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ABSTRACT 

AVIAN ECOLOGY AND CONSERVATION IN TROPICAL AGRICULTURAL 

LANDSCAPES WITH EMPHASIS ON VERMIVORA CHRYSOPTERA 

 

FEBRUARY 2011 

 

RICHARD B. CHANDLER, B.S., UNIVERSITY OF VERMONT 

 

M.S., UNIVERSITY OF MASSACHUSETTS AMHERST 

 

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST 

 

Directed by: Dr. David I. King 

 

 The world’s biodiversity is concentrated in tropical ecosystems, yet tropical 

forests are being converted for agriculture at a rapid rate. I evaluated the potential of an 

alternative coffee production system known as Integrated Open Canopy (IOC) to 

contribute to avian conservation. This study was conducted from 2005-2010 in the 

Cordillera de Tilarán, Costa Rica. My results indicate that species richness of forest-

dependent birds was significantly higher in IOC farms than in shade coffee farms, and 

was comparable to secondary forest sites. There was no difference in species richness of 

Neotropical-Nearctic migrants between IOC and shade coffee farms. Overall similarity 

was higher between IOC farms and primary forest than between shade coffee farms and 

primary forest.  

 The golden-winged warbler (Vermivora chrysoptera) is a declining Neotropical-

Nearctic migrant bird, yet little is known about its non-breeding season ecology and 

demographics. I found that golden-winged warbler abundance was highest at 

intermediate precipitation levels found at middle elevations (1000-1200 m) of the Pacific 

slope, but they were absent from the dry forests at lower elevations on the Pacific slope. 
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Abundance peaked in forests with canopy heights of 22 m, and was positively related to 

the quantity of hanging dead leaves. Radio-telemetry data indicated that golden-winged 

warblers used microhabitat features characteristic of disturbance more frequently than 

expected by chance. Selection of these microhabitat features was related to their highly 

specialized dead-leaf foraging behavior, which may also have contributed to their high 

degrees of site fidelity, mixed-species flock attendance, and territoriality. These 

behaviors have important conservation implications because they constrain density, and 

thus could affect carrying capacity. Population dynamics were characterized by 

estimating plot-level and individual-level apparent survival and recruitment rates within 

and among non-breeding seasons. Both levels of analysis suggested that recruitment was 

too low to offset mortalities within this study area.  

 This study indicates that increasing forest cover in tropical agricultural landscapes 

may be the most effective way of providing habitat for bird species of high conservation 

concern, including the golden-winged warbler. Integrated open canopy coffee production 

is one option for achieving this goal because it provides a financial incentive to protect or 

restore forest.  
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CHAPTER 1 

INTRODUCTION 

 

1.1 Background 

Tropical forests cover only 2.3% of the Earth’s land surface yet they contain at least half 

of the Earth’s biodiversity (Wilson 1992). In spite of their global significance, these 

forests are being cleared at a rate of 16 million ha per year, largely due to expanding 

agriculture (Achard et al. 2002). Three hundred million hectares have already been lost 

and approximately 500 million hectares have been degraded (ITTO 2002). Increasing 

pressure is being placed upon remaining native ecosystems because the human 

population continues to grow at a rate of 75-85 million people per year, due primarily to 

high birth rates in tropical countries. Tropical deforestation has resulted in the extinction 

of numerous species (Myers 1994), and can influence local precipitation patterns as well 

as global climate (Salati and Nobre 1991, Bala et al. 2007, Fearnside and Laurance 2008).  

 Protected areas alone cannot successfully protect tropical ecosystems (Woodroffe 

and Ginsberg 1998, Gaston et al. 2008) because of their limited extent, uneven 

representation of ecosystem diversity, and the difficulties of enforcing regulations (Dirzo 

and Raven 2003, Schroth et al. 2004). Furthermore, the vast majority of arable lands are 

already under cultivation. These limitations do not undermine the importance of protected 

areas, but suggest that bird conservation in the tropics will depend in large part on habitat 

availability and quality in agricultural landscapes. It is therefore widely agreed that 

conserving tropical ecosystems while maintaining or increasing agricultural production 
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and distribution is one of the most important challenges of the 21
st
 century (McNeely and 

Scherr 2002, Foley et al. 2005). 

 Unfortunately, tropical agricultural landscapes have only recently received 

attention from conservation biologists, and little is known regarding how species respond 

to land use practices (Norris 2008). Thus, one major aspect of my research was to assess 

how alternative agricultural practices can be used to retain biodiversity. I chose birds as a 

study taxon for a variety of reasons. Birds represent an important component of 

biodiversity because of the number of species (>9000) and the important services they 

perform in virtually all ecosystems (Sibley and Monroe 1990, Sekercioglu 2006). In 

tropical ecosystems, birds are important pollinators, seed dispersers, predators, 

scavengers, cavity constructors, and regulators of insect populations (Sekercioglu 2006). 

They are also sensitive to environmental changes and can be effectively surveyed to 

allow for comparisons among habitat types and farming systems (Schulze et al. 2004). 

Their ecological importance and imperiled status are particularly evident in the tropics, 

where > 70% of all species and 93% of threatened species occur (Sodhi et al. 2004). The 

scientific and English common names of birds used in this dissertation follow the seventh 

edition of the Check-list of North American Birds and its supplements created by the 

American Ornithologists’ Union. 

 Migratory bird species that breed in North America constitute an important 

component of the Neotropical avifauna. Throughout this dissertation I will refer to these 

species as Neotropical-Nearctic migrants. Well over 200 species spend six to eight 

months of the year in the Neotropics, and occur in most habitat types (Rappole 1995). 

Many of these species are declining rapidly, though the vast majority of research on these 
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species has been conducted during the breeding season. The golden-winged warbler 

(Vermivora chrysoptera) is among the most imperiled of these species. Breeding Bird 

Survey data suggest that the population has declined at an annual rate of 2.2% over the 

past 50 years, and it is largely extirpated from much of its historic breeding range (Sauer 

et al. 2008). Despite this situation, no detailed studies of this species’ non-breeding 

ecology have been conducted.  

 This study was designed to accomplish two broad objectives related to 

conservation in tropical agricultural landscapes: 1) evaluate the potential of an alternative 

coffee production system to contribute to avian conservation, and 2) describe aspects of 

the golden-winged warbler (Vermivora chrysoptera) non-breeding ecology to inform 

conservation efforts. The outline of my dissertation is as follows. The remaining sections 

of this chapter describe the study area. Chapter 2 provides an evaluation of a novel coffee 

production system in terms of avian species richness, composition, morphometrics, and 

ectoparasite prevalence. Chapter 3 describes patterns of golden-winged warbler habitat 

selection and population dynamics. Chapter 4 focuses on the behavioral ecology of 

golden-winged warblers, and Chapter 5 presents seasonal and annual survival estimates. 

 

1.2 Study area 

1.2.1 Geography and administrative boundaries 

This study was conducted from 2004-2010 between 800 m and 1600 m on both slopes of 

the continental divide in the Cordillera de Tilarán, Costa Rica N10°13’ W84°39’ (Fig. 

1.1). The study area lies within the watersheds of the Río Jamaical on the Caribbean 
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slope and the Río Aranjuez on the Pacific slope and encompasses an area of 

approximately 100 km
2
. The Pacific slope portion of the study area is located within 

Puntarenas Province, and is subdivided into the Montes de Oro and Puntarenas cantones 

(counties). On the Caribbean slope, the study area lies within the Alajuela Province and 

the San Ramon County. The towns within the study area are all situated on the Pacific 

slope and include Palmital, Ventanas, Cedral, Pueblo Nuevo, San Francisco, Corazón de 

Jesus, San Raphael, Ojo de Agua, Bajo Caliente, San Martín Sur, and San Martín Norte. 

These communities are surrounded by the Monteverde Reserve Complex (MRC), which 

includes the Monteverde Cloud Forest Preserve, the Children’s Eternal Rainforest, and 

Alberto Manuel Brenes Biological Reserve (Powell et al. 2002). This protected area is > 

28,000 ha in extent, and the Monteverde Cloud Forest Preserve is one of the most visited 

reserves in the tropics. By straddling equal areas of the agricultural landscape and the 

large protected area, this study area provided an ideal setting to assess the effects of 

agriculture on avian populations and communities. 

1.2.2 Climate 

The climate of the Tilarán Mountains varies seasonally and along elevational and 

physiographic gradients (Clark et al. 2000). Three seasons are recognized. The dry season 

lasts from February to April, the wet season spans from May to October, and November 

to January is the transitional season. Neotropical-Nearctic migrants generally arrive at the 

end of the wet season and the beginning of the transitional season when precipitation and 

wind can be at their highest. Over 400 mm of rain can fall during these months (Fig 1.3), 

and strong northeasterly trade winds can reach sustained speeds of over 100 km/hr 

(Nadkarni et al. 2000). Storms during the transitional season can last over two weeks and 
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breaks between storms, when the rains cease, can be as short as two days (personal 

observation). The subsequent dry season is typically characterized by 0-200 mm of 

precipitation per month and low cloud cover. However, the dry season is much more 

extreme at lower elevations on the Pacific side of the continental divide because the 

northeasterly trade winds lose most of their precipitation as they rise and cool over the 

Caribbean slope. This rain shadow has a profound effect on the vegetation as discussed 

below. Heavy rains return in May, but the wet season is characterized by clear morning 

skies and increasing cumulus cloud formation resulting in convective precipitation in the 

afternoons.  

 Temperature is less variable seasonally than precipitation, and is instead 

influenced mainly by elevation and cloud cover (Clark et al. 2000). Mean annual 

temperature ranges from approximately 18°C at high elevations (1500 m) to 24°C at 

lower elevations (700 m). At a given elevation, mean annual temperature typically 

fluctuates by less than 5°C over the year, peaking in June or July and reaching the lowest 

levels in December and January. 

1.2.3 Geology and soils 

 The landmass now known as Costa Rica was submerged beneath the ocean only 10 

million years ago. The subduction of the Cocos plate beneath the Caribbean plate led to 

increased volcanic activity and the rise of southern Central America, which formed a 

land-bridge between the two continents 3.5 million years ago (Clark et al. 2000). The 

Cordillera de Tilarán is composed primarily of volcanic rock, which has weathered to 

form moderately fertile Andisols. Rich organic matter comprises the upper soil horizons 

because rates of litter decomposition are relatively low compared to lower elevations. 
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Erosion is severe in many areas following deforestation due to the region’s steep 

topography. However, fertility typically remains high enough to support natural 

regeneration following pasture abandonment, which contrasts with other areas with 

lateritic soils that lose their fertility after deforestation.  

1.2.4 Vegetation and life zones 

The vegetation of the Cordillera de Tilarán has been summarized by Haber (2000), on 

which the following description is based. The forests that once dominated this landscape 

have been classified into six Holdridge life zones, although three predominate. Below 

1000 m on the Caribbean slope is premontane wet forest, characterized by trees often 

exceeding 30 m in height. Common genera of trees include Cercropia (Cercropiaceae), 

Cedrela (Meliaceae), Elaegia (Rubiaceae), Ficus (Moraceae), Guarea (Meliaceae), Inga 

(Fabaceae), Meliosma (Sabiaceae), Ocotea (Lauraceae), Quararibea (Malvaceae), 

Sapium (Euphorbiaceae), and Trichilia (Meliaceae). Lianas and vines are also common. 

Understory and canopy palms are common in this life zone as are epiphytic orchids, 

mosses, and lichens. Above 1200 m on both slopes is montane wet forest, often referred 

to as cloud forest, which is characterized by an abundance of epiphytes and trees of 

shorter stature. Common genera of trees in this life zone include Ardisia (Myrsinaceae), 

Beilschmiedia (Lauraceae), Cojoba (Fabaceae), Eugenia (Myrtaceae), Ficus (Moraceae), 

Guarea (Meliaceae), Ocotea (Lauraceae), Persea (Lauraceae), Pouteria (Sapotaceae), 

Sapium (Euphorbiaceae), and Weinmannia (Cunoniaceae). Precipitation on the upper 

Caribbean slope is nearly twice as high as the lower Pacific slope (Young et al. 1998). 

The lower Pacific slope is classified as premontane moist forest. Epiphytes and lianas are 

rare in these dry forests, and many trees are deciduous, losing their leaves during the dry 
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season. Common genera of trees in the dry forest include Billia (Hippocastanaceae), 

Cedrela (Meliaceae), Clethra (Clethraceae), Cordia (Boraginaceae), Croton 

(Euphorbiaceae), Ficus (Moraceae), and Zanthoxylum (Rutaceae). Several tree species in 

the Lauraceae and Meliaceae families that were formally common are now rare due to 

selective logging for lumber. Tree species that regularly colonize abandoned cattle 

pastures include Myrsine coriacea, Psidium guajava, and Conostegia sp.,  

1.2.5 Habitat classification 

Throughout this dissertation, I will use the following definitions, based upon 

Chokkalingam and de Jong (2001), to characterize the major habitat types within the 

study area. ―Primary forest‖ is forest which has never been cleared for agriculture or 

timber extraction. Some of the primary forest included in my research could be 

considered degraded primary forests because one or two trees per hectare had been 

removed. ―Secondary forest‖ refers to the ―post-extraction‖ and ―post-abandonment‖ 

subclasses of Chokkalingam and de Jong (2001). These are forests that naturally 

regenerated following timber extraction or agricultural abandonment. Most of the 

secondary forest in the study area existed as part of a governmental program that pays 

farmers to abandon degraded pastures to enhance water quality (Pagiola 2008). I use the 

phrase ―naturally disturbed forest‖ to refer to the post-catastrophic secondary forest of 

Chokkalingam and de Jong (2001). These are regenerating forests following natural 

disturbances such as major wind storms, landslides, or floods. In my study area these 

were found on steep slopes, along large rivers, and in areas hit most directly by the 

northeasterly trade winds. The final habitat type frequently referenced is agroforestry 

systems, or ―agroforests‖. These are farms that integrate trees and other woody perennials 
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through the conservation of existing trees, active planting and tending, or via natural 

regeneration (Schroth et al. 2004b p. 2).  

1.2.6 Human demography and settlement 

The first people of European decent to colonize the study area arrived from San Ramón, 

passing through what is now the town of Zapotal during the early 20
th

 century. Several of 

the children of these first inhabitants are still living. The following information was 

provided them. Many of the first settlers fled San Ramon because they did not want to 

fight in the revolution of 1917 when the dictator Federico Tinoco Granados was 

overthrown. The entire region was forested when they arrived, and there were few or no 

indigenous inhabitants. The first settlement was on the Caribbean slope in an area 

referred to as Bajo Jamaical, now located in the Manuel Brenes Biological Reserve. 

Although the soils are fertile, this area receives much more rain than the Pacific slope and 

has high abundances of venomous snakes. For these reasons, the early settlers moved to 

what is now the town of Cedral. Bajo Jamaical remains a private farm in the middle of 

the reserve, but no permanent inhabitants live there.  

 Cedral had suitable climate and soils for sugar cane and coffee production, which 

were carried by foot or on horseback down the Pacific slope to market in the town of 

Miramar. Only later during the middle of the 20
th

 century did farmers attempt to raise 

cattle. The forests were cut and repeatedly burned to suppress woody plant encroachment. 

The use of fire has decreased in recent years due to negative social and environmental 

impacts and new environmental policies. As a result, numerous forest fragments have 

regenerated across the landscape, but cattle pasture remains the dominant land use type in 

the region (Fig. 1.4) outside of the protected areas (Fig 1.5). 
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1.2.7 Biological diversity 

Costa Rica harbors > 4% of the Earth’s biodiversity, yet is one of the smallest countries 

on the planet. The Cordillera de Tilarán is renowned for its diverse flora and fauna, which 

are among the reasons why the Monteverde Cloud Forest Preserve is one of the most 

visited tropical tourist destinations in the world. More than 3000 vascular plants have 

been identified in the Monteverde region alone (Haber 2000). Over 500 species of birds, 

100 species of mammals, and 100 species of amphibians and reptiles occur in the 

Monteverde region as well (Janzen 1983). This area is also known for the rapid rate of 

extirpations over recent years, notably the disappearance of many amphibian species 

(Pounds et al. 1999). 

Slud (1964) categorized the birds of Costa Rica into the following four avifaunal 

zones: north Pacific lowlands, south Pacific lowlands, Caribbean lowlands, and the Costa 

Rica-Chirquí highlands. He based his classification upon the distinctness of the avifauna 

in these zones, which also have distinct climates and geological histories. The north 

Pacific lowland avifauna corresponds to the ―Tropical Dry Forest‖ life zone, which 

reaches its southern extreme in Costa Rica and extends north to Mexico. Representative 

species in this zone are members of groups with Central American rather than South 

American evolutionary origins. The southern Pacific lowlands receive much more 

precipitation than the northern Pacific, and the region has an avifauna composed of 

species and genera most abundant in lowland rainforests of northwestern South America. 

The avifauna of the Caribbean lowlands is also dominated by species with evolutionary 

origins in South American, but due to its isolation from the south Pacific lowlands, the 

species composition is relatively distinct. Slud, however, acknowledges that these two 
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avifaunas could be treated as one. The Costa Rica-Chiriquí highlands have the highest 

level of endemism of the four avifaunas. A small number of the species’ evolutionary 

origins can be traced to northern Central America though most have stronger ties to South 

American lineages. Numerous authors have noted that the avifauna could be classified 

into more groups and many treat middle-elevation species distinct from highland species.  

Furthermore, it is always problematic to categorize avian communities or avifaunas 

because numerous species occur in multiple categories and each species has its own 

unique distribution. Nonetheless, Slud’s avifaunas are useful in describing general 

patterns arising from Costa Rica’s complex climate and geological history. 

Bird species within my study area have affinities to three of the four avifaunal 

zones. Only the south Pacific lowland avifauna is not represented. This convergence of 

avifaunas results in high species richness and I have observed >300 species in the 10x10 

km area (Appendix 1). Species representative of the dry northern Pacific avifauna include 

white-fronted parrot (scientific names in Appendix 1), steely-vented hummingbird, 

Hoffman’s woodpecker, long-tailed manakin, and white-throated magpie-jay. These are 

all species that I primarily encountered below 1100 m on the Pacific slope. Affiliates of 

the Caribbean lowlands (and foothills) include broad-billed motmot, yellow-eared 

toucanet, gray-throated leaftosser, red-headed barbet, white-collared manakin, bare-

necked umbrellabird, black-headed nightingale-thrush, Audubon’s Warbler, black-

cowled oriole, blue-and-gold tanager, crimson-collared tanager, white-lined tanager, and 

orange-billed sparrow. These species are primarily restricted to the Caribbean slope 

below 1200 m, though vagrants occasionally cross the continental divide. Species 

associated with the highlands include black guan, black-breasted wood-quail, Chiriquí 
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quail dove, striped-tailed hummingbird, purple-throated mountain-gem, orange-bellied 

trogon, resplendent quetzal, prong-billed barbet, spotted barbtail, the silvery-fronted 

tapaculo, three-wattled bellbird, tawny-throated leaftosser, azure-hooded jay, three-

striped warbler, collared redstart, blue-hooded euphonia, chestnut-capped brush-finch, 

and slaty flowerpiercer. I encountered these species above 1200 m on both sides of the 

continental divide. 

To my knowledge no one has published studies of birds from this study area. An 

incomplete inventory of the birds of the Pacific slope of the study area was made at the 

request of the local coffee cooperative, but this study was not published. A farmer I 

worked with recalled a visit by Alexander Skutch back in the 1970s, though he says he 

did not stay for very long. The study area is probably understudied because Monteverde 

Cloud Forest Reserve is relatively close and most birdwatchers and scientists conduct 

their work from there. However, there is no low pass there, and it is much harder to 

access the Caribbean slope. 
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Figure 1.1. Costa Rica topography and study area location (black box). 
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Figure 1.2. Mean annual precipitation in Costa Rica and study area (black box).
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Figure 1.3. Seasonal precipitation data for study area from weather station in Cedral, 

Puntarenas Province, Costa Rica. 
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Figure 1.4. Looking northwest from Cedral (Puntarenas Province, Costa Rica) over the 

Pacific slope of the Cordillera de Tilarán. Forested ridge is part of the Monteverde 

Reserve Complex. Photograph by author. 
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Figure 1.5. Alberto Manuel Brenes Biological Reserve on the Caribbean slope side of the 

Cordillera de Tilarán. Photograph by author, Alajuela Province, Costa Rica.
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CHAPTER 2 

BIRD SPECIES RICHNESS AND COMPOSITION IN A LAND-SPARING COFFEE 

PRODUCTION SYSTEM 

 

2.1 Introduction 

Tropical agricultural landscapes have become focal points of global conservation efforts 

due to the rapid conversion of natural ecosystems for agriculture and the inability to 

conserve biodiversity in protected areas (Pimentel et al. 1992, Rodrigues et al. 2004, 

Foley et al. 2005). In Central America alone, more than 1.2 million km
2
 of land are used 

for agriculture, which represents over fifty percent of the total land area (FAO 2007). In 

contrast, protected areas comprise only 2.2% of this area, do not represent ecosystem 

diversity, and are not always compatible with local societal needs (WDPA 2006, Gaston 

et al. 2008, Agrawal and Redford 2009). The disparity between protected and unprotected 

land is especially important in tropical regions, which contain a disproportionately large 

share of the Earth’s biodiversity (Dirzo and Raven 2003). 

 Although the importance of tropical agricultural landscapes for conserving global 

biodiversity is widely recognized, conservationists disagree about the strategies for 

applying agroforestry to achieve these goals (Schroth et al. 2004b, Green et al. 2005, 

Vandermeer et al. 2005, Fischer et al. 2008). A fundamental disagreement hinges on the 

role of agricultural intensification (Tilman et al. 2002), and two diametrically opposed 

model systems have been proposed. The first strategy, referred to as ―wildlife-friendly 

farming‖ (Green et al. 2005), involves integrating components of native ecosystems (e.g. 

shade trees) into the cultivation system. This agroforestry system is based upon research 



 

18 

 

indicating that biodiversity is negatively affected by agricultural intensification at local 

scales (Perfecto et al. 2003, Schulze et al. 2004, Philpott et al. 2008). Critics note that 

such agroforestry practices do not explicitly protect native habitats, and can be 

economically prohibitive due to the often-associated low yields (Swantz 1996, O'Brien 

and Kinnaird 2003, Rappole et al. 2003b). 

 The second approach, known as land-sparing, involves maximizing yields in order 

to make other lands available for conservation (Balmford et al. 2005, Green et al. 2005). 

Supporters of this approach point contend that food demands over the past half-century 

would not have been met without yield increases, and future food demands are projected 

to outpace production unless further yield increases are achieved (Hazell and Wood 

2008). They further emphasize that protecting native ecosystems is a higher conservation 

priority than protecting elements of native habitats (Rappole et al. 2003b, Haslem and 

Bennett 2008). Finally, it is often reported that more land must be cultivated to support 

low yielding agricultural practices relative to high yielding methods (Brown and Pearce 

1994, Evenson and Gollin 2003). Critics of the land-sparing approach argue that 

increasing yields does not ensure conservation and may stimulate further agriculture-

driven deforestation (Chappell et al. 2009). Intensification is typically associated with 

increased inputs of chemical fertilizers and pesticides, which contaminate local food 

chains and water supplies (Pimentel et al. 2005). Furthermore, this approach is 

characterized as treating human and biodiversity needs as inherently opposed, and could 

encourage large monocultures at the expense of small farmers and their traditional 

livelihoods (Perfecto and Vandermeer 2010). 
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 Coffee (Coffea arabica) production systems have been at the center of this 

research and debate. Coffee is the second largest globally-traded commodity, and coffee 

production and processing methods can strongly affect local and regional environments 

via habitat loss, erosion, water pollution, and energy consumption (Rice and Ward 1996, 

Arce et al. 2010). Traditionally, coffee was cultivated under a canopy of native trees, but 

as part of efforts to increase yields, many of these ―shade coffee‖ farms were converted to 

―sun coffee‖ farms that resemble other non-shaded monocultures (Moguel and Toledo 

1999). Numerous studies demonstrate that species richness and composition of various 

taxa are more similar to native forest in shade coffee farms than in sun coffee farms 

(Greenberg et al. 1997a, 1997b, Perfecto et al. 2003, Philpott et al. 2008). Furthermore 

habitat quality can be high for some species that use shade coffee (Johnson et al. 2006, 

Bakermans et al. 2009). For these reasons, shade coffee is considered an example of a 

―wildlife farming‖ system (Fischer et al. 2008). 

 Although clearly preferable to sun coffee, there are important limitations to the 

conservation value of shade coffee (O'Brien and Kinnaird 2003, Rappole et al. 2003b, 

Komar 2006). Most importantly, shade-coffee certification programs do not conserve 

native ecosystems and can lead to deforestation (Tejeda-Cruz et al. 2010, Rappole et al. 

2003b). Although species richness is often reported to be similar between shade coffee 

farms and primary forest, community composition often differs, with generalist species 

being more prevalent than forest-dependent species (Tejeda-Cruz and Sutherland 2004). 

This is especially important because many threatened species rarely use degraded habitats 

(Sodhi et al. 2008, Stouffer and Bierregaard 1995). For example, in the Neotropics, 

understory insectivores are one of the most threatened guilds of birds, and shade coffee 



 

20 

 

production involves removing most understory vegetation (Sekercioglu et al. 2002). 

Furthermore, recent studies have demonstrated that the degree to which forest-dependent 

species will use shade coffee farms depends strongly on landscape context. Specifically, 

the presences of adjacent forest can exert stronger influence on community structure than 

local farm-level attributes such as tree density or structure (Roberts et al. 2000, Naidoo 

2004, Anand et al. 2008). 

Economic factors also constrain the utility of shade-coffee cultivation. Yield is 

known to decrease above forty percent canopy cover, which is the minimum 

recommended value of some shade-coffee certification programs (Perfecto et al. 2005, 

Philpott et al. 2007). Second, and less appreciated, farmers use shade to manage diseases 

such as Central American leaf spot disease (Mycena citricolor) and leaf rust (Hemileia 

vastatrix), and the effects of shade on disease, and hence production, depend upon local 

climatic conditions (Beer et al. 1998, Avelino et al. 2006, 2007). Specifically, high shade 

cover can increase disease prevalence in growing conditions with limited sunlight and 

high precipitation. Shade-coffee also has limited geographic relevance because it is not a 

suitable production method for lowland robusta varieties that dominate production in 

Africa and Asia (O’Brien and Kinnaird 2004). In addition, the value of shade-coffee as an 

effective restoration practice is limited because external investments are needed to 

support farmers during the lengthy process of growing trees to qualify for certification 

(Dietsch et al. 2004).  

 Although the debate between land-sparing and wildlife-friendly farming practices 

is nearly 10 years old, no empirical studies have been conducted to compare the 

conservation value of these production systems. This lack is partially due to the fact that 
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few land-sparing systems have been proposed (Norris 2008). To address this limitation 

and improve upon methods of conserving biodiversity in agricultural landscapes, I 

conducted a study of a land-sparing coffee production system that involves forest 

conservation. The system, referred to as integrated open canopy (IOC) coffee, has only 

two requirements: forest must be protected on the farm at a minimum ratio of 1:1, and no 

new forest can be cut to plant coffee. Though not currently recognized by certification 

schemes, variations of this system have been implemented throughout the coffee growing 

world due to its economic benefits. Specifically, the forest adjacent to planted coffee can 

serve as an effective wind-break, contribute organic material, reduce erosion, and can be 

used for fuelwood and timber extraction (Arce et al. 2010). Recent research also 

demonstrates that coffee yield is substantially higher when forest is near because many 

bee species that pollinate coffee are forest-dependent (Ricketts et al. 2004a). 

The objectives of this study were to compare avian species richness and 

composition among coffee farm and forest types. Specifically, I tested for differences in 

species richness of all species, forest-dependent species, and Neotropical-Nearctic 

migrants among primary forest, secondary forest, IOC farms, and shade coffee farms. I 

hypothesized that by protecting actual forest rather than just canopy trees, more forest-

dependent species would occur in IOC farms than in shade coffee farms. An additional 

objective was to compare habitat quality among farm and forest types; however, direct 

estimates of habitat quality require species-specific survival estimates, which I could not 

obtain. I therefore compared morphometrics and ectoparasite loads among individuals in 

each habitat type because some studies have found correlations between these metrics 
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and measures of apparent survival (Thompson et al. 1997, Latta 2003, Johnson et al. 

2006). 

 

2.2 Methods 

2.2.1 Field methods 

I quantified bird species richness, species composition, mass adjusted for length, 

subcutaneous fat, and ectoparasite loads in eight replicates of IOC coffee, shade coffee, 

secondary forest, and primary forest sites during November – March, 2006 – 2008. All 

sites were located between 800 and 1400 m elevation on the Pacific slope (Table 2.1). 

Secondary forest sites were 10-30 year-old stands formed from natural regeneration 

following pasture abandonment. Shade coffee sites were considered if they had at least 

40% shade cover and 10 species of native trees because these are the primary 

requirements of most certification schemes (Philpott et al. 2007). Under the classification 

system of Moguel and Toledo (1999), these farms would be considered commercial 

polyculture systems, which is the only commonly used coffee agroforestry system in 

Costa Rica (Somarriba et al. 2004). Rustic shade coffee farms, which are farms with the 

original forest canopy partially intact, did not occur in the study area because previous 

experience led farmers to intensify production to achieve higher yields. The coffee 

portion of the IOC sites had few or no shade trees, and could have been classified as 

either un-shaded monocultures or shaded monocultures (Moguel and Toledo 1999). Only 

sites that had an amount of forest adjacent to the farm greater or equal to the area of the 

cultivated portion were used as IOC farms in this study. Sites were ≥ 0.5 km apart to 
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maintain statistical independence. I observed no movement of banded individuals among 

sites. 

 To sample bird communities, I established grids of 10 mist nets (12 x 2.5 m, 32 

and 36 mm mesh sizes) spaced 25 m apart in each site. In IOC sites, five nets were placed 

in the coffee portion of the farm and five in the adjacent forest. Thus, the IOC sample 

unit included both the coffee and forest portion of the farm. This sampling design 

effectively standardized the area of the net array, and reflected that IOC farms are 

comprised of both coffee plantation and forest. Sampling was conducted for seven hours 

per day over three consecutive days at each site. I recorded the following data for each 

bird captured: species, weight, sex, subcutaneous fat score (scale 0-7), wing chord, and 

the number of flight feathers (primaries, secondaries, and tertials) with at least one mite 

(family Analgesidae). Captures from ground mist-nets are biased towards species that use 

the lower strata of the forest, so I compensated for this bias by statistically accounting for 

heterogeneous capture probabilities among species as described below. 

 Field crews measured the following environmental variables in 20 x 20 m plots 

centered on each net location: diameter at breast height (dbh) of all stems > 2 cm, canopy 

height, and canopy cover. Extremely dense vegetation made the use of canopy 

densitometers and range finders to estimate canopy height and closure impractical. 

Therefore, to standardize our estimation of these variables we practiced estimating 

canopy height and closure in open conditions where actual values could be accurately 

estimated.  

2.2.2 Statistical methods 
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 I modeled variation in species richness for three species groups: all species, 

Neotropical-Nearctic migrants, and forest-dependent species. Neotropical-Nearctic 

migrants were treated separately because they are the target of specific conservation 

efforts (Rich et al. 2004). Forest-dependent species, which included some Neotropical-

Nearctic migrants, were defined based upon the classification scheme of Stiles (1985). 

Specifically, species with dependency scores ≤ 2 on a scale of 1 to 5 were considered to 

be forest-dependent (Stiles 1985; Table 1.2). Recent work indicates that far more species 

are actually dependent upon forest than recognized by this classification scheme (Ruiz-

Gutiérrez et al. 2010). Therefore, this is a conservative classification method that 

identifies species that rarely leave forest habitats.  

 My modeling strategy involved two steps. First, I used the model of Chao (1987) 

to estimate species richness for each site and each habitat type. This model accounts for 

species present but not detected, so long as they have non-zero detection probabilities. 

Because I used ground mist-nets, it is likely that some canopy species were not available 

for detection, and thus my inferences extend only to species that can be captured from the 

ground. This analysis was performed using the estimateR function in the R package 

vegan (Oksanen et al. 2010, R Development Core Team 2010). I then used weighted 

linear regression with an ANCOVA model structure to test for differences among habitat 

types. I used the inverse of the standard errors as weights to reduce the influence of 

estimates with low precision. These models also accounted for variation in effort due to 

small differences in net-hours among sites (Table 2.1). For 11 sites with few forest-

dependent species, asymptotic standard errors could not be computed, and so I resampled 

the data 1000 times using a non-parametric bootstrap method to generate standard errors 
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for those sites. Because the proximity to large forest reserves is known to influence bird 

species composition in more isolated sites (Anand et al. 2008), I included distance from 

the Monteverde Reserve Complex (MRC) to account for its influence in the analyses. The 

ANCOVA models were fit using the lm function and the R statistical software (R 

Development Core Team 2010).  

 Species composition was addressed using two techniques. First, I used multi-

dimensional scaling to ordinate sites in relation to community structure. This multivariate 

technique allows for visualization of the gradients in species-level and site-level 

differences (Minchin 1987), which was performed using the metaMDS function in the R 

package vegan (Oksanen et al. 2010). The second technique I used to compare species 

composition was similar to the species richness models. I used the program EstimateS 

(Colwell 2010) to generate site-level similarity indices between non-primary forest sites 

and primary forest sites using the Chao-Jaccard similarity index (Chao et al. 2006). 

Similarity indices are computed as site-to-site pairs, and thus to compare a single site to 

all primary forest sites I used the mean of the eight values for each non-forest site. These 

values represent the average similarity between each non-forest site to the primary forest 

bird community. I used the inverse of the standard deviation of these scores as weights in 

the ANCOVA model. The response variable was the similarity scores for each non-forest 

site and the predictor variables were habitat type and distance from the MRC. 

 To test for differences in morphometrics and ectoparasite loads on individuals 

among habitat types I used linear mixed-effects models (Pinheiro and Bates 2000). I ran 

models with the following metrics as response variables: residuals from mass regressed 

on wing length, subcutaneous fat, and flight-feather parasite loads (feather mites in the 
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family Analgesidae). These three variables have been found to correlate with individual 

fitness or habitat quality; however, it is important to note that these relationships have not 

been determined for the species studied here. Nonetheless, some evidence exists that 

mass-length residuals can be positively related to physiological condition and apparent 

survival (Schulte-Hostedde et al. 2005, Johnson et al. 2006). Fat reserves can reflect 

habitat quality because individuals of some species store less fat in habitats with more 

predictable food resources (Rappole and Warner 1980, Holberton and Able 2000). Ecto-

parasite prevalence is reported to be negatively correlated with individual fitness as it can 

affect sexually-selected traits such as plumage coloration, and may influence return rates 

(Thompson et al. 1997, Latta 2003). Habitat type was treated as both a fixed and random 

effect, and bird species was treated as a random effect. Treating species and habitat type 

as random effects accounts for variation among species in their response to habitat and 

allows for inferences to be made for individual species or for average differences among 

species. I used a Gaussian distribution for the mass-length residual model, and a Poisson 

distribution for the fat-score and parasite models. I selected models using Akaike’s 

Information Criterion (AIC). These analyzes were conducted in R-2.11.0 using the lme4 

package (Bates and Maechler 2010). 

 

2.3 Results 

2.3.1 Species richness 

I captured 2,298 individuals representing 148 species during 6,629 net-hours (Table 2.1). 

Twenty-five of these species were Neotropical-Nearctic migrants and 36 were forest-
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dependent species. Estimates of species richness at the habitat level, ignoring site-specific 

covariates showed there was no difference in species richness among primary forest, 

secondary forest and IOC, or shade coffee, as indicated by overlapping 95% confidence 

intervals (Table 2.2). Similarly, there was no difference in species richness of forest 

dependent species among primary forest, secondary forest and IOC, however richness of 

forest dependent species was significantly lower in shade coffee than all other habitats.  

 Similarly, modeling species richness of all species at the site level showed there 

was no difference in species richness between farm and forest types, and species richness 

was not related to distance from the Monteverde reserve complex (Table 2.3). When 

analyzing forest-dependent species separately, however, I found a strong effect of both 

habitat type and distance from the protected area (Table 2.3). This model indicated that 

forest-dependent species richness was highest in primary forest and IOC farms followed 

by secondary forest and lowest in shade coffee farms. In all habitat types, species 

richness of this guild declined with distance from the reserve complex (Figure 2.1).  

 Neotropical-Nearctic migrant species richness significantly differed among 

habitat types but was not affected by distance from the MRC (Table 2.4). Species 

richness of this guild was lowest in primary forest, followed by secondary forest, and 

highest in IOC and shade-coffee farms, which had equivalent numbers of species (Figure 

2.2). 

2.3.2 Species composition 

The multidimensional scaling ordination revealed clear separation of the primary forest 

sites from the other habitat types (Figure 2.3). Shade coffee sites had the least similarity 

in community composition to the primary forest as demonstrated by its position on 
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dimension one. The second dimension partially separated IOC sites from secondary forest 

sites, though some overlap existed between all three non-primary forest sites.  

 The ANCOVA model of community similarity between non-primary forest sites 

and primary forest indicated that similarity declined with distance from the MRC and was 

lowest in shade-coffee farms (Figure 2.4), although the latter finding was only marginally 

significant (Table 2.5). Species level occurrence data provided additional evidence that 

bird communities were more similar between IOC farms and forest, than shade farms and 

forest. Seven species were found in all habitat types except for shade coffee farms, all of 

which are forest-dependent species: Basileuterus culicivorus, Lampornis hemileucus, 

Myrmotherula schisticolor, Platyrinchus mystaceus, Premnoplex brunnescens, Sclerurus 

mexicanus, and Turdus obsoletus. In contrast only two species occurred in all habitats 

other than IOC farms, and neither of these two species are considered forest-dependent: 

Aulacorhynchus prasinus, Turdus plebejus. These species-level results should be 

considered suggestive, however, because, owing to the large number of species, I did not 

conduct detailed occurrence analyses that accounted for detection probability. 

2.3.3 Morphometrics and ectoparasites 

I found no differences in mass-length residuals or fat scores among farm and forest types, 

but flight feather parasite levels did differ (Tables 2.5-2.8). Birds in secondary forests had 

higher numbers of feather mites than individuals in the other habitat types (Table 2.6). 

Although there was evidence of differences in parasite loads among species, the habitat 

effect was consistent among species as demonstrated by the lack of support for a random 

habitat effect. 
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2.3.4 Habitat characteristics  

The four habitat types differed with respect to most environmental variables as intended 

by the study design (Table 2.7). Basal area in shade-coffee farms was more than seven 

times as high as in the coffee portion of IOC farms. Similarly, the number of trees, 

canopy cover and canopy height were much higher in shade farms than in the coffee 

portion of IOC farms. Total dbh was similar between shade coffee farms and secondary 

forest sites. Although the forest in the IOC farms was second growth, it was structurally 

intermediate between the even-aged secondary forest sites and the primary forest sites in 

terms of tree basal area and canopy height. This finding was probably because these 

forest patches were used for wind breaks and timber and thus trees were allowed to grow 

tall albeit at lower tree densities than primary forest sites. 

 

2.4 Discussion 

Conserving biodiversity in tropical agricultural landscapes is an integral component of 

global conservation efforts (Foley et al. 2005, Norris 2008). Conservationists disagree on 

the best strategies to accomplish this goal; however, few empirical data exist to compare 

alternatives. This study is the first to evaluate a land-sparing agricultural production 

system that can be used as a market-based conservation tool to incentivize forest 

protection and restoration.  

 My results indicate that the Integrated Open Canopy coffee production system 

improves upon alternative agroforestry systems from the standpoint of biodiversity 

conservation by accommodating forest-dependent species that are of high conservation 
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concern. Numerous studies have found forest-dependent species to be uncommon in 

shade coffee farms (Roberts et al. 2000, Tejeda-Cruz and Sutherland 2004, Raman 2006, 

Anand et al. 2008) as well as other agroforestry systems (King et al. 2006a). My finding 

that approximately twice as many forest-dependent species occurred in IOC farms as in 

shade coffee farms shows that this system is more effective at providing habitat for these 

threatened bird species. In addition, Neotropical-Nearctic migrants, whose occurrence in 

shade coffee farms has been used to justify its environmental certification (Sherry 2000), 

were abundant in IOC farms even though the coffee plantation portion of the farms had 

few or no shade trees. Other groups also benefited as demonstrated by higher community 

similarity between IOC farms primary forest sites than between shade coffee farms and 

primary forest. Species composition in IOC farms was most similar to secondary forest 

sites. This result is important because numerous studies have demonstrated the 

importance of secondary forest to maintaining biodiversity, but few economically 

feasible strategies have been put forward to protect secondary forests (Chokkalingam and 

De Jong 2001, Chazdon et al. 2009).  

 I found no evidence of differences between morphometrics or ecotparasite 

prevalence among individuals in IOC farms and primary forest, suggesting that habitat 

quality is comparable for species that use both habitats. However, this assertion is based 

upon the assumption that these metrics correlate with survival, which has not been 

demonstrated. Therefore, studies comparing vital rates such as survivorship are needed 

for a more definitive assessment of the habitat quality of IOC farms because previous 

research has indicated that survival can be lower in disturbed habitats than in primary 

forest (Rappole et al. 1989). 
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 My finding that the many forest-dependent species can occur in the forested 

portion of IOC farms contributes to a growing body of research demonstrating the 

importance of conserving remnant forest patches in tropical agricultural landscapes (Luck 

and Daily 2003, Haslem and Bennett 2008, Ruiz-Gutiérrez et al. 2010), but unlike past 

studies, I found that forest-dependent species richness declined by more than 50% in all 

habitat types over the range of distances from a large protected area. Working in a 

tropical agricultural landscape abutting the 30,000 ha Monteverde Reserve Complex 

enabled me to detect this effect, which is likely missed in regions where protected areas 

do not occur. These results emphasize the importance of conserving large areas of 

protected forest to serve as a source population for maintaining populations of forest-

dependent species in isolated parks and preserves (Barlow et al. 2007a, Brooks et al. 

2009). My results also suggest that future studies of habitat use of forest dependent birds 

in tropical landscapes should include proximity to large protected areas in their analyses 

to avoid potential confounding between distance to forest with habitat type. This 

procedure would also reduce the risk of mistakenly concluding that a population in a 

given isolated forest is stable, when it could be being maintained by individuals from 

nearby large preserves.  

 Integrated open canopy coffee production demonstrates that many of the 

criticisms of land-sparing techniques are not necessarily valid. For instance, critics 

maintain that the higher yields require increased chemical inputs on large-scale 

monocultures that impinge upon traditional rural lifestyles (Evenson and Gollin 2003). 

However, IOC coffee cultivation is currently being practiced by small farmers in Costa 

Rica due to its inherent agro-economic advantages. Specifically, the system can increase 
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yield without added chemical inputs by allowing farmers to manage shade to control 

disease and sun exposure (Avelino et al. 2007, Arce et al. 2010). In contrast, certification 

programs that mandate high levels of shade cover and tree densities restrict farmers’ 

abilities to maximize yield and adapt to local conditions. Yield increases are also likely 

due to higher pollination rates associated with forest-dependent bees (Ricketts et al. 

2004b, Arce et al. 2010). Wind damage can also reduce coffee yield in many growing 

regions, and the forest components of IOC farms can mitigate this problem. A second 

argument against land-sparing is that increasing yield does not ensure that freed land will 

be spared for conservation. IOC overcomes this limitation by requiring a 1:1 farm to 

forest ratio and requiring that no new forest is cleared to establish new farms. 

Furthermore, the IOC model could be applicable to shade intolerant crops. Numerous 

researchers have called for improving the habitat quality of farmland, yet few have 

explained how the production of crops such as corn, sugarcane, or oil palm could be 

made sustainable (Perfecto and Vandermeer 2010). The IOC model offers a possible 

solution because virtually any crop could be complemented with forest offsets.  

 Integrated open canopy coffee production offers numerous economic benefits 

over alternative conservation strategies for agricultural landscapes. Most ―payment for 

biodiversity protection‖ strategies are hampered by two problems (Pagiola et al. 2004). 

First, initial investments are often required to plant trees or purchase land. Second, most 

plans require top-down approaches to enforce regulation. The viability of these programs 

depends on political commitments or economic resources that may change with changes 

in government policies or economic conditions, and this increased uncertainty can present 

another impediment to farmer participation in these programs. The IOC system avoids 
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both of these problems because market-driven economic incentives would motivate 

farmers to handle implementation and regulation without requiring support from external 

government entities or NGOs.  

 Although these inherent benefits are sufficient to make this system economically 

viable, a formal certification system could increase the economic incentives for 

protecting forest because ―environmentally friendly‖ coffee commands a higher market 

price (Philpott et al. 2007). Many aspects of the certification system could be similar to 

that used by shade-grown coffee, such as procedures for verification and chain of 

custody; however, the certification of the agricultural practices themselves could be far 

simpler. Rather than certifying the amount and types of shade trees on a farm, an IOC 

certification would simply require verifying that spared lands are protected. Thus, a 

farmer could gain coffee price premiums by simply removing cattle from degraded 

pasture. This premium requires a consumer demand for environmentally certified coffee. 

Such specialty markets are currently growing at rate of 20% per year compared to 

negligible growth in conventional markets, indicating that consumer demand does exist 

(Wollni and Zeller 2007). The simplicity of the system would make inspection easy in 

comparison to other programs in which trained field biologists must measure numerous 

structural characteristics of the farm. A second, non-mutually exclusive, option would be 

to pay farmers for the carbon credits earned by regenerating forest (Goldstein et al. 2006). 

Carbon credit programs are growing rapidly in response to concerns over global climate 

change (Laurance 2008). Conceivably, no separate certification would be needed to 

qualify a farm as IOC other than that carried out in the course of verifying the 
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qualifications of the farm for carbon credits, reducing the cost and complexity of the 

certification process even further.  

 One limitation of this study was that I was unable to directly compare IOC to 

rustic shade coffee production systems, which are considered to have the highest 

conservation value among shade coffee systems (Moguel and Toledo 1999), and thus, 

would have compared more favorably to primary forest than the commercial polycultures 

in my study. However, the lack of rustic farms in my study area is typical of coffee 

growing regions (Philpott et al. 2007) because these farms, as depicted by Moguel and 

Toledo (1999), have very low yields. As a result, rustic coffee cultivation is not practiced 

at a scale large enough to affect a significant amount of bird habitat (Somarriba et al. 

2004), and its inclusion in this study would not have been informative. Furthermore, the 

shade-coffee farms I worked in met many of the requirements of current certification 

programs (Philpott et al. 2007). An additional limitation of my study was that many of 

the shade coffee farms were adjacent to forest remnants, and thus some species captured 

in these farms probably would not have occurred there if the farms were truly isolated 

(Cohen and Lindell 2005, Sekercioglu et al. 2007).  

 Integrated open canopy coffee production can complement current coffee 

certification systems by providing an incentive to increase forest cover in tropical 

agricultural landscapes, and thereby provide habitat for forest-dependent birds that do not 

use shade coffee. Widespread adoption of this production system could have a 

transformative effect in tropical agricultural landscapes where agriculture continues to 

expand at the expense of forest cover. Future research should investigate the effect of 

forest patch size and shape on forest-dependent species with the goal of developing best 
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management practices for the application of IOC coffee, which could provide the basis of 

a formal certification system.  
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Table 2.1. Captures per 100 net-hours. Forest dependence score is from Stiles (1985). 

Neotropical-Nearctic migrants are in bold. N is the number of individuals captured. Data 

are from 32 sites surveyed in the Cordillera de Tilarán, Costa Rica, 2006-2008. 

Species 

Forest 

dependence  

score 

Primary 

forest 

Secondary  

Forest 

IOC 

Coffee 

Shade 

Coffee 

 

N 

Tiaris olivacea 5 0.06 6.10 0.68 4.18 182 

Mionectes olivaceus 3 3.87 0.48 1.35 0.49 105 

Phaethornis guy 3 2.34 1.38 0.99 0.98 95 

Chiroxiphia linearis 3 0.12 2.57 1.23 0.92 80 

Amazilia tzacatl 5 0.06 1.20 0.68 2.83 78 

Vermivora peregrina 4 0.06 1.68 0.43 2.21 72 

Basileuterus rufifrons 3 0.00 1.38 1.17 1.78 71 

Eupherusa eximia 3 1.46 1.44 0.99 0.43 72 

Campylopterus 

hemileucurus 3 0.88 0.66 0.62 2.03 69 

Lampornis calolaemus 3 3.22 0.18 0.31 0.12 65 

Saltator maximus 5 0.06 1.14 0.43 2.03 60 

Catharus 

aurantiirostris 4 0.18 0.72 1.60 0.68 52 

Myioborus miniatus 3 0.88 0.66 1.05 0.18 46 

Turdus grayi 5 0.00 0.60 0.68 1.48 45 

Melozone leucotis 4 0.00 1.02 0.25 1.29 42 

Wilsonia pusilla 4 0.00 0.96 0.55 0.98 41 

Myadestes melanops 2 2.23 0.06 0.06 0.12 41 

Thryothorus rufalbus 2 0.06 0.84 0.49 0.98 39 

Chlorospingus 

ophthalmicus 3 1.41 0.00 0.86 0.00 38 

Phaethornis striigularis 4 0.41 0.90 0.31 0.61 37 

Myiarchus tuberculifer 4 0.00 0.60 0.49 0.86 32 

Zimmerius vilissimus 3 0.00 0.72 0.18 1.04 32 

Amazilia saucerrottei 4 0.00 0.42 0.68 0.74 30 

Buarremon 

brunneinucha 1 1.23 0.18 0.18 0.12 29 

Premnoplex 

brunnescens 2 1.41 0.12 0.18 0.00 29 

Turdus obsoletus 2 0.47 0.06 1.17 0.00 28 

Euphonia hirundinacea 4 0.00 0.48 0.62 0.55 27 

Catharus fuscater 1 1.46 0.00 0.12 0.00 27 

Thryothorus modestus 5 0.00 0.24 0.92 0.37 25 

Continues on the next page      
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Dendrocincla 

homochroa 2 0.35 0.42 0.49 0.25 25 

Chlorostilbon canivetii 5 0.00 0.36 0.12 0.92 23 

Glyphorhynchus 

spirurus 3 0.47 0.42 0.37 0.12 23 

Catharus ustulatus 3 0.06 0.36 0.86 0.06 22 

Turdus plebejus 3 0.06 0.00 0.43 0.80 21 

Basileuterus 

culicivorus 2 0.76 0.24 0.25 0.00 21 

Dendroica 

pensylvanica 4 0.00 0.60 0.00 0.61 20 

Seiurus aurocapillus 3 0.00 0.06 0.68 0.43 19 

Pheucticus 

ludovicianus 5 0.00 0.06 0.00 1.04 18 

Momotus momota 4 0.00 0.30 0.43 0.37 18 

Hylocichla mustelina 2 0.06 0.30 0.37 0.37 18 

Troglodytes aedon 5 0.00 0.36 0.18 0.49 17 

Platyrinchus mystaceus 1 0.64 0.06 0.31 0.00 17 

Elaenia frantzii 4 0.00 0.06 0.86 0.06 16 

Thraupis episcopus 5 0.00 0.18 0.00 0.80 16 

Empidonax 

flaviventris 3 0.00 0.30 0.12 0.55 16 

Heliodoxa jacula 3 0.70 0.00 0.25 0.00 16 

Leptotila verreauxi 4 0.00 0.30 0.12 0.49 15 

Atlapetes albinucha 4 0.00 0.30 0.25 0.31 14 

Mniotilta varia 3 0.06 0.12 0.12 0.49 13 

Myrmotherula 

schisticolor 2 0.29 0.06 0.43 0.00 13 

Vireo philadelphicus 3 0.00 0.00 0.37 0.37 12 

Henicorhina 

leucophrys 1 0.53 0.00 0.18 0.00 12 

Euphonia anneae 3 0.64 0.00 0.06 0.00 12 

Elvira cupreiceps 2 0.06 0.12 0.43 0.06 11 

Myiozetetes similis 5 0.00 0.00 0.00 0.55 9 

Sporophila americana 5 0.00 0.24 0.00 0.31 9 

Ramphocelus passerinii 5 0.00 0.30 0.00 0.25 9 

Phlogothraupis 

sanguinolenta 5 0.12 0.24 0.00 0.18 9 

Archilochus colubris 5 0.00 0.06 0.12 0.31 8 

Hylophilus decurtatus 3 0.00 0.18 0.06 0.25 8 

Sittasomus 

griseicapillus 3 0.06 0.24 0.12 0.06 8 

Continues on the next page      



 

38 

 

Dysithamnus mentalis 2 0.41 0.00 0.06 0.00 8 

Basileuterus tristriatus 1 0.47 0.00 0.00 0.00 8 

Cyanerpes cyaneus 3 0.00 0.00 0.00 0.37 6 

Mionectes oleagineus 3 0.00 0.24 0.06 0.06 6 

Attila spadiceus 3 0.12 0.06 0.12 0.06 6 

Vermivora chrysoptera 3 0.12 0.12 0.06 0.06 6 

Xiphorhynchus 

erythropygius 2 0.29 0.00 0.06 0.00 6 

Piranga rubra 4 0.00 0.06 0.06 0.18 5 

Aulacorhynchus 

prasinus 3 0.06 0.00 0.12 0.12 5 

Passerina cyanea 5 0.00 0.18 0.00 0.12 5 

Lampornis hemileucus 2 0.06 0.12 0.12 0.00 5 

Zonotrichia capensis 5 0.00 0.30 0.00 0.00 5 

Dendroica virens 3 0.12 0.12 0.06 0.00 5 

Empidonax flavescens 3 0.29 0.00 0.00 0.00 5 

Sporophila torqueola 5 0.00 0.00 0.00 0.25 4 

Melanerpes hoffmannii 4 0.00 0.06 0.06 0.12 4 

Rhynchocyclus 

brevirostris 2 0.06 0.00 0.18 0.00 4 

Cyanocorax morio 5 0.00 0.12 0.06 0.06 4 

Carduelis psaltria 5 0.00 0.12 0.00 0.12 4 

Lepidocolaptes 

souleyetii 4 0.00 0.12 0.00 0.12 4 

Coereba flaveola 4 0.12 0.00 0.12 0.00 4 

Sclerurus mexicanus 1 0.18 0.06 0.00 0.00 4 

Eutoxeres aquila 2 0.23 0.00 0.00 0.00 4 

Semnornis frantzii 3 0.23 0.00 0.00 0.00 4 

Arremonops 

rufivivgatus 2 0.00 0.00 0.18 0.00 3 

Tangara dowii 3 0.00 0.00 0.18 0.00 3 

Tangara icterocephala 3 0.00 0.00 0.18 0.00 3 

Passerina ciris 5 0.00 0.00 0.12 0.06 3 

Oporornis 

philadelphia 5 0.00 0.00 0.06 0.12 3 

Myiodynastes 

luteiventris 4 0.00 0.00 0.00 0.18 3 

Stelgidopteryx 

serripennis 5 0.00 0.00 0.00 0.18 3 

Lophotriccus pileatus 3 0.00 0.06 0.12 0.00 3 

Thamnophilus doliatus 4 0.00 0.06 0.12 0.00 3 

Heliomaster constantii 4 0.00 0.06 0.00 0.12 3 
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Vireo flavifrons 3 0.00 0.06 0.00 0.12 3 

Seiurus motacilla 5 0.18 0.00 0.00 0.00 3 

Myiarchus nuttingi 3 0.00 0.00 0.12 0.00 2 

Elaenia flavogaster 5 0.00 0.00 0.00 0.12 2 

Megarhynchus 

pitangua 4 0.00 0.00 0.00 0.12 2 

Psarocolius montezuma 4 0.00 0.00 0.00 0.12 2 

Tachyphonus rufus 5 0.00 0.00 0.00 0.12 2 

Tolmomyias 

sulphurescens 5 0.00 0.00 0.00 0.12 2 

Dendrocolaptes 

sanctithomae 3 0.00 0.06 0.06 0.00 2 

Henicorhina 

leucosticta 2 0.00 0.06 0.06 0.00 2 

Hylocharis eliciae 3 0.00 0.06 0.00 0.06 2 

Volantinia jacarina 5 0.00 0.06 0.00 0.06 2 

Lysurus crassirostris 1 0.06 0.00 0.06 0.00 2 

Trogon aurantiiventris 3 0.00 0.12 0.00 0.00 2 

Cyanolyca cucullata 1 0.12 0.00 0.00 0.00 2 

Amaurospiza concolor 4 0.00 0.00 0.06 0.00 1 

Colibri thalassinus 4 0.00 0.00 0.06 0.00 1 

Cranioleuca erythrops 2 0.00 0.00 0.06 0.00 1 

Empidonax minimus 4 0.00 0.00 0.06 0.00 1 

Galbula ruficauda 3 0.00 0.00 0.06 0.00 1 

Leptopogon 

superciliaris 3 0.00 0.00 0.06 0.00 1 

Manacus candei 3 0.00 0.00 0.06 0.00 1 

Myiarchus crinitus 3 0.00 0.00 0.06 0.00 1 

Piaya cayana 4 0.00 0.00 0.06 0.00 1 

Xiphorhynchus 

susurrans 3 0.00 0.00 0.06 0.00 1 

Amblycercus 

holosericeus 5 0.00 0.00 0.00 0.06 1 

Dives dives 5 0.00 0.00 0.00 0.06 1 

Icterus galbula 4 0.00 0.00 0.00 0.06 1 

Oporornis tolmiei 5 0.00 0.00 0.00 0.06 1 

Saltator coerulescens 5 0.00 0.00 0.00 0.06 1 

Tityra semifasciata 4 0.00 0.00 0.00 0.06 1 

Todirostrum cinereum 4 0.00 0.00 0.00 0.06 1 

Tolmomyias assimilis 2 0.00 0.00 0.00 0.06 1 

Cyclarhis gujanensis 4 0.00 0.06 0.00 0.00 1 
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Dendroica petechia 5 0.00 0.06 0.00 0.00 1 

Eucometis penicillata 2 0.00 0.06 0.00 0.00 1 

Oporornis formosus 1 0.00 0.06 0.00 0.00 1 

Pachyramphus aglaiae 4 0.00 0.06 0.00 0.00 1 

Piculus rubiginosus 3 0.00 0.06 0.00 0.00 1 

Ramphastes sulfuratus 3 0.00 0.06 0.00 0.00 1 

Sclerurus albigularis 1 0.00 0.06 0.00 0.00 1 

Tangara gyrola 3 0.00 0.06 0.00 0.00 1 

Thryothorus rutilus 5 0.00 0.06 0.00 0.00 1 

Turdus assimilis 1 0.00 0.06 0.00 0.00 1 

Anabacerthia 

ochrolaemus 2 0.06 0.00 0.00 0.00 1 

Campylorhamphus 

pusillus 1 0.06 0.00 0.00 0.00 1 

Corapipo altera 3 0.06 0.00 0.00 0.00 1 

Micrastur 

semitorquatus 2 0.06 0.00 0.00 0.00 1 

Myrmeciza immaculata 1 0.06 0.00 0.00 0.00 1 

Oryzoborus funereus 5 0.06 0.00 0.00 0.00 1 

Scytalopus argentifrons 2 0.06 0.00 0.00 0.00 1 

Syndactyla subalaris 1 0.06 0.00 0.00 0.00 1 

Veniliornis fumigatus 3 0.06 0.00 0.00 0.00 1 
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Table 2.2. Species richness by species group and habitat type. Estimates and 95% 

confidence intervals are from the abundance-based model of Chao (1987). Data are from 

mist-net captures in 32 sites in the Cordillera de Tilarán, Costa Rica, 2006-2008. 

Species group Habitat Observed Estimate 

Lower 

CI 

Upper 

CI 

All Primary forest 61 96 73 163 

 

Secondary forest 88 107 95 133 

 

IOC coffee 86 128 104 197 

 

Shade coffee 84 94 87 107 

Forest-dependent Primary forest 28 61 37 164 

 

Secondary forest 21 26 21 49 

 

IOC coffee 18 29 20 84 

 

Shade coffee 7 7 7 13 

Nearctic migrants Primary forest 7 9 7 22 

 

Secondary forest 16 19 16 34 

 

IOC coffee 17 22 18 45 

 

Shade coffee 19 22 19 37 
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Table 2.3. Parameter estimates and significance tests from ANCOVA models of species 

richness. The reference level (ß0) is primary forest. SF, IOC, and Shade are differences 

from ß0 for secondary forest, integrated open canopy coffee, and shade coffee sites 

respectively. DistMRC is the slope parameter for distance from Monteverde Reserve 

Complex. Data are from mist-net captures in 32 sites in the Cordillera de Tilarán, Costa 

Rica, 2006-2008. 

Response Parameter Estimate SE t P (>|t|) F4, 27 P(>F) 

All species ß0 26.74 4.70 5.69 <0.001 1.201 0.333 

 

SF 6.93 6.02 1.15 0.260 

  

 

IOC 12.83 7.27 1.77 0.089 

  

 

Shade 14.21 7.02 2.02 0.053 

  

 

DistMRC -2.89 2.83 -1.02 0.317 

  Forest-dependents  

(log transformed) ß0 2.13 0.23 9.11 <0.001 20.77 <0.001 

 

SF -0.52 0.29 -1.82 0.080 

  

 

IOC -0.60 0.31 -1.91 0.067 

  

 

Shade -1.20 0.29 -4.19 <0.001 

  

 

DistMRC -0.43 0.09 -4.81 <0.001 

  Nearctic migrants  

(log transformed) ß0 0.74 0.23 3.21 0.003 7.742 <0.001 

 

SF 0.89 0.27 3.32 0.003 

  

 

IOC 1.20 0.33 3.60 0.001 

  

 

Shade 1.17 0.34 3.44 0.002 

  

 

DistMRC 0.17 0.11 1.49 0.147 
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Table 2.4. Parameter estimates and significance tests from ANCOVA models of species 

composition. The reference level (ß0) is similarity between secondary forest and primary 

forest. IOC and Shade are differences in the similarity to primary forest from ß0 for 

integrated open canopy coffee and shade coffee sites respectively. DistMRC is the slope 

parameter for distance from Monteverde Reserve Complex. Data are from mist-net 

captures in 32 sites in the Cordillera de Tilarán, Costa Rica, 2006-2008. 

Response Parameter Estimate SE t P (>|t|) F3, 20 P(>F) 

All species  

(square-root 

transformed) ß0 0.04 0.05 0.89 0.384 12.54 <0.001 

 
IOC -0.04 0.07 -0.55 0.589 

  
 

Shade -0.13 0.07 -1.86 0.078 

  
 

DistMRC -0.14 0.03 -4.94 <0.001 
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Table 2.5. Mean ± SD of mass-wing chord residuals for species captured in all four farm 

and forest types. Sample size is shown in parentheses. Data are from mist-net captures in 

32 sites in the Cordillera de Tilarán, Costa Rica, 2006-2008. 

Species 

Primary 

forest 

Secondary 

forest 

IOC  

coffee 

Shade 

coffee 

Black-and-White Warbler 0 ± NA  

(1) 

1 ± 1  

(2) 

1 ± NA  

(1) 

0 ± 1  

(7) 

Black-faced Solitare 0 ± 2  

(34) 

-3 ± NA  

(1) 

-2 ± NA  

(1) 

-1 ± NA  

(1) 

Buff-throated Saltator -2 ± NA  

(1) 

-1 ± 2  

(7) 

1 ± 4  

(16) 

0 ± 4  

(30) 

Chestnut-capped Brush-Finch 0 ± 3  

(16) 

-2 ± 1  

(3) 

2 ± NA  

(1) 

-1 ± 2  

(2) 

Golden-winged Warbler 0 ± 0  

(2) 

-1 ± NA  

(1) 

0 ± 1  

(2) 

1 ± NA  

(1) 

Long-tailed Manakin 1 ± 0  

(2) 

0 ± 1  

(20) 

0 ± 1  

(40) 

0 ± 1  

(14) 

Olivaceous Woodcreeper 0 ± NA  

(1) 

0 ± 0  

(2) 

0 ± 1  

(2) 

0 ± NA  

(1) 

Olive-striped Flycatcher 0 ± 1  

(64) 

0 ± 1  

(20) 

0 ± 1  

(6) 

1 ± 2  

(7) 

Orange-billed Nightingale-

Thrush 

2 ± 3  

(3) 

0 ± 2  

(25) 

0 ± 2  

(11) 

0 ± 2  

(11) 

Ruddy Woodcreeper 0 ± 3  

(6) 

-1 ± 1  

(7) 

1 ± 2  

(7) 

1 ± 5  

(4) 

Rufous-and-white Wren -4 ± NA  

(1) 

1 ± 1  

(6) 

-1 ± 3  

(9) 

1 ± 1  

(8) 

Slate-throated Redstart 0 ± 0  

(12) 

0 ± 0  

(14) 

0 ± 0  

(10) 

0 ± 0  

(3) 

Swainson's Thrush 0 ± NA  

(1) 

0 ± 2  

(14) 

0 ± 1  

(4) 

2 ± NA  

(1) 

Wedge-billed Woodcreeper -1 ± 1  

(7) 

0 ± 1  

(6) 

1 ± 3  

(6) 

-1 ± 1  

(2) 

Wood Thrush 9 ± NA  

(1) 

-1 ± 4  

(6) 

-1 ± 1  

(5) 

0 ± 4  

(4) 
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Table 2.6. Mean ± SD of number of flight feather with parasitic mites. Sample size is 

shown in parentheses. Data are from mist-net captures in 32 sites in the Cordillera de 

Tilarán, Costa Rica, 2006-2008. 

Species 

Primary 

forest 

Secondary 

forest 

IOC 

coffee 

Shade 

coffee 

Black-and-white warbler 12 ± NA 

(1) 

5 ± 6 

(2) 

9 ± 6  

(2) 

5 ± 4  

(7) 

Black-faced solitare 8 ± 4  

(37) 

9 ± NA  

(1) 

17 ± NA 

(1) 

3 ± NA  

(1) 

Bright-rumped attila 2 ± 2  

(2) 

4 ± 0  

(2) 

2 ± NA  

(1) 

0 ± NA  

(1) 

Buff-throated saltator 7 ± NA 

(1) 

17 ± 0  

(7) 

12 ± 4  

(19) 

13 ± 4 

(31) 

Chestnut-capped brush-finch 8 ± 5  

(19) 

8 ± 7  

(3) 

1 ± 1  

(2) 

5 ± 6  

(2) 

Golden-winged warbler 5 ± 6  

(2) 

0 ± NA  

(1) 

3 ± 1  

(2) 

5 ± NA  

(1) 

Long-tailed manakin 6 ± 0  

(2) 

9 ± 5  

(19) 

8 ± 5  

(41) 

4 ± 5  

(15) 

Olivaceous woodcreeper 7 ± NA 

(1) 

9 ± 8  

(2) 

4 ± 3  

(3) 

15 ± NA  

(1) 

Olive-striped flycatcher 3 ± 3  

(65) 

3 ± 3  

(21) 

4 ± 4  

(5) 

0 ± 1  

(8) 

Orange-billed nightingale-

thrush 

1 ± 2  

(3) 

5 ± 4  

(25) 

5 ± 4  

(12) 

4 ± 5  

(11) 

Ruddy woodcreeper 4 ± 4  

(6) 

11 ± 6  

(7) 

9 ± 7  

(7) 

12 ± 6  

(3) 

Rufous-and-white wren 11 ± NA 

(1) 

6 ± 7  

(8) 

4 ± 6  

(13) 

4 ± 5  

(11) 

Slate-throated redstart 12 ± 4 

(14) 

13 ± 3  

(15) 

12 ± 5  

(10) 

11 ± 1  

(3) 

Swainson's thrush 6 ± NA 

(1) 

8 ± 5  

(13) 

8 ± 7  

(6) 

7 ± NA  

(1) 

Tennessee warbler 4 ± NA 

(1) 

5 ± 3  

(7) 

5 ± 5  

(27) 

3 ± 4  

(31) 

Wedge-billed woodcreeper 10 ± 6 

(6) 

14 ± 6  

(6) 

10 ± 6  

(7) 

6 ± 8  

(2) 

Wood thrush 0 ± NA 

(1) 

10 ± 5  

(6) 

11 ± 6  

(5) 

13 ± 4  

(6) 

Yellow-faced grassquit 0 ± NA 

(1) 

0 ± 1  

(10) 

1 ± 2  

(87) 

1 ± 2  

(50) 
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Table 2.7. Mean ± SD of fat scores for species captured in all four farm and forest types. 

Sample size is shown in parentheses. Data are from mist-net captures in 32 sites in the 

Cordillera de Tilarán, Costa Rica, 2006-2008. 

Species 

Primary 

forest 

Secondary 

forest 

IOC  

coffee 

Shade 

coffee 

Black-and-White Warbler 2 ± NA  

(1) 

2 ± 2  

(2) 

3 ± 3  

(2) 

1 ± 2  

(7) 

Bright-rumped Attila 0 ± 0  

(2) 

0 ± 0  

(2) 

0 ± NA  

(1) 

1 ± NA  

(1) 

Buff-throated Saltator 0 ± NA  

(1) 

0 ± 1  

(7) 

0 ± 0  

(19) 

1 ± 1  

(31) 

Chestnut-capped Brush-Finch 0 ± 1  

(20) 

0 ± 0  

(3) 

0 ± 0  

(2) 

0 ± 0  

(2) 

Golden-winged Warbler 0 ± 0  

(2) 

1 ± NA  

(1) 

1 ± 1  

(2) 

0 ± NA  

(1) 

Long-tailed Manakin 1 ± 1  

(2) 

1 ± 1  

(20) 

1 ± 1  

(42) 

1 ± 1  

(15) 

Olivaceous Woodcreeper 0 ± NA  

(1) 

1 ± 1  

(2) 

1 ± 1  

(3) 

0 ± NA  

(1) 

Olive-striped Flycatcher 1 ± 1  

(66) 

1 ± 1  

(22) 

1 ± 1  

(6) 

2 ± 2  

(8) 

Orange-billed Nightingale-

Thrush 

0 ± 0  

(3) 

0 ± 1  

(25) 

0 ± 1  

(12) 

1 ± 1  

(11) 

Ruddy Woodcreeper 0 ± 0  

(6) 

0 ± 0  

(7) 

0 ± 0  

(7) 

0 ± 1  

(4) 

Rufous-and-white Wren 1 ± NA  

(1) 

0 ± 0  

(8) 

0 ± 1  

(14) 

0 ± 1  

(13) 

Slate-throated Redstart 0 ± 1  

(14) 

0 ± 0  

(17) 

0 ± 1  

(10) 

0 ± 1  

(3) 

Swainson's Thrush 0 ± NA  

(1) 

1 ± 1  

(14) 

0 ± 0  

(5) 

1 ± NA  

(1) 

Tennessee Warbler 0 ± NA  

(1) 

1 ± 1  

(7) 

1 ± 1  

(28) 

1 ± 1  

(34) 

Wedge-billed Woodcreeper 2 ± 2  

(7) 

0 ± 0  

(5) 

2 ± 2  

(7) 

0 ± 0  

(2) 

Wood Thrush 1 ± NA  

(1) 

1 ± 1  

(6) 

1 ± 0  

(5) 

1 ± 1  

(6) 

Yellow-faced Grassquit 3 ± NA  

(1) 

0 ± 1  

(9) 

1 ± 1  

(91) 

0 ± 0  

(55) 
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Table 2.8. Mixed-effects models of mass-wing chord residuals (M-L resids), flight 

feather parasites (Parasites), and subcutaneous fat scores (Fat) ranked by AIC. Data are 

from mist-net captures in 32 sites in the Cordillera de Tilarán, Costa Rica, 2006-2008. 

Response Fixed Random Individuals Species Parameters AIC 

M-L resids . Species 503 15 3 2096.8 

 

Habitat Species 503 15 6 2098.0 

 

. Species, Habitat 503 15 12 2114.8 

 

Habitat Species, Habitat 503 15 15 2116.0 

Parasites Habitat Species, Habitat 754 18 5 2675.9 

 

. Species, Habitat 754 18 14 2676.4 

 

Habitat Species 754 18 2 2744.1 

 

. Species 754 18 11 2772.2 

Fat . Species, Habitat 778 18 11 937.9 

 

Habitat Species 778 18 5 942.4 

 

Habitat Species, Habitat 778 18 14 959.5 

 

. Species 778 18 2 964.0 
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Table 2.9. Parameter estimates from most supported mixed-effects model of flight feather 

parasite load. Estimates are fixed effects coefficients except for the random effect of 

―Species‖, which is the standard deviation of the differences among species. The 

reference level (ß0) is primary forest. SF, IOC, and Shade are differences from ß0 for 

secondary forest, integrated open canopy coffee, and shade-coffee sites respectively.  

 

Parameter Estimate SE z Pr(>|z|) 

ß0 1.71 0.16 10.82 0.00 

SF 0.17 0.05 3.22 0.00 

IOC 0.04 0.06 0.80 0.43 

Shade -0.10 0.06 -1.61 0.11 

Species 0.64 - - - 
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Table 2.10 Summary statistics of environmental, geographical, and survey effort 

variables. For net-level variables, values are shown for coffee nets and forest nets within 

IOC sites. Data are from 32 sites surveyed in the Cordillera de Tilarán, Costa Rica, 2006-

2008. 

Variable Habitat
a
 Mean SD Min Median Max 

Elevation (m) PF 1289 93 1120 1280 1401 

 

SF 1105 127 863 1151 1240 

 

Shade 1080 87 912 1080 1180 

 

IOC 1073 107 923 1076 1196 

Distance from Monteverde 

Reserve Complex (m) PF 1261 797 226 1129 2893 

 

SF 2145 1678 155 1867 4465 

 

Shade 2821 941 1680 2750 4263 

 

IOC 2512 1542 997 2126 5398 

Total dbh
b
 (cm) PF 857 391 566 712 1429 

 

SF 363 278 137 307 819 

 

Shade 319 313 169 332 422 

 

IOC 312 381 80 311 618 

 

IOC coffee 97 242 0 32 767 

 

IOC forest 678 353 160 633 1583 

Mean dbh (cm) PF 17 3 14 17 20 

 

SF 10 6 7 9 18 

 

Shade 13 5 9 13 18 

 

IOC 13 5 8 12 19 

 

IOC coffee 11 4 6 11 18 

 

IOC forest 16 6 7 16 27 

Trees PF 51 22 33 45 85 

 

SF 38 32 18 28 96 

 

Shade 24 14 19 24 30 

 

IOC 23 23 10 22 42 

 

IOC coffee 9 17 0 4 57 

 

IOC forest 44 18 9 45 91 

Canopy height (m) PF 25 6 18 25 31 

 

SF 7 4 4 6 15 

 

Shade 7 11 4 7 11 

 

IOC 8 9 0 9 17 

 

IOC coffee 4 6 0 3 15 

 

IOC forest 18 9 8 16 35 

Canopy cover (%) PF 93 11 80 94 100 

 

SF 79 29 43 88 96 

Continues on the next page      
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Shade 56 18 43 50 75 

 

IOC 49 43 38 45 73 

 

IOC coffee 14 34 0 5 70 

 

IOC forest 94 25 65 95 100 

Net-hours PF 1289 93 1120 1280 1401 

 

SF 1105 127 863 1151 1240 

 

Shade 1080 87 912 1080 1180 

 

IOC 1073 107 923 1076 1196 

 
a
 PF = primary forest, SF = secondary forest, Shade = shade coffee, IOC = integrated 

open canopy coffee, IOC coffee = coffee portion of IOC farm, IOC forest = forest portion 

of IOC farm. 
b
 dbh = diameter at breast height 
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Figure 2.1. Species richness of forest-dependent species in relation to farm and forest 

types and distance from protected area. Fitted lines are from ANCOVA model of forest-

dependent species. Data are from mist-net captures in 32 sites in the Cordillera de 

Tilarán, Costa Rica, 2006-2008. 
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Figure 2.2. Site-level species richness estimates from ANCOVA model of Neotropical-

Nearctic migrants. y-axis is on log-scale. Data are from mist-net captures in 32 sites in 

the Cordillera de Tilarán, Costa Rica, 2006-2008. 
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Figure 2.3. Non-metric multidimensional scaling plot representing community similarity 

of all species among sample plots. Gray points are species scores. PF is primary forest, 

SF is secondary forest, IOC is integrated open canopy coffee, and Shade is shade coffee. 

Data are from mist-net captures in 32 sites in the Cordillera de Tilarán, Costa Rica, 2006-

2008.
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Figure 2.4. Similarity indicies (square-root transformed) between each site and primary 

forest sites. Fitted lines are from ANCOVA model for all species. Data are from mist-net 

captures in 32 sites in the Cordillera de Tilarán, Costa Rica, 2006-2008. 
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CHAPTER 3 

GOLDEN-WINGED WARBLER HABITAT SELECTION AND POPULATION 

DYNAMICS DURING THE STATIONARY NON-BREEDING SEASON 

 

3.1 Introduction 

The annual cycle of Neotropical-Nearctic migratory passerines is dominated by the non-

breeding season, yet compared to the voluminous amount of information available on 

their breeding ecology (Nolan 1978, DeGraaf and Yamasaki 2001, Askins and 

Zickefoose 2002, Sauer et al. 2008) relatively little is known about the ecology of these 

species during this period. This absence of information is concerning because many 

species of Neotropical-Nearctic migrants are experiencing population declines (King et 

al. 2006b, Sauer et al. 2008), and non-breeding season events can profoundly affect 

Neotropical-Nearctic migrant population dynamics (Rappole et al. 1989, 2003a, Sherry 

and Holmes 1996, Strong and Sherry 2000, Studds and Marra 2005, Calvert et al. 2009). 

Unfortunately, for most species we do not have basic information on habitat-specific 

abundance, habitat selection, and habitat quality during the non-breeding season, which 

are critical to conservation efforts (Faaborg et al. 2010).  

 The golden-winged warbler (Vermivora chrysoptera) is a Neotropical-Nearctic 

migrant that breeds in southern Manitoba and Ontario, the Great Lakes states, and in the 

central and southern Appalachian Mountains (Confer 1992). The stationary non-breeding 

range has not been adequately delimited, but it is believed to extend from extreme 

southern Mexico south to the northern Andes of Venezuela, Colombia, and Ecuador 

(DeGraaf and Rappole 1995). Within this area golden-winged warblers are reported to 



 

56 

 

inhabit wet evergreen forests below 2500 m in elevation and to be most abundant at 

intermediate elevations (Bent 1963, Johnson 1980, Tramer and Kemp 1982, Blake and 

Loiselle 2000).  

 Between 1966 and 2007 the golden-winged warbler declined at a rate of 2.8% per 

year, and is now listed as near-threatened by the IUCN and considered as one of the most 

threatened Neotropical-Nearctic migrants (Sauer et al. 2008, North American Bird 

Conservation Initiative 2009). Numerous studies suggest that breeding season factors 

may contribute to this population decline (Buehler et al. 2007). Effective population size 

has been reduced by hybridization with blue-winged warblers (V. pinus), and habitat 

extent has declined following the maturation of forests in eastern North America 

(Litvaitis 1993, Gill 1997, Vallender et al. 2007a). Although these two factors pose clear 

threats to this species, several lines of evidence suggest that non-breeding season factors 

may be important as well. Golden-winged warblers are nearly extirpated from New 

England, but much early-successional habitat with few to no blue-winged warblers still 

exists (Trani et al. 2001, King et al. 2001, Chandler et al. 2009). In addition, recent 

analyses demonstrate that genetic introgression is reciprocal, and thus hybridization 

should not necessarily favor one species over the other (Shapiro et al. 2004, Dabrowski et 

al. 2005). Golden-winged warblers have disappeared from several areas following the 

arrival of blue-winged warblers, but there also exist regions of sympatry where the two 

species have coexisted for over a century (Gill 1980, Confer and Tupper 2000).  

 To fully understand what factors contribute to the decline of golden-winged 

warblers, information is needed regarding carrying capacity and habitat quality during the 

non-breeding season (Rappole et al. 2003a). Carrying capacity is influenced by habitat 
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extent and population density, yet no efforts have been made to estimate either of these 

important parameters for golden-winged warblers. Habitat quality is also related to 

carrying capacity because the critical factor is the number of individuals that survive to 

migrate back to the breeding grounds. Although no detailed studies of golden-winged 

warblers have been conducted during the non-breeding season, anecdotal observations 

and incidental reports from community-level studies indicate that golden-winged 

warblers are specialized in their habitat use, which would increase their potential 

susceptibility to destruction or alteration of non-breeding habitat. For example, this 

species appears to be restricted to lower and middle-elevation tropical wet forests, which 

have experienced high levels of deforestation over the past 50 years (Powell et al. 1992, 

Robbins et al. 1992, Blake and Loiselle 2000). Evidence also exists that golden-winged 

warblers are specialized dead leaf foragers, which could further limit the extent of usable 

habitat since this habitat feature is patchily distributed (Tramer and Kemp 1980, 

Gradwohl and Greenberg 1982). 

 Assessing habitat extent and habitat quality for Neotropical-Nearctic migrants 

during the non-breeding season is difficult because they may occur at low densities over 

large areas, and are often cryptic relative to the breeding season when they vocalize more 

frequently. In addition, these species can occur in similar or even greater numbers in poor 

quality habitat as the result of despotic interactions between age classes or sexes 

(Rappole et al. 1989). This problem highlights the importance of supplementing estimates 

of habitat-specific density with estimates of demographic rates such as survival and 

recruitment (Johnson et al. 2006). Although these more detailed measures of habitat 

quality are typically assessed by studying individually marked populations, the 
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consequences of mortality can be assessed without marking individuals by measuring 

differential declines in habitat-specific abundance within a season (Greenberg 1992). 

Although these patterns can be confounded by floaters replacing vacated territories, 

abundance should nonetheless decline faster in suboptimal habitats because floaters 

should be more likely to colonize higher quality territories (Rappole and McDonald 

1994).  

 Given the dearth of information on golden-winged warbler ecology during the 

stationary non-breeding season, I designed a study to quantify habitat selection patterns 

and to estimate habitat-specific abundance and habitat quality.  

 

3.2 Methods 

3.2.1 Field methods 

Habitat selection is a hierarchical process (Johnson 1980, Thomas and Taylor 2006), and 

human impacts on the environment can affect habitat selection and habitat use patterns at 

any of these hierarchical scales. Thus, I conducted this study at both the second order 

scale, which describes where an individual locates its home range, and third order scale, 

which describes habitat features selected within home ranges (Johnson 1980). 

For the second order habitat selection component of the study, I surveyed golden-

winged warblers at 94 points visited three times each during the 2008-09 and 2009-10 

non-breeding seasons using a 20-minute point count methodology. To avoid the 

possibility of including transients, surveys were conducted between 1 January and 15 

March each season. These surveys could have begun earlier in the season because 
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golden-winged warblers appear to establish territories by late October; however, a pilot 

study during Oct-Dec 2006 failed to obtain sufficient detections during those months (4 

of 84 survey points) due to the extreme rain typical of that period. The end date was 

determined based upon radio-telemetry and resight data, which indicate that migratory 

movements do not begin until late March. Each survey was divided into an initial 10-

minute passive period and a subsequent 10-minute period during which golden-winged 

warbler songs and chips were broadcast from handheld speakers. Vocalizations were 

acquired from the Cornell Lab of Ornithology’s Macauly Lab, and were played at a 

volume of 100 dB at distance of 1 meter from the speakers. For each individual detected, 

I recorded the sex and the 10-minute time intervals in which it was observed.  

 The 94 points were stratified among four habitat types: closed-canopy primary 

forest (n=25), naturally disturbed primary forest near rivers and landslides (n=25), 

secondary forest resulting from pasture abandonment (n=23), and agroforestry systems. 

(n=24). Agroforestry systems were mostly coffee plantations, but other crops were often 

integrated in these farms. These habitat types are defined in Chapter 1, and represent the 

major categories present in the study area, with the exception of cattle pastures, which 

pilot data as well as published information indicated are not used by golden-winged 

warblers. All survey points were located at least 500 m apart to ensure that no individual 

was detected at more than one point.  

To quantify habitat characteristics selected by golden-winged warblers, I also 

established 50-m radius plots centered on each point, and measured the following 

variables: elevation, canopy height, percent canopy cover, slope, aspect, and dbh of trees 

selected using a 10-factor cruising prism. Each plot was partitioned into quarters and the 
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following microhabitat variables, which behavioral observations suggested were used by 

golden-winged warblers (Chapter 4), were measured within each: hanging dead leaf 

index (0, 1-100, 101-1000, >1000), vine tangle index (none, vines but no tangles > 1m 

diameter, vines and 1-2 tangles, vines and >2 tangles), and epiphyte index (no moss or 

bromeliads, moss < 2cm thick and few bromeliads, moss 2-5cm thick with numerous 

bromeliads, moss > 5cm thick).  

 To quantify third order (within home range) level habitat selection, I used radio-

telemetry. I captured individuals using broadcast vocalizations and a clay decoy placed 

between two nets. Each individual was fitted with a 0.43g Holohil BD-2N transmitter 

using an elastic backpack harness design (Rappole and Tipton 1991). The weight of these 

units was approximately 6% of the total body weight and was thus higher than the 

recommended level of 3%. This was justified because of the importance of obtaining 

reliable behavioral observations which would not have otherwise been possible given the 

cryptic nature of this species. The transmitters did not appear to substantially affect 

movement or behavior within seasons, although return rates were lower for birds that 

departed with transmitters (Chapter 5). Several birds occasionally picked at the harness 

during the first two to three days after radios were deployed. Only one individual 

appeared to be bothered by the transmitter for the duration of the tracking period, and this 

individual was not included in the analysis.   

 Tracking began one day after the transmitter was attached, and continued until 

battery failure or mortality. Each day I located the bird and followed it for two hours, 

recording locations every 30 minutes using a handheld global positioning system (GPS) 

unit. I made an effort to visually locate the bird at each point because otherwise it was not 
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possible to record certain habitat variables (see below). This process resulted in 

approximately five relocations per day. Relocation data were spaced evenly to minimize 

observer bias (Fieberg 2007). GPS measurement error was typically less than 10 m. At 

each relocation point I recorded the habitat type as primary forest, secondary forest, 

naturally disturbed forest, or agroforestry system. Agroforestry systems were mostly 

coffee farms, but included ―silvopastures‖, which were pastures with dense or scattered 

trees. I also measured canopy height, and diameter at breast height (dbh) of all trees 

selected by 10-factor cruising prism. For locations where I saw the bird I established 2-m 

radius plots and measured the dbh of all stems > 2 cm, dead leaves (0-10, 11-50, >50), 

vine tangles > 1 m in diameter (yes/no), number of bromeliads, and epiphytic moss 

thickness. The 2-m plot variables were only recorded during the second and third seasons 

of the study, and of these, bromeliads and moss were only recorded in the final season. 

Upon battery failure or mortality, I used kernel density estimators to delimit the 95% 

home range boundaries. Within these boundaries I took habitat measurements on a 20 

meter grid. At each grid intersection I measured the same habitat variables as were 

measured at points where marked birds had been located.  

3.2.2 Statistical methods 

To analyze second-order patterns of golden-winged warbler abundance in relation to 

habitat variables from point count data, I used the binomial mixture model of Dail and 

Madsen (2010). This model is very well suited to non-breeding season data because it 

assumes that abundance patterns are determined by an initial territory establishment 

process followed by gains and losses due to mortality and movements. It also accounts 
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for imperfect detection probability. The model requires both spatial and temporal 

replication and can be described as follows: 

Ni1 ~ Poisson(λ) 

Git ~ Poisson(γ) 

Sit ~ Binomial(Nit-1, ω) 

Nit+1 = Git + Sit 

yit ~ Binomial(Nit, p) 

where Nit is the number of individuals at site i on survey occasion t, Git is the number of 

gains (recruits) between seasons, Sit is the number of survivors, and yit is the observed 

count at site i on survey occasion t. M in the number of plots and T is the number of 

survey occasions. The four model parameters are initial abundance (λ), recruitment rate 

(γ), apparent survival (ω), and detection probability (p). Because this is a model of data 

from unmarked individuals, it is not possible to distinguish between losses due to 

mortality and those due to permanent emigration; therefore, I use the term phrase 

apparent survival, which can be defined as one minus the probability of losing an 

individual at a given plot.  

 All four parameters can be modeled in relation to covariates. I used a step-wise 

selection process based upon AIC to find the best combination of covariates that I had a 

priori reason to believe were important (Venables and Ripley 2002). These included all 

variables listed previously as well as a precipitation proxy (distance from continental 

divide). I used distance from the continental divide as a proxy for precipitation because 

detailed precipitation data do not exist for my study area, whereas the relationship 

between distance from the continental divide and precipitation has been clearly 
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established (Young et al. 1998, Clark et al. 2000). I also considered three subcategories of 

diameter at breast height (dbh) size classes (<20, 20-50, > 50 cm). I evaluated quadratic 

terms for precipitation, average canopy height, elevation, and epiphytes because field 

observations led me to believe that golden-winged warbler abundance might peak at 

intermediate levels of these variables. I modeled recruitment and apparent survival using 

these same predictor variables, and I included season in each model to estimate within- 

and among-season rates separately. In the detection probability component of the model I 

considered wind, observer skill, precipitation, time of day, date, canopy height, and basal 

area. Wind and precipitation were measured on a 1-5 scale. Observer skill was defined as 

follows: 1=limited point count experience, 2=extensive point count experience on 

breeding grounds, 3=some point count experience with golden-winged warblers during 

the non-breeding season, 4=extensive experience surveying golden-winged warblers 

during non-breeding season. Summary statistics for all predictor variables are presented 

in Table 3.1. The precipitation gradient in the study area can be seen in Fig. 3.1b by the 

decrease in epiphytes with the distance from the continental divide on the Pacific slope. 

Covariates that were included in models with ∆AIC values < 2  and whose 95% 

confidence intervals did not include zero were considered to be important predictor 

variables.  

 I used a mixed-effects logistic regression model to analyze home range level 

(second order) habitat selection. When using logistic regression to analyze use vs. 

availability data it is important to recognize that an unknown fraction of the availability 

data includes points that were used. Thus, the logistic regression model is not predicting 

the probability of use relative to the probability of no use; rather, it is the probability of 
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use relative to availability (Keating and Cherry 2004). The null hypothesis is that 

individuals use habitat in proportion to availability. Treating variation among individuals 

as a random process made it possible to make inference at both the individual and 

population (individual average) levels. For this analysis, I used the same AIC-based 

model selection process as described for the landscape level analysis. A summary of the 

distributions of these predictor variables is shown in Table 3.2. 

 

3.3 Results 

3.3.1 Second order habitat selection  

I detected 59 golden-winged warblers during 546 surveys over two seasons. Only 4 of 

these detections (6.8%) occurred during the first 10 minutes of the survey, highlighting 

the importance of using broadcast vocalizations for surveying non-breeding golden-

winged warblers. In 2009, I detected golden-wings at 25 of 94 plots (26.6%). In 2010, I 

did not resurvey four plots that were very difficult to access, and I added three new plots. 

Golden-winged warblers were not detected at any of the four plots dropped in 2009. In 

2010, I detected golden-wings at 17 of 93 plots (18.3%). In both years, virtually all 

detections (95%) were of single individuals; however, at one plot a female and a male 

were detected on different occasions in 2009. Two males were detected simultaneously at 

one plot during two consecutive survey occasions in 2010. Only three females were 

detected, and thus I was not able to model the sexes separately.  

In addition to these 59 observations on point counts, I observed 89 other 

individuals (69 males and 20 females) incidentally while carrying out other duties 
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associated with the project (Fig. 3.1d). The spatial locations of point count detections 

were closely aligned with incidental observations of golden-winged warblers (Fig 3.1d), 

the one exception being that several golden-winged warblers were incidentally detected 

along large rivers within the Manuel Brenes biological reserve but were never detected in 

this habitat during point counts.  

 Abundance adjusted for detection probability, but ignoring covariate effects, was 

less than 0.5 birds per plot (Table 3.3). However, substantial variation in abundance 

existed among plots as demonstrated by the inclusion of covariates in all supported 

models. The importance of four covariates was clear, although there was considerable 

uncertainty regarding the best combination of these variables. A quadratic effect of 

distance from the continental divide was present in all supported models (Table 3.3) and 

indicates that abundance peaked at a distance of 1.45 kilometers on the Pacific slope, 

which is an area that receives approximately 2.5 meters of annual rainfall. (Fig. 3.1b). 

This amount corresponds to climatic conditions favoring intermediate levels of 

microhabitat variables such as epiphytes (Fig. 3.2b). The second most supported effect 

was a quadratic relationship with canopy height, indicating that abundance peaked in 

forests with canopy heights of 21 meters. Habitat type and hanging dead leaves were 

included in the list of supported models, and indicated that golden-winged warblers were 

most abundant in naturally disturbed secondary forest, and their abundance was 

positively associated with dead leaves.  

 Golden-winged warblers were detected at seven plots in 2010 where they had not 

been detected in 2009, and they were not detected at 15 plots in 2010 that had been 

occupied in 2009. After accounting for detection probability, the models indicated that 
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the seven plots that appeared to be colonized were most likely used by golden-winged 

warblers in 2009 but those individuals were not detected , and thus, the recruitment rate 

was close to zero (Table 3.3). This near-zero recruitment rate made it unnecessary to 

account for seasonal differences as there was no variation to model. Once detection 

probability was accounted for, the models indicated that the 15 plots where birds were 

present in 2009 but not in 2010 represented actual losses, consistent with other evidence 

that that this population is declining. Apparent survival was not related to any of the 

habitat covariates I considered, but I included a season effect in all models to allow for 

differences in among vs. within season differences. The point estimate for within-season 

monthly apparent survival was 0.870, although the confidence interval was large (Table 

3.3). The six month estimate of non-breeding season apparent survival probability was 

0.434. This value contrasts with a relatively high among-season monthly apparent 

survival probability of 0.958. Detection probability after three surveys was 0.62. 

Detection probability was negatively related to wind and positively related to the 

observer skill index, indicating the importance of controlling them in the study design to 

the extent possible (e.g. training observers and rotating them among survey points), as 

well as accounting for them statistically. 

3.3.2 Second order (home-range level) habitat selection 

I radio-tracked 24 golden-winged warblers during three non-breeding seasons, but only 

11 individuals had sufficient relocations (> 5) and home-range habitat data (> 20 

measurements) to model habitat selection. Only two of these individuals were females 

and thus I was not able to assess differences between the sexes. I was not able to include 

habitat type (primary forest, secondary forest, or agroforestry system) in these models 



 

67 

 

because very few home ranges included sufficient proportions of multiple habitat types to 

assess selection. Canopy height was strongly correlated with tree dbh (r > 0.7), and thus I 

only considered canopy height in these models.  

 Analyses of home range level use vs. availability data indicated a consistently 

supported quadratic relationship between the probability of use by golden-winged 

warblers and canopy height, with a maximum probability at a canopy height of 12 m (Fig 

3.5). Golden-winged warblers also preferred areas within their home ranges that had high 

basal area in 2-m plots, and where vine tangles were present.  

 

3.4 Discussion 

Concerns about population declines of Nearctic-Neotropical migratory birds were raised 

over 40 years ago (Aldrich and Robbins 1970), and although habitat loss during the 

stationary non-breeding season has been suggested as a cause of these declines, we still 

know very little about the habitat requirements of many of these species during this 

period, which accounts for more than half of the of the annual cycle (Monroe 1970, 

Terborgh 1989, Rappole 1995). This dearth of knowledge applies even to the most 

rapidly declining species, including the golden-winged warbler. In fact, prior to this 

study, no detailed studies of this species had been undertaken outside the breeding 

grounds. Because the degree to which a species exhibits habitat specialization is an 

indicator of its sensitivity to habitat alteration or destruction (Devictor et al. 2008), the 

lack of this basic information represents a serious deficiency in our ability to conserve 

this species. 
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 Golden-winged warblers exhibited high degrees of specialization, both in terms of 

the habitats they selected to establish their home ranges (second order habitat selection), 

as well as within home ranges (third order habitat selection). My analyses of point count 

data showed golden-winged warblers were most abundant close to the continental divide 

on the Pacific slope, which is dryer than the Caribbean slope and wetter than the lower 

Pacific (Young et al. 1998). They were never detected in the dry forests far from the 

continental divide on the Pacific slope, which is consistent with previous qualitative 

findings (Bent 1963). Although I detected few golden-winged warblers far from the 

divide on the Caribbean slope during point count surveys, my incidental observations and 

records from other researchers demonstrate that they do occur in these lower elevation 

wet forests (Powell et al. 1992). These findings along with the lack of support for 

elevation in the abundance models indicate that precipitation and not elevation drive 

second-order habitat selection. Elevation, however, may play a role outside of the range I 

studied. For example, golden-winged warblers are rarely reported above 2500 m. There 

also exist few records of this species in forests near sea level (Restall et al. 2007, eBird 

2010). 

 Within their preferred precipitation band, golden-winged warblers were most 

abundant in conditions characterized by intermediate disturbance. Specifically, 

abundance was highest in forests with canopies 22 m tall and high levels of hanging dead 

leaves. The association with hanging dead leaves is probably due to their specialized 

foraging behavior, which involves probing and prying open dead leaves to extract insects 

(Chapter 4). Model selection results provided some evidence that golden-winged 

warblers were less abundant in undisturbed primary forest than in other habitat types, but 
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this effect was relatively weak. These second-order habitat selection results suggest that 

golden-winged warblers are microhabitat specialists rather than habitat specialists; i.e., 

their preferred microhabitat conditions can be found in primary forest as well as 

secondary forest and occasionally agroforestry systems, but the appropriate combination 

of these microhabitat variables is rare, which is probably one reason why this species 

appears to be patchily distributed at low densities throughout its non-breeding range 

(Bent 1963).  

Although I regularly encountered golden-winged warblers along the large rivers 

within the Manuel Brenes Biological Reserve, I never detected them at these locations 

during point count surveys. This finding, I believe, is due to a near zero detection 

probability in that habitat type. Ambient noise caused by these rivers was extremely loud, 

and on several occasions, golden-winged warblers did not respond to broadcast 

vocalizations even when they were as close as 25 m. Typically golden-winged warblers 

chip loudly in response to the broadcast vocalizations, and approach the observer 

aggressively (Chapter 4). Away from rivers, I was able to hear broadcast vocalizations at 

distances of 100 m, even in primary forest, whereas near rivers observers could not hear 

recorded calls at one quarter of that distance, suggesting that detection probability in 

riverside habitats was very low. Therefore, my abundance estimates in these riverine 

habitats were probably negatively biased. Many other species of migratory birds were 

also seen in that habitat type, but assessing its conservation value for these species will 

require specialized survey methods because the vegetation is extremely dense, the 

topography is steep, and the noise of the river is very loud. 
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I found a high degree of congruence between second and third order habitat 

selection patterns. At the home range level, I found a similar quadratic relationship with 

canopy height as was evident in the second-order analyses, although the maximum 

probability of use peaked at a lower value for canopy height (12 m). My analyses of 

second-order habitat selection indicated that golden-winged warblers selected home 

ranges with high numbers of hanging dead leaves, and within home ranges, golden-

winged warblers preferentially used areas where vine tangles were present. Golden-

winged warblers were often observed foraging in dead leaves hanging in vine tangles 

(Chapter 4), thus it appears as though they were selecting areas within their home ranges 

where foraging opportunities are greatest. This observation is consistent with previous 

research indicating that Neotropical-Nearctic species select habitat during the non-

breeding season to optimize foraging opportunities (Rappole et al. 1999, Johnson and 

Sherry 2001). These microhabitat conditions were often found in large canopy gaps, 

along rivers, on steep slopes, and in advanced secondary forests; thus it appears that 

golden-winged warblers prefer disturbance features within disturbed forests. Golden-

winged warblers also occurred in agroforestry systems such as shade-grown coffee, but 

telemetry results indicate that individuals detected on point count surveys in shade coffee 

were in transit between adjacent patches of forest. It seems unlikely that shade coffee 

certification programs could effectively mandate the retention of habitat features such as 

vine tangles and hanging dead leaves that would potentially make shade coffee suitable 

for golden-winged warblers, and thus forest protection and regeneration should therefore 

be given higher priority than efforts to improve on-farm habitat conditions. 
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 Although too few females were encountered on point counts or radio-marked to 

analyze their habitat selection, we did resight 22 females incidentally while traversing the 

study area engaged in other activities. Females were observed in similar locations 

throughout the study area corresponding to the point count survey results (Figure 3.1d), 

and were observed in the same habitat types as males and did not appear to occur at 

different elevations or in different life zones. Although these incidental observations were 

not standardized, they did not indicate any geographical-segregation of the sexes. The 

reasons why golden-winged warblers were seldom encountered in my study area are not 

clear. It is possible that females have different detection probabilities than males, 

however I observed females responding aggressively to playback on multiple occasions 

suggesting that the observed sex ratio bias was real. Male dominance behaviors, which 

are reported as a possible mechanism for sexual habitat segregation in other species 

(Rappole 1988, Marra 2000), were not observed in my study (Chapter 4). In fact, on 

several occasions males and females were seen foraging within 5 m of each other without 

any signs of aggression, but two males were rarely seen together and male-male 

aggression was evident from the strong response to broadcast vocalizations and decoys.

 Although golden-winged warblers appear to have specialized microhabitat 

requirements, their utilization of advanced secondary forests suggests that habitat 

restoration is possible in deforested areas. It does not, however, indicate that this species 

will persist without active conservation efforts. Some researchers have suggested that 

species utilizing secondary forest are immune to the effects of deforestation (Hutto 1988). 

However, it is important to note that deforestation often results in cattle pastures or 

monocultures that do not provide habitat for these species. Furthermore, disturbance-
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dependent species recently became the focus of major conservation efforts on the 

breeding grounds (Hunter et al. 2001). Although secondary forests are becoming more 

common in some tropical agricultural landscapes as people migrate from rural to urban 

locations (Grau and Aide 2008, Chazdon et al. 2009), net primary and secondary forest 

cover continues to decline, and golden-winged warblers only used advanced stages of 

regeneration. This net loss results from forest being cleared for permanent agriculture and 

human settlements (García-Barrios et al. 2009). Secondary forest is still rare in the 

Neotropics relative to more degraded land cover types (Asner et al. 2009). In Costa Rica, 

financial incentives and conservation regulations are the only reasons why most 

secondary forests exist (Pagiola 2008).  

 The conservation value of secondary forests and agroecosystems depends upon 

the survival rates and body conditions of the individuals in these habitat types. Evidence 

exists that human-modified habitats can serve as ecological traps, resulting in high 

densities of birds in habitats where survival rates are low (Rappole et al. 1989). I found 

no evidence of differences in apparent survival among habitats, though low local 

abundance and few repeated visits per season limited my ability to separate detection 

probability from mortality or permanent emigration. Future surveys conducted over the 

entire course of the non-breeding season, perhaps combined with mark-resight studies, 

could provide better estimates of habitat-specific apparent survival and thus habitat 

quality.  

 One limitation of my study was that I was unable to directly estimate density, 

although I was able to model abundance. The use of playback was necessary to obtain 

sufficient detections for my analysis, but it excluded the possibility of directly computing 
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density because it violated the assumptions of density models such as distance sampling 

(e.g., birds were attracted to playback). However, because I estimated abundance, density 

can be calculated for various assumed plot sizes. For example, assuming that golden-

winged warblers within a 100 m radius were available for detection, which is a 

conservative assumption given than home range size averaged 8.7 ha (Chapter 4), density 

would be 0.159 individuals per hectare. This is a low non-breeding season density 

estimate relative to other Neotropical-Nearctic migrants (Bakermans et al. 2009). In 

addition, I believe this density estimate represents an upper threshold because I did not 

survey cattle pastures, which now cover much of the non-breeding ground range and are 

not used by golden-winged warblers unless they have numerous trees and are adjacent to 

forest (personal obs.). Furthermore, non-breeding season records of golden-winged 

warbler locations, though not standardized, indicate that my study area was located in a 

region where non-breeding density may be highest (eBird 2010). This evidence supports 

the view that golden-winged warbler carrying capacity may be extremely low during the 

non-breeding season. 

 Thirty years ago, tropical deforestation led researchers to predict that the rate of 

Neotropical-Nearctic migrant bird population declines would correlate with the degree of 

forest dependence (Terborgh 1980). This hypothesis has been supported (Robbins et al. 

1989, Rappole et al. 2003a, King et al. 2006b), and many of these species continue to 

decline in spite of concomitant increases in habitat extent in North America (Stutchbury 

2007, Sauer et al. 2008). Furthermore, habitat specialization has also been demonstrated 

to increase extinction risk (Clavel et al. 2010). My results indicate that golden-winged 

warblers are both forest-dependent species and disturbance-dependent microhabitat 
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specialists during the non-breeding season. Furthermore, they are highly territorial and 

occupy large non-overlapping home ranges resulting in low densities. Large areas of 

forest are therefore necessary to maintain this population. Unfortunately less than half of 

the forests in their non-breeding ground range still remain, and these forests continue to 

be cleared at an alarming rate (Sader and Joyce 1988, Myers et al. 2000). Conservation 

actions should be directed towards protecting what remains of lower and middle elevation 

tropical wet forests while encouraging efforts to regenerate forests on degraded lands. 

Future research should strive to determine carrying capacity on the breeding and non-

breeding grounds and estimate habitat-specific survival rates. 
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Table 3.1. Summary statistics of variables considered in abundance models for golden-

winged warblers surveyed with point counts in the Cordillera de Tilarán, Costa Rica, 

2007-2009. See text for description of indices. 

 

Variable Mean SD Min Median Max 

Elevation (m) 1119 181 716 1123 1591 

Distance from Divide (m) 2135 1297 23 2032 5482 

Slope 17 11 1 14 55 

Aspect 148 103 5 113 355 

Dead leaves index 11 2 5 12 16 

Vine tangle index 11 3 4 12 16 

Epiphyte index 11 3 4 12 16 

Canopy height (m) 17 7 4 16 34 

Canopy cover (%) 59 17 24 61 90 

Prism tree dbh sum 432 343 16 362 1587 

Prism trees 13 7 2 13 30 

Prism trees (<20cm) 5 3 0 4 14 

Prism trees (20-50cm) 6 4 0 5 17 

Prism trees (>50cm) 2 3 0 1 13 

Time of day 10 2 6 10 16 

Julian date 46 20 7 48 79 

Wind index 2 1 0 2 4 

Observer skill index 3 1 1 4 4 
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Table 3.2. Summary statistics of home range habitat availability variables for 17 radio-

tracked Golden-winged Warblers surveyed at 97 point count station counts in the 

Cordillera de Tilarán, Costa Rica, 2007-2009. 

Variable Mean SD Min Median Max 

Canopy height (m) 13.1 5.7 6.7 12.2 27.4 

Prism trees 10.0 3.2 3.7 10.5 14.3 

2m plot trees 8.4 6.7 0.0 8.5 20.2 

DBH sum prism trees 301.8 183.2 88.8 255.4 683.1 

DBH sum 2m trees 31.0 22.9 0.0 42.6 68.3 

Bromeliads 2.1 1.3 0.0 2.2 4.2 

Moss 1.1 0.6 0.1 1.2 2.0 

Dead leaves 2.1 0.1 1.9 2.1 2.4 

Vine tangles 0.3 0.3 0.0 0.2 0.8 

Aspect 163.8 58.3 55.1 154.3 258.4 

Slope 16.8 7.6 6.4 16.5 37.0 
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Table 3.3. Parameter estimates and 95% confidence intervals from the most general 

dynamic abundance model considered for golden-winged warblers surveyed at 97 point 

count stations counts in the Cordillera de Tilarán, Costa Rica, 2007-2009.  

Parameter Estimate SE lower upper 

Initial abundance
a
  

(λ – individuals/plot) 

0.498 0.153 0.272 0.911 

Recruitment  

(γ – gains/month) 

0.006 0.008 0.001 0.076 

Within-season apparent survival  

(ωw – monthly rate) 

0.870 0.153 0.322 0.990 

Among-season apparent survival  

(ωa – monthly rate) 

0.958 0.035 0.805 0.992 

Detection probability  

(p – per survey) 

0.274 0.075 0.152 0.442 

a
 Corresponds to January 1. 
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Table 3.4. Model selection results for golden-winged warbler abundance. λ is initial 

abundance, γ is recruitment, ω is apparent survival, and p is detection probability. 

Squared terms indicate quadratic effects. A dot signifies no covariate effect. Data are 

from 97 point count surveys counts in the Cordillera de Tilarán, Costa Rica, 2007-2009. 

λ γ ω p ∆AIC R
2
 

Precip
2
 + CanHt

2
 . Season Wind + Obs 0.00 0.30 

Precip
2
 + CanHt

2
 + Habitat . Season Wind + Obs 0.13 0.34 

Precip
2
 + Habitat . Season Wind + Obs 0.13 0.32 

Precip
2
 + CanHt

2
 . Season Obs 0.30 0.28 

Precip
2
 + Leaves . Season Obs 0.30 0.27 

Precip
2
 + CanHt

2
 . Season Obs 0.30 0.33 

Precip
2
 + Habitat . Season Obs 0.34 0.30 

Precip
2
 + CanHt2 + Habitat . Season . 0.41 0.31 

Precip
2
 + CanHt

2
 . Season Wind 0.53 0.33 

Precip
2
 + CanHt

2
 . Season Wind 0.53 0.28 

Precip
2
 + CanHt

2
 . Season . 0.59 0.27 

Precip
2
 + Leaves . Season . 0.65 0.25 

Precip
2
 + Leaves . Season Wind + Obs 0.66 0.28 

Precip
2
 + Habitat . Season . 0.69 0.28 

Precip
2
 . Season Obs 0.90 0.25 

Precip
2
 . Season Wind 1.29 0.24 

Precip
2
 . Season . 1.43 0.23 

Precip
2
 + CanHt

2
 + Habitat + Leaves . Season Wind 1.65 0.33 

Precip
2
 + CanHt

2
 + Leaves . Season . 1.65 0.27 

Precip
2
 + CanHt

2
 Leaves . Season Wind + Obs 1.65 0.30 

Precip
2
 . Season Time 1.79 0.24 
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Table 3.5. Model selection results for use versus availability logistic regression models 

for data from 11 radio-marked golden-winged warblers counts tracked in the Cordillera 

de Tilarán, Costa Rica, 2007-2009. An intercept was included in all models as was a 

random effect term for variation among individuals. 

 

Fixed Random AIC 

CanopyHt
2 

+ BasalArea + Vines CanopyHt 939.70 

CanopyHt
2
 + BasalArea + Vines Intercept only 940.13 

CanopyHt
2
 + BA CanopyHt 940.19 

CanopyHt
2
 + Vines CanopyHt 940.90 

CanopyHt
2 

+ BA Intercept only 941.42 

CanopyHt
2
 CanopyHt 941.61 
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Table 3.6. Parameter estimates from the most supported logistic regression model of 

golden-winged warbler use versus availability. Random effects are reported as standard 

deviations and can be interpreted as the among individual variation in corresponding 

fixed effects. Data are from 11 radio-marked Golden-winged Warblers counts tracked in 

the Cordillera de Tilarán, Costa Rica, 2007-2009. 

 

Parameter Type Estimate SE z P 

ß0 Fixed -2.741 0.307 -8.914 <0.001 

Canopy height Fixed 0.178 0.043 4.155 <0.001 

Canopy height
2
 Fixed -0.007 0.001 -5.096 <0.001 

Basal area (2-m plot) Fixed 0.055 0.030 1.837 0.066 

Vines Fixed 0.341 0.211 1.615 0.106 

ß0 Random 0.581 

   Canopy height Random 0.039 
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Figure 3.1. Maps of habitat type distribution and golden-winged warbler locations in the 

Cordillera de Tilarán, Costa Rica, 2007-2009. The points in plots a-c are point count 

locations. Solid line is the continental divide.  

  

a b 

c d 
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Figure 3.2. Golden-winged warbler abundance in relation to distance from continental 

divide (top) and canopy height (bottom) in the Cordillera de Tilarán, Costa Rica, 2007-

2009. Error band is 95% confidence interval.   
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Figure 3.3. Probability of observed use versus random use for 11 radio-tracked golden-

winged warbler. Thick black line is mean response among individuals. Data are from 11 

radio-marked golden-winged warblers counts tracked in the Cordillera de Tilarán, Costa 

Rica, 2007-2009. 



 

84 

 

CHAPTER 4 

CONSERVATION IMPLICATIONS OF GOLDEN-WINGED WARBLER SOCIAL 

AND FORAGING BEHAVIOR 

 

4.1 Introduction 

Birds exhibit a wide array of social systems during the non-breeding season when their 

behaviors are not constrained by breeding requirements such as mate guarding, nest 

maintenance, and provisioning young (Powell 1979, Pulliam and Millikan 1982). 

Although non-breeding season sociality has been extensively studied in birds (Zahavi 

1971, Rappole and Warner 1980, Davies and Houston 1983, Heinrich 1988, Brown and 

Long 2007), the conservation implications of sociality have largely been ignored 

(Sutherland 1998, Greenberg and Salewski 2005). This is an important oversight because 

social systems influence space use, energy expenditure, and susceptibility to predation 

(Rappole and Morton 1985, Rappole et al. 2003a, Morton and Stutchbury 2005). Many 

species of Neotropical-Nearctic migrants are experiencing population declines, and some 

species may be limited by these factors during the non-breeding season (Terborgh 1974, 

Haney et al. 1998, Rappole et al. 2003a, 2005, 2007, Sherry et al. 2005, King et al. 

2006b, Sauer et al. 2008, Calvert et al. 2009).  

 Greenberg and Salewski (2005) summarized the literature on Neotropical-

Nearctic migrant social systems and identified five major components. The first two of 

these are regional movements and local tenacity. Some frugivorous migrants like 

Swainson’s thrushes (scientific names in Appendix A) and eastern kingbirds (Tyrannus 

tyrannus) form conspecific flocks and search for their preferred fruits over large areas. 
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Other species, such as the black-throated blue warbler (Dendroica caerulescens), exhibit 

extreme site fidelity during the non-breeding season (Sherry and Holmes 1996). Another 

component of migrant non-breeding social systems concerns territoriality, which is 

pronounced in some species (e.g. ovenbirds and wood thrushes; (Rappole and Warner 

1980)), but not in others, such as prairie warblers (Nolan 1978). A related component is 

group size. Species such as the Tennessee warbler occur in large, monospecific flocks, 

while other species, including the black-and-white warbler, typically do not occur with 

conspecifics (Greenberg and Salewski 2005). Finally, some species, the like golden-

cheeked warblers (Dendroica chrysoparia) occur almost exclusively as attendants of 

mixed species flocks (Rappole et al. 1999).  

 Each of these components of sociality can potentially have important conservation 

implications. For example, territoriality and group size can clearly affect population 

density, which is a primary determinant of carrying capacity (Brown 1969, Rappole and 

Morton 1985, Rappole et al. 2003a, Morton and Stutchbury 2005). Furthermore, 

dependence upon mixed-species foraging flocks may be a liability because forest 

fragmentation can disrupt flocks (Rappole and Morton 1985, Stouffer and Bierregaard 

1995, Stratford and Stouffer 1999). Assessing the conservation implications of sociality 

also requires an understanding of foraging behavior, because resource availability and 

exploitation systems can be primary determinants of social behavior (Greenberg and 

Salewski 2005). Limited data on the social systems of Neotropical-Nearctic migrants has 

made it difficult to predict how these species are expected to respond to habitat loss and 

fragmentation.  
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The golden-winged warbler is one of the most rapidly declining Neotropical-

Nearctic migrants, and although I have done extensive investigations of its winter habitat 

use (Chapter 3), no published quantitative studies of its social behavior exist. Anecdotal 

observations suggest that this species occurs as sedentary, solitary individuals in mixed-

species flocks and forages in hanging dead leaves (Buskirk et al. 1972, Morton 1980, 

Tramer and Kemp 1980). These behaviors could make this species vulnerable to habitat 

loss and fragmentation, as described above, yet few quantitative data exist to assess this 

possibility.  

The objectives of this study were to 1) describe the social and foraging behaviors 

of golden-winged warblers during the stationary non-breeding season, 2) assess the 

conservation implications of these behaviors by quantifying the impacts of these 

behaviors on energy expenditure (measured as home range size and movement rate), and 

3) assess the degree to which social and foraging behaviors were related to habitat 

characteristics. These data should help conservationists predict how this species is likely 

to respond to future habitat change. 

 

4.2 Methods 

4.2.1 Field methods 

I studied golden-winged warbler sociality during three nonbreeding seasons: December 

2006 - March 2007, October 2007 - March 2008, and January-March 2009. I used radio-

telemetry to collect data on site fidelity, home range size, and movement rates. Radio-

telemetry was necessary because during the non-breeding season golden-winged warblers 
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move rapidly, inhabit structurally complex habitats on steep terrain, forage high in the 

canopy, and are generally silent. I began tracking one day after attaching 0.43 g Holohil 

BD-2N transmitters to birds caught using mist-nets, broadcast vocalizations and decoys. 

The responses of birds to playback were noted as evidence of territoriality. Birds were 

relocated every 1-2 days, and tracking lasted approximately two hours per day. Handheld 

GPS units were used to record locations. Tracking continued until battery failure or 

mortality. During the first season, I only recorded GPS locations at points where I saw 

the bird because my primary interest was to record behavioral observations. This, 

however, did not adequately reflect space use because some birds were very difficult to 

see. Therefore, in the latter two seasons, I recorded locations every 30 min whether the 

bird was seen or not. Using regular time increments between location points allowed me 

to collect movement rate data in standardized fashion, and it provided a representative 

sample of space use. When birds were not seen, I was able to determine their 

approximate location based upon the strength of the signal, which I could calibrate from 

visual observations. 

 At the end of each season, I quantified home range habitat by evenly sampling 

points along 20-m grids within the 95% kernel home range boundaries. At each point, I 

measured habitat type (primary forest, secondary forest, riverside forest, or agroforest), 

canopy height, and basal area (using 10-factor cruising prism).  

 Data on group size and mixed-species flock participation were also recorded 

while radio-tracking. At each 30-min time period, I recorded the flocking status of 

golden-winged warblers as one of three categories. Following (Hutto 1987), I defined a 

flock as individuals of two or more species within 25 m of each other moving in the same 
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direction. This definition suffices for the majority of flocks joined by golden-winged 

warblers; however, there are numerous types of mixed-species flocks with diverse social 

organizations and foraging guild representations (Munn 1985), and golden-winged 

warblers occasionally joined other types. For example, Tramer and Kemp (1980) describe 

loose flocks without coordinated movement patterns. In addition, flocks of frugivorous 

birds congregate when abundant resources are present, such as at fruiting Ficus sp., and 

golden-winged warblers occasionally associated with such groups (although they were 

never observed eating fruit). I therefore categorized flocking status as either flocking, not 

flocking, or associating with other species that were not traveling in concert. This third 

category is often ignored, but is important because the predation risk hypothesis predicts 

that birds should associate with numerous individuals regardless of movement patterns 

and foraging guild status. Mixed species flock composition data were collected 

continuously during each tracking period. I compiled a list of all species encountered 

each day and classified each species as flocking, associating, or not flocking with the 

tracked golden-winged warbler. I did not color band other species so it was not possible 

to determine with accuracy the abundance of other species in the flocks. 

 I collected additional data on site fidelity by monitored color-banded individuals 

over multiple non-breeding seasons. For each color-banded individual, I made monthly 

visits to its territory and broadcast recorded golden-winged warbler songs and chip notes 

for 30 min or until the bird was encountered at three locations within the home range. 

Additional details on this protocol are described in Chapter 5.  

 Foraging observations were collected opportunistically while radio-tracking. An 

effort was made to standardize the collection process with respect to time by recording 
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foraging behaviors at each 30-min location point, but this was often not possible due to 

limited visibility. Instead, I recorded data on the first foraging maneuver observed during 

each 30 minute interval. Foraging data included the height of the bird, the height of the 

tree, the distance from the central stem, the foraging maneuver (glean, probe, sally, hawk, 

flush), and the substrate (open live leaf, rolled live leaf, dead leaf, flower, bark, 

moss/lichen, bromeliad, or miscellaneous epiphyte). I was unable to adequately measure 

foraging rate because it was not often possible to watch the birds for prolonged periods 

due to their rapid movements within dense vegetation. 

4.2.2 Statistical methods 

 Home range size was estimated using kernel density and minimum convex 

polygon (MCP) estimators (Worton 1989). Kernel density estimators yield utilization 

distributions (UD), which are the relative probability of an individual occurring at each 

location in its home range. Kernel density estimation requires specifying a distribution to 

fit over each location point. I used a bivariate normal kernel and considered two methods 

to select the smoothing parameters governing the kernel shape: the so-called ad hoc 

method and least-squares cross-validation (Worton 1989). Minimum convex polygons do 

not provide a probabilistic measure of space use, but do serve as a good reference for 

comparison with the kernel methods because they yield a minimum home range size. For 

each method, I characterized differences in space use by estimating 50, 75, and 95% 

intensity levels. As a measure of territoriality and social tolerance, I computed the 

overlap of 50% kernel home ranges using the volume intersection index described in 

Fieberg and Kochanny (2005). For 50% kernels, this index ranges from 0 (no overlap) to 
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0.5 (complete overlap). I used a one-tailed t-test to test the hypothesis female-male 

neighbors had higher degrees of overlap than male-male neighbors. 

 To measure movement rate, I restricted my analysis to days with at least four 

consecutive 30-min locations, and individuals with at least three such observation days. 

Standardized time intervals are necessary because net differences in movement over 

unequal time frames could result from multiple processes and thus have no biological 

significance. Home range size and movement analyses were conducted in R-2.11.1 (R 

Development Core Team 2010)  using the adehabitat package (Calenge 2006). 

 I used multiple linear regression to model the effects of habitat and sex on space 

use and flocking parameters. Specifically, I regressed home range size, movement rate, 

and species richness of mixed-species flocks on sex, percent cover variables for each 

habitat type, the total number of habitat types per home range, basal area, and canopy 

height. For the movement rate data, I treated the individual as the sample unit and 

averaged movement rates over observation days. I used a step-wise model selection 

process based upon AIC to choose the best model (Hastie and Pregibon 1992). I assessed 

model fit and adherence to model assumptions by comparing residuals to fitted values 

and computing measures of leverage and influence. Model fitting, selection, and 

diagnosis were conducted in R-2.11.1 using the lm and step functions (R Development 

Core Team 2010). 

 To determine if foraging behavior differed between the sexes or between the 

flocking states, I used mixed-effects models. Specifically, I modeled foraging height, 

canopy position, and distance from stem as normally distributed response variables and 

treated variation among individuals as a random effect. These models are equivalent to 
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two-way ANOVA models with an additional error term for random variation among 

individuals. Foraging maneuver is a categorical variable and since 99% of observations 

were probes or gleans, I used a binary response distribution. Because I only modeled two 

predictor variables, I did not use a variable selection process but instead evaluated the 

global model. These models were fit in R-2.11.1 using the lme4 package (Bates and 

Maechler 2010). 

 

4.3 Results 

4.3.1 Site fidelity, home range size, and movement patterns 

I captured and radio-tracked 26 golden-winged warblers over three non-breeding seasons. 

Battery life varied greatly among individuals (median=12 days, range=2-26 days). 

Premature battery failure prevented me from acquiring enough data to calculate kernel-

based utilization distributions for six individuals. Of the twenty individuals with 

sufficient location points, seventeen were males and three were females. All individuals 

were located on the Pacific slope side of the study area (Fig. 4.1). Both male and female 

golden-winged warblers maintained stable home ranges over the course of the non-

breeding season (Fig. 4.2). Home ranges were characterized by one or two core areas 

where most activity was concentrated. In some instances, activity centers shifted slightly 

among days, but there was no temporal trend as demonstrated by extensive inter-day 

overlap (Fig 4.3).   

 Three golden-winged warblers exhibited movement patterns inconsistent with the 

general patterns described above. One individual, a male, was relocated the day following 
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capture and then never seen again despite three days of searching the surrounding area 

using broadcast vocalizations. Since the probability of detection with playback is 

extremely high, it is unlikely that this individual remained within the study area but had a 

defective radio transmitter. If it moved to another location within the study area, the radio 

must have been defective, because I was able to detect transmitter signals at distances 

greater than 1 km and the entire study area is accessible at that range. Two individuals 

made off-territory forays. In each case, the birds moved from patches of secondary forest 

to points within contiguous forest < 2 km from their previous locations, and then returned 

to their home range within 24 hours. These locations were not included in home range 

size calculations. 

 Resighting data demonstrated that golden-winged warblers remained on their 

home ranges for longer durations than could be determined using radio-telemetry. 

Systematic visits to home ranges of color-marked birds throughout all three field seasons 

indicated that all relocated individuals remained on their home-ranges until the onset of 

migration. Furthermore, all five individuals that I was able to relocate in subsequent years 

were found within 200 m of their capture location, including three individuals that were 

observed during three consecutive seasons. This is clear evidence that at least some 

golden-winged warblers exhibit high within and among season site fidelity. 

 The method used to estimate home range size clearly affected the estimate. The 

median kernel density estimates were more than twice as high as MCP estimates for each 

of the three home range levels (Table 4.1). The smoothing parameter estimates for the 

bivariate normal distribution ranged from 17.0 – 52.8 m (mean = 36.5, SD = 9.3). This 

indicates that golden-winged warbler used areas within 75 m of each relocation point. 
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These smoothing parameter estimates were based upon the ad hoc method because the 

least-squares cross validation method returned values that did not seem biologically 

plausible (<10m) and yielded home ranges with numerous modes. Home range size was 

not related to either habitat variables or sex (Table 4.3).  

 Golden-winged warblers were highly active throughout the day. The mean 

movement speed was 142 m/hr (SD = 43) although there was substantial variation among 

individuals (Fig 4.4). Movement speed was positively related to basal area within the 

home range, and negatively related to canopy height (F4,5 = 11.67, P = 0.009; Table 4.2).  

4.3.2 Territoriality, group size, and competition 

Both female and male golden-winged warblers showed aggressive responses to broadcast 

vocalizations and clay decoys. Twenty-three of 26 birds captured for the radio-telemetry 

study were captured using these stimuli. In several instances, the decoy was attacked. 

One individual left a 4 mm deep puncture in the ―neck‖ of the decoy. The other three 

individuals (2 males and 1 female) were caught while using constant effort mist-netting. 

These birds also maintained stable home ranges suggesting that my sample was not 

biased towards territorial individuals. 

 Home ranges of neighboring birds did not overlap extensively (Fig 4.5). The 

overlap of 50% core areas was higher for male-female pairs than for male-male pairs. 

Even with a sample of only three male-female pairs and two male-male pairs, this finding 

was significant (t = -3.78, df = 2, P = 0.031). For the male-male pair, the overlap 

occurred only in the outer extremes of the home range; there was no overlap of the core 

areas.  
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4.3.3 Mixed-species flock characteristics 

I collected mixed-species flock data for 26 golden-winged warblers observed on 214 

occasions totaling 562 hours. Golden-winged warblers spent an average of 59% of their 

time with cohesive mixed-species flocks, which were often centered around the nuclear 

species Chlorospingus ophthalmicus (Table 4.3). An additional 26% of their time was 

spent associating with other species in loose flocks without obvious movement cohesion 

or nuclear species. Thus, golden-winged warblers were only observed away from flocks 

15% of the time, although individual variation was pronounced (Fig 4.6). Eighty-eight 

species were observed flocking with golden-winged warblers in cohesive flocks. No 

species was ubiquitously present with golden-winged warblers, and both resident and 

migratory species were common participants (Table 4.3).  

 Flock participation was not related to sex or habitat variables (F6,2 = 8.29, P = 

0.112). Species richness of flocks was positively related to canopy height, the number of 

tracking days, and the percent cover of primary forest (F3,11 = 7.24, P = 0.006; Table 4.3). 

Neither flock participation nor flock size differed between the sexes, though only three 

females were included in the sample. 

4.3.4 Foraging behavior 

Of 293 foraging observations made on 24 color-banded golden-winged warblers, 72% 

were probes and 27% were gleans (Fig 4.7). Sallies, hawks, hover-gleans, and flush-dives 

constituted < 2% of observations. The most commonly probed substrate was hanging 

dead leaves (40%), though moss, bark, rolled leaves, bromeliads, and flowers were used 
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to a lesser extent (Fig 4.7). Golden-winged warblers probe in a unique fashion that 

involves inserting the beak and opening it in order to pry open the leaf or flake off bark.  

 Most of the bark foraging observed occurred in P. guajava, which like many other 

members of the Myrtaceae has thin flaking bark. Golden-winged warblers were the only 

species observed utilizing this resource. The longest foraging maneuvers (>1 min) 

occurred on individual Cercropia sp. leaves. Although Cercropia sp. was never a 

dominant plant species in home ranges, the large leaves with hooked petioles are easily 

caught in the canopy. These leaves form tight curls upon desiccation and often host 

diverse arthropod assemblages (Rosenberg 1997). Finally, the one individual that 

regularly foraged above 20 m was observed almost exclusively in Ocotea sp. It was not 

possible to closely observe the foraging behavior of this individual due to its height.  

 Foraging behavior variables (bird height, tree height, distance from stem, and 

maneuver) varied greatly among individuals (Figs. 4.8, 4.9), but did not differ between 

the sexes nor between flocking states (Figs 4.10, 4.11, Table 4.4).  

 

4.4 Discussion 

I documented several aspects of golden-winged warbler behavior ecology that have 

important conservation implications because they are traits that could affect susceptibility 

to habitat destruction or degradation. Golden-winged warblers maintained large stable 

home ranges within seasons. The average 95% kernel home range size was 8.8 ha, much 

larger than values reported for other Neotropical-Nearctic migrant passerines. Brown and 

Sherry (2008) estimated ovenbird home range to be 0.78 ha, 9.6 times smaller than the 

average for golden-winged warblers. Rappole and Warner (1980) reported home range 
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sizes < 1 ha for all 10 species they studied. None of these species, however, are regular 

participants of mixed-species foraging flocks, which may explain why they have 

substantially smaller home ranges. 

 In addition to their large area requirements, golden-winged warblers were rarely 

seen with conspecifics. Two hypotheses could explain why golden-winged warblers 

occurred as solitary individuals. First, golden-winged warblers may be so rare that chance 

alone would make it unlikely to observe two individuals in the same area. My data do not 

support this hypothesis. This hypothesis predicts that individuals should be randomly 

distribution throughout the study area. Golden-winged warblers, however, were most 

abundant within a narrow elevational band along the Pacific slope (Chapter 3), and 

neighboring home ranges had very little overlap. The alternative hypothesis is that 

golden-winged warblers are territorial, which is supported by my data. The aggressive 

response to playback and decoys is evidence that golden-winged warblers will attack 

intruders (Rappole and Warner 1980). Territoriality is also suggested by the lack of 

overlapping home ranges.  

  Large home range size and territorial behavior may explain why golden-winged 

warblers are not reported to be common anywhere throughout their non-breeding range 

(Johnson 1980, Morton 1980, Orejuela et al. 1980, Powell et al. 1992, Wallace et al. 

1996, Komar 1998, Blake and Loiselle 2000). Territoriality may also affect how golden-

winged warblers respond to habitat loss because limited habitat can lead to competitive 

interactions resulting in losers that do not gain territories. For ovenbirds in Jamaica, 

where predation pressure is low, there appears to be costs and benefits associated with the 

territorial and non-territorial social systems (Brown and Sherry 2008). These authors 
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suggested that territorial individuals were able to access stable resources and minimize 

space use and energy expenditure whereas non-territorial birds exploited temporary 

resources more effectively. Wood thrush in contrast conform to an ideal despotic 

population model in which territory owners in primary forest relegate subordinate 

individuals to low quality habitat (Fretwell and Lucas 1969, Winker et al. 1990). These 

―floaters‖ wander over large areas and incur higher mortality (Rappole et al. 1989). I did 

not encounter any non-territorial golden-winged warblers (Chapter 5), so this possibility 

will require future study. 

 Golden-winged warblers exhibited strong site fidelity both within and among non-

breeding seasons. High site fidelity indicates that it is adaptive for an individual to learn 

information regarding food availability and predator risk associated with a particular 

location. Deforestation may negatively affect species exhibiting high site fidelity because 

they are forced to find new habitats in which they have no prior experience (Rappole and 

Morton 1985), or adopt nomadic movement patterns that can lead to lower survival 

(Rappole et al. 1989).  

 I found some evidence that tolerance was higher between the sexes than within 

the sexes. Home range overlap was higher for male-female neighbors than for male-male 

neighbors. Generally male-female neighbors did not occur within close proximity of each 

other, although one male consistently foraged within 5 m of an unbanded female without 

displaying any aggression. I also found no evidence of differences in foraging behavior 

among the sexes; however, with data on only three females, a larger sample is necessary 

before conclusive statements can be made regarding sex-specific foraging behavior. 

Furthermore, as with most foraging behavior studies in tropical forests, there is bias in 
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my sample due to the fact that it was difficult to effectively observe golden-winged 

warblers when they were either very high in the canopy or in low thickets. This may be 

an important source of bias because two of the three females studied used very dense 

understory vegetation and I was only able to record foraging behavior when they came up 

from the thickets. The possibility therefore exists that female forage at lower heights than 

males as has been observed for other Nearctic migrants.  

My findings that male-female tolerance was higher than male-male tolerance, and  

that foraging behavior did not differ between the sexes contrast with many studies 

demonstrating sexual habitat segregation and dominance (Morton et al. 1987, Marra 

2000); however, male-female tolerance during the non-breeding season has been 

observed for other Neotropical-Nearctic migrants including prothonotary warblers 

(Protonotaria citrea), Canada warblers, and golden-cheeked warblers (Morton 1980, 

Rappole et al. 1999). Pairs (presumably male-female) of Philadelphia vireos, blue-headed 

vireos, and gray vireos (Vireo vicinior) have been reported suggesting that some species 

may exhibit pair-territoriality as do stonechats (Saxicola torquata) and white wagtails 

(Motacilla alba) (Zahavi 1971, Tramer and Kemp 1982, Gwinner et al. 1994, E. Morton 

pers. comm.). In other species, the sexes may occur randomly distributed within a habitat 

type (Brown and Sherry 2008), or may have horizontally overlapping territories, but 

stratify vertically (Rappole 1988, Wunderle 1992). The reason for higher intersexual 

tolerance in golden-winged warblers is unclear, and deserves further study. The primary 

conservation implication of the absence of sexual habitat segregation is that differential 

rates of habitat loss would not lead to biased sex ratios. However, in spite of high 

tolerance and overlapping home ranges, there was an apparent sex ratio bias within the 
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study area (Chapter 3) indicating that the sexes may segregate geographically, which 

would be an alternate route to a skewed sex ratio. 

 Golden-winged warblers occurred with mixed species flocks 85% the time. Some 

researchers have contrasted territoriality with flock participation; however, many species 

that regularly join mixed-species flocks are highly territorial. These species may either 

defend the flock itself against conspecifics (Munn and Terborgh 1979) or have distinct 

territory boundaries and drop out of the flock when these boundaries are crossed (Powell 

1979, Munn 1985). Territorial flock participants often occur as lone individuals or pairs 

and will attack conspecifics that attempt to enter the flock (Buskirk 1976, Hutto 1987). 

Other species such as cerulean warblers (Dendroica cerulea) will occur in large groups 

within mixed species flocks and show little conspecific aggression (Bakermans 2008). 

This variation in flock participation has obvious impacts on area requirements and space 

use. In addition, reliance on mixed-species flocks increases a species’ vulnerability 

deforestation and fragmentation because these processes can prevent flock cohesion 

(Rappole and Morton 1985, Stouffer et al. 2006). Furthermore this dependence upon 

mixed-species flocks indicates that conserving nuclear species, around which flocks are 

formed, will be necessary to ensure population viability.   

 Mixed-species flock participation has other important conservation implications 

because it can reduce predation risk, increase foraging efficiency, or both (Pulliam 1973, 

Buskirk 1976, Munn and Terborgh 1979, Powell 1985). In addition to the potential 

benefits, flocking may impose important costs. If flocks are joined primarily to reduce 

predation risk, then flocking may not be an optimal foraging strategy (Hutto 1988, Hake 

and Ekman 1988). This suggests energetic costs. Golden-winged warblers moved 
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continually and rapidly throughout the day at speeds ranging between 75-200 m/hr. Day 

length was approximately 12 hours and thus some birds probably traveled at least 2 km 

within their home ranges each day and approximately 400 km over the course of the non-

breeding season. Passerines can travel similar distances in the course of a few days 

during migration (Stutchbury et al. 2009b), suggesting that these movements may not 

impose high energetic costs. However, birds require extensive fat reserves to complete 

long-distance migrations, and during non-breeding season when food may be limiting, 

movement rate may be an important component of an individual’s energy budget (Moore 

and Kerlinger 1987, Sherry et al. 2005, Bowlin et al. 2005). If so, the fact that movement 

rate was positively related to basal area and negatively related to canopy height suggests 

that tall forests with high tree densities may not be high quality habitat; however, the 

relationship between movement rate and survival would need to be established to 

determine this possibility. Nonetheless, this is consistent with my finding in Chapter 3 

indicating that golden-winged warblers preferred forests characterized by intermediate 

disturbance. My results also indicated that species richness of mixed-species flock was 

larger in primary forest. Predation risk reduction hypotheses predict that flock size should 

be negatively related to predation risk (Moynihan 1961, Pulliam 1973, Powell 1985); 

therefore, primary forest with natural disturbance features may offer high quality habitat 

for golden-winged warblers. 

 My results support the hypothesis that social systems develop as an outcome of 

resource availability and foraging behavior. Golden-winged warblers exhibit a 

specialized foraging strategy in which they primarily probe hanging dead leaves and 

epiphytes. This foraging strategy is shared by many species of several Neotropical 
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families (Capitonidae, Formicaridae, Furnariidae, Troglodytidae), as well some 

Neotropical-Nearctic migrants (Morton 1980, Remsen and Parker 1984, Greenberg 1987, 

Rosenberg 1993). Dead leaves provide habitat for numerous large-bodied arthropods, 

especially roaches (Blattaria), spiders (Araneae), and Orthopterans (Gradwohl and 

Greenberg 1982, Rosenberg 1993, pers. obs.). Arthropod density and biomass can be 

much higher in dead leaves than in live leaves, due to the larger body sizes and different 

taxonomic composition (fewer Hymenopterans and Dipterans, Rosenberg 1997). 

Accessing these resources, however, requires skills that non-specialized species do not 

possess (Rosenberg 1993). Golden-winged warblers clearly exhibit these specializations 

and their lack of rictal bristles may indicate that this specialization process has a long 

evolutionary history. They were also capable of consuming large-bodied insects as 

demonstrated by my observation (18 February 2008) of a male that spent 75 seconds 

manipulating and consuming a 3-cm long katydid removed from a dead leaf. 

 The benefits of accessing abundant food resources in dead leaves are associated 

with two important costs. First, dead leaves are much less abundant than live leaves and 

are patchily distributed (Remsen and Parker 1984). Dead leaf foragers must therefore 

travel further than live leaf foragers, which may partially explain the large home range 

size of golden-winged warblers; flock participation may be another explanation. Second, 

dead leaf foraging may increase predation risk because it is a noisy process and precludes 

vigilance since the entire head is often inside a curled leaf (Morton 1980, pers. obs.). This 

behavior probably explains why virtually all regular dead leaf foragers participate in 

mixed-species flocks (Remsen and Parker 1984, Rosenberg 1997). The flocks joined by 

golden-winged warblers were highly variable in terms of species composition as 
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demonstrated by the low co-occurrence probabilities for all species. This finding supports 

the hypothesis that flocks were joined to reduce predation risk, not to gain foraging 

benefits derived from other species. This hypothesis is also supported by my finding that 

foraging behavior did not differ between flocking states.  

 The reliance upon a high-quality, patchily-distributed food resource may also 

explain territoriality in golden-winged warblers. Arthropod populations in dead leaves 

can be quickly diminished by avian predators, but colonization rate is also high 

(Gradwohl and Greenberg 1982, Rosenberg 1993). Therefore, successfully defending an 

area with many dead-leaf clusters could ensure adequate food supply throughout the non-

breeding season. In accordance with this hypothesis, most dead-leaf foraging resident 

species occur as single individuals or pairs in mixed-species foraging flocks and actively 

defend territories against conspecifics (Powell 1979, Munn and Terborgh 1979).  

 My results suggest that the energetic costs and high predation risk associated with 

the golden-winged warbler social system will only increase as flock size decreases and 

home range size increases. Because this social system is inextricably linked to its 

foraging behavior, this species may not be able to adapt to the novel conditions imposed 

by habitat loss and degradation. However, forest fragments and advanced secondary 

forests often contain many vine tangles and hanging dead leaves. Therefore this species 

may force into secondary forests within these landscapes even if the large flocks are not 

present. This situation raises the possibility that fragmented landscapes could serve as 

ecological traps if survival is low. Future studies should compare non-breeding ground 

behavior and survivorship between fragmented and contiguous forests. Direct energetic 

measurements and their influences on body condition would also be helpful in identifying 
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high quality habitat. Even without this information, conservation plans for the golden-

winged warbler must recognize the role of behavior in influencing potential carrying 

capacity. Specifically their social system potentially limits carrying capacity, and their 

apparent dependence upon mixed-species flocks suggests that successful conservation 

will depend upon conserving resident nuclear species that are key to flock formation.  
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Table 4.1 Home-range size summary statistics for 20 golden-winged warblers. Data are 

from radio-telemetry collected during three non-breeding seasons 2006-2009 in the 

Cordillera de Tilarán, Costa Rica. 

 

Estimator Level Mean SD Min Max 

Kernel 50% 1.99 0.95 0.44 4.00 

 

75% 4.13 1.98 1.00 8.75 

 

95% 8.77 4.69 2.31 19.50 

Minimum convex polygon 50% 0.83 0.56 0.13 1.96 

 

75% 1.56 0.99 0.32 4.00 

 

95% 3.16 2.13 0.81 9.87 
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Table 4.2. Multiple linear regression models of movement and flocking variables. The 

best models of home range size and percent time flocking did not include any covariate 

effects and are therefore not presented. PC refers to percent cover. Data are from 26 

golden-winged warblers radio-tracked in the Cordillera de Tilarán, 2006-2009. 

Response Parameter Estimate SE t P(>|t|) R
2
 

Movement rate Intercept 143.15 18.12 7.90 0.000 0.90 

 

Home range size 3.48 1.50 2.25 0.075 

 

 

Basal area 11.43 2.54 4.50 0.006 

 

 

Canopy height -4.24 1.43 -2.95 0.032 

 

 

Habitat types -30.28 12.0 -2.52 0.053 

 Flock size Intercept -15.27 7.17 -2.13 0.056 0.66 

 

Canopy height 0.83 0.33 2.51 0.029 

 

 

Tracking days 1.95 0.59 3.29 0.007 

 

 

PC primary forest 0.16 0.07 2.10 0.059 
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Table 4.3 Co-occurrence probabilities for species observed flocking with 26 golden-

winged warblers on > 5% of observation days. Probabilities are averages weighted by 

observation effort. Migratory species are in bold. Data collected while radio-tracking 

birds during three non-breeding seasons 2006-2009 in the Cordillera de Tilarán, Costa 

Rica. 

 

Species Co-occurrence probability 

Myioborus miniatus 0.37 

Chlorospingus ophthalmicus 0.36 

Wilsonia pusilla 0.36 

Dendroica virens 0.36 

Dendroica pensylvanica 0.35 

Mniotilta varia 0.34 

Vermivora peregrina 0.29 

Tangara icterocephala 0.18 

Vireo philadelphicus 0.16 

Myiarchus tuberculifer 0.16 

Mionectes olivacea 0.14 

Vireo flavifrons 0.12 

Basileuterus culcivorous 0.10 

Saltator maximus 0.09 

Hylophilus decurtatus 0.08 

Turdus grayi 0.08 

Basileuterus tristriatus 0.08 

Elaenia frantzii 0.07 

Basileuterus rufifrons 0.07 

Ramphocelus passerinii 0.07 

Thraupis episcopus 0.06 

Xiphorhynchus erythropygius 0.06 

Euphonia hirundinacea 0.06 

Phlogothraupis sanguinolenta 0.05 

Piranga rubra 0.05 

Premnoplex brunnescens 0.05 
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Table 4.4. Mixed-effects models of golden-winged warbler foraging behavior. Data are 

122 observations recorded for 11 color-banded individuals. Fixed effects included 

flocking status (flocking, associating, solo) and sex. The reference level (ß0) refers to 

females that were not flocking. Random effects are reported as standard deviations. For 

the normally distributed response variables, ε represents the standard deviation of 

residuals. Data collected in the Cordillera de Tilarán, 2006-2009. 

 

Response Parameter Type Estimate SE t
a
 P(>|t|) 

Bird height ß0 Fixed 5.71 1.32 4.31 0.000 

 

FlockAssoc Fixed -1.15 2.03 -0.57 0.286 

 

FlockCohesive Fixed 0.50 0.97 0.52 0.302 

 

SexMale Fixed 0.08 1.12 0.07 0.472 

 

Individual Random 0.83 

   

 

ε Random 4.05 

   Tree height ß0 Fixed 8.57 1.84 4.66 0.000 

 

FlockstateAssoc Fixed -2.53 2.75 -0.92 0.180 

 

FlockstateYes Fixed -0.24 1.32 -0.18 0.429 

 

SexMale Fixed 0.42 1.59 0.26 0.397 

 

Individual Random 1.29 

   

 

ε Random 5.50 

   Distance from 

stem ß0 Fixed 1.44 0.64 2.24 0.014 

 

FlockstateAssoc Fixed 0.30 1.15 0.26 0.398 

 

FlockstateYes Fixed -0.06 0.52 -0.11 0.456 

 

SexMale Fixed 0.40 0.47 0.85 0.199 

 

Individual Random 0.00 

   

 

ε Random 2.06 

   Maneuver ß0 Fixed 1.15 0.82 1.41 0.159 

 

FlockstateAssoc Fixed 15.51 1857.16 0.01 0.993 

 

FlockstateYes Fixed -0.07 0.57 -0.12 0.902 

 

SexMale Fixed 0.30 0.73 0.41 0.680 

 

Individual Random 0.62 

   a
 For the maneuver model with a binomial response, a z test was used instead of a t test. 
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Figure 4.1. Distribution of golden-winged warbler home ranges across study area. Solid 

line is the continental divide. Radio-telemetry data are from three non-breeding seasons 

2006-2009 in the Cordillera de Tilarán, Costa Rica. 
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Figure 4.2 Kenel utilization distributions and location points for 17 male and 3 female 

golden-winged warblers with at least 15 location points. Contour lines represent home 

range levels. Data are from the Cordillera de Tilarán, Costa Rica, 2006-2009. 
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Figure 4.3. Examples of daily movement patterns for four golden-winged warblers. Each 

day of tracking is represented by segments starting from a blue triangle and ending at a 

red enclosed-triangle. Segments represent 30 minute time intervals. Movements are 

superimposed over 10-m grids. Data are from the Cordillera de Tilarán, Costa Rica, 

2006-2009. 
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Figure 4.4. Boxplots of movement speeds of 12 golden-winged warblers labeled by sex 

(M=male, F=female) and ranked by median movement speed. Samples sizes in 

parenthesis are the number of observation days with at least four locations spaced by 30 

minutes. Horizontal lines within boxes are medians. Box edges are first and third 

quartiles. Whiskers extend to extreme values unless outliers are present. Data are from 

the Cordillera de Tilarán, Costa Rica, 2006-2009. 
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Figure 4.5. Home range overlap for five neighboring pairs of golden-winged warblers. 

Females are in green, males are in blue and black. Lines represent 50% kernel density 

home range estimates. Only neighbors that were radio-tracked simultaneously and had at 

least 5 location points are shown. Data are from the Cordillera de Tilarán, Costa Rica, 

2006-2009. 
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Figure 4.6. Proportion of observations in which 11 golden-winged warblers were 

flocking. Associating refers to cases where the bird occurred with other species, but were 

not moving together in concert. Individuals referenced by sex (M=male, F=female) and 

sample size, in parentheses. Data are from the Cordillera de Tilarán, Costa Rica, 2006-

2009. 
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Figure 4.7. Barplots of foraging maneuvers (top) and substrates (bottom). Data are from 

the Cordillera de Tilarán, Costa Rica, 2006-2009. 
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Figure 4.8. Boxplots of foraging heights in meters for 20 male and 3 female golden-

winged warblers. Sample size for each individual is shown in parentheses. Horizontal 

lines within boxes are medians. Box edges are first and third quartiles. Whiskers extend 

to extreme values unless outliers are present. Data are from the Cordillera de Tilarán, 

Costa Rica, 2006-2009. 
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Figure 4.9. Boxplots of foraging distances from trunk for 20 male and 3 female golden-

winged warblers. Horizontal lines within boxes are medians. Box edges are first and third 

quartiles. Whiskers extend to extreme values unless outliers are present. Data are from 

the Cordillera de Tilarán, Costa Rica, 2006-2009. 
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Figure 4.10. Barplots of foraging maneuvers for golden-winged warblers in and out of 

mixed-species foraging flocks. The five male and three females shown are those with at 

least four observations that could be unambigiously classified as flocking or not. Data are 

from the Cordillera de Tilarán, Costa Rica, 2006-2009. 
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Figure 4.11. Boxplots of foraging heights stratified by sex and flocking status. Horizontal 

lines within boxes are medians. Box edges are first and third quartiles. Whiskers extend 

to extreme values unless outliers are present. Data are from the Cordillera de Tilarán, 

Costa Rica, 2006-2009. 
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CHAPTER 5 

SEASONAL AND ANNUAL ESTIMATES OF GOLDEN-WINGED WARBLER 

SURVIVORSHIP 

 

5.1 Introduction 

Seasonal survival rates are often the most influential demographic parameters affecting 

population growth of migratory birds (Schmutz et al. 1997, Podolsky et al. 2007, Buehler 

et al. 2008). For many species of Neotropical-Nearctic migrants, survival is highest 

during the breeding season (Powell et al. 2000b, Sillett and Holmes 2002, Jones et al. 

2004), indicating that non-breeding season survival rates may regulate populations. 

However, it has not been possible to quantitatively determine which factors regulate these 

populations because few non-breeding season demographic data exist (Holmes 2007). 

This problem is concerning because many Neotropical-Nearctic migrants are declining, 

and low survival rates have been reported for some species during the stationary non-

breeding season (Rappole et al. 1989, Sauer et al. 2008).  

 The golden-winged warbler has declined at a rate of 2.8% per year since 1966 

according to the Breeding Bird Survey (Sauer et al. 2008). Although habitat loss on the 

breeding or non-breeding grounds could explain this population decline, reduced vital 

rates due to habitat loss, habitat degradation, or hybridization with blue-winged warblers 

(Vermivora pinus) may also be responsible (Buehler et al. 2007). All the demographic 

data available to assess the relative importance of these factors has come from the 

breeding grounds. Nest success and fecundity data have been reported from the southern 

Appalachian Mountains where this species is listed among the species of highest 
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conservation concern (Rich et al. 2004). Interestingly, nest success in this region appears 

to be greater than 50% and 3-6 young are fledged per nest (Klaus and Buehler 2001, 

Bulluck and Buehler 2008). Because golden-winged warblers readily renest after nest 

failure, productivity is extremely high in this region. Furthermore hybridization with 

blue-winged warblers is rare because golden-winged warblers occur at higher elevations 

than blue-winged warblers, and nest parasitism by brown-headed cowbirds (Molothrus 

ater) is uncommon (Buehler et al. 2007, Vallender et al. 2007a, Bulluck and Buehler 

2008). Comparable productivity rates have been found in other parts of the breeding 

range (Will 1986, Amber Roth personal communication). 

 These data suggest that neither reproductive rates nor competition and 

hybridization with blue-winged warblers are a satisfactory explanation for the local 

declines of golden-winged warblers in at least some portions of the breeding range. This 

raises the possibility that survivorship during the non-breeding season could be a 

contributing factor; however, no published studies focusing on the non-breeding 

demography of golden-winged warblers during the non-breeding season exist. The 

objectives of this component of my research were to 1) provide the first seasonal and 

annual estimates golden-winged warbler survival, and 2) determine if recruitment was 

high enough to offset mortalities on the non-breeding grounds.  

 

5.2 Methods 

5.2.1 Field methods 
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I collected data on golden-winged warbler survival using a combination of radio-

telemetry and mark-resight techniques. Radio-telemetry makes it possible to determine 

the causes of mortality, and greatly reduces the uncertainty regarding an individual’s fate 

because resight probability is generally close to one. However, studying small animals 

using radio-telemetry can only be done on short time scales because of inherent battery 

lifespan limitations. The use of radio-telemetry also raises concerns about the effect of 

transmitters on survival probability (Burger et al. 1991, but see Powell et al. 1998). 

Monitoring color-banded individuals provides a complementary approach because 

individuals can be studied over much longer time periods, and survival probability is 

unlikely to be affected (Zann 1994). Combining data from these two field methods can 

increase precision of parameter estimates (Powell et al. 2000a). 

 I captured birds using 6-12 m mist-nets with 32-36 mm mesh sizes. I used both 

constant effort passive methods and target methods. The constant effort approach 

involved setting arrays of 10 nets spaced by 25m, and running them for eight hours a day 

over three consecutive days (see Chapter 2 for details of the study design). The target 

netting method involved attracting birds to nets using broadcast vocalizations and a 

painted clay decoy positioned between two parallel nets. All individuals caught were 

banded with two color bands and one USGS metal band. Most individuals were also 

outfitted with 0.43 g radio-transmitters (Holohil BD-2N), which had battery life spans 

lasting up to 28 days. 

 Birds with functioning transmitters were relocated using 4-element yagi antenna 

and VHS receivers (Telonics, Inc. model TR-4). To resight birds without functional 

transmitters, I searched areas within 500 m of the capture location for 30 minutes, 



 

122 

 

broadcasting recorded vocalizations. An effort was made to resight birds with 

transmitters every 1-2 days; whereas birds without transmitters were searched for 

approximately once per month.  

 Recruitment here is defined as the rate at which new individuals enter the 

population. I could not measure this directly without color-banding the entire population; 

however, as a proxy I used the proportion of vacated territories that were recolonized. 

Thus, during territory searches, unbanded individuals were noted when encountered. 

5.2.2 Statistical methods 

I modeled apparent survival (φ) and resight probability (p) using a hierarchical 

implementation of the Cormack-Jolly-Seber (CJS) model (Royle 2008, Royle and 

Dorazio 2008). Apparent survival is the probability that an individual survives and does 

not move off the study area. This model can be described as follows:  

z(i, t) | z(i, t − 1) ~  Bernoulli(z(i, t − 1)φ) 

y(i, t) | z(i, t) ~ Bernoulli(z(i, t)p) 

where z(i, t) is the underlying state variable describing if individual i was alive at time t, 

and y(i, t) is the observed data. Apparent survival after the initial capture is determined by 

the status of the individual in the previous time period (0 if dead, 1 if alive) multiplied by 

the survival probability. In other words, if an individual is alive at time t-1, it survives (or 

permanently emigrates) with probability φ. This survival process cannot be directly 

observed because resight probability is typically less than one. Thus, an individual not 

detected may be either dead or alive and unseen. To account for this observation process, 

the model assumes that the observed data y(i, t) arise from a Bernoulli distribution with 

probability equal to z(i, t) multiplied by p. This ensures that dead individuals have a zero 
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encounter probability, and living individuals are detected with probability p. Unlike 

conventional implementations of the CJS model (Lebreton et al. 1992), this formulation 

allows for incorporation of individual- and time-specific covariates affecting φ and p.  

 A more important advantage of modeling the underlying state variable z(i, t) is 

that it overcomes an often ignored limitation of virtually all multi-season mark-resight 

studies of Neotropical-Nearctic migrants. Specifically, researchers normally confound 

early and late portions of the non-breeding season with other phases of the annual cycle 

because mark-resight efforts start and stop at intermediate dates within the non-breeding 

season. Thus, birds dying during the stationary non-breeding season, but outside of the 

observation period, will be treated by the CJS model as dying outside of the stationary 

non-breeding season. By setting up the golden-winged warbler encounter histories by 

day, rather than month, and using a clear definition of the stationary non-breeding season 

(1 October – 15 April, based upon arrival and departure dates), this model could better 

differentiate between apparent mortalities within and among non-breeding seasons. This 

approach also explicitly accounts for non-constant time intervals between resight 

attempts. 

 My model building process began with a global model that contained an 

interaction of season (within vs. among) and transmitter on φ and transmitter on p. This 

global model allowed me to estimate survival within and among seasons for birds 

wearing and not wearing transmitters (whether the batteries were functional or not). It 

also accounted for the fact that birds were easier to resight when outfitted with 

functioning radio transmitters. I then used a backwards selection process to arrive at the 

most parsimonious model. This process involved removing non-significant covariates and 
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comparing the reduced model to the global model using the Deviance Information 

Criterion (Spiegelhalter et al. 2002). DIC is computed as the mean deviance plus the 

effective number of parameters (pD). Various methods exist to calculate pD, and here I 

used one half the variance of deviance (Gelman 2004). Because the global model had 

four survival parameters and two resight parameters plus the latent z(i,t) variables, and 

my sample size was small (see Results), I was not able to include other covariates such as 

age, sex, or habitat type.  

 I estimated model parameters using Markov-chain Monte Carlo (MCMC) 

methods implemented in the program OpenBUGS (Lunn et al. 2009) and run from R 

using the BRugs package (Thomas et al. 2006). MCMC is a Bayesian method of 

approximating the posterior distributions of model parameters, and can easily 

accommodate latent variables, non-constant sampling periods, and missing data. Posterior 

distributions are the probability distributions of model parameters. Thus they allow for 

direct inference regarding the probability that a value corresponds to the true population 

parameter. For instance, the median of the posterior is the most likely value given the 

data. Bayesian data analysis requires specifying prior distributions for all model 

parameters. I chose non-informative priors because no previous estimates of golden-

winged warbler survival or resight probability exist. Specifically, I used a Uniform(0, 1) 

prior for all parameters, except for within-season monthly survival for which I used a 

Uniform(0.5, 1) prior because monthly survival less than 0.5 is equivalent to total 

mortality over the non-breeding season. I summarized posterior distributions using 

200,000 draws from two independent chains thinned by 20 after discarding the 100,000 



 

125 

 

burn-ins. I assessed convergence using visual inspections and Gelman-Rubin diagnostics 

(Gelman and Rubin 1992) . 

 

5.3 Results 

I captured and monitored 28 male and 4 female golden-winged warblers over five non-

breeding seasons (Fig 5.1). I discarded data from one male captured on 26 March 2008 

and never seen again because this bird was probably a transient. All other individuals 

were captured before 15 March. This procedure resulted in 447 resight attempts for 31 

individuals. Twenty seven of these birds were tracked using radio-telemetry over a total 

of 269 days. 

5.3.1 Survivorship during stationary non-breeding season 

I found strong evidence that golden-winged warbler survival differed among phases of 

the annual cycle and was affected by transmitters among seasons. I found no evidence of 

a within-season transmitter effect on φ (mean difference = 0.14, P = 0.11). I therefore 

removed this term and modeled within-season survival as constant among individuals. 

Clearly, variation in survival probability exists among individuals, but given the small 

data set, this was the most parsimonious parameterization as was demonstrated by the 

lower DIC value for the reduced model (145.5) than the global model (153.5).  Gelman-

Rubin statistics were less than 1.1 for all model parameters indicating convergence. 

Furthermore, posterior distributions showed no sign of multi-modality (Fig. 5.2).  

 Apparent monthly survival was 0.93, equivalent to a 0.63 probability of surviving 

the entire 6.5 month stationary non-breeding season (Table 5.1). Resight probability was 
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close to unity for birds with functioning radio transmitters as expected. For birds without 

functioning transmitters, resight probability was 0.42, indicating that 2, 3, 4, and 5 

searches would result in cumulative probabilities of 0.66, 0.80, 0.88, and 0.93 

respectively, conditional on an individual being alive.  

 One mortality event was directly observed while radio-tracking. A first-year male 

was depredated by a striped palm pit-viper (Bothriechis lateralis) on 17 October 2007, 

less than one month after making its first arrival on the non-breeding grounds (Fig 5.3). 

This species of snake is a sit-and-wait predator (Savage 2005), ambushing prey that 

passes within close range. This suggests that the transmitter did not increase this golden-

winged warbler’s susceptibility to predation, which is consistent with the lack of a 

statistically significant effect of transmitter on within season apparent survival. This bird 

was tracked for nine days before being depredated, and occurred exclusively in 18 year 

old secondary forest regenerating after pasture abandonment (Fig 5.4). B. lateralis was 

encountered six times, always in this habitat type, during the course of the study. 

5.3.2 Among season and annual apparent survival 

Five individuals were encountered in multiple seasons; one individual survived at least 

four seasons, one for three seasons, and three for two season (Fig 5.1). Birds that 

apparently migrated with transmitters survived the migratory and breeding intervals at a 

much lower rate (0.26) than those that departed without transmitters (0.85)(Table 5.1). 

This apparent survival probability includes both annual migrations and the breeding 

season, spanning a total of 5.5 months. Only two birds that apparently departed with 

transmitters were resighted in ensuing seasons, and in both cases the transmitters had 

fallen off in the interval.  
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 Annual apparent survival probability for birds departing without transmitters was 

0.53, which was estimated as a derived parameter by multiplying the within season 

apparent survival and the among season survival for birds without transmitters.  

5.3.3 Recruitment 

 Of 25 vacated territories (territories where the previous occupants had died or 

emigrate), only 16 (64%) were colonized by unbanded birds in at least one subsequent 

season. Several territories were left vacated for multiple seasons. Two territories were 

unoccupied for all three seasons following vacancy, and four territories remained 

unoccupied for two seasons. In total, 28 of 55 (51%) of possible colonization 

opportunities were made. These statistics should be considered minimum values because 

the possibility exists that some colonizing individuals died prior to being discovered or 

were present but not detected. 

 

5.4 Discussion 

The annual survival rate of 0.53 reported here for golden-winged warblers lies within the 

range of estimates for many species of Neotropical-Nearctic migrants (DeSante et al. 

2001, Sillett and Holmes 2002, Jones et al. 2004, Stutchbury et al. 2009a, Saracco et al. 

2010); however, in contrast to a growing body of literature indicating that survival 

probability is lowest during migration, most mortality within my study area apparently 

occurred during the stationary non-breeding season, as indicated by lower apparent 

survival rates during the non-breeding season. For example, Sillett and Holmes (2002) 

found extremely high apparent monthly survival rates (0.987-0.990) of black-throated 
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blue warblers (Dendroica caerulescens) wintering in Jamaica, which is equivalent to a 

0.92 probability of surviving a 6.5 month non-breeding season. Thus they determined that 

mortality rates were 15 times higher during migration than during stationary periods. 

Similar high apparent survival rates for migrants during the stationary non-breeding 

season have been reported by others (Wunderle and Latta 2000, Johnson et al. 2006). For 

golden-winged warblers, however, apparent monthly survival during the stationary non-

breeding season was only 0.93, lower than the abovementioned studies, and among-

season apparent survival was 0.85, higher relative to these studies.   

 The difference between these survival rates cannot be attributed to the use of 

ratio-transmitters because my estimate is for individuals not wearing transmitters. The 

difference may be explained by the fact that most studies reporting high survival during 

the stationary non-breeding season occurred in the West Indies. These islands host a 

much smaller community of potential predators than do the mainland Neotropics. In 

Costa Rica, for example, there are 10 species of (semi-) diurnal birds of prey occur that 

specialize on small passerines, three species of Glaucidium, four species of Accipiter and 

three species of Micrastur (Garrigues 2007). Seven of these species were observed in my 

small study area. In Cuba on the other hand, which is twice as large as Costa Rica, only 

three species within this guild exist (Garrido and Kirkconnell 2000). Similarly, over 100 

species of snakes occur in Costa Rica compared to 14 in Cuba (Savage 2005). Although 

higher species richness of predators does not necessarily equate to higher predation 

pressure, lower predation pressure on the islands is also suggested by the lower 

occurrence of mixed-species flocks (Beauchamp 2004) and by studies indicating that 
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most predator densities are low and that birds comprise a small proportion of the diets of 

some potential predators (Henderson and Crother 1989, Delannoy 1997).  

 In contrast to results from the Greater Antilles, apparent survival estimates from 

the mainland are often as low as or lower than the rates in my study (Rappole et al. 1989, 

Winker et al. 1990). A study of cerulean warblers (Dendroica cerulea) wintering in shade 

coffee farms in Venezuela reported high monthly survival rates (0.97) for cerulean 

warblers classified as territorial, but most individuals captured were deemed non-

territorial and had much lower rates (0.81) (Bakermans et al. 2009). Bakermans et al. 

(2009) did not report an overall within season survivorship estimate but a mixture of 

these two sampling distributions yields an approximate monthly rate of 0.88, which ranks 

among the lowest reported for any Neotropical-Nearctic migrant. 

 The proximate causes of mortality for Neotropical-Nearctic migrants have rarely 

been determined, making it difficult to establish if low survival rates are due to novel 

threats imposed by human induced habitat modifications. Radio-telemetry is typically 

required to locate dead birds and many species are too small to be monitored for 

sufficient durations to adequately quantify causes of mortality. The few studies that have 

reported mortality events suggest that predation is the primary cause of mortality. Of six 

wood thrush mortalities observed by Rappole et al. (1989), mammalian and avian 

predators each were responsible for equal numbers. These researchers demonstrated that 

low survival was attributable to anthropogenic influences in that, habitat loss prevented 

many individuals from acquiring territories and these individuals suffered higher 

mortality.  
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 I only observed one mortality event and could not model habitat-specific survival, 

thus it was not possible to determine the causes of the low survival rate in my study. 

However, it is important to realize that this study was conducted in a highly fragmented 

agricultural landscape. Future research should compare survival rates between 

fragmented and unfragmented landscapes. Furthermore, it is interesting that the one 

depredated individual was a juvenile inhabiting secondary forest soon after arriving on 

the non-breeding grounds. Although no research has addressed this for Neotropical-

Nearctic migrants, the onset of the stationary non-breeding season is probably a stressful 

period, especially for juveniles, as birds must compete for territories and experience 

novel predation pressures after finishing a long migration (Snell-Rood and Cristol 2005). 

Furthermore, October-December can be inhospitable months of the year in much of the 

golden-winged warbler winter range because they inhabit some of the wettest places on 

earth, and rainfall and wind speeds can peak in these months (Clark et al. 2000).  

 Low survival rates during the stationary non-breeding season warrant concern 

because both high fecundity and high survival rates during migration and the breeding 

season would be required to maintain stable populations. I found that apparent survival 

was indeed high during the intervening interval (0.85) relative to previous studies (Sillett 

and Holmes 2002). This finding coupled with reports of high productivity on the breeding 

grounds suggests that mortalities during the stationary non-breeding season should be 

offset by high recruitment. However, recruitment was low in this population, as 

evidenced by low colonization rates of vacated territories. This finding is consistent with 

results from Chapter 3 in which I found no evidence of site-level recruitment within or 

among seasons. However, this finding along with the rarity of floater in my study area 
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stands in stark contrast to numerous studies in which surplus birds quickly claimed 

vacated territories (Rappole and Warner 1980, Stutchbury 1994, Marra 2000, Studds and 

Marra 2005, Brown and Long 2007).  

 Three hypotheses may explain how recruitment could be low when productivity 

and among season survival are high. First, juvenile survival may be low during either the 

post-fledging pre-migration period or during fall migration. Second, juveniles may not be 

able to find available habitat. Third, my recruitment estimates may be biased low if 

colonizing individuals died early in the non-breeding season or were present but not 

detected. The first hypothesis needs further investigation because low post-fledging 

survival rates have been reported for many species (King et al. 2006, Rush and 

Stutchbury 2008, Moore et al. 2010). This prediction could be tested by estimating annual 

survival of juveniles on the breeding grounds. Furthermore, the possibility exists that 

abnormally low survival rates of juveniles during migration could result from 

hybridization with blue-winged warblers; however, the influence of hybridization on 

migration patterns and return rates has not been studied. The second hypothesis may be 

true if the population size is small relative to the amount of available habitat. Estimates of 

habitat extent and carrying capacity are needed to evaluate this possibility (Rappole et al. 

2003a). The latter hypothesis is not supported by my data because territories were 

typically surveyed three times per season including one season when territory surveys 

began in early October. 

 Although these estimates provide the first insight into golden-winged warbler 

demographics during the non-breeding season, I did not have enough data to estimate 

habitat-, sex-, or age-specific survival rates, and precision was low. Habitat-specific 
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survival rates are needed to identify and conserve high quality habitat. Testing for 

differences between the sexes is important because studies from the breeding grounds 

have found evidence that females return less frequently than males (Will 1986, David 

Buehler personal communication). Such a disparity would bias sex ratios thereby 

lowering effective population size and potentially increasing hybridization rates with 

blue-winged warblers (Rappole and McDonald 1994, Vallender et al. 2007b). Future 

research should therefore aim to increase the precision of these estimates and attribute 

variation in within-season survival rate among habitat types and sex and age cohorts. This 

could be accomplished by increasing mark-resight effort at the beginning and end of the 

non-breeding season. An assessment of temporal change in survival, and survival rates 

from other regions of the non-breeding range are also needed. Radio telemetry should not 

be used if annual survival is of interest due to the difficulty of removing transmitters from 

golden-winged warblers and the low among season apparent survival rates of birds 

departing with transmitters. In addition, constant effort mist-netting methods are not 

likely to be effective due to low capture rates (Chapter 2). 

 Migratory bird populations may be limited by habitat availability at any stage of 

the annual cycle, or by recruitment rates too low to offset mortalities (Goss-Custard et al. 

1995, Sutherland 1996, Peach et al. 1999, Runge and Marra 2005). For golden-winged 

warblers, hybridization poses an additional extinction risk (Dabrowski et al. 2005, 

Vallender et al. 2007b). Here I found that vital rates of golden-winged warblers wintering 

in Costa Rica were not high enough to maintain a stable population. Although 

approximately 53% of birds appeared to survive annually, mortality was high during the 

stationary non-breeding season, and recruitment appeared to be below thresholds 
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necessary for vacated territories to be colonized. Low recruitment does not appear to be 

due to low productivity, but may be attributed to low juvenile survival prior to arriving on 

the non-breeding grounds, in which case it would not be clear how management actions 

could improve this situation. However, survival rates during the stationary non-breeding 

season could potentially be increased by conserving high quality habitat. Future research 

should focus on identifying theses habitat types. 
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Table 5.1 Summaries of posterior distributions from the most parsimonious Cormack-

Jolly-Seber model of golden-winged warbler survival. Bayesian credible intervals (CI) 

are highest posterior density regions. See Fig 5.2 for graphical displays of posterior 

distributions. Data were collected on 31 individuals monitored for up to five years in the 

Cordillera de Tilarán, Costa Rica, 2006-2010.  

    

95% CI 

Parameter Mean SD Median Lower Upper 

Within season apparent survival 

(monthly) 

0.93 0.033 0.93 0.87 0.99 

Within season apparent survival 

(1 Oct - 15 April) 

0.63 0.14 0.64 0.37 0.90 

Among season apparent survival 

(no transmitter) 

0.85 0.12 0.87 0.60 1.00 

Among season apparent survival 

(with transmitter) 

0.26 0.13 0.24 0.032 0.52 

Annual apparent survival  

(no transmitter) 

0.53 0.13 0.53 0.29 0.77 

Resight probability  

(no transmitter) 

0.42 0.058 0.42 0.31 0.54 

Resight probability  

(with transmitter) 

0.99 0.0059 0.99 0.98 1.00 
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Figure 5.1. Graphical displays of the 31golden-winged warbler encounter histories used 

in the Cormack-Jolly-Seber model. Filled areas represent days between first capture and 

last search. Encounters are shown in green and non-detections in black. Vertical lines 

separate the five non-breeding seasons. Note that most effort was concentrated in the 

latter half of the non-breeding season with the exception of the 2007-2008 season. Data 

are from the Cordillera de Tilarán, Costa Rica. 
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Figure 5.2. Posterior distributions for golden-winged warbler survival and detection 

probability parameters. All survival estimates are apparent survival. Within season 

apparent survival refers to the stationary non-breeding season.  Among season apparent 

survival is for the interval 15 April – 10 October, which includes spring and fall 

migration as well as the breeding season. Data are from the Cordillera de Tilarán, Costa 

Rica, 2006-2010. 
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Figure 5.3. Striped palm-pitviper (Bothriechis lateralis) digesting a jeuvenile male 

golden-winged warbler (large bulge) with functioning radio transmitter. B. lateralis were 

regularly encountered in secondary forest such as this (see Figure 5.2). The tree species is 

―tubú‖ (Montanoa guatemalensis). Photograph by author, from the Cordillera de Tilarán, 

Costa Rica. 
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Figure 5.4. Location of golden-winged warbler mortality (yellow box). The habitat was 

18-year old secondary forest resulting from pasture abandonment. Photograph by author, 

from the Cordillera de Tilarán, Costa Rica. 
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APPENDIX A 

SPECIES LIST FOR STUDY AREA 

   

Relative 

abundance
a
 

   

Life zone
b
 

Common name Scientific name Family PM MW PW 

Highland Tinamou 

Nothocercus 

bonapartei Tinamidae 

 

R R 

Gray-headed 

Chachalaca Ortalis cinereiceps Cracidae U U 

 Black Guan Chamaepetes unicolor Cracidae 

 

C 

 Crested Guan Penelope purpurascens Cracidae 

 

R R 

Magnificent Frigatebird Fregata magnificens Fregatidae O 

  Cattle Egret Bubulcus ibis Ardeidae O 

  Great Blue Heron Ardea herodias Ardeidae O 

  Great Egret Ardea albus Ardeidae O 

  Black Vulture Coragyps atratus Cathartidae C C C 

Turkey Vulture Cathartes aura Cathartidae C C C 

King Vulture Sarcoramphus papa Cathartidae 

 

O 

 Great Black-Hawk Buteogallus urubitinga Accipitridae 

 

R 

 Swallow-tailed Kite Elanoides forficatus Accipitridae C U 

 Black Hawk-Eagle Spizaethus tyrannus Accipitridae 

 

R 

 Ornate Hawk-Eagle Spizaethus ornatus Accipitridae 

 

R R 

Red-tailed Hawk Buteo jamaicensis Accipitridae U U 

 White-tailed Kite Elanus leucurus Accipitridae R 

  Sharp-shinned Hawk Accipiter striatus Accipitridae R 

  Cooper's Hawk Accipiter cooperii Accipitridae R 

  Gray Hawk Buteo nitidus Accipitridae U 

  White Hawk Leucopternis albicollis Accipitridae U U U 

Zone-tailed Hawk Buteo albonotatus Accipitridae R 

  Bicolored Hawk Accipiter bicolor Accipitridae 

 

R 

 Double-toothed Kite Harpagus bidentatus Accipitridae 

 

R 

 Barred Hawk Leucopternis princeps Accipitridae 

 

O R 

Solitary Eagle 

Harpyhaliaetus 

solitarius Accipitridae 

 

O 

 

Hook-billed Kite 

Chondrohierax 

uncinatus Accipitridae O 

  Tiny Hawk Accipiter supercilosus Accipitridae 

 

O 
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Bat Falcon Falco rufigularis Falconidae 

 

R 

 

Lauging Falcon 

Herpetotheres 

cachinnans Falconidae U 

  Barred Forest-Falcon Micrastur ruficolis Falconidae U R R 

Collared Forest-Falcon 

Micrastur 

semitorquatus Falconidae 

 

U 

 American Kestrel Falco sparverius Falconidae O 

  Peregrine Falcon Falco peregrinus Falconidae 

 

O 

 Crested Caracara Caracara cheriway Falconidae O 

  Gray-necked Wood-

Rail Aramides cajanea Rallidae U C 

 White-throated Crake Laterallus albigularis Rallidae U U 

 Sunbittern Eurypyga helias Eurypygidae R 

  Spotted Sandpiper Actitis macularius Scolopacidae 

 

U 

 White-fronted Parrot Amazona albifrons Psittacidae C U 

 Orange-chinned 

Parakeet Brotogeris jugularis Psittacidae C U 

 Brown-hooded Parrot Pionopsitta haematotis Psittacidae 

 

O 

 Crimson-fronted 

Parakeet Aratinga finschi Psittacidae 

  

O 

Red-lored Parrot Amazona autumnalis Psittacidae O R 

 White-crowned Parrot Pionus senilis Psittacidae 

 

O 

 Red-fronted Parrotlet Touit costaricensis Psittacidae 

 

R 

 Squirrel Cuckoo Piaya cayana Cuculidae U U 

 Groove-billed Ani Crotophaga sulcirostris Cuculidae C U 

 

Lesser Ground-Cuckoo 

Morococcyx 

erythropygus Cuculidae O 

  Spectacled Owl Pulsatrix perpicillata Strigidae 

 

R R 

Mottled Owl Ciccaba virgata Strigidae U U 

 Ferruginous Pygmy-

Owl 

Glaucidium 

brasilianum Strigidae 

 

O 

 Vermiculated Screech-

Owl Otus guatemalae Strigidae 

 

O 

 Common Pauraque Nyctidromus albicollis Caprimulgidae C C 

 

Short-tailed Nighthawk 

Nyctidphrynus 

ocellarus Caprimulgidae 

 

R 

 White-collared Swift Streptoprocne zonaris Apodidae C C 

 Vaux's Swift Chaetura vauxi Apodidae U 

  Purple-throated 

Mountain-gem Lampornis calolaema Trochilidae 

 

C 

 Stripe-throated Hermit Phaethornis striigularis Trochilidae U U U 

Green Hermit Phaethornis guy Trochilidae 

 

C C 
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Canivet's Emerald  Chlorostilbon canivetii Trochilidae U 

  Coppery-headed 

Emerald Elvira cupreiceps Trochilidae 

 

C 

 Striped-tailed 

Hummingbird Eupherusa eximia Trochilidae 

 

C 

 

Violet Saberwing 

Campylopterus 

hemileucurus Trochilidae U U 

 White-tipped Sicklebill Eutoxeres aquila Trochilidae 

 

R 

 Green-crowned 

Brilliant Heliodoxa jacula Trochilidae 

 

U R 

Ruby-throated 

Hummingbird Archilochus colubris Trochilidae R R 

 Steely-vented 

Hummingbird Amazilia saucerrottei Trochilidae C R 

 Rufous-tailed 

Hummingbird Amazilia tzacatl Trochilidae C U 

 White-bellied 

Mountain-gem Lampornis hemileucus Trochilidae 

 

R 

 Plain-capped Starthroat Heliomaster constantii Trochilidae U R 

 Purple-crowned Fairy Heliothryx barroti Trochilidae 

 

R 

 Green Violet-ear Colibri thalassinus Trochilidae 

 

O 

 Magenta-throated 

Woodstar Calliphlox bryantae Trochilidae 

 

R 

 Violet-crowned 

Woodnymph Thalurania colombica Trochilidae 

  

O 

Green-fronted 

Lancebill Doryfera ludovicae Trochilidae 

  

O 

Orange-bellied Trogon Trogon aurantiiventris Trogonidae 

 

C U 

Resplendent Quetzal 

Pharomachrus 

mocinno Trogonidae 

 

U 

 Slaty-tailed Trogon Trogon massena Trogonidae 

  

O 

Violaceous Trogon Trogon violaceus Trogonidae 

  

O 

Blue-crowned Motmot Momotus motmota Momotidae C U 

 Turquoise-browed 

Motmot Eumomota superciliosa Momotidae R 

  

Broad-billed Motmot 

Electron 

platyrhynchum Momotidae 

 

O 

 Rufous Motmot Baryphthengus martii Momotidae 

  

R 

Rufous-tailed Jacamar Galbula ruficauda Galbulidae 

 

U R 

Black-thighed 

Grosbeak 

Caryothraustes 

poliogaster Cardnalidae 

  

U 

Rose-breasted 

Grosbeak 

Pheucticus 

ludovicianus Cardnalidae C R 

 Indigo Bunting Passerina cyanea Cardnalidae O 
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Buff-throated Saltator Saltator maximus Cardnalidae C C 

 Grayish Saltator Saltator coerulescens Cardnalidae R 

  Painted Bunting Passerina ciris Cardnalidae O 

  American Dipper Cinclus mexicanus Cinclidae 

 

U U 

Band-tailed Pigeon Columba fasciata Columbidae 

 

U U 

Ruddy Pigeon 

Patagioenas 

subvinacea Columbidae 

 

U U 

Short-billed Pigeon 

Patagioenas 

nigrirostris Columbidae 

 

U U 

White-tipped Dove Leptotila verreaux Columbidae C C 

 Red-billed Pigeon Columba flavirostris Columbidae C U 

 Inca Dove Columbina inca Columbidae U 

  Common Ground-Dove Columbina passerina Columbidae U 

  Buff-fronted Quail-

Dove 

Geotrygon 

costaricensis Columbidae 

 

O 

 Chiriqui Quail-Dove Geotrygon chiriquensis Columbidae 

 

O 

 Violaceous Quail-Dove Geotrygon violacea Columbidae 

 

O 

 Ruddy Quail-Dove Geotrygon montana Columbidae 

 

O 

 White-winged Dove Zenaida asiatica Columbidae O 

  Brown Jay Cyanocorax morio Corvidae C C 

 Azure-hooded Jay Cyanolyca cucullata Corvidae 

 

U 

 White-throated 

Magpie-Jay Calocitta formosa Corvidae U 

  

Three-wattled Bellbird 

Procnias 

tricarunculata Cotingidae 

 

U 

 Bare-necked 

Umbrellabird 

Cephalopterus 

glabricollis Cotingidae 

  

O 

Rufous Piha Lipaugus unirufus Cotingidae 

 

O 

 Yellow-faced Grassquit Tiaris olivacea Emberizidae C C 

 Rufous-collared 

Sparrow Zonotrichia capensis Emberizidae C U 

 White-naped Brush-

Finch Atlapetes albinucha Emberizidae C U 

 Blue-black Grassquit Volatinia jacarina Emberizidae U U 

 White-collared 

Seedeater Sporophila torqueola Emberizidae U U 

 Variable Seedeater Sporophila aurita Emberizidae U U 

 Chestnut-capped 

Brush-Finch 

Buarremon 

brunneinucha Emberizidae 

 

U 

 White-eared Ground-

Sparrow Melozone leucotis Emberizidae C 

  Thick-billed Seed-

Finch Oryzoborus funereus Emberizidae 

 

O 
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Blue Seedeather Amaurospiza concolor Emberizidae 

 

O 

 

Orange-billed Sparrow 

Arremon 

aurantiirostris Emberizidae 

  

R 

Sooty-faced Finch Lysurus crassirostris Emberizidae 

 

C 

 Peg-billed Finch Acanthidops bairdii Emberizidae 

 

R 

 Slaty Flowerpiercer Diglossa plumbea Emberizidae 

 

O 

 Olive Sparrow Arremonops rufivigatus Emberizidae O 

  Prevost's Ground 

Sparrow Melozone biarcuata Emberizidae O 

  

Scaled Antpitta 

Grallaria 

guatimalensis Formicariidae 

 

O 

 Black-headed 

Antthrush 

Formicarius 

nigricapillus Formicariidae 

  

R 

Ochre-breasted 

Antpitta 

Grallaricula 

flavirostris Formicariidae 

 

O 

 Golden-browed 

Chlorophonia 

Chlorophonia 

callophrys Fringillidae 

 

U 

 Yellow-throated 

Euphonia Euphonia hirundinacea Fringillidae C U 

 Tawny-capped 

Euphonia Euphonia annaeae Fringillidae 

 

U 

 

Elegant Euphonia 

Euphonia 

elegantissima Fringillidae 

 

O 

 Lesser Goldfinch Carduelis psaltria Fringillidae U 

  

Spotted Woodcreeper 

Xiphorhynchus 

flavigaster Furnariidae 

 

C 

 Olivaceous 

Woodcreeper 

Sittasomus 

griseicapillus Furnariidae R 

  Wedge-billed 

Woodcreeper 

Glyphorhynchus 

spirurus Furnariidae 

 

U 

 

Ruddy Woodcreeper 

Dendrocincla 

homochroa Furnariidae U U 

 Barred Woodcreeper Dendrocolaptes certhia Furnariidae O 

  Streaked-headed 

Woodcreeper 

Lepidocolaptes 

souleyetii Furnariidae U R 

 Brown-billed 

Scythebill 

Campylorhmphus 

pusillus Furnariidae 

 

R R 

Cocoa Woodcreeper 

Xiphorhynchus 

susurrans Furnariidae O 

  Plain-brown 

Woodcreeper Dendrocincla fulginosa Furnariidae 

  

R 

Ruddy Treerunner 

Margarornis 

rubiginosus Furnariidae 

 

R 
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Spotted Barbtail 

Premnoplex 

brunnesscens Furnariidae 

 

C 

 Striped Woodhaunter Hyloctistes subulatus Furnariidae 

  

O 

Tawny-throated 

Leaftosser Sclerurus mexicanus Furnariidae 

 

U 

 Gray-throated 

Leaftosser Sclerurus albigularis Furnariidae 

 

R R 

Plain Xenops Xenops minutus Furnariidae 

  

O 

Red-faced Spinetail Cranioleuca erythrops Furnariidae 

 

R 

 Buff-fronted Foliage-

gleaner 

Automolus 

ochrolaemus Furnariidae 

 

R R 

Buffy Tuftedcheek 

Pseudocolaptes 

lawrencii Furnariidae 

 

O 

 Linneated Foliage-

gleaner Syndactyla subalaris Furnariidae 

 

R 

 Blue-and-white 

Swallow Tachycineta thalassina Hirundinidae C 

  Northern Rough-

winged Swallow 

Stelgidopteryx 

serripennis Hirundinidae U 

  Montexuma Orpendola Psarocolius montezuma Icteridae C C 

 Chestnut-headed 

Oropendola Psarocolius wagleri Icteridae R R 

 

Yellow-billed Cacique 

Amblycercus 

holosericeus Icteridae R 

  Eastern Meadowlark Sturnella magna Icteridae U 

  Baltimore Oriole Icterus galbula Icteridae C U 

 Bronzed Cowbird Molothrus aeneus Icteridae R 

  Melodious Blackbird Dives dives Icteridae C U 

 Black-cowled Oriole Icterus dominicensis Icteridae 

 

R 

 Great-tailed Grackle Quiscalus mexicanus Icteridae C 

  Orchard Oriole Icterus spurius Icteridae O 

  Sharpbill Oxyruncus cristatus Oxyruncidae 

 

O R 

Black-and-white 

Warbler Mniotilta varia Parulidae U U U 

Yellow Warbler Dendroica petechia Parulidae U 

  Slate-throated Redstart Myioborus miniatus Parulidae U C U 

Northern Waterthrush Seiurus noveboracensis Parulidae 

 

U 

 Three-striped Warbler Basileuterus tristriatus Parulidae 

 

C 

 Wilson's Warbler Wilsonia pusilla Parulidae C C U 

Chestnut-sided Warbler 

Dendroica 

pensylvanica Parulidae C C 

 Black-throated Green 

Warbler Dendroica virens Parulidae R C 
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Rufous-capped Warbler Basileuterus rufifrons Parulidae C R 

 Golden-winged 

Warbler Vermivora chrysoptera Parulidae O U R 

Mourning Warbler Oporornis philadelphia Parulidae O 

  Golden-crowned 

Warbler 

Basileuterus 

culicivorus Parulidae R C U 

Louisiana Waterthrush Seiurus motacilla Parulidae 

 

O 

 Gray-crowned 

Yellowthroat 

Geothlypis 

poliocephala Parulidae U 

  Ovenbird Seiurus aurocapillus Parulidae U R 

 Tennessee Warbler Vermivora peregrina Parulidae C U U 

Buff-rumped Warbler 

Phaeothlypis 

fulvicauda Parulidae 

  

U 

Collared Redstart Myioborus torquatus Parulidae 

 

U 

 Townsend's Warbler Dendroica townsendi Parulidae 

 

R 

 Tropical Parula Parula pitiayumi Parulidae 

 

R U 

Blackburnian Warbler Dendroica fusca Parulidae 

 

O 

 Yellow-rumped 

Warbler Dendroica coronata Parulidae 

  

O 

Kentucky Warbler Oporornis formosus Parulidae 

 

O 

 MacGillivray's Warbler Oporornis tolmiei Parulidae O 

  American Redstart Stetophaga ruticillia Parulidae O O 

 Canada Warbler Wilsonia canadensis Parulidae 

 

O 

 Wrenthrush Zeledonia coronata Parulidae 

 

R 

 Blue-winged Warbler Vermivora pinus Parulidae 

 

O 

 

Worm-eating Warbler 

Helmitheros 

vermivorum Parulidae 

 

O 

 Black-breasted Wood-

Quail 

Odontophorus 

leucolaemus Phasianidae 

 

U R 

Pale-billed 

Woodpecker 

Campephilus 

guatemalensis Picidae R R 

 Golden-olive 

Woodpecker Piculus rubiginosus Picidae 

 

U 

 Hoffman's Woodpecker Melanerpes hoffmannii Picidae C U 

 Lineated Woodpecker Dryocopus lineatus Picidae R R 

 Black-cheeked 

Woodpecker Melanerpes pucherani Picidae 

  

R 

Smoky-brown 

Woodpecker Veniliornis fumigatus Picidae 

 

U 

 Rufous-winged 

Woodpecker Piculus simplex Picidae 

  

O 

Yellow-bellied 

Sapsucker Sphyrapicus varius Picidae 

 

O 
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White-ruffed Manakin Corapipo leucorrhoa Pipridae 

 

U U 

Long-tailed Manakin Chiroxiphia linearis Pipridae C U 

 White-collared 

Manakin Manacus candei Pipridae 

 

O 

 Least Grebe Tachybaptus dominicus Podicipedidae R 

 

R 

Black-and-yellow 

Silky-Flycatcher 

Phainoptila 

melanoxantha Ptilogonatidae 

 

R 

 Prong-billed Barbet Semnornis frantzii Ramphastidae 

 

U 

 Red-headed Barbet Eubucco bourcierii Ramphastidae 

 

R R 

Emerald Toucanet 

Aulacorhynchus 

prasinus Ramphastidae U U U 

Collared Araçari Pteroglossus torquatus Ramphastidae 

  

R 

Keel-billed Toucan Ramphastos sulfuratus Ramphastidae U U U 

Silvery-fronted 

Tapaculo Scytalopus argentifrons Rhinocryptidae 

 

C U 

Tawny-faced Gnatwren 

Microbates 

cinereiventris Sylviidae 

  

R 

Long-billed Gnatwren 

Ramphocaenus 

melanurus Sylviidae 

 

R 

 Immaculate Antbird Myrmeciza immaculata Thamnophilidae 

 

C 

 Bicolored Antbird Gymnopithys leucaspis Thamnophilidae 

 

O 

 

Ocellated Antbird 

Phaenostictus 

mcleannani Thamnophilidae 

  

R 

Slaty Antwren 

Myrmotherula 

schisticolor Thamnophilidae 

 

U U 

Plain Antvireo Dysithamnus mentalis Thamnophilidae 

 

U U 

Barred Antshrike Thamnophilus doliatus Thamnophilidae R 

  Russet Antshrike Thamnistes anabatinus Thamnophilidae 

  

R 

Dull-mantled Antbird Myrmeciza laemosticta Thamnophilidae 

  

U 

Scarlet-rumped 

Tanager Ramphocelus passerinii Thraupidae C U 

 Summer Tanager Piranga rubra Thraupidae U U 

 Silver-throated Tanager Tangara icterocephala Thraupidae 

 

U U 

Spangled-cheeked 

Tanager Tangara dowii Thraupidae 

 

U R 

Red-legged 

Honeycreeper Cyanerpes cyaneus Thraupidae R 

  Green Honeycreeper Chlorophanes spiza Thraupidae 

  

O 

Scarlet-thighed Dacnis Dacnis venusta Thraupidae 

 

U 

 Crimson-collared 

Tanager 

Phlogothraupis 

sanguinolenta Thraupidae O U U 

Blue-gray Tanager Thraupis episcopus Thraupidae C C 
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Common Bush-

Tanager 

Chlorospingus 

ophthalmicus Thraupidae 

 

C C 

Palm Tanager Thraupis palmarum Thraupidae R 

  Bay-headed Tanager Tangara gyrola Thraupidae 

 

R 

 Black-and-yellow 

Tanager 

Chrysothlypis 

chrysomelas Thraupidae 

  

R 

Blue-and-gold Tanager Buthraupis arcaei Thraupidae 

  

R 

White-lined Tanager Tachyphonus rufus Thraupidae 

 

O 

 Hepatic Tanager Piranga flava Thraupidae 

  

R 

Scarlet Tanager Piranga olivacea Thraupidae 

 

O 

 Blue Dacnis Dacnis cayana Thraupidae 

  

R 

Sooty-capped Bush-

Tanager Chlorospingus pileatus Thraupidae 

 

R 

 

Olive Tanager 

Chlorothraupis 

carmioli Thraupidae 

  

O 

Emerald Tanager Tangara florida Thraupidae 

  

O 

White-throated Shrike-

Tanager Lanio leucothorax Thraupidae 

  

O 

Red-crowned Ant-

tanager Habia rubica Thraupidae R 

  Masked Tityra Tityra semifasciata Tityridae U U 

 Rose-throated Becard Pachyramphus aglaiae Tityridae O 

  House Wren Troglodytes aedon Troglodytidae C C 

 Rufous-breasted Wren Thryothorus rutilus Troglodytidae R 

  Rufous-and-white 

Wren Thryothorus rufalbus Troglodytidae C R 

 Gray-breasted Wood-

Wren 

Henicorhina 

leucophrys Troglodytidae 

 

C 

 White-breasted Wood-

Wren 

Henicorhina 

leucosticta Troglodytidae 

  

C 

Plain Wren Thryothorus modestus Troglodytidae C U 

 Ochraceous Wren Troglodytes ochraceus Troglodytidae 

 

U 

 

Nightingale Wren 

Microcerculus 

philomela Troglodytidae 

  

R 

Rufous-naped Wren Campylorhynchus Troglodytidae O 

  Pale-vented Robin Turdus obsoletus Turdidae 

 

U U 

White-throated Robin Turdus assimilus Turdidae 

 

R 

 Slaty-backed 

Nightingale-Thrush Catharus fuscater Turdidae 

 

C 

 Orange-billed 

Nightingale-Thrush 

Catharus 

aurantiirostris Turdidae C U 

 Swainson's Thrush Catharus ustulatus Turdidae 

 

U 

       

Continues on the next page     



 

148 

 

Black-headed 

Nightingale-Thrush Catharus mexicanus Turdidae 

  

R 

Ruddy-capped 

Nightingale-Thrush Catharus frantzii Turdidae 

 

O 

 Mountain Robin Turdus plebejus Turdidae 

 

R 

 Wood Thrush Hylocichla mustelina Turdidae 

 

R U 

Black-headed Solitare Myadestes melanops Turdidae 

 

C U 

Clay-colored Robin Turdus grayi Turdidae C U 

 Bright-rumped Attila Attila spadiceus Tyrannidae 

 

U 

 Golden-bellied 

Flycatcher 

Myiodynastes 

hemichrysus Tyrannidae 

 

R 

 

Streaked Flycatcher 

Myiodynastes 

maculatus Tyrannidae 

 

O 

 Sulphur-bellied 

Flycatcher 

Myiodynastes 

luteiventris Tyrannidae 

 

O 

 Yellowish Flycatcher Empidonax flavescens Tyrannidae 

 

U 

 Dusky-capped 

Flycatcher Myiarchus tuberculifer Tyrannidae C C 

 Great-creasted 

Flycatcher Myiarchus crinitus Tyrannidae 

 

O 

 Tropical Pewee Contopus cinereus Tyrannidae 

 

R 

 Common Tody-

Flycatcher Todirostrum cinereum Tyrannidae U U 

 Mountain Elaenia Elaenia frantzii Tyrannidae 

 

U 

 

Eye-ringed Flatbill 

Rhynchocyclus 

brevirostris Tyrannidae 

 

U 

 Black Pheobe Sayornis nigricans Tyrannidae U U U 

Scale-crested Pygmy-

Tyrant Lophotriccus pileatus Tyrannidae 

 

U U 

Mistletoe Tyrannulet Zimmerius vilissimus Tyrannidae 

 

U 

 Olive-striped 

Flycatcher Mionectes olivaceus Tyrannidae 

 

C U 

Yellow-bellied 

Flycatcher Empidonax flaviventris Tyrannidae R R 

 White-throated 

Spadebill Platyrinchus mystaceus Tyrannidae 

 

U R 

Tropical Kingbird 

Tyrannus 

melancholicus Tyrannidae C C 

 Social Flycatcher Myiozetetes similis Tyrannidae C R 

 Great Kiskadee Pitangus sulphuratus Tyrannidae C U 

 

Boat-billed Flycatcher 

Megarhynchus 

pitangua Tyrannidae 

 

U 

 Yellow-bellied Elaenia Elaenia flavogaster Tyrannidae U R 
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Ochre-belled 

Flycatcher Mionectes oleagineus Tyrannidae 

 

R 

 Slaty-capped 

Flycatcher Leptopogon oleagineus Tyrannidae 

 

R 

 

Tufted Flycatcher 

Mitrephanes 

phaeocercus Tyrannidae 

 

U 

 Western Wood-pewee Contopus sordidulus Tyrannidae 

 

O 

 White-throated 

Flycatcher Empidonax albigularis Tyrannidae 

 

O 

 Olive-sided Flycatcher Contopus cooperi Tyrannidae 

 

O 

 Sepia-capped 

Flycatcher 

Leptopogon 

amaurocephalus Tyrannidae 

  

O 

Rough-legged 

Tyrannulet 

Phyllomyias 

burmeisteri Tyrannidae 

 

O 

 Nutting's Flycatcher Myiarchus nuttingi Tyrannidae O 

  Least Flycatcher Empidonax minimus Tyrannidae O 

  Sulphur-rumped 

Flycatcher 

Myiobius 

sulphureipygius Tyrannidae 

  

O 

Torrent Tyrannulet Serpophaga cinerea Tyrannidae 

  

R 

Rufous-browed 

Tyrannulet 

Phylloscartes 

superciliaris Tyrannidae 

  

O 

Brown-crested 

Flycatcher Myiarchus tyrannulus Tyrannidae O 

  Bananaquit Coereba flaveola Uncertain 

 

U C 

Cinnamon Becard 

Pachyramphus 

cinnamomeus Uncertain 

  

R 

Gray-headed Piprites Piprites griseiceps Uncertain 

  

R 

Philadelphia Vireo Vireo philadelphicus Vireonidae 

 

U 

 Lesser Greenlet Hylophilus decurtatus Vireonidae 

 

R 

 Yellow-throated Vireo Vireo flavifrons Vireonidae 

 

R 

 Brown-capped Vireo Vireo leucophrys Vireonidae 

 

R R 

Rufous-browed 

Peppershrike Cyclarhis gujanensis Vireonidae R 

  Blue-headed Vireo Vireo solitarius Vireonidae 

 

O 

 a
 These are subjective categories based upon species lists maintained at Costa Rican field 

stations run by the Organization for Tropical Studies. O = occasional, not likely to be 

found in appropriate habitat, R = rare, found sporadically in appropriate habitat, U = 

uncommon, occurring at low abundances in appropriate habitat, C = common, often 

encountered in appropriate habitat. 
b 

PM = premontane moist, 700-900m on the Pacific slope, MW = montane wet, above 

1100 m on both slopes, PW = premontane wet, below 900 m on Caribbean slope. 

Intermediate elevations are transition zones. 

 

  



 

150 

 

APPENDIX B 

LIST OF GOLDEN-WINGED WARBLERS, BLUE-WINGED WARBLERS, AND 

THEIR HYBIRDS ENCOUNTERED BETWEEN 2006-2010 IN THE CORDILLERA 

DE TILARÁN, COSTA RICA 

Species Date Sex Habitat
a
 Longitude

b
 Latitude

b
 

Elev. 

(m) 

Vermivora chrysoptera 20-Nov-06 M SF 84.67577 10.20401 1073 

Vermivora chrysoptera 16-Dec-06 F SF 84.67768 10.23513 1216 

Vermivora chrysoptera 16-Dec-06 M SF 84.67374 10.23640 1043 

Vermivora chrysoptera 31-Dec-06 M SF 84.67643 10.20508 1215 

Vermivora chrysoptera 23-Jan-07 M PF 84.67409 10.23650 1076 

Vermivora chrysoptera 1-Feb-07 M SF 84.67302 10.23316 1120 

Vermivora chrysoptera 6-Feb-07 M RI 84.68588 10.23935 1076 

Vermivora chrysoptera 9-Feb-07 F SF 84.68850 10.24873 1200 

Vermivora chrysoptera 16-Feb-07 M PF 84.70473 10.25148 1450 

Vermivora chrysoptera 23-Feb-07 M RI 84.68505 10.23884 1018 

Vermivora chrysoptera 24-Feb-07 M SF 84.69559 10.25501 1395 

Vermivora chrysoptera 1-Mar-07 M PF 84.69254 10.21014 1287 

Vermivora chrysoptera 2-Mar-07 M PF 84.70462 10.25728 1464 

Vermivora chrysoptera 2-Mar-07 M SF 84.69396 10.21075 1232 

Vermivora chrysoptera 16-Mar-07 M SF 84.68350 10.20601 1142 

Vermivora chrysoptera 16-Mar-07 M SF 84.67254 10.20076 1269 

Vermivora chrysoptera 8-Oct-07 M SF 84.67457 10.20689 1171 

Vermivora chrysoptera 15-Oct-07 M SF 84.69555 10.25412 1381 

Vermivora chrysoptera 19-Oct-07 M SF 84.67459 10.20386 1235 

Vermivora chrysoptera 19-Oct-07 F SF 84.69254 10.21014 1287 

Vermivora chrysoptera 23-Oct-07 F SF 84.67332 10.20399 1229 

Vermivora chrysoptera 23-Oct-07 M SF 84.69504 10.25412 1363 

Vermivora chrysoptera 6-Nov-07 M PF 84.64643 10.21529 1174 

Vermivora chrysoptera 8-Nov-07 M ND 84.67938 10.20944 1075 

Vermivora chrysoptera 11-Nov-07 M PF 84.67061 10.20195 1286 

Vermivora chrysoptera 21-Nov-07 M SF 84.69965 10.24986 1453 

Vermivora chrysoptera 23-Nov-07 M RI 84.69157 10.25889 1309 

Vermivora chrysoptera 24-Nov-07 M SF 84.67938 10.19224 1408 

Vermivora chrysoptera 30-Nov-07 M PF 84.64975 10.27568 1257 

Vermivora chrysoptera 1-Dec-07 F RI 84.64621 10.26470 1031 

Vermivora chrysoptera 6-Dec-07 M SF 84.69659 10.26105 1412 

Vermivora chrysoptera 7-Dec-07 F PF 84.68098 10.24969 1112 

Vermivora chrysoptera 10-Dec-07 M PF 84.65565 10.23947 1268 
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Vermivora chrysoptera 14-Dec-07 M PF 84.64634 10.24534 1074 

Vermivora chrysoptera 18-Jan-08 M SF 84.68986 10.26320 1313 

Vermivora chrysoptera 18-Jan-08 M SF 84.69447 10.25525 1364 

Vermivora chrysoptera 19-Jan-08 M SF 84.66349 10.22059 1174 

Vermivora chrysoptera 25-Jan-08 M PF 84.64247 10.21315 1076 

Vermivora chrysoptera 26-Jan-08 M ND 84.68799 10.20084 1263 

Vermivora chrysoptera 26-Jan-08 M SF 84.68870 10.20949 1201 

Vermivora chrysoptera 28-Jan-08 M SF 84.67199 10.21047 1059 

Vermivora chrysoptera 30-Jan-08 M RI 84.67163 10.20796 1129 

Vermivora chrysoptera 31-Jan-08 F SF 84.67123 10.20975 1101 

Vermivora chrysoptera 8-Feb-08 M SF 84.66796 10.20477 1258 

Vermivora chrysoptera 13-Feb-08 F RI 84.68869 10.23547 1115 

Vermivora chrysoptera 13-Feb-08 F SF 84.66795 10.20452 1297 

Vermivora chrysoptera 26-Feb-08 M SF 84.69060 10.21094 1218 

Vermivora chrysoptera 27-Feb-08 M RI 84.68904 10.23538 1127 

Vermivora chrysoptera 5-Mar-08 M PF 84.67103 10.22611 1090 

Vermivora chrysoptera 13-Mar-08 F SF 84.67943 10.22521 922 

Vermivora chrysoptera 18-Mar-08 M SF 84.66912 10.20441 1269 

Vermivora chrysoptera 19-Mar-08 M SF 84.67836 10.22804 955 

Vermivora chrysoptera 12-Jan-09 M PF 84.67049 10.20173 1289 

Vermivora chrysoptera 13-Jan-09 M ND 84.68890 10.20954 1179 

Vermivora chrysoptera 13-Jan-09 M SF 84.69447 10.21026 1236 

Vermivora chrysoptera 13-Jan-09 M AF 84.68098 10.21318 1019 

Vermivora chrysoptera 13-Jan-09 M SF 84.68144 10.20637 1113 

Vermivora chrysoptera 15-Jan-09 F SF 84.68717 10.23860 1050 

Vermivora chrysoptera 17-Jan-09 M RI 84.66859 10.21555 1003 

Vermivora chrysoptera 17-Jan-09 M SF 84.66904 10.21752 999 

Vermivora chrysoptera 17-Jan-09 M SF 84.66859 10.21555 1003 

Vermivora chrysoptera 19-Jan-09 M SF 84.64973 10.23165 1127 

Vermivora chrysoptera 21-Jan-09 M SF 84.67210 10.21167 1123 

Vermivora chrysoptera 23-Jan-09 M SF 84.68483 10.20442 1140 

Vermivora chrysoptera 24-Jan-09 M SF 84.66996 10.22930 1142 

Vermivora chrysoptera 24-Jan-09 M SF 84.66946 10.22405 1140 

Vermivora chrysoptera 30-Jan-09 M PF 84.69675 10.26171 1483 

Vermivora chrysoptera 30-Jan-09 M ND 84.68373 10.25327 1174 

Vermivora chrysoptera 30-Jan-09 M PF 84.69453 10.25891 1384 

Vermivora chrysoptera 7-Feb-09 M SF 84.68459 10.20461 1146 

Vermivora chrysoptera 12-Feb-09 M PF 84.68110 10.25271 1196 

Vermivora chrysoptera 16-Feb-09 M ND 84.67101 10.22814 1016 

Vermivora chrysoptera 17-Feb-09 M SF 84.66898 10.22583 1144 
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Vermivora chrysoptera 19-Feb-09 M SF 84.69305 10.25844 1347 

Vermivora chrysoptera 20-Feb-09 M ND 84.62715 10.23032 743  

Vermivora chrysoptera 24-Feb-09 F ND 84.68880 10.23549 1131 

Vermivora chrysoptera 24-Feb-09 M SF 84.66102 10.21635 1222 

Vermivora chrysoptera 4-Mar-09 M PF 84.68539 10.25583 1193 

Vermivora chrysoptera 6-Mar-09 M AF 84.69262 10.23931 1191 

Vermivora chrysoptera 6-Mar-09 M SF 84.70614 10.24621 1517 

Vermivora chrysoptera 7-Mar-09 M AF 84.68890 10.22970 1007 

Vermivora chrysoptera 7-Mar-09 M PF 84.66593 10.22356 1229 

Vermivora chrysoptera 9-Mar-09 M ND 84.68655 10.25710 1195 

Vermivora chrysoptera 10-Mar-09 M ND 84.68819 10.20085 1249 

Vermivora chrysoptera 11-Mar-09 M AF 84.68013 10.23933 987 

Vermivora chrysoptera 12-Mar-09 M ND 84.62859 10.22012 792  

Vermivora chrysoptera 14-Mar-09 M ND 84.66401 10.21113 1252 

Vermivora chrysoptera 17-Mar-09 M SF 84.69548 10.25531 1390 

Vermivora chrysoptera 19-Mar-09 M PF 84.66640 10.22879 1199 

Vermivora chrysoptera 21-Mar-09 M SF 84.65650 10.21567 1159 

Vermivora chrysoptera 8-Jan-10 M SF 84.67445 10.20399 1228 

Vermivora chrysoptera 8-Jan-10 M PF 84.66197 10.20002 1425 

Vermivora chrysoptera 12-Jan-10 M SF 84.66405 10.22169 1202 

Vermivora chrysoptera 14-Jan-10 M PF 84.63169 10.22410 823 

Vermivora chrysoptera 19-Jan-10 M SF 84.68464 10.24883 1180 

Vermivora chrysoptera 29-Jan-10 M SF 84.68234 10.24401 1095 

Vermivora chrysoptera 1-Feb-10 M SF 84.63732 10.23780 926  

Vermivora chrysoptera 3-Feb-10 M PF 84.68641 10.25663 1215 

Vermivora chrysoptera 5-Feb-10 F SF 84.68144 10.20637 1113 

Vermivora chrysoptera 8-Feb-10 M PF 84.62943 10.22594 786  

Vermivora chrysoptera 10-Feb-10 F SF 84.68242 10.24993 1079 

Vermivora chrysoptera 10-Feb-10 M SF 84.68444 10.25470 1149 

Vermivora chrysoptera 10-Feb-10 F SF 84.69068 10.25709 1273 

Vermivora chrysoptera 11-Feb-10 M PF 84.70566 10.25699 1477 

Vermivora chrysoptera 15-Feb-10 M SF 84.68928 10.20971 1220 

Vermivora chrysoptera 15-Feb-10 M SF 84.68253 10.21420 991  

Vermivora chrysoptera 20-Feb-10 F SF 84.67298 10.23367 1104 

Vermivora chrysoptera 20-Feb-10 M PF 84.63804 10.24053 842 

Vermivora chrysoptera 22-Feb-10 M AF 84.68574 10.24437 1134 

Vermivora chrysoptera 24-Feb-10 M PF 84.64857 10.25233 1096 

Vermivora chrysoptera 27-Feb-10 F AF 84.68578 10.22597 901 

Vermivora chrysoptera 2-Mar-10 M SF 84.66921 10.22483 1215 

Vermivora chrysoptera 2-Mar-10 M SF 84.68589 10.20331 1181 
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Vermivora chrysoptera 10-Mar-10 F SF 84.69967 10.20499 1416 

Vermivora chrysoptera 

 

F SF 84.66831 10.21343 1080 

Vermivora chrysoptera 

 

F SF 84.69475 10.25448 1350 

Vermivora chrysoptera 

 

F RI 84.67768 10.23513 1006 

Vermivora chrysoptera 

 

F SF 84.68850 10.24873 1200 

Vermivora chrysoptera 

 

F SF 84.68350 10.20601 1142 

Vermivora chrysoptera 

 

M SF 84.67577 10.20401 1230 

Vermivora chrysoptera 

 

M RI 84.68588 10.23935 1076 

Vermivora chrysoptera 

 

M RI 84.68044 10.21351 1014 

Vermivora sp. 
c
 

 

M SF 84.68350 10.20601 

 Vermivora sp. 
d
 15-Feb-10 M SF 84.67161 10.20981 1149 

Vermivora pinus 18-Mar-08 M AF 84.67872 10.22592 930 

Vermivora pinus 14-Feb-09 M SF 84.66978 10.22174 1096 

 
a
 PF = primary forest, SF = secondary forest, RI = riverside forest, ND = naturally 

disturbed forest such as large canopy gaps, AF = agroforest such as shade coffee farm. 
b
 Coordinates recorded in decimal degrees using a WGS84 datum. 

c
 Lawrence’s type hybrid 

d
 Brewster’s type hybrid
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