predict that the mergersproducing massive ellipticals occur preferentially
in groups rather than in high-density cluster or low-density field environments because the smaller velocity
dispersions allow more galaxy interactions (Cavaliere et al. 1992); also dynamical friction is more efficient
in lower-mass halos (e.g. Cooray & Milosavljević 2005). Others predict that the brightest cluster galaxies
(BCGs) grow by hierarchical merging (“galactic cannibalism”) at the centers of the dark-matter potential
wells of large clusters (Ostriker & Tremaine 1975; Merritt 1985; Dubinski 1998; Cooray & Milosavljević
2005). A handful of low-redshift BCGs show multiple nuclei suggesting cannibalism in the form of multiple
minor mergers (Lauer 1988), but there are no observations ofmajor mergers at the centers of clusters. In this
paper we make use of the statistically large SDSS group catalog (Yang et al. 2005; Weinmann et al. 2006) to
show that major mergers occur in present-day dense environments, and to explore the halo-mass dependence
and central/satellite identity of merger-driven massive galaxy assembly.

Throughout this paper we calculate comoving distances in the ΛCDM concordance cosmology with
Ωm = 0.3, ΩΛ = 0.7, and assume a Hubble constant ofH0 = 70 km s−1 Mpc−1. SDSS magnitudes are in
the AB system.

2. Sample Selection

We make use of public catalogs derived from the SDSS (York et al. 2000) Data Release Two (DR2,
Abazajian et al. 2004), which includes spectroscopic and imaging coverage of more than 2600 square de-
grees. Theugriz passband imaging (Fukugita et al. 1996; Gunn et al. 1998, 2006), precise photometry
(Hogg et al. 2001; Smith et al. 2002; Ivezić et al. 2004; Tucker et al. 2006), image processing (Lupton et al.
2002), astrometric calibration (Pier et al. 2003), and spectroscopy (Strauss et al. 2002; Blanton et al. 2003b)
of the SDSS provides a powerful database for detailed studies of the galaxy population from the local cos-
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mos. We exploit the large-number statistics of the SDSS to search for elusive pairs of massive galaxies
undergoing major merging in dense group and cluster environments. As described in detail below, our sam-
ple selection consists of (1) a complete and mass-limited set of large dark-matter halos drawn from the SDSS
DR2 group catalog1 (Yang et al. 2005; Weinmann et al. 2006), (2) the subset of massive galaxy pairs within
these groups that meet the stellar mass criteria ofM1 + M2 ≥ 1011M⊙, and (3) the identification of merger
candidates among the massive pairs.

2.1. Massive Halos from the SDSS Group Catalog

With large surveys of spectroscopic redshifts and imaging data, astronomers are for the first time able
to study galaxies according to their membership and position within dark-matter halos (i.e., galaxy groups).
Using the halo-based group finder of Yang et al. (2005), Weinmann et al. (2006) extracted groups from an
initial sample of 184,425 galaxies with0.01 ≤ z ≤ 0.20 and better than 70% redshift completeness drawn
from the New York University Value-Added Galaxy Catalog (NYU-VAGC, Blanton et al. 2005). The NYU-
VAGC provides improved processing and additional parameters for the SDSS spectroscopic Main galaxy
sample (Strauss et al. 2002), which has an extinction-correctedr = 17.77 magnitude limit.

The halo-based group finder of Yang et al. (2005) has been optimized to group galaxies according to
their common dark-matter halo, and has been thoroughly tested using mock galaxy redshift surveys. Briefly,
the group finder starts with a friends-of-friends algorithmto define potential groups and their centers. Any
isolated, bright galaxies not assigned to a potential groupare added as likely centers of additional groups.
The total group luminosity is converted into an estimate forthe group mass using an assumed mass-to-light
(M/L) ratio. From this mass estimate, the radius and velocity dispersion of the corresponding dark-matter
halo are estimated using the virial equations, which in turnare used to select group members in redshift
space. This method is iterated until group memberships converge. In Yang et al. (2005), the performance of
this group finder has been tested in terms of completeness of true members and contamination by interlopers,
using detailed mock galaxy redshift surveys. The average completeness of individual groups was found to be
∼ 90 percent, with only∼ 20 percent interlopers. Furthermore, the resulting group catalogue is insensitive
to the initial assumption regarding the M/L ratios.

As described in Weinmann et al. (2006), halo masses for each identified group were estimated using
the total group luminosity,Lgroup, defined as the summed luminosity of all group members. The motivation
behind this is that one naturally expects the group luminosity to be strongly correlated with halo mass.
Because of the flux limit of the SDSS, two identical groups observed at different redshifts will have a
differentLgroup. This bias was circumvented by usingL19.5 instead, which is defined as the luminosity of
all group members brighter than0.1Mr = −19.5 + 5 log h. The relation betweenL19.5 andLgroup was
calibrated using groups withz ≤ 0.09, which corresponds to the redshift for which a galaxy with0.1Mr =

−19.5 + 5 log h hasr = 17.77, the magnitude limit of the survey. For groups withz > 0.09, this ‘local’

1Public access to the group catalog is at http://www.astro.umass.edu/∼xhyang/Group.html.

http://www.astro.umass.edu/~xhyang/Group.html
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calibration betweenLgroup andL19.5 was used to estimate the latter. Finally, under the assumption that there
is a one-to-one relation betweenL19.5 and halo mass, and using the halo mass function corresponding to a
flat ΛCDM cosmology withΩm = 0.3 andσ8 = 0.9, the halo mass of a given group,Mhalo, then follows
from matching the number density of groups brighter (in terms of L19.5) than the group in consideration to
that of halos more massive thanMhalo. Detailed tests with mock galaxy redshift surveys have shown that
this method results in group masses that are more reliable than those based on the velocity dispersion of the
group members, especially when the number of group members is small.

In Weinmann et al. (2006), this group finder was applied to theNYU-VAGC associated with the SDSS
DR2, which yielded halo masses for 53,229 groups spanning11.8 < log10(Mhalo/M⊙) < 15.5 and
containing 92,315 galaxies. As a result of the method used toassign the group masses, the complete-
ness of the group catalog depends on both halo mass and redshift. In detail, the catalog is complete for
groups withlog10(Mhalo/M⊙) > 11.8622 to z = 0.06, log10(Mhalo/M⊙) > 12.1933 to z = 0.12, and
log10(Mhalo/M⊙) > 13.0877 to z = 0.20.

For our analysis, this group catalog provides two importantenvironmental measures for every member
galaxy: (1) an estimate of the virial mass (Mhalo) of the dark-matter halo in which the galaxy resides, and (2)
a distinction between central (CEN) and satellite (SAT) galaxies. Throughout, a CEN galaxy is defined as
the brightest member of its group. As discussed in detail in Weinmann et al. (2006), these quantities allow
more physically-meaningful discussions of the dependencies of galaxy properties on environment than do
projected number densities.

We combine two volume-limited samples defined by the halo construction and completeness described
above: (I)0.01 < z ≤ 0.06 and (II) 0.06 < z ≤ 0.12. We exclude halos with0.12 < z ≤ 0.20 to
avoid resolution limitations. Atz = 0.12, the SDSS resolution of1.4′′ corresponds to 3 kpc, thus fairly
massive galaxies will be only semi-resolved. Moreover, unreliable photometry is known to occur in SDSS
for galaxies separated by< 3′′ (Masjedi et al. 2006), which corresponds to 7–10 kpc over the0.12 <

z ≤ 0.20 interval. We find many close pairs with physical separationsless than 10 kpc, thus our redshift cut
avoids selecting a large fraction of close pairs with poor photometry. Within the two redshift slices we further
limit our selection to halos that have at least three spectroscopic members to allow for a complete search of
massive pairs associated with either CEN or SAT galaxies. This restricts our final sample to all SDSS DR2
groups with masses oflog10(Mhalo/M⊙) ≥ 13.4 in volume I, andlog10(Mhalo/M⊙) ≥ 13.8 in II. Hence,
our selection is halo mass-limited at values significantly larger than the group catalog completeness limits.
We plot the halo mass and redshift distribution of our final sample in Figure 1, which contains 845 groups
with masses ranging from one-tenth to ten times that of the Virgo cluster.

2.2. Massive Galaxy Pairs

The primary goal of our study is to find whether evidence exists for the major-merger assembly of
massive (Mstar > 1011M⊙) galaxies in dense environments. We approach this by first inspecting all massive
galaxies belonging to the halo mass-limited selection of 845 groups to identify those systems that have a
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major companion (mass ratio between 4:1 and 1:1) within a projected separation of 30 kpc. It is important
to keep in mind that these companions are neither restrictedto be in the SDSS spectroscopic Main sample
nor in the group catalog. We then use an image decomposition technique, as described in§2.3, to identify
the pairs that exhibit signs of tidal interaction associated with an ongoing merger.

We estimate stellar masses (Mstar) for all group members using the Bell et al. (2003) stellar M/L ratios
as follows:

log10(Mstar/M⊙) = −0.306 + 1.0970.0(g − r) − 0.15 − 0.4(0.0Mr − 4.67), (1)

where the constant 0.15 corrects to a Kroupa (2001) IMF, and0.0g and0.0r are Petrosian magnitudes from the
NYU-VAGC (random uncertainties< 0.03 mag) shifted to thez = 0 rest-frame using Blanton et al. (2003a)
K-corrections and corrected for Milky Way extinction using the Schlegel et al. (1998) dust maps. We sub-
tract0.1 magnitude to correct for the flux known to be missing from galaxies with early-type morphologies
(Blanton et al. 2003c). We use ther-band central-light concentration (R90/R50), defined by the ratio of
the radii containing 90% and 50% of the Petrosian flux, to coarsely separate early-type (R90/R50 ≥ 2.6;
spheroid-dominated) and late-type (R90/R50 < 2.6; disk-dominated) galaxies as others have with SDSS
data (e.g., Strateva et al. 2001; Hogg et al. 2002; Bell et al.2003; Kauffmann et al. 2003). The Bell et al.
(2003) color-based stellar M/L ratios have 20% random uncertainties and a 0.10-0.15 dex systematic error
caused by a combination of effects including dust, stellar population ages, and bursts of star formation. The
characteristic stellar mass of the local galaxy mass function from Bell et al. (2003) isM∗ = 7.24×1010M⊙.

To find major mergers between two galaxies with mass ratios≤ 4 : 1, we start with all 5376 group
members more massive thanMstar = 5 × 1010M⊙ (hereaftersampM) and note that this mass limit is
the minimum for which an equal-mass merger will produce a1011M⊙ remnant. We plot the color versus
stellar mass distribution of sampM in Figure 2. The contoursrepresent all SDSS DR2 Main galaxies with
z ≤ 0.12. The halo-mass-limited sample of 845 CEN galaxies from sampM are shown as red and blue
circles separated by the red/blue sequence boundary from Weinmann et al. (2006), modified toz = 0 and
H0 = 70 km s−1 Mpc−1. The 4531 SATs from sampM are plotted as black solid points. Not surprising, the
vast majority of massive galaxies in high-mass groups (bothCEN and SAT) have red-sequence colors. We
compare the massive galaxy content of sampM with that of thez ≤ 0.12 DR2 volume in Table 1.

We use the SDSS Image List Tool2 as a virtual observatory to visually examine an80 × 80 kpc region
centered on each massive galaxy in sampM, which allows us to view the entire extent of both galaxies in a 30
kpc pair. Although more time-consuming, this method ensures that we find all major companions including
those without SDSS spectroscopic data. In addition, our examination allows the identification of individual
(non-pair) sources with highly disturbed morphologies suggestive of ongoing major mergers, which cannot
be found with automated pair selection. We find seven morphologically-identified mergers that have semi-
resolved double nuclei with projected separations too close to be accurately deblended by the SDSS (Fig.
3).

2Available from the SDSS SkyServer Tools at http://cas.sdss.org/astro/en/tools/chart/list.asp.

http://cas.sdss.org/astro/en/tools/chart/list.asp


– 8 –

We find that 221 massive galaxies in sampM have a major companion with a projected separation of
d12 ≤ 30 kpc (centroid-to-centroid). Operationally, we use an apparent r-band magnitude difference of
|∆r12| ≤ 1.5, corresponding to mass ratios≤ 4 : 1 assuming a constant M/L ratio, to identify major com-
panions both with and without spectroscopic data. Throughout this paper we use the following designations
for projected pairs: galaxy number 1 is from sampM and galaxynumber 2 is its projected companion, re-
gardless of relative brightness or mass. In the cases where both galaxies have spectroscopic redshifts and are
massive enough to be included in sampM, galaxy 1 is the primary (i.e., brightest) member and we remove
from further analysis the duplicated pair initiated on galaxy number 2. The SDSS spectroscopy is known
to be about 8% incomplete overall, independent of galaxy luminosity. The main source of incompleteness
results from the55′′ minimum separation for fiber placement (i.e., “fiber collisions”) in the mechanical
spectrograph (Blanton et al. 2003b). This selection effectleads to a slight systematic under representation
in regions of high galaxy number density (Hogg et al. 2004), such as in massive groups and clusters. Less
than one third of the 221 pairs have spectra for both galaxies, and thus, redshifts for galaxies number 1 and 2
(i.e., spec-spec pairs). In what follows we will show that animportant fraction of all pair-identified massive
mergers have only one spectroscopic progenitor (i.e., spec-phot pairs).

Close pairs of galaxies are used often to infer information about galaxy merging (e.g. Patton et al. 2000;
Carlberg et al. 2000; Le Fèvre et al. 2000; Patton et al. 2002; Lin et al. 2004; Bundy et al. 2004; Bell et al.
2006b). These studies use a range of definitions, which usually include tight limits on both velocity and
projected spatial separations (typically< 500 km s−1 and 10–50 kpc), and do not use further knowledge
such as the halo mass or the position relative to the group center. Our choice ofd12 ≤ 30 kpc separations
is rather arbitrary and we have no way of knowing ab initio whether or not it will include all massive pairs
that show obvious signs of interaction. Owing to our larger80 × 80 kpc field of view, we effectively search
within a projected radius of 40 kpc around each galaxy in sampM, which enable us to find three additional
wide-separation (d12 > 30 kpc) pairs that exhibit strong merging signatures. The maximum projected
separation of the additional mergers is 37 kpc. The minute frequency of30 < d12 < 40 kpc pairs with
strong tidal signatures in these groups suggests that wider-separation systems will not be apparent in SDSS-
depth imaging data. We include only pairs withd12 ≤ 30 kpc for our projected pair statistics, but include
the three additional merger pairs in our progenitor and massassembly statistics.

Our sample includes three pairs with 2–3′′ separations, which are a potential source of systematic bias
in our major pair selection. As mentioned above, Masjedi et al. (2006) showed that the SDSS photometric
pipeline boosts the recovered flux of individual galaxies invery close pairs. For equal-luminosity galaxies
separated by 5–20′′ the excess is only about 5%, but this quickly rises to 20% at3′′ separation. Moreover,
the pipeline has trouble deblending very close pairs as is evident in Figure 3. We do not attempt to separate
the progenitors of these mergers, instead we assume that they represent major mergers and explicitly state
where we include them in our analysis.

Finally, the subset of 64 major spectroscopic pairs in sampMallow us the unique opportunity to test
the frequency of interlopers in massive groups. We find that 25% of the spectroscopic pairs (2 CEN-SAT,
14 SAT-SAT) are comprised of projected galaxies in two separate groups with average absolute velocity
separation〈|∆v|〉 = 7550 km s−1. If we limit our analysis to spectroscopic pairs withd12 ≤ 30 kpc and



– 9 –

〈|∆v|〉 ≤ 500 km s−1, we find 5% contamination from interlopers in basic agreement with Berrier et al.
(2006), who used mock galaxy catalogs from cosmological simulations to demonstrate that 10–50 kpc (14–
71 kpc in our assumed cosmology) pairs with less than 500 km s−1 separation reside in the same dark-matter
halo with a low (5 − 20%) contamination from projected interlopers. Overall, the spectroscopic pairs from
sampM that live in the same group have absolute velocity differences spanning 10 to 1560 km s−1 with
means of 260 km s−1 (CEN-SAT) and 360 km s−1 (SAT-SAT). Many of these pairs are likely doomed to
merge, yet some may still be chance projections on opposite sides of the same group. We feel that the
most conservative approach to locating physically interacting pairs is to look for morphological signs of
disturbance, an approach that we adopt and discuss in the next section.

2.3. Identifying Major Mergers

Besides pair statistics, major galaxy mergers are routinely identified by their highly-disturbed appear-
ance (e.g., Le Fèvre et al. 2000; Conselice et al. 2003; Lotz& et al. 2006). Tidal tails and debris, multiple
nuclei, strong asymmetries, and other morphological peculiarities are common features in both observations
and in simulations of galaxy collisions (Toomre & Toomre 1972; Barnes 1988; Barnes & Hernquist 1992;
Dubinski et al. 1996; Barnes & Hernquist 1996; Mihos 2001). Yet, distinguishing major mergers from lower
mass ratio “minor” interactions using morphology alone is fraught with uncertainties. For example, depend-
ing on the orbital geometry, a 10:1 gas-rich merger can result in a more disturbed morphology than an
encounter between two massive ellipticals, which have broad low-surface brightness features (Bell et al.
2006a). We circumvent this issue by selecting major pairs ofmassive galaxies first, and then fitting sym-
metric models to the light profiles of each galaxy in each major pair and identifying interaction signatures
in the residual (data−model) image. Our methodology is similar in spirit to that ofLauer (1986, 1988), who
modelled BCGs with multiple nuclei as the line-of-sight superpositions of normal elliptical galaxies.

For each major pair in sampM we use GALFIT (Peng et al. 2002) tofit the surface photometry of both
galaxies and any other close companions in the SDSSr-band image data. For each fit we use the global
background estimate provided in the SDSS image header. The details of our fitting pipeline developed
for SDSS imaging will be presented in Guo et al. (in prep.). Asymmetries commonly associated with
galaxy mergers (e.g., tails, bridges, plumes, nonconcentric isophotes, diffuse excess structure, and dynamical
friction wakes) arenot well fit by symmetric models centered on the galaxy. Therefore, to isolate and
highlight asymmetries in the residual image we use either a single-component Sérsic or a two-component
Sérsic bulge plus exponential disk model for each source, depending on whether or not disk features such
as spiral arms, rings, or bars are apparent. We classify any major pair as a merger if there are asymmetric
residuals brighter than 24.5 mag arcsec−2 associated withboth progenitor galaxies. All other pairs are
deemed non-interacting. This surface brightness limit wasused in the selection of SDSS spectroscopic
target galaxies (Strauss et al. 2002), and we find that residual features this bright are unambiguous.

For isolated galaxies not undergoing a major interaction, there are a number of other explanations for
the presence of asymmetric residual flux, such as lopsided spiral features caused by minor interactions or
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Fig. 1.— Distribution of halo mass and redshift for massive groups identified by Weinmann et al. (2006) in
the SDSS DR2. Small grey points show all 12,552 groups withMhalo > 2 × 1013M⊙; for z ≤ 0.12 there
are 2666 groups above this halo mass cut, the majority of which contain only 1 or 2 spectroscopic members.
Black diamonds show our halo-mass and volume-limited selection of 845 groups (see text for details) that
we use to search for major pairs of massive galaxies. There are 176 groups with0.01 < z ≤ 0.06 (vol. I)
andMhalo > 2.5 × 1013M⊙, and 669 with0.06 < z ≤ 0.12 (vol. II) andMhalo > 6.3 × 1013M⊙.

Fig. 2.— Rest-frame optical color versus stellar mass plot for our selection of massive members (sampM)
from a halo mass-limited sample of large SDSS DR2 groups. Grayscale contours show all SDSS (DR2)
galaxies with0.01 < z ≤ 0.12; each contour represents a 3-fold increase in the number of galaxies. The
solid red line is the red/blue sequence separation we adopt from Weinmann et al. (2006). Blue and red
circles denote the subset of 845 CEN galaxies, and black solid points denote the 4531 satellites. The vertical
arrow indicatesM∗ from Bell et al. (2003).
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Fig. 3.— Seven additional mergers identified only by strong morphological disturbances, not by close major
companions. Images are60 × 60 kpc cutouts ofgri combined color images with fixed sensitivity scaling
downloaded from the SDSS Image List Tool. We distinguish CEN(C) from SAT (S) mergers, and we
include the NYU ID and the redshift, at the top of each panel. The horizontal white line shows10′′ in each
panel.
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large star-forming regions. The subset of 16 interlopers (§2.2) provides a null sample to demonstrate that
no major pairs that are simple line-of-sight projections meet our dual disturbance criteria for identifying
mergers. In Figure 4, we show our fitting analysis for two interlopers that have the strongest detectable
asymmetries from spiral structure (NYU IDs 95240 and 275580). In each case the asymmetry is associated
with only one galaxy of each pair. None of the remaining 14 interloper pairs in Figure 5 exhibit the strong,
dual asymmetries that we observe in the merger pairs, which we describe next.

We find 38 pairs of massive galaxies in sampM that we classify as major mergers (35 withd12 ≤ 30

kpc). We display the SDSSr-band image and corresponding GALFIT residual of each merger in increasing
redshift order (left to right) in Figures 6 and 7. These images leave little doubt that the two galaxies in each
pair are in the midst of merging. We find a variety of strong tidal features including broad tails (e.g., 311008,
352171, and 274752) such as seen during the period between second close passage and final coalescence in
dissipationless merger simulations (Naab et al. 2006b) andobservations (see Fig. 1, Bell et al. 2006a), and
dynamical friction wakes in the outer stellar envelopes (e.g., 367419 and 258681) as predicted by Weinberg
(1986) and hinted at in a few BCG systems by (Lauer 1988). In addition, we find bridges (e.g., 301558 and
371303), plumes (e.g., 150206 and 261132), diffuse structure (e.g., 294450 and 9993), and many examples
of nonconcentric isophotes (e.g., 392792, 222852, and 373137), which present the strongest indications for
tidal contact (Lauer 1988). In Figure 8, we show 10 examples of close (spec-phot) pairs that have no residual
asymmetries and are likely the result of chance projections. Comparing these non-interacting examples with
the 38 mergers in Figs. 6 & 7 clearly demonstrates the fidelityof our merger identification scheme. As
the sensitivity of the SDSS imaging may be too low to detect all interacting pairs of massive galaxies, our
classifications provide a conservative lower limit. Nonetheless, our sample identifies the strongest cases and
serves as an important dataset for studying the properties of massive merger progenitors in§3.2.

Nearly 70% (26) of these massive mergers have redshift information for only one progenitor (spec-
phot pairs) as a result of fiber collisions, which highlightsthe importance of our thorough approach for
identifying such systems. We estimate that we could be missing an additional four (11%) mergers that
are photometric-photometric sources based on the 34% (26/76) of progenitor galaxies that have only SDSS
photometry. Quantifying the exact number of massive phot-phot mergers in the DR2-based group catalog is
beyond the scope of this paper. An improved understanding ofthe completeness of pairs of merging galaxies
in SDSS groups is one of the aims of our next paper.

3. Properties of Massive Mergers in Groups and Clusters

In this section, we explore the properties of theMstar ≥ 1011M⊙ mergers that we identified from a
complete sample of≤ 4 : 1 mass ratio pairs of massive SDSS galaxies that we selected from group and
cluster-sized halos. We compare the distributions of basicobservables for merger pairs and major pairs not
classified as mergers, quantify the nature of the merger progenitors, make predictions about the remnants,
and look for environmental dependencies in this merging population.
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Fig. 4.— Examples of two galaxy pairs with small projected separations but large physical separations;
i.e., the two galaxies reside in different groups and are thus not physically associated.Panels:(left) r-band
SDSS image in arbitrary false-color, logarithmic scale to highlight low-surface brightness features, (middle)
GALFIT symmetric model profile, and (right) data−model residual. We identify merging galaxies by the
presence of asymmetric residual flux associated with each individual galaxy (see text for details). These two
examples are among the subset of 16 null (interloper) cases,none of which meet our merger identification
criteria. Some interloper pairs have one galaxy with detectable residuals for a variety of reasons other than
an interaction between the two galaxies. We show the strongest residual cases here to illustrate the most-
common cause, which is spiral structure. Each image is80 × 80 kpc and we provide the NYU-VAGC DR2
identification number (NYU ID) in the upper left.
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Fig. 5.— The remaining 14 of 16 major pairs that are interlopers (individual galaxies in separate groups).
No pair exhibits asymmetric residuals for both galaxies. The images (r-band data and residual with log-scale
stretch) are80 × 80 kpc and are labeled as in Figure 4.
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Fig. 6.— See caption for Figure 7.
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Fig. 7.— The full sample of 38 major-merger pairs of massive galaxies identified in a halo mass-limited
subset of SDSS DR2 groups withz ≤ 0.12 (sampM). Three pairs (301558, 83539, and 284077) have
projected separations between30 < d12 < 37 kpc. We identify these merging systems when both galaxies
have asymmetric residual features in excess of 24.5 mag arcsec−2. Such asymmetries are associated with
tidal signatures (e.g., tails, bridges, plumes, nonconcentric isophotes, diffuse excess structure, and dynamical
friction wakes) of mutual encounters between two galaxies.For each pair we provide ther-band data in
false color (arbitrary scaling) at the left, and the data−model residual at the right. To highlight low-surface
brightness features we Gaussian smoothed (using a 1 pixel sigma) the residual images of each, except for
301558, 250588, 364190, 278870, 352171, 333778, 44192, 392792, 371303, 11349, 241625, and 274752.
All images are80 × 80 kpc with the NYU ID and spectroscopic redshift given.
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Fig. 8.— Examples of 10 spec-phot pairs in projection that show no signs of disturbance; the central galaxy
of each panel has a spectroscopic redshift. These non-interacting pairs likely have much larger physical
separations than their projected< 30 kpc separation suggests, and are either interlopers (separate groups)
or well-separated within a common halo. All images (r-band data, model, residual with log-scale stretch)
are zoomed in to60 × 60 kpc, and are labeled as in Figure 4.
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3.1. Basic Observables

In Figure 9, we plot the distributions of basic observables that describe each major pair of massive
galaxies we selected in§2.2. Here we compare the subsets of 35 mergers (d12 ≤ 30 kpc; bold lines), 16
interlopers (i.e., definite non-interacting; grey bins), and the remaining 170 we classify as non-interacting
(thin lines). It is important to note that a simple selectionof major pairs of massive galaxies in dense
environments yields< 16% with obvious signs of merger/interaction. We find that the pairs that we identify
as mergers have some differences with those without interaction signatures. Likewise, merging galaxies
obviously residing in the same group are different from projected pairs of galaxies that reside in distinct
host halos.

In general, the merger pairs have a flatter∆r12 distribution than non-interacting pairs, with more sys-
tems near∆r12 = 0, the proxy for equal-mass mergers, in contrast to the increasing number of non-mergers
towards larger magnitude offsets as expected for a simple projected pair sample. Nonetheless, there is no
statistical difference between the∆r12 distributions of mergers and the subset of known interlopers. Re-
call that we select pairs with|∆r12| ≤ 1.5, but here we show the∆r12 distribution to illustrate that some
spec-phot pairs have∆r12 > 0; i.e., the source without SDSS spectroscopy is more massive.

Merging pairs tend to have smaller angular separationsθsep compared with non-interacting pairs and
interlopers. In terms of the colors and concentrations of galaxies in pairs, we find little difference between
the interacting and non-interacting subsets. Owing to our selection bias for red galaxies (see Fig. 2) and
the stronger clustering of red galaxies (e.g., Zehavi et al.2002), it is not surprising that the color difference
∆(g − r)12 = (g − r)1 − (g − r)2 distributions are narrow and peaked near zero. Likewise, given the
broad range of concentrations (2 < R90/R50 < 4) found for SDSS Main galaxies (e.g., Hogg et al. 2002),
the relatively small concentration differences∆(R90/R50)12 are consistent with matched morphologies of
similarly red galaxies. We note a mild difference between the ∆(g − r)12 and∆(R90/R50)12 distributions
of merging and interloper subsets, such that the physicallyunassociated pairs have an increased chance to
be composed of a red massive-group member with a blue, later-type projected companion.

We check whether or not any of the basic pair properties in Figure 9 depend on the redshiftz1 or stellar
massM1 of the pair member from sampM. Onlyθsep depends onz1, as expected for a sample limited to
30 kpc maximum projected separations. The different subsets (mergers, interlopers, non-interacting) are
independent ofz1 andM1, and hence we conclude that the initial selection of sampM did not impart biases
on our ability to classify mergers in a larger sample of majorpairs. Moreover, despite the differences we
find between the observables of merging and non-interactinggalaxy pairs, we cannot distinguish different
subsets of major pairs based on these differences alone.

As we mentioned in§2.2, a spectroscopic close pair of galaxies that belong to the same host dark-
matter halo may reside on opposite sides of the group, and thus have much larger real space separations
than their projected separations imply. On the other hand, merger pairs by definition must be in close
physical proximity. As such, for pairs where both galaxies are members of the same group, we compare
in Figure 10 the merging and non-interacting subsets in terms of their projected spatial (d12) and velocity
(v12) separations. We find that the presence/absence of residualasymmetries clearly produces different
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d12 distributions consistent with the non-interacting pairs being drawn from a much broader distribution of
real-space separations than the mergers. Moreover, the declining number of mergers with increasingd12

suggests that wider-separation pairs do not typically include tidal distortions that are apparent in the SDSS
imaging. Similarly, we find a more narrow distribution ofv12 for mergers compared to the non-interacting
pairs in a matched group, but the significance of this is unclear owing to the large number of spec-phot
mergers withoutz2 measurements (25 out of 35). There is no substantial difference between|∆r12| for the
two subsets.

3.2. Nature of Progenitors

In the Introduction, we outlined the importance of improving our understanding of the progenitors of
massive mergers. Here we use concentration, rest-frame color, and stellar mass to explore the properties of
the progenitor galaxies in our total sample of 38 mergers; wetabulate information for all 76 progenitors in
Table 2.

Two thirds of the merger sample have spectroscopic information for only one of the progenitors as a
result of fiber collisions (§2.3). To obtain rest-frame quantities for these companionswe useK-corrections
downloaded from the SDSS PhotoZ table, which we then correctto the redshift of the merger; i.e., we
assumez2 = z1. For all photometric sources in SDSS, PhotoZ provides photometric redshiftszphot and
relatedK-correctionsK(zphot) to shift quantities toz = 0. For our subset of merger pairs we find that
zphot is systematically larger thanz1, and thusK(zphot) is an overestimate. In the left panel of Figure 11,
we show theg andr-bandK(zphot) bias relative toK(z2) for the 12 mergers in our sample where we have
spectroscopic information for both galaxies. We estimate the correctK-correction for a given passband

K(z2) = K(zphot)
log10(1 + z2)

log10(1 + zphot)
, (2)

by assumingK(z) ∝ 2.5 log10(1 + z) (Blanton et al. 2003a). As we demonstrate in the middle and right
panels of Figure 11, our method provides excellentK-correction estimates with a smaller than±0.02 mag
scatter, a -0.03 magg-band offset, and nor-band offset. In this manner, we obtain0.0(g − r) andMstar

estimates for each photometric progenitor from its extinction-corrected color downloaded from the SDSS
PhotoTag table.

Among the SAT-SAT mergers, there are three spec-phot pairs (336039, 364190, and 373137) where
the photometric progenitor is more massive than the host group’s central (brightest) galaxy. We, therefore,
assume that this galaxy is in fact the CEN and add these pairs to the CEN-SAT merger subset. Our final
sample of 38 pairs of massive merging galaxies includes 21 CEN-SAT and 17 SAT-SAT systems. We
distinguish between the CEN-SAT and the SAT-SAT mergers in the remaining plots.
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Fig. 9.— Distributions of observables for major (≤ 4 : 1 mass ratio) projected (≤ 30 kpc) pairs split into
three subsets: merging/interacting (bold lines), known interlopers (grey bins), and non-interacting systems
(thin lines). From left to right we plot the extinction-correctedr-band Petrosian magnitude difference, angu-
lar separation, extinction-corrected(g − r) Petrosian color difference, andr-band concentration difference.
All parameter differences are defined∆p = p1 − p2 such that 1 denotes the galaxy from sampM and 2
denotes the companion.

Fig. 10.— Comparison of the properties of 35 major-merging (bold lines) and 39 non-interacting (grey bins)
galaxy pairs where both galaxies belong to the same host halo. From left to right, the relative properties
of progenitor galaxies 1 and 2 are absolute value of ther-band magnitude difference, projected spatial
separation in kiloparsecs, and velocity difference. Only 10 of the 35 major interacting pairs withd12 ≤ 30

kpc have spectroscopic information for both progenitors toenable the calculation of∆v.
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3.2.1. Progenitor Morphology

We explore the color and concentration of the progenitor galaxies in massive merger pairs in Figure
12. In the left panel, we plot the rest-frame color of progenitor number 2 relative to the blue/red sequence
boundary shown in Figure 2 as a function of the color of progenitor number 1 from sampM for each merger
pair. The data points in both panels of Figure 12 are color-coded to distinguish blue or red-sequence0.0(g−

r)1 colors, and data above the dashed line have red0.0(g − r)2 colors. We find that90 ± 5% of the massive
mergers we identify are comprised of two red progenitors; only one merger is blue-blue and three are mixed
pairs. In the right panel, we show the central-light concentration of progenitor 2 plotted against that of
progenitor 1. Consistent with the high fraction of red-red mergers,92 ± 4% of the mergers are comprised
of two concentrated progenitors withR90/R50 > 2.6, the fiducial value for early-type morphologies (see
§2.2). Three mergers are made up of an early/late mix according to concentration, with one of each red-red,
red-blue, and blue-blue.

The nature of the progenitors appears to depend little on whether the merger is positioned at the center
of the host group or is between a pair of SAT galaxies. Owing tothe small-number statistics, the slight de-
crease in the red-red merger fractions from 95% (CEN-SAT) to82% (SAT-SAT), and likewise for early-early
mergers from 95% (CEN-SAT) to 88% (SAT-SAT), are consistentwith no difference. Generally speaking,
the major mergers that will produceMstar > 1011M⊙ remnants in massive groups are between two red-
sequence spheroids that have little cold gas for star formation and are presumably dissipationless. The
properties of these low-redshift mergers match the six0.1 < z < 0.9 dissipationless mergers in Bell et al.
(2006a).

3.2.2. Progenitor Mass Ratios

The major mergers we have identified are drawn from pairs with|∆r12| ≤ 1.5 mag, our proxy for 4:1
to 1:1 mass ratios (§2.2). Here, we explore the actual stellar mass ratios of the merger progenitors. Overall,
the Petrosian color-derivedMstar estimates for sampM are well-behaved as demonstrated by thetight red-
sequence of CEN and SAT members in Figure 2. We note, however,that there are a handful of extreme
outliers in color-mass space such that some massive group galaxies have very red colors, especially at the
high-mass tip of the red sequence. Large systematic errors in color translate into errors inMstar, which is
a critical issue when trying to ascertain the progenitor mass ratios. Nevertheless, it is unclear whether the
measured colors are the result of an error in the photometricpipeline or simply the intrinsic nature of a rare
population.

We attempt to quantify the amplitude of systematic uncertainties in our stellar mass estimates from
issues related to the SDSS photometry by recomputingMstar for all 76 merger progenitors using SDSS
Model3 magnitudes in place of Petrosian quantities in (1). In Figure 13, we plot the relative difference

3In addition to standard Petrosian magnitudes, the SDSS photometry includes measures of galaxy flux from the best-fit model,
either a de Vaucouleurs or an exponential, to ther-band image profile.
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Fig. 11.—K-corrections forg (open triangles) andr (solid triangles) passbands shifted toz = 0 for the
subset of 12 companion galaxies in major-merger pairs wherespectroscopic redshifts are available for both
progenitors. We plot the accurate NYUVAGC K-corrections versus those from PhotoZ (left), corrected
using (2) (middle), and the relative difference between theNYU VAGC and our corrected values (right); the
error bars show the mean and scatter of the offsets in each passband.

Fig. 12.— Colors and concentrations of the progenitors of massive major mergers. Mergers involving a
CEN and SAT galaxy (stars) are distinguished from those involving two SATs (circles). Data points are
color-coded to represent blue/red sequence color of the progenitor in sampM (galaxy number 1).Left:
relative rest-frame(g− r) color of the companion galaxy (number 2) with respect to the blue/red cut plotted
as a function of progenitor number 1 color. Red points above the dashed line represent red-red mergers.
Right: r-band central-light concentrations of progenitor 2 versusprogenitor 1. Dashed lines show the crude
early/late morphology cut ofR90/R50 = 2.6.
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between the masses derived with each type of magnitude as a function of the0.0Mr and0.0(g−r) differences
(Petrosian-Model), andθsep. We find that the bulk (75%) of the progenitors have a small (≤ 0.15 dex) but
systematic shift towards lower masses, which correlates with fainter0.0Mr, when using Model magnitudes.
This subset has a tight locus of∆[0.0(g−r)] comparable to the quoted∼ 0.04 mag random error for Petrosian
colors. The remaining 25% of the progenitors have systematic color offsets as large as+0.30(−0.25) mag
resulting in a greater than factor of 2 shift inMstar, or more than twice as much as the expected 0.10-0.15
dex systematic uncertainty (§2.2). In Table 2, we note the progenitors with≥ 0.3 dex difference between
their Petrosian and Model-basedMstar estimates. We find no dependence of these mass offsets on CEN
versus SAT, nor on the angular separation of the pairs. One possible explanation for the large photometric
variances could be related to known pipeline errors for veryclose pairs (Masjedi et al. 2006), yet very few
of our projected pair sample haveθsep < 3′′ and it is difficult to understand how close pairs would have
boosted flux in one passband (r) but not another (g) to account for the very red colors.

We plot the color-stellar-mass distribution of the 76 progenitors in Figure 14 using symbols to represent
the Petrosian-derived values and arrows to explicitly showthe direction and amplitude of the shifts to Model-
derived values in this parameter space. We note that the extremely-red outliers in Petrosian space have
Model colors more in accord with normal red galaxies. Generally speaking, most of the progenitors occupy
the massive end of the red sequence; 80% haveMstar > 1011M⊙. This means that some very massive
galaxies continue to be assembled in the low-redshift universe. Yet, as a result of selection effects, we
cannot determine the significance of the small number of progenitors withMstar < 1011M⊙. The selection
of sampM creates a bias insofar as the percent contribution of massive halo members to the overall DR2
galaxy population in thez ≤ 0.12 volume decreases significantly as a function of stellar mass(see Table
1). In other words, our halo mass-limited selection misses vast numbers of galaxies withMstar < 1011M⊙

simply because they live in halos withMhalo < 2.5 × 1013M⊙. The importance of massive major mergers
in lower-mass halos will be the subject of a followup paper.

In Figure 15, we show the stellar mass ratios of the progenitors in our sample of mergers as a function
of the massM1 of the progenitor drawn from sampM. There is little qualitative difference between the
distributions ofM1/M2 based on Petrosian or Model photometry. Both CEN-SAT and SAT-SAT mergers
have mass ratios mostly between 2:1 and 1:1, with the primaryprogenitors in central mergers tending toward
higher masses than those in SAT-SAT mergers. We discuss the implications of these mass ratios on the
merger assembly of massive galaxies in§4.1.

3.2.3. The Predicted Color-Mass Distribution of Massive Remnants

Recall that besides the sample of 38 merger pairs we have alsoidentified seven massive mergers based
on their disturbed morphologies (§2.2; Fig. 3). Under the assumption that these morphologically-identified
mergers are examples of an advanced evolutionary stage between interacting pairs of massive galaxies and
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the final coalesced remnant4, it is worthwhile to compare their positions in the color-stellar-mass plane with
the predicted locations for the remnants of the merger pairs. For each pair of progenitors we calculate the
remnant’s final massMrem = Mp + fMs and its mass-weighted color

(g − r)rem = −2.5 log10

[

Mp

Mrem
10−0.4(g−r)p +

fMs

Mrem
10−0.4(g−r)s

]

, (3)

where the primary progenitor is more massive than the secondary by definition (i.e.,Mp ≥ Ms). The factor
f allows us to adjust the fraction of the secondary progenitor’s initial mass that is included inMrem. In what
follows we use Petrosian-based quantities.

In each panel of Figure 16 we show the seven morphologically-identified mergers as squares with CEN
(SAT) examples distinguished by open (closed) symbols. Sixof the seven have red-sequence colors, and all
CENs are more massive than the SATs. We first compare the color-mass distribution of these mergers with
the predict distribution of remnants from the 38 merger pairs under the simple assumption that the total mass
of the secondary is always accreted onto the remnant (f = 1). Nearly all remnants have red-sequence colors
reflecting the nature of their progenitors. In terms of the stellar masses of the observed mergers compared
to the predicted remnants, we find better agreement with SATsthan for CENs. Three quarters of the future
remnants at the centers of massive groups are more massive than the four morphologically-identified CEN
mergers. With small number statistics it is difficult to makedefinitive comparisons. It is possible that the
time interval that a late-stage merger is apparent depends on stellar mass, such that higher-mass mergers
coalesce into a single object faster. Another possibility is that some mass is lost during the merging process.

Zibetti et al. (2005) found that the intracluster light (ICL) within 100 kpc of the group or cluster center
makes up as much as 40% of the total cluster luminosity (galaxies+ICL), and they showed that the stars
making up the ICL have the same colors as the old-stellar light from the massive galaxies in the intracluster
environment. Therefore, it is conceivable that some stellar mass from the massive, red, CEN-SAT mergers
deep in the potential wells of large groups and clusters winds up in the ICL rather than as part of the central
remnant galaxy. Various groups have argued that disruptionof SAT galaxies through tidal stripping and
heating can remove 10–80% of their stellar mass and account for the ICL (Monaco et al. 2006; White et al.
2007; Conroy et al. 2007). These theories provide a way to reconcile the predicted merger-driven mass
growth above1011M⊙ in a ΛCDM cosmology with the little growth that is observed in the stellar mass
function (e.g., Wake et al. 2006; Brown et al. 2007). In the right panel of Figure 16, we try a highly con-
servative test of the latter scenario by assumingf = 0.5 for CEN-SAT remnants, butf = 1 for SAT-SAT
mergers. This assumption implies that each massive SAT merging with the center of its host potential well
would lose 50% of its present stellar mass by the time it coalesced from an average projected group-centric
distance of 15 kpc. In the previous section, we show that these CEN-SAT mergers have mass ratios typi-
cally within a factor of two of unity, and these systems are clearly separated by distances much less than
the ICL half-light radius. These facts suggest either (i) a much lower SAT mass loss than our conservative
assumption, or (ii) the SAT masses at the ICL half-light radius were in excess of the CEN with which they

4This is a fair assumption given that all seven morphologically-disturbed mergers have stellar masses in excess of10
11

M⊙.
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will eventually merge. Another possibility is that the CEN-SAT masses are much more disparate as a result
of the standard SDSS photometry systematically underestimating the CEN luminosities (Lauer et al. 2007).
Resolving these issues is beyond the scope of this paper. Instead we simply point out that in terms of rel-
ative stellar mass from SDSS photometry, we see better agreement between the observed mergers and the
predicted remnants at the centers of massive groups if we assume that only half of the SAT mass ends up in
the remnant, which suggests that major mergers at the bottomof the potential well in groups and clusters
could be an important source for the ICL.

3.3. Environmental Dependencies

One of the key goals of our study is to quantify the environmental dependencies, if any, of massive
mergers. Here we use the host’s halo mass, and the distinction between CEN (brightest) and SAT members,
to explore the environments of the mergers that we have identified in large SDSS groups and clusters from
the local universe. In what follows, we consider the combined sample of 45 massive mergers: 38 close pairs
identified by residual asymmetric structure plus seven single sources identified by their morphologically-
disturbed appearance.

3.3.1. Preference for Central Merging

We find that the centers of massive groups and clusters appearto be the preferred environment for
the major-merger assembly of present-dayMstar > 1011M⊙ galaxies. More than half of the mergers we
identify involve the central (most-luminous) member of thehost dark-matter halo, yet there are five times
less CENs than SATs to merge with in sampM. Thus, on average, 3% of massive groups withz ≤ 0.12 have
a major merger, but less than 1% of all massive galaxies within these groups are merging.

In Figure 17, we compare the group-centric properties of theCEN and SAT mergers. We find that
mergers involving a CEN are significantly closer to the luminosity-weighted center of their host group than
mergers between SAT galaxies. The average projected group-centric distance of CEN mergers is 210 kpc,
compared to 490 kpc for SATs. Moreover, relative to the luminosity-weighted group redshifts, the CEN
mergers have a narrower distribution of velocity offsets (σ = 200 km s−1) than the SAT mergers (σ = 370

km s−1). The small group-centric offsets of the CEN mergers are consistent with them residing at the bottom
of their halo’s potential well, where dynamical friction ismaximum. In contrast, most merging SATs have
large group-centric offsets as expected given their rank within their host group. At face value, these results
indicate that mergers between massive SATs do occur, yet in terms of their morphologies (Fig.12) and mass
ratios (Fig.15) there are no clear differences between CEN-SAT and SAT-SAT merger progenitors.

A merger between two massive galaxies likely occurs at the dynamical center of a common dark-matter
halo. If the merger is between two SATs, then we may be witnessing a merger at the center of a subhalo that



– 26 –

merged with the larger host halo5. Another possibility is that the SAT merger represents the true dynamical
center of the host halo. Indeed, we find that 20% (4/20) of the SAT mergers reside closer to the center of
the group’s projected galaxy distribution than the spectroscopic CEN galaxy identified by the group catalog,
and have a total stellar mass estimateM1 + M2 that is greater than the mass of the CEN (MCEN). We
identify these four pairs in Table 2 and explore their inclusion/exclusion in the CEN-SAT merger subset in
our analyzes of central merger frequencies and mass accretion rates in the following sections.

It is also possible that a significant fraction of the SAT mergers are at the center of a distinct halo
seen in projection along the line of sight to the host halo. This explanation would explain the group-centric
differences in Figure 17, and the similarities in color, concentration, and mass ratios that we observe. We
note that 6/20 SAT mergers haveM1 + M2 ≥ MCEN and large projected group-centric distances, providing
circumstantial evidence for membership in a separate groupfrom the host of the CEN galaxy. Yet, a simple
calculation shows that there is only a 10% chance for a line-of-sight projection of a distinct group with
Mhalo ≥ 1013M⊙ within 1 Mpc radius and±400 km s−1 depth (following the group-centric properties of
the SAT-SAT mergers in Fig. 17). This estimate is an upper limit based on the mean number density of
groups that typically host a1011M⊙ CEN galaxy (10−3.5 Mpc−3, Mo & White 2002), and the assumption
that the correlation strength between groups increases thelocal density relative to the mean by a factor of
10. Therefore, our observed frequency of 3% of groups with central mergers implies that we should find
only three SAT-SAT mergers that are misidentified CEN-SAT systems from a projected group. We find
16–20 SAT-SAT mergers in 845 groups (1.9–2.4% depending on whether we consider the four mentioned
above to be at the center of their host), indicating that mostare correctly identified as SAT-SAT interactions.
Given the large velocity dispersions of high-density environments, true SAT-SAT mergers are not expected.
While we do find large group-centric velocity offsets for SAT-SAT mergers (Fig. 17), for the subset of 12
spec-spec mergers we find no significant difference between the small velocity separations (v12, see Fig.
10) of CEN-SAT and SAT-SAT mergers. Therefore, we tentatively conclude that massive SAT-SAT mergers
identify the centers of large subhalos that have recently accreted onto their host.

3.3.2. Merging Dependence on Halo Mass

By identifying the massive galaxy mergers in a halo mass-limited selection of large groups, we can for
the first time constrain their importance as a function of halo mass. In the left panel of Figure 18, we plot the
halo-mass dependence for the frequency of groups that have merger-driven assembly ofMstar ≥ 1011M⊙

galaxies restricted to group centers. We find that the fraction of groups that have a massive merger at
their center (bold red line) is statistically constant at 3%over the interval13.4 < log10 (Mhalo/M⊙) <

14.9; we note that including the four morphologically-identified CEN mergers plus the four misclassified
SAT-SAT mergers at their host’s dynamical center results ina minor increase to this frequency (thin red
line, open diamonds). We contrast our estimate for the merger frequency dependence on halo mass, based

5The halo-based group finder of Yang et al. (2005) used to produce the SDSS group catalog does not have the ability to distin-
guish subhalos within the halo defining each galaxy group.
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solely on galaxies exhibiting obvious tidal features, to that obtained from simple close projected pairs of
massive galaxies (dashed black line), which grows steadilywith halo mass as a result of the increased
projected number density of massive galaxies in dense environments. The increased chance of projection
with increasingMhalo also occurs for the subset of spec-spec pairs that are found in the same host group
(solid black line), but the amplitude is diminished owing tothe high spectroscopic incompleteness in the
pairs that we study. Atlog10 (Mhalo/M⊙) < 14.6, the number of spec-spec projected pairs in matched
halos is less than that of all mergers, which by definition must reside in the same host halo, because the
latter include spec-phot pairs.

In the right panel of Figure 18, we repeat our analysis of merger and projected pair frequencies as a
function of halo mass using the combined CEN-SAT plus SAT-SAT sample. When considering all possible
mergers that will produce high-mass remnants (red lines), the frequency is roughly constant at 5% for13.4 <

log10 (Mhalo/M⊙) < 14.9. Including/excluding the seven non-pair mergers (morphologically-identified)
does not change these frequencies significantly. The issueswith using simple projected pair statistics (black
lines) to estimate merger frequencies grow rapidly out of hand for massive groups that contain large numbers
of Mstar ≥ 5 × 1010M⊙ galaxies; e.g., on average nearly half of alllog10 (Mhalo/M⊙) = 14.5 groups have
one major pair of massive galaxies that appear close in projection.

Besides merger frequency per group we can approach massive mergers from a different perspective and
calculate the frequency ofMstar ≥ 5 × 1010M⊙ SATs that are currently involved in a merger that can be
identified as such with the technique that we use here. We calculate separate frequencies for merging with a
CEN or another massive SAT galaxy in bins of halo mass, and plot them in Figure 19. As a function ofMhalo,
the SAT merging frequencies decrease from a few percent for our lowest-mass groups, to≤ 1% for groups
larger thanMhalo = 5 × 1013M⊙. The CEN-SAT merging follows a very similar decreasing frequency
trend with increasingMhalo as SAT-SAT mergers, which is qualitatively consistent withdynamical friction
and provides more circumstantial evidence that SAT-SAT mergers are occurring at the dynamical centers of
recently accreted subhalos. Even though SATs have a large relative velocity dispersion, they can still merger
through dynamical friction if they are both members of a subhalo.

4. Discussion

We find the first direct observational evidence for an important population of galaxy-galaxy mergers
with total stellar masses above1011M⊙ in the local universe. These objects provide an unprecedented
census of the progenitor properties for the merger-driven assembly of high-mass galaxies, which we compare
to recent predictions from numerical models of galaxy formation and evolution. Moreover, the existence
of these mergers prove that a measurable amount of stellar mass growth continues in the massive galaxy
population at present times, and we compare estimates basedon this sample with other estimates in the
literature. Finally, we have identified mergers restrictedto reside in large SDSS groups and clusters with
z ≤ 0.12, thus allowing the first constraints on the halo-mass dependencies of recent massive merger activity.
While it is well-established that massive galaxies are morecommon in such high-density environments, we
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are missing much more than 50% of the population withMstar < 4× 1011M⊙ in the local volume, as Table
1 shows. Therefore, we must keep this caveat in mind when interpreting the conditions for which our results
hold. In an upcoming study, we are examining the role of majormergers as a function of stellar mass over
the full range of environments hosting galaxies more massive thanMstar = 5 × 1010M⊙.

4.1. Massive Merger Progenitors: Observations Meet Theories

Establishing the luminosity dependence of elliptical (E) galaxy properties (Davies et al. 1983; Bender
1988; Bender et al. 1992) set the stage for theories regarding the types of merger progenitors that would
produce the characteristics of low and high-mass early-type galaxies (ETGs)6 galaxies (Bender et al. 1992;
Kormendy & Bender 1996; Faber et al. 1997). We concentrate onmodern numerical simulations and semi-
analytic models that attempt to reproduce the kinematic, photometric, and structural properties observed
in massive Es through major merging (Naab et al. 1999; Naab & Burkert 2003; Khochfar & Burkert 2003,
2005; Naab et al. 2006b; Boylan-Kolchin et al. 2006; Kang et al. 2007). For this discussion we make the
straight-forward assumption that the major mergers that wehave identified will produce remnants that are
not unliketheMstar > 1011M⊙ galaxy population already in place. We can only guess at remnant properties
(see Fig. 16), but in general, massive galaxies on the red-sequence are typically early-type.

As we show in Figure 15, the progenitor masses are comparablefor the most part, and quantitatively
consistent with the LRG-LRG merger mass spectrum from Masjedi et al. (2007) under the assumption that
companions merge on dynamical friction time scales.N -body simulations (e.g. Naab et al. 1999) have long
shown thatM1/M2 ≈ 1 are necessary to produce the lack of significant rotation observed in massive Es.
Yet, a near unity mass ratio alone is not sufficient to producethe predominance of boxy and anisotropic Es
found at high luminosity (Naab & Burkert 2003; Naab et al. 2006b). To match the decreasing fraction of
rotational support and increasing fraction of boxiness in more luminous Es, the role of gas dissipation must
be significantly reduced at high masses (Bender et al. 1992; Khochfar & Burkert 2005; Naab et al. 2006a;
Kang et al. 2007), and recent ETG-ETG merger simulations have demonstrated this numerically (Naab et al.
2006b). Figures 12 and 14 show that 90% of the progenitors in this study have concentrated light profiles
and red-sequence colors, both common attributes of ETGs, with little or no cold gas content. In addition, the
tidal signatures of the bulk of these massive mergers (see Figs. 6 & 7) match those of observed (Bell et al.
2006a) and simulated (Naab et al. 2006b) major dissipationless (or gas-poor) merging of ETGs. Thus, our
sample represents a more than order-of-magnitude increasein the number of such known systems with
z < 0.2, and demonstrates that dissipationless merging is indeed an important channel for the formation of
massive galaxies.

Finally, we compare the observed high fraction of ETG-ETG mergers (fETG−ETG = 0.9) with several
semi-analytic predictions. Recall that we have looked for signs of interaction in> 200 major pairs from a

6The distinction between elliptical and early-type galaxies is often blurred in the literature. We consider Es to be a morphological
subset of ETGs, which are concentrated and spheroid-dominated systems including Es, lenticulars (S0s), and Sa spirals. When
referencing other authors we remain faithful to their choice of nomenclature.
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total sample of> 5000 massive galaxies (i.e., sampM), yet only 10% of the 38 mergers we identify could
possibly form aMstar > 1011M⊙ remnant by other than an ETG-ETG merger. The progenitor morphologies
of this study best match the predictions of Khochfar & Burkert (2003), who findfE−E = 0.75 for the last
major merger of4L∗ remnants, independent of environment. We find much larger ETG-ETG fractions than
Naab et al. (2006b) who predict only 20-35% (also independent of environment) over the estimated mass
range of our merger remnants (11.1 < log10 (Mstar/M⊙) < 11.7), and Kang et al. (2007) who predict
fETG−ETG < 0.1 for log10 (Mstar/M⊙) > 11. We note that these predicted progenitor morphologies for
present-day Es are based on the final major mergers that couldoccur over a large redshift range out to
z ∼ 1, which could be different in nature to those that occur in theshort time interval that we observe.
Moreover, we focus on high-density environments known to have very few massive late-type (blue) galaxies
(Butcher & Oemler 1978), which might explain the low number of “mixed” (early-late or elliptical-spiral)
mergers that we find. Hence, for these models to be consistentwith our data, either (1) thefETG−ETG of
present-day major mergers depends on halo mass (i.e., environment), or (2) the relative importance of major
mixed mergers has decreased significantly sincez = 1.

4.2. Estimating Stellar Mass Accretion Rates

The existence of massive dissipationless mergers at low redshift is direct observational evidence that the
growth ofMstar > 1011M⊙ galaxies continues at present times in agreement with many cosmologically-
motivated simulations (Khochfar & Burkert 2005; De Lucia etal. 2006; Kaviraj & et al. 2007; Kang et al.
2007). Moreover, even under conservative assumptions thatlimit the amount of companion mass that is
added to massive CEN galaxies, all of our sample will still result in remnants withMstar > 1011M⊙.
Previously, the observational evidence for recent merger-based assembly ofz ∼ 0 massive Es was lim-
ited to luminous/massive galaxy clustering statistics (Masjedi et al. 2006; Bell et al. 2006b; Masjedi et al.
2007) or post-merger signatures that cannot distinguish between minor and major merging; e.g., tidal shells
(Malin & Carter 1983), fine structure (Schweizer & Seitzer 1992), faint tidal features (van Dokkum 2005;
Mihos et al. 2005), or kinematic/photometric properties (e.g., Kang et al. 2007). With the merger sample
presented here we can quantify directly the amount of growth, occurring in dense environments, at the
high-mass end of the stellar mass function.

Going from the observed merger counts to an inferred merger rate is limited mostly by the uncertainty
in the merger timescale (tmerg) that one assumes. Numerical models show that the time interval for two
galaxies to interact and finally merge into a single remnant depends critically on the orbital parameters,
progenitor mass ratios and densities, and the degree to which the merger is dissipationless. For major
mergers of massive galaxies a number of differenttmerg have been put forth in the literature based on
simple orbital timescale arguments. For example, Masjedi et al. (2006) derived a reasonable lower limit of
tmerg = 0.2 Gyr for a close (d1,2 = 10 kpc) pair of LRG galaxies with a velocity dispersion ofσ = 200

km s−1. Naturally, bound pairs withd1,2 > 10 kpc separation will take longer to merge. Bell et al. (2006b)
made a similar calculation for somewhat less-massive galaxies typically separated byd1,2 = 15 kpc and
estimatedtmerg = 0.4 Gyr and argued for at least a factor of two uncertainty in thistime. The mergers
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in this study have an average projected separation of 15.5 kpc (see Fig. 10), so in what follows, we adopt
tmerg = 0.4+0.4

−0.2 Gyr with conservative error bars that encompass the range ofuncertainties discussed in the
literature.

Here, we compute the rate of stellar mass accretion by major merging onto massive galaxies in large
groups. First, we find that the total mass accreted onto the centers of theNCEN = 845 halos that we study is
∑

fMs,i = 3.9(3.5)×1012M⊙, if we include (exclude) the four SAT-SAT mergers at their host’s dynamical
center (see§3.3.1).Ms,i is the stellar mass of the secondary (SAT) galaxy in theith CEN-SAT merger, andf
is the fraction ofMs,i that winds up as part of the CEN galaxy. The rate of stellar mass buildup per massive
CEN galaxy is therefore

ṀCEN =

∑

fMs,i

NCEN
×

1

tmerg
, (4)

or between1.0+1.0
−0.5×1010M⊙Gyr−1 and1.2+1.1

−0.6×1010M⊙Gyr−1, depending on which sample of CEN-SAT
mergers that we consider. The lopsided error bars result from the range of accretion rates fortmerg = 0.4+0.4

−0.2

Gyr, as described above. If we divide all of these accretion rates by2.69×1011M⊙, the average stellar mass
of the 845 CEN galaxies in this study, we find that each CEN is growing by 1–9% per Gyr. Finally, these
values can be decreased by assumingf < 1 in (4), but as we discuss in§3.2.3,f = 0.5 represents a likely
lower limit.

Likewise, the total stellar mass accreted onto all galaxiesin sampM is
∑

fMs,i +
∑

Ms,j = 5.1 ×

1012M⊙, whereMs,j is the mass of the secondary (SAT) galaxy in thejth SAT-SAT merger. Therefore, the
growth perMstar ≥ 5 × 1010M⊙ galaxy in high-mass groups is

Ṁ(≥5×1010M⊙) =

∑

fMs,j +
∑

Ms,j

(NCEN + NSAT − Ns,sampM)
×

1

tmerg
, (5)

whereNs,sampM = 12 is the number of secondary SAT galaxies in sampM that are involved in major mergers
and must be subtracted to avoid double counting. We findṀ(≥5×1010M⊙) = 2.4+2.4

−1.2 × 109M⊙Gyr−1; if
we assumef = 0.5 for CEN-SAT mergers only we finḋM(≥5×1010M⊙) = 1.6+1.5

−0.7 × 109M⊙Gyr−1. Given
that the average stellar mass of sampM galaxies is1.04 × 1011M⊙, we find that every massive galaxy is
growing by 1–5% per Gyr. Even though SAT-SAT mergers may occur as frequently as CEN-SAT mergers
in these massive groups, the centers are where much of the mass growth takes place. It is clear from
Figure 15 that mostly onlyMstar > 1011M⊙ galaxies build up in mass by major mergers in groups with
Mhalo > 2.5× 1013M⊙. In contrast, we find few mergers among the5× 1010 < Mstar < 1011M⊙ galaxies
in these high-mass groups, which make up the bulk (60%) of sampM. This suggests that if major merging
is playing an important role in the strong mass growth observed on the red sequence below M* (Bell et al.
2004b; Blanton 2006; Borch et al. 2006; Faber et al. 2007; Brown et al. 2007), it is occurring in lower-mass
groups than we study here.

Rather than mass growth rates we can use the same line of reasoning to estimate massive galaxy-galaxy
merging rates of(21 + 4)/845/tmerg = 0.074+0.074

−0.037Gyr−1 for CEN-SAT and(38 + 7)/(845 + 4531 −

12)/tmerg = 0.021+0.021
−0.011Gyr−1 for all galaxies in sampM. For these estimates we included the seven ad-

ditional major mergers (4 CEN, 3 SAT) we identified by their highly-disturbed appearance. Masjedi et al.
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(2006) found a strict upper limit to the LRG-LRG rate of only0.006Gyr−1. We estimate that LRGs have
a stellar mass range of11.4 < log10 (Mstar/M⊙) < 12.0, based on typical red-sequence colors and lu-
minosities between4L∗ and 25L∗. Within these mass limits, we find a merger rate of5/462/tmerg =

0.027+0.027
−0.014Gyr−1 on the red sequence, or 2–9 times the LRG-LRG rate. In Table 1,we show that the

high-mass groups that we study contain> 70% of the very-massive, red galaxy population in thez ≤ 0.12

volume of DR2, with the vast majority being CENs. Yet, the same group selection contains only 30% of the
population of11.4 < log10 (Mstar/M⊙) < 11.6 systems. These numbers show that a significant portion of
the local counterparts to LRGs are found in groups withMhalo < 2.5 × 1013M⊙. Therefore, we conclude
that LRG-LRG merging occurs more frequently in the more massive groups.

5. Summary

Using the SDSS DR2 group catalog we probe a sufficiently largeenough volume of the low-redshift
universe to identify major mergers that will produceMstar ≥ 1011M⊙ galaxies in large groups and clusters.
We find 45 massive mergers in a complete sample of more than 5000 galaxies withMstar ≥ 5×1010M⊙ that
reside in 845 groups withMhalo > 2.5 × 1013M⊙. We identify 38 pairs of merging galaxies such that both
systems exhibit asymmetric features consistent with mutual tidal interactions, and another seven mergers that
have disturbed morphologies and semi-resolved double nuclei. This work provides the first direct evidence
for present-day massive mergers, and complements existingstudies at higher redshifts (van Dokkum et al.
1999; Bell et al. 2006a; Lotz & et al. 2006; Rines et al. 2007).With this sample, we provide new empirical
constraints on the progenitor nature, the environmental dependence, and the stellar mass growth rate of
merger-driven assembly of high-mass galaxies. We summarize our results as follows:

• Mergers, as defined here, make up only 16% of the major pairs ofmassive galaxies with a maximum
projected separation of 30 kpc.

• An important percentage (70%) of these mergers would be lostin an automated search of spec-spec
pairs as a result of the known spectroscopic incompletenessof the SDSS in dense environments.

• 90% of the mergers are between two red-sequence galaxies with concentrated (spheroid-dominated)
morphologies, and broad tidal asymmetries like those seen in observations and in simulations of major
dissipationless merging of spheroidal galaxies (Naab et al. 2006b; Bell et al. 2006a).

• Two thirds of the mergers have progenitor mass ratios of 1:1 to 2:1, despite a complete search of major
pairs down to 4:1, indicating that near equal-mass merging is preferred in high-density environments.

• Mergers at the centers of massive groups are more common thanbetween two SAT galaxies, but the
latter are also identified and are morphologically indistinguishable from CEN-SAT mergers. We argue
that SAT-SAT mergers could identify the dynamical centers of large subhalos that have recently been
accreted by their host halo, rather than the centers of distinct halos seen in projection.
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• The frequency that massive SATs have a major merger with a more-massive CEN or SAT galaxy de-
creases with halo mass in a manner that is qualitatively consistent with the expectations of dynamical
friction.

• Based on reasonable assumptions, the centers of massive halos in the present-day universe are growing
in stellar mass by 1–9% per Gyr on average, through major mergers as we observe here.

• Red galaxies withMstar ≥ 2.5 × 1011M⊙, which are comparable to LRGs, merge with their coun-
terparts in these high-mass groups at a rate that is 2–9 timeshigher than that found for all LRG-LRG
merging by Masjedi et al. (2006).

It is becoming clear that gas-poor, major merging between massive red and bulge-dominated galaxies is
an important mechanism for producing the most-massive galaxies. Using the SDSS we have demonstrated
that the centers of dark-matter halos are the preferred environment for building these giants. Moreover, this
analysis shows that our technique for identifying such mergers is very promising for future studies of much
larger samples.

We made extensive use of the SDSS SkyServer Tools (http://cas.sdss.org/astro/en/tools/). Thanks to
discussions with Chien Peng, Martin Weinberg, Eric Bell, and Yu Lu. D. H. M. and N. K. acknowledge
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Foundation, the Participating Institutions, the NationalAeronautics and Space Administration, the National
Science Foundation, the U.S. Department of Energy, the Japanese Monbukagakusho, and the Max Planck
Society. The SDSS Web site is http://www.sdss.org/. The SDSS is managed by the Astrophysical Research
Consortium (ARC) for the Participating Institutions, which are The University of Chicago, Fermilab, the
Institute for Advanced Study, the Japan Participation Group, The Johns Hopkins University, Los Alamos
National Laboratory, the Max-Planck-Institute for Astronomy (MPIA), the Max-Planck-Institute for Astro-
physics (MPA), New Mexico State University, University of Pittsburgh, Princeton University, the United
States Naval Observatory, and the University of Washington. This publication also made use of NASA’s
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Lampeitl, H., Lee, B. C., Lin, H., McKay, T. A., Merrelli, A.,Munn, J. A., Neilsen, Jr., E. H.,
Newberg, H. J., Richards, G. T., Schlegel, D. J., Stoughton,C., Uomoto, A., & Yanny, B. 2006,
Astronomische Nachrichten, 327, 821

van Dokkum, P. G. 2005, AJ, 130, 2647

van Dokkum, P. G., Franx, M., Fabricant, D., Kelson, D. D., & Illingworth, G. D. 1999, ApJ, 520, L95

Wake, D. A., Nichol, R. C., Eisenstein, D. J., Loveday, J., Edge, A. C., Cannon, R., Smail, I., Schneider,
D. P., Scranton, R., Carson, D., Ross, N. P., Brunner, R. J., Colless, M., Couch, W. J., Croom,
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Fig. 13.— The systematic stellar mass uncertainty for progenitors of the 38 massive mergers plotted against
the corresponding uncertainty in absoluter-band magnitude, rest-frame(g − r) color, and pair separation.
All relative differences between quantities based on SDSS Petrosian and Model magnitudes are such that
∆ = Petrosian − Model. Solid and open symbols represent galaxy number 1 and 2, respectively.
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Fig. 14.— Distribution of the 76 massive merger progenitorsin color versus stellar mass. Symbols distin-
guish CEN-SAT (stars) and SAT-SAT (circles) mergers with open symbols representing the progenitor from
sampM. Data points are based on Petrosian photometry with arrows showing the offset to0.0(g − r) and
Mstar values using SDSS Model magnitudes (see text for details). The contours and blue/red galaxy division
are as in Fig. 2.
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Fig. 15.— Stellar mass ratios of the progenitors of massive major mergers plotted as a function of the
stellar mass of progenitor number 1. The two panels show results for color-derived stellar masses based
on Petrosian (left) and Model (right) SDSS magnitudes. Symbols and color coding are as in Fig. 12.The
dot-dashed lines show the 4:1 mass ratio boundary of major mergers. Mergers withM1/M2 < 1 have no
redshift for the more-massive primary galaxy (i.e., are spec-phot pairs). Mergers on the solid diagonal line
have one progenitor with a mass equal toM∗ = 7.24 × 1010M⊙ (marked by the arrow).

Fig. 16.— Predicted stellar masses and mass-weighted colors of massive merger remnants compared with
observations of disturbed-morphology mergers presumed tobe nearing final coalescence. Small grey circles
show all sampM galaxies more massive thanM∗ = 7.24 × 1010M⊙. Open (CEN) and filled (SAT) squares
represent the seven mergers shown in Fig. 3; stars (from CEN-SAT mergers) and circles (from SAT-SAT
mergers) represent the predicted remnants of the 38 merger pairs. Left panel: the simple assumption that
all of the mass from both progenitors is added to the final remnant. Right panel:the assumption that 50%
of the SAT progenitor mass is added to the ICL if the merger is at the group center. The blue/red galaxy
division is as in Fig. 2. All data are based on Petrosian quantities.
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Fig. 17.— Comparison of the group-centric properties of major mergers occurring at group centers (bold
lines, stars) or between two SAT galaxies (grey bins, circles). Thetop panel shows the transverse projected
offset in kpc versus the radial offset in km/s of each merger relative to the luminosity-weighted group center.
Thebottompanels provide the separate group-centric property distributions.
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Fig. 18.— Halo-mass dependence for the frequency of major pairs of galaxies withM1 + M2 ≥ 1011M⊙

in groups withMhalo > 2.5 × 1013M⊙. The fraction of groups with CEN-SAT (left panel) and combined
CEN-SAT plus SAT-SAT (right panel) projected pairs are plotted as a function of halo mass in 0.3 dex bins.
The dashed line with open circles is for all pairs withd12 ≤ 30 kpc, the solid black line with filled circles is
the subset of close pairs that reside in the same host halo (spec-spec only), and the bold red line with filled
diamonds denotes the subset of galaxy-galaxy mergers (bothspec-spec and spec-phot pairs) identified by our
profile fitting method (§2.3). The thin red line with open diamonds in each panel combines the galaxy-galaxy
mergers and the additional mergers identified by highly-disturbed morphologies, which provides an upper
limit to the number of mergers per group that are detectable in SDSS data. For CEN merging (left panel),
this upper limit includes the addition of four SAT-SAT mergers that appear to be at the actual dynamical
center of their host halo (see§3.3.1). Poisson errors are shown.

Fig. 19.— Frequency of massive (Mstar ≥ 5 × 1010M⊙) SATs that are involved in merging with either a
CEN (solid line with stars) or another massive SAT (dashed line with circles) galaxy, as a function of halo
mass. Poisson errors are shown.
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Table 1. Massive Galaxy Content in sampM and thez ≤ 0.12 SDSS DR2 Volume

stellar-mass bins

[10.7,11.0] [11.0,11.3] [11.3,11.6] [11.6,11.9]

Total in DR2 volume 28377 10690 1943 165
Red sequence in DR2 volume 23657 9846 1897 164
Red percent 83.4% 92.1% 97.6% 99.4%

Total in sampM 3238 1415 599 120
Red sequence in sampM 2979 1329 586 119
Red percent 92.0% 93.9% 97.8% 99.2%

Centrals in sampM 29 241 460 115
Percent of DR2 total 0.1% 2.3% 23.7% 69.7%

Satellites in sampM 3209 1174 139 5
Percent of DR2 total 11.3% 11.0% 7.2% 3.0%

Note. — Bins of stellar mass are in units oflog10(M⊙).
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Table 2. Progenitors of Massive Merger Systems

Group ID Mhalo Flag NYU ID R.A. Dec z Mstar
0.0(g − r)

(1) (2) (3) (4) (5) (6) (7) (8) (9)

121 13.74 CEN 150206 14:14:32.6 +01:43:53.60.053 11.21(11.28) 0.82(0.84)

no na 14:14:32.6 +01:44:01.5 na 10.98(10.95) 0.78(0.77)

830 13.55 CEN 249473 08:54:58.9 +49:08:32.40.052 11.31(11.47) 0.86(0.93)

no na 08:55:00.6 +49:08:32.8 na 10.83(10.82) 0.69(0.74)

419 14.41 CEN 9993 12:27:37.1 -00:23:02.40.115 11.54(11.72) 0.78(0.85)

no na 12:27:36.7 -00:23:10.8 na 11.11(11.17) 0.79(0.79)

54 14.62 CEN 11349 15:08:25.8 -00:15:58.60.090 11.63(11.65) 0.81(0.80)

no na 15:08:25.0 -00:16:07.1 na 11.49(11.45) 0.81(0.80)

614 13.82 CEN 124158 13:52:02.2 +66:50:20.10.068 11.31(11.37) 0.82(0.85)

no na 13:52:01.0 +66:50:19.3 na 10.93(11.02) 0.70(0.75)

163 14.47 CEN 175344 15:09:59.4 +03:00:11.10.092 11.51(11.58) 0.81(0.84)

no na 15:09:59.6 +03:00:03.8 na 11.52(11.21)‡ 1.05(0.87)

539 14.30 CEN 222852 00:56:20.1 -09:36:29.70.103 11.51(11.51) 0.77(0.77)

no na 00:56:20.0 -09:36:33.7 na 11.25(11.34) 0.74(0.72)

393 14.26 CEN 261132 10:04:39.4 +02:57:42.80.104 11.37(11.41) 0.80(0.79)

no na 10:04:39.5 +02:57:39.9 na 10.73(10.73) 0.66(0.62)

398 14.29 CEN 293645 10:37:29.8 -00:40:40.50.096 11.33(11.37) 0.75(0.79)

no na 10:37:29.9 -00:40:46.3 na 11.23(11.11) 0.88(0.84)

214 14.18 CEN 311008 15:41:35.7 +55:58:39.80.068 11.31(11.30) 0.89(0.87)

no na 15:41:34.5 +55:58:38.9 na 11.26(11.24) 0.76(0.76)

291 14.07 CEN 392792 22:28:25.5 -09:37:22.30.083 11.35(11.42) 0.76(0.81)

no na 22:28:25.6 -09:37:30.4 na 11.28(11.42) 0.81(0.86)

5 14.24 CEN 301558 14:40:42.8 +03:27:55.50.027 11.39(11.48) 0.82(0.81)

SAT 301560 14:40:39.0 +03:28:11.00.027 11.14(11.49)‡ 0.87(0.82)

102 14.32 CEN 44192 09:58:52.2 +01:03:33.10.081 11.26(11.33) 0.67(0.74)

SAT 44193 09:58:52.0 +01:03:46.40.082 11.45(11.68) 1.21(1.06)

759 14.13 CEN 88664 08:46:13.1 +53:26:38.10.113 11.73(11.43)‡ 1.13(0.92)

SAT 88665 08:46:13.3 +53:26:35.90.113 10.84(11.17)‡ 0.66(0.69)

74 14.27 CEN 258681 11:45:37.2 +64:30:41.40.063 11.42(11.46) 0.84(0.85)

SAT 258682 11:45:37.4 +64:30:45.30.064 11.37(11.41) 0.90(0.81)

847 13.91 CEN 274752 10:34:09.7 +04:21:29.80.100 11.42(11.52) 0.82(0.84)

SAT 274751 10:34:09.1 +04:21:30.80.100 11.25(11.56)‡ 0.86(0.88)

572 13.92 CEN 371303 13:30:10.3 -02:06:18.00.087 11.35(11.38) 0.81(0.79)

SAT 371304 13:30:10.9 -02:06:13.60.086 11.38(11.43) 0.87(0.84)

1775 13.98 CEN 92509 17:20:36.1 +56:39:42.50.120 11.40(11.42) 0.82(0.83)

SAT 92510 17:20:37.7 +56:39:45.10.120 11.33(11.39) 0.78(0.80)

1545 13.43 SAT 364190 13:36:43.6 -03:29:57.00.053 10.91(10.79) 1.01(0.93)
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Group ID Mhalo Flag NYU ID R.A. Dec z Mstar
0.0(g − r)

(1) (2) (3) (4) (5) (6) (7) (8) (9)

no† na 13:36:44.3 -03:29:52.5 na 11.05(11.15) 0.72(0.79)

126 13.55 SAT 367419 13:59:25.2 -03:12:29.00.025 10.73(10.58) 0.95(0.86)

no na 13:59:24.8 -03:12:33.1 na 11.07(11.13) 0.81(0.83)

37 14.72 SAT†† 33684 15:11:20.3 -00:07:20.10.089 11.02(11.10) 0.74(0.77)

no†† na 15:11:19.2 -00:07:16.5 na 11.07(11.03) 0.79(0.74)

72 14.79 SAT 83539 08:54:48.7 +00:51:02.60.107 11.11(11.15) 0.62(0.67)

no na 08:54:48.2 +00:50:46.6 na 10.82(11.19)‡ 0.41(0.65)

2955 13.81 SAT 206506 20:45:09.4 -06:17:05.50.112 10.88(10.87) 0.79(0.80)

no na 20:45:08.9 -06:17:01.5 na 10.85(10.87) 0.88(0.86)

81 14.37 SAT 218908 23:37:05.4 +15:55:58.50.066 10.94(11.14) 0.68(0.74)

no na 23:37:06.2 +15:56:03.2 na 10.22(10.43) 0.49(0.57)

219 14.20 SAT†† 223211 23:54:59.6 -09:14:49.40.074 11.03(11.00) 0.84(0.81)

no†† na 23:54:59.7 -09:14:53.0 na 10.99(11.03) 0.75(0.75)

14 14.83 SAT 278870 10:39:39.0 +05:10:31.30.068 10.73(10.86) 0.52(0.64)

no na 10:39:38.7 +05:10:32.6 na 11.30(11.36) 0.84(0.81)

1786 13.99 SAT 284077 14:31:09.6 +60:41:18.40.113 10.74(10.72) 0.81(0.79)

no na 14:31:10.2 +60:41:35.7 na 11.05(11.18) 0.74(0.81)

344 13.92 SAT 333778 12:40:30.2 +05:52:21.50.075 11.59(11.36) 1.36(1.15)

no na 12:40:30.9 +05:52:10.6 na 11.50(11.20)‡ 1.05(0.86)

261 14.26 SAT 336039 17:01:52.2 +35:02:54.90.107 11.01(11.06) 0.67(0.74)

no† na 17:01:53.1 +35:03:04.0 na 11.43(11.47) 0.75(0.87)

75 14.85 SAT 346478 12:47:56.7 +62:36:27.60.107 11.33(11.28) 0.90(0.85)

no na 12:47:56.7 +62:36:23.5 na 10.87(10.58) 0.70(0.63)

170 13.88 SAT†† 352171 13:33:03.2 +60:07:00.00.072 11.37(11.06)‡ 1.13(0.94)

no†† na 13:33:03.4 +60:07:03.7 na 11.08(10.94) 0.78(0.73)

479 14.28 SAT 373137 14:09:59.4 -01:32:18.90.117 11.64(11.24)‡ 1.17(0.90)

no† na 14:09:59.5 -01:32:22.8 na 11.41(11.51) 0.71(0.74)

1047 13.97 SAT 393494 22:22:48.8 -09:02:14.40.084 11.15(11.23) 0.81(0.80)

no na 22:22:49.0 -09:02:22.2 na 11.28(11.35) 0.78(0.81)

462 13.91 SAT 250588 08:36:45.9 +47:22:10.20.053 11.13(11.15) 0.81(0.81)

SAT 250589 08:36:44.8 +47:22:18.90.053 10.97(11.15) 0.79(0.81)

714 13.60 SAT 604118 15:28:12.7 +42:55:47.70.019 10.90(10.94) 0.82(0.87)

SAT 604117 15:28:16.7 +42:56:38.80.018 10.71(10.91) 0.84(0.85)

460 14.24 SAT 241625 09:55:39.5 +01:35:48.40.099 11.24(11.20) 0.80(0.76)

SAT 241629 09:55:40.2 +01:35:50.30.099 10.95(11.29)‡ 0.68(0.84)

465 14.13 SAT†† 294450 10:50:25.4 -00:20:11.10.096 11.20(11.30) 0.80(0.84)

SAT†† 294451 10:50:25.5 -00:20:10.10.093 11.21(11.26) 0.86(0.81)
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Group ID Mhalo Flag NYU ID R.A. Dec z Mstar
0.0(g − r)

(1) (2) (3) (4) (5) (6) (7) (8) (9)

337 14.12 SAT 269340 09:22:22.2 +02:35:09.30.088 11.19(11.22) 0.83(0.82)

SAT 269341 09:22:22.0 +02:35:13.80.087 10.73(11.16)‡ 0.75(0.77)

Note. — For each merger pair the progenitor properties are listed on two separate lines with the following
columns: group ID number (1) and dark-matter halo mass estimate in units oflog

10
(M⊙) (2) from the public

SDSS DR2 group catalog of Yang et al.; flag (3) for whether galaxy was identified in group catalog as a central
(CEN), satellite (SAT), or not identified (no) owing to no spectroscopic redshift; ID number (4), epoch J2000.0
celestial coordinates (5,6), and spectroscopic redshift (7) from the NYU-VAGC; stellar mass estimates in units
of log10(M⊙) (8) based on SDSS Petrosian(Model) photometry and Bell et al. (2003) M/L ratios; rest-frame
K-corrected toz = 0.0 color (9) from SDSS Petrosian(Model) photometry.
† Estimated stellar mass of the companion exceeds that of the spectroscopic CEN galaxy of the host; the merger
is added to the CEN-SAT subset in the analysis.
†† Total estimated stellar mass of the two SATs (M1 + M2) exceeds that of the spectroscopic CEN galaxy of
the host; including/excluding the merger to the CEN-SAT subset is analyzed.
‡ More than factor of 2 difference (0.3 dex) between Petrosianand Model-basedMstar estimates.
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