KIDA'S FORMULA AND CONGRUENCES

R Pollack

T Weston

University of Massachusetts - Amherst, weston@math.umass.edu

Follow this and additional works at: https://scholarworks.umass.edu/math_faculty_pubs
Part of the Physical Sciences and Mathematics Commons

Recommended Citation

Pollack, R and Weston, T, "KIDA'S FORMULA AND CONGRUENCES" (2005). Mathematics and Statistics Department Faculty Publication Series. 1195.
Retrieved from https://scholarworks.umass.edu/math_faculty_pubs/1195

KIDA'S FORMULA AND CONGRUENCES

ROBERT POLLACK AND TOM WESTON

1. Introduction

Let f be a modular eigenform of weight at least two and let F be a finite abelian extension of \mathbf{Q}. Fix an odd prime p at which f is ordinary in the sense that the $p^{\text {th }}$ Fourier coefficient of f is not divisible by p. In Iwasawa theory, one associates two objects to f over the cyclotomic \mathbf{Z}_{p}-extension F_{∞} of F : a Selmer group $\operatorname{Sel}\left(F_{\infty}, A_{f}\right)$ (where A_{f} denotes the divisible version of the two-dimensional Galois representation attached to f) and a p-adic L-function $L_{p}\left(F_{\infty}, f\right)$. In this paper we prove a formula, generalizing work of Kida and Hachimori-Matsuno, relating the Iwasawa invariants of these objects over F with their Iwasawa invariants over p-extensions of F.

For Selmer groups our results are significantly more general. Let T be a lattice in a nearly ordinary p-adic Galois representation V; set $A=V / T$. When $\operatorname{Sel}\left(F_{\infty}, A\right)$ is a cotorsion Iwasawa module, its Iwasawa μ-invariant $\mu^{\text {alg }}\left(F_{\infty}, A\right)$ is said to vanish if $\operatorname{Sel}\left(F_{\infty}, A\right)$ is cofinitely generated and its λ-invariant $\lambda^{\text {alg }}\left(F_{\infty}, A\right)$ is simply its p-adic corank. We prove the following result relating these invariants in a p-extension.

Theorem 1. Let F^{\prime} / F be a finite Galois p-extension that is unramified at all places dividing p. Assume that T satisfies the technical assumptions (1)-(5) of Section 2. If $\operatorname{Sel}\left(F_{\infty}, A\right)$ is Λ-cotorsion with $\mu^{\text {alg }}\left(F_{\infty}, A\right)=0$, then $\operatorname{Sel}\left(F_{\infty}^{\prime}, A\right)$ is Λ-cotorsion with $\mu^{\text {alg }}\left(F_{\infty}^{\prime}, A\right)=0$. Moreover, in this case

$$
\lambda^{\mathrm{alg}}\left(F_{\infty}^{\prime}, A\right)=\left[F_{\infty}^{\prime}: F_{\infty}\right] \cdot \lambda^{\mathrm{alg}}\left(F_{\infty}, A\right)+\sum_{w^{\prime}} m\left(F_{\infty, w^{\prime}}^{\prime} / F_{\infty, w}, V\right)
$$

where the sum extends over places w^{\prime} of F_{∞}^{\prime} which are ramified in $F_{\infty}^{\prime} / F_{\infty}$.
If V is associated to a cuspform f and F^{\prime} is an abelian extension of \mathbf{Q}, then the same results hold for the analytic Iwasawa invariants of f.

Here $m\left(F_{\infty, w^{\prime}}^{\prime} / F_{\infty, w}, V\right)$ is a certain difference of local multiplicities defined in Section 2.1. In the case of Galois representations associated to Hilbert modular forms, these local factors can be made quite explicit; see Section 4.1 for details.

It follows from Theorem 1 and work of Kato that if the p-adic main conjecture holds for a modular form f over \mathbf{Q}, then it holds for f over all abelian p-extensions of \mathbf{Q}; see Section 4.2 for details.

These Riemann-Hurwitz type formulas were first discovered by Kida 5] in the context of λ-invariants of CM fields. More precisely, when F^{\prime} / F is a p-extension of CM fields and $\mu^{-}\left(F_{\infty} / F\right)=0$, Kida gave a precise formula for $\lambda^{-}\left(F_{\infty}^{\prime} / F^{\prime}\right)$ in terms of $\lambda^{-}\left(F_{\infty} / F\right)$ and local data involving the primes that ramify in F^{\prime} / F. (See also [4] for a representation theoretic interpretation of Kida's result.) This formula was generalized to Selmer groups of elliptic curves at ordinary primes by Wingberg [12] in the CM case and Hachimori-Matsuno [3] in the general case. The analytic

[^0]analogue was first established for ideal class groups by Sinnott 10 and for elliptic curves by Matsuno [7].

Our proof is most closely related to the arguments in [10] and [7] where congruences implicitly played a large role in their study of analytic λ-invariants. In this paper, we make the role of congruences more explicit and apply these methods to study both algebraic and analytic λ-invariants.

As is usual, we first reduce to the case where F^{\prime} / F is abelian. (Some care is required to show that our local factors are well behaved in towers of fields; this is discussed in Section [2.1) In this case, the λ-invariant of V over F^{\prime} can be expressed as the sum of the λ-invariants of twists of V by characters of $\operatorname{Gal}\left(F^{\prime} / F\right)$. The key observation (already visible in both [10] and [7]) is that since $\operatorname{Gal}\left(F^{\prime} / F\right)$ is a p group, all of its characters are trivial modulo a prime over p and, thus, the twisted Galois representations are all congruent to V modulo a prime over p. The algebraic case of Theorem then follows from the results of 11] which gives a precise local formula for the difference between λ-invariants of congruent Galois representations. The analytic case is handled similarly using the results of 1].

The basic principle behind this argument is that a formula relating the Iwasawa invariants of congruent Galois representations should imply of a transition formula for these invariants in p-extensions. As an example of this, in Section 4.3, we use results of [2] to prove a Kida formula for the Iwasawa invariants (in the sense of [8, (6, (9) of weight 2 modular forms at supersingular primes.

2. Algebraic invariants

2.1. Local preliminaries. We begin by studying the local terms that appear in our results. Fix distinct primes ℓ and p and let L denote a finite extension of the cyclotomic \mathbf{Z}_{p}-extension of \mathbf{Q}_{ℓ}. Fix a field K of characteristic zero and a finitedimensional K-vector space V endowed with a continuous K-linear action of the absolute Galois group G_{L} of L. Set

$$
m_{L}(V):=\operatorname{dim}_{K}\left(V_{I_{L}}\right)^{G_{L}}
$$

the multiplicity of the trivial representation in the I_{L}-coinvariants of V. Note that this multiplicity is invariant under extension of scalars, so that we can enlarge K as necessary.

Let L^{\prime} be a finite Galois p-extension of L. Note that L^{\prime} must be cyclic and totally ramified since L contains the \mathbf{Z}_{p}-extension of \mathbf{Q}_{ℓ}. Let G denote the Galois group of L^{\prime} / L. Assuming that K contains all $\left[L^{\prime}: L\right]$-power roots of unity, for a character $\chi: G \rightarrow K^{\times}$of G, we set $V_{\chi}=V \otimes_{K} K(\chi)$ with $K(\chi)$ a one-dimensional K-vector space on which G acts via χ. We define

$$
m\left(L^{\prime} / L, V\right):=\sum_{\chi \in G^{\vee}} m_{L}(V)-m_{L}\left(V_{\chi}\right)
$$

where G^{\vee} denotes the K-dual of G.
The next result shows how these invariants behave in towers of fields.
Lemma 2.1. Let $L^{\prime \prime}$ be a finite Galois p-extension of L and let L^{\prime} be a Galois extension of L contained in L^{\prime}. Assume that K contains all $\left[L^{\prime \prime}: L\right]$-power roots of unity. Then

$$
m\left(L^{\prime \prime} / L, V\right)=\left[L^{\prime \prime}: L^{\prime}\right] \cdot m\left(L^{\prime} / L, V\right)+m\left(L^{\prime \prime} / L^{\prime}, V\right)
$$

Proof. Set $G=\operatorname{Gal}\left(L^{\prime \prime} / L\right)$ and $H=\operatorname{Gal}\left(L^{\prime \prime} / L^{\prime}\right)$. Consider the Galois group $G_{L} / I_{L^{\prime \prime}}$ over L of the maximal unramified extension of $L^{\prime \prime}$. It sits in an exact sequence

$$
\begin{equation*}
0 \rightarrow G_{L^{\prime \prime}} / I_{L^{\prime \prime}} \rightarrow G_{L} / I_{L^{\prime \prime}} \rightarrow G \rightarrow 0 \tag{1}
\end{equation*}
$$

which is in fact split since the maximal unramified extensions of both L and $L^{\prime \prime}$ are obtained by adjoining all prime-to- p roots of unity.

Fix a character $\chi \in G^{\vee}$. We compute

$$
\begin{aligned}
& m_{L}\left(V_{\chi}\right)=\operatorname{dim}_{K}\left(\left(V_{\chi}\right)_{I_{L}}\right)^{G_{L}} \\
&=\operatorname{dim}_{K}\left(\left(\left(\left(V_{\chi}\right)_{I_{L^{\prime \prime}}}\right)_{G}\right)^{G_{L^{\prime \prime}}}\right)^{G} \\
&=\operatorname{dim}_{K}\left(\left(\left(\left(V_{\chi}\right)_{I_{L^{\prime \prime}}}\right)^{G_{L^{\prime \prime}}}\right)_{G}\right)^{G} \\
& \text { since (11) is split } \\
&=\operatorname{dim}_{K}\left(\left(\left(V_{\chi}\right)_{I_{L^{\prime \prime}}}\right)^{G_{L^{\prime \prime}}}\right)^{G} \quad \text { since } G \text { is finite cyclic } \\
&=\operatorname{dim}_{K}\left(\left(V_{I_{L^{\prime \prime}}}\right)^{G_{L^{\prime \prime}}} \otimes \chi\right)^{G} \quad \text { since } \chi \text { is trivial on } G_{L^{\prime \prime}}
\end{aligned}
$$

The lemma thus follows from the following purely group-theoretical statement applied with $W=\left(V_{I_{L^{\prime \prime}}}\right)^{G_{L^{\prime \prime}}}$: for a finite dimensional representation W of a finite abelian group G over a field of characteristic zero containing $\mu_{\# G}$, we have

$$
\begin{aligned}
& \sum_{\chi \in G^{\vee}}\left(\langle W, 1\rangle_{G}-\langle W, \chi\rangle_{G}\right)= \\
& \quad \# H \cdot \sum_{\chi \in(G / H)^{\vee}}\left(\langle W, 1\rangle_{G}-\langle W, \chi\rangle_{G}\right)+\sum_{\chi \in H^{\vee}}\left(\langle W, 1\rangle_{H}-\langle W, \chi\rangle_{H}\right)
\end{aligned}
$$

for any subgroup H of G; here $\langle W, \chi\rangle_{G}\left(\right.$ resp. $\left.\langle W, \chi\rangle_{H}\right)$ is the multiplicity of the character χ in W regarded as a representation of G (resp. H). To prove this, we compute

$$
\begin{aligned}
\sum_{\chi \in G^{\vee}} & \left(\langle W, 1\rangle_{G}-\langle W, \chi\rangle_{G}\right) \\
& =\# G \cdot\langle W, 1\rangle_{G}-\left\langle W, \operatorname{Ind}_{1}^{G} 1\right\rangle_{G} \\
& =\# G \cdot\langle W, 1\rangle_{G}-\# H \cdot\left\langle W, \operatorname{Ind}_{H}^{G} 1\right\rangle_{G}+\# H \cdot\left\langle W, \operatorname{Ind}_{H}^{G} 1\right\rangle_{G}-\left\langle W, \operatorname{Ind}_{1}^{G} 1\right\rangle_{G} \\
& =\# H \cdot \sum_{\chi \in(G / H)^{\vee}}\left(\langle W, 1\rangle_{G}-\langle W, \chi\rangle_{G}\right)+\sum_{\chi \in H^{\vee}}\left(\left\langle W, \operatorname{Ind}_{H}^{G} 1\right\rangle_{G}-\left\langle W, \operatorname{Ind}_{H}^{G} \chi\right\rangle_{G}\right) \\
& =\# H \cdot \sum_{\chi \in(G / H)^{\vee}}\left(\langle W, 1\rangle_{G}-\langle W, \chi\rangle_{G}\right)+\sum_{\chi \in H^{\vee}}\left(\langle W, 1\rangle_{H}-\langle W, \chi\rangle_{H}\right)
\end{aligned}
$$

by Frobenius reciprocity.
2.2. Global preliminaries. Fix a number field F; for simplicity we assume that F is either totally real or totally imaginary. Fix also an odd prime p and a finite extension K of \mathbf{Q}_{p}; we write \mathcal{O} for the ring of integers of K, π for a fixed choice of uniformizer of \mathcal{O}, and $k=\mathcal{O} / \pi$ for the residue field of \mathcal{O}.

Let T be a nearly ordinary Galois representation over F with coefficients in \mathcal{O}; that is, T is a free \mathcal{O}-module of some rank n endowed with an \mathcal{O}-linear action of
the absolute Galois group G_{F}, together with a choice for each place v of F dividing p of a complete flag

$$
0=T_{v}^{0} \subset T_{v}^{1} \subset \cdots \subset T_{v}^{n}=T
$$

stable under the action of the decomposition group $G_{v} \subseteq G_{F}$ of v. We make the following assumptions on T :
(1) For each place v dividing p we have

$$
\left(T_{v}^{i} / T_{v}^{i-1}\right) \otimes k \not \approx\left(T_{v}^{j} / T_{v}^{j-1}\right) \otimes k
$$

as $k\left[G_{v}\right]$-modules for all $i \neq j$;
(2) If F is totally real, then $\operatorname{rank} T^{c_{v}=1}$ is independent of the archimedean place v (here c_{v} is a complex conjugation at v);
(3) If F is totally imaginary, then n is even.

Remark 2.2. The conditions above are significantly more restrictive then are actually required to apply the results of [11]. As our main interest is in abelian (and thus necessarily Galois) extensions of \mathbf{Q}, we have chosen to include the assumptions (2) and (3) to simply the exposition. The assumption (1) is also stronger then necessary: all that is actually needed is that the centralizer of $T \otimes k$ consists entirely of scalars and that $\mathfrak{g l}_{n} / \mathfrak{b}_{v}$ has trivial adjoint G_{v}-invariants for all places v dividing p; here $\mathfrak{g l}_{n}$ denotes the p-adic Lie algebra of GL_{n} and \mathfrak{b}_{v} denotes the p-adic Lie algebra of the Borel subgroup associated to the complete flag at v. In particular, when T has rank 2, we may still allow the case that $T \otimes k$ has the form

$$
\left(\begin{array}{ll}
\chi & * \\
0 & \chi
\end{array}\right)
$$

so long as $*$ is non-trivial. (Equivalently, if T is associated to a modular form f, the required assumption is that f is p-distinguished.)

Set $A=T \otimes_{\mathcal{O}} K / \mathcal{O}$; it is a cofree \mathcal{O}-module of corank n with an \mathcal{O}-linear action of G_{F}. Let c equal the rank of $T_{v}^{c_{v}=1}$ (resp. $n / 2$) if F is totally real (resp. totally imaginary) and set

$$
A_{v}^{\mathrm{cr}}:=\operatorname{im}\left(T_{v}^{c} \hookrightarrow T \rightarrow A\right) .
$$

We define the Selmer group of A over the cyclotomic \mathbf{Z}_{p}-extension F_{∞} of F by
$\operatorname{Sel}\left(F_{\infty}, A\right)=\operatorname{ker}\left(H^{1}\left(F_{\infty}, A\right) \rightarrow\left(\underset{w \nmid p}{\oplus} H^{1}\left(F_{\infty, w}, A\right)\right) \times\left(\underset{w \mid p}{\oplus} H^{1}\left(F_{\infty, w}, A / A_{v}^{\mathrm{cr}}\right)\right)\right)$.
The Selmer group $\operatorname{Sel}\left(F_{\infty}, A\right)$ is naturally a module for the Iwasawa algebra $\Lambda_{\mathcal{O}}:=$ $\mathcal{O}\left[\left[\operatorname{Gal}\left(F_{\infty} / F\right)\right]\right]$. If $\operatorname{Sel}\left(F_{\infty}, A\right)$ is $\Lambda_{\mathcal{O}}$-cotorsion (that is, if the dual of $\operatorname{Sel}\left(F_{\infty}, A\right)$ is a torsion $\Lambda_{\mathcal{O}}$-module), then we write $\mu^{\text {alg }}\left(F_{\infty}, A\right)$ and $\lambda^{\text {alg }}\left(F_{\infty}, A\right)$ for its Iwasawa invariants; in particular, $\mu^{\text {alg }}\left(F_{\infty}, A\right)=0$ if and only if $\operatorname{Sel}\left(F_{\infty}, A\right)$ is a cofinitely generated \mathcal{O}-module, while $\lambda^{\operatorname{alg}}\left(F_{\infty}, A\right)$ is the \mathcal{O}-corank of $\operatorname{Sel}\left(F_{\infty}, A\right)$.

Remark 2.3. In the case that T is in fact an ordinary Galois representation (meaning that the action of inertia on each T_{v}^{i} / T_{v}^{i-1} is by an integer power e_{i} (independent of v) of the cyclotomic character such that $e_{1}>e_{2}>\ldots>e_{n}$), then our Selmer group $\operatorname{Sel}\left(F_{\infty}, A\right)$ is simply the Selmer group in the sense of Greenberg of a twist of A; see [11, Section 1.3] for details.
2.3. Extensions. Let F^{\prime} be a finite Galois extension of F with degree equal to a power of p. We write F_{∞}^{\prime} for the cyclotomic \mathbf{Z}_{p}-extension of F^{\prime} and set $G=$ $\operatorname{Gal}\left(F_{\infty}^{\prime} / F_{\infty}\right)$. Note that T satisfies hypotheses (1)-(3) over F^{\prime} as well, so that we may define $\operatorname{Sel}\left(F_{\infty}^{\prime}, A\right)$ analogously to $\operatorname{Sel}\left(F_{\infty}, A\right)$. (For (1) this follows from the fact that G_{v} acts on $\left(T_{v}^{i} / T_{v}^{i-1}\right) \otimes k$ by a character of prime-to- p order; for (2) and (3) it follows from the fact that p is assumed to be odd.)

Lemma 2.4. The restriction map

$$
\begin{equation*}
\operatorname{Sel}\left(F_{\infty}, A\right) \rightarrow \operatorname{Sel}\left(F_{\infty}^{\prime}, A\right)^{G} \tag{2}
\end{equation*}
$$

has finite kernel and cokernel.
Proof. This is straightforward from the definitions and the fact that G is finite and A is cofinitely generated; see [3, Lemma 3.3] for details.

We can use Lemma 2.4 to relate the μ-invariants of A over F_{∞} and F_{∞}^{\prime}.
Corollary 2.5. If $\operatorname{Sel}\left(F_{\infty}, A\right)$ is Λ-cotorsion with $\mu^{\text {alg }}\left(F_{\infty}, A\right)=0$, then $\operatorname{Sel}\left(F_{\infty}^{\prime}, A\right)$ is Λ-cotorsion with $\mu^{\text {alg }}\left(F_{\infty}^{\prime}, A\right)=0$.
Proof. This is a straightforward argument using Lemma 2.4 and Nakayama's lemma for compact local rings; see [3] Corollary 3.4] for details.

Fix a finite extension K^{\prime} of K containing all $\left[F^{\prime}: F\right]$-power roots of unity. Consider a character $\chi: G \rightarrow \mathcal{O}^{\prime \times}$ taking values in the ring of integers \mathcal{O}^{\prime} of K^{\prime}; note that χ is necessarily even since $\left[F^{\prime}: F\right]$ is odd. We set

$$
A_{\chi}=A \otimes_{\mathcal{O}} \mathcal{O}^{\prime}(\chi)
$$

where $\mathcal{O}^{\prime}(\chi)$ is a free \mathcal{O}^{\prime}-module of rank one with $G_{F_{\infty}}$-action given by χ. If we give A_{χ} the induced complete flags at places dividing p, then A_{χ} satisfies hypotheses (1)-(3) and we have

$$
A_{\chi, v}^{\mathrm{cr}}=A_{v}^{\mathrm{cr}} \otimes_{\mathcal{O}} \mathcal{O}^{\prime}(\chi) \subseteq A_{\chi}
$$

for each place v dividing p. We write $\operatorname{Sel}\left(F_{\infty}, A_{\chi}\right)$ for the corresponding Selmer group, regarded as a $\Lambda_{\mathcal{O}^{\prime}}$-module; in particular, by $\lambda^{\text {alg }}\left(F_{\infty}, A_{\chi}\right)$ we mean the \mathcal{O}^{\prime} corank of $\operatorname{Sel}\left(F_{\infty}, A_{\chi}\right)$, rather than the \mathcal{O}-corank. We write G^{\vee} for the set of all characters $\chi: G \rightarrow \mathcal{O}^{\prime \times}$.

Note that as $\mathcal{O}^{\prime}\left[\left[G_{F^{\prime}}\right]\right]$-modules we have

$$
A \otimes_{\mathcal{O}} \mathcal{O}^{\prime} \cong A_{\chi}
$$

from which it follows easily that

$$
\begin{equation*}
\left(\operatorname{Sel}\left(F_{\infty}^{\prime}, A\right) \otimes_{\mathcal{O}} \mathcal{O}^{\prime}(\chi)\right)^{G}=\operatorname{Sel}\left(F_{\infty}^{\prime}, A_{\chi}\right)^{G} \tag{3}
\end{equation*}
$$

Moreover, in the case that G is abelian,

$$
\begin{equation*}
\operatorname{Sel}\left(F_{\infty}^{\prime}, A\right) \otimes_{\mathcal{O}} \mathcal{O}^{\prime} \cong \oplus_{\chi \in G^{\vee}}\left(\operatorname{Sel}\left(F_{\infty}^{\prime}, A\right) \otimes_{\mathcal{O}} \mathcal{O}^{\prime}(\chi)\right)^{G} \tag{4}
\end{equation*}
$$

Applying Lemma 2.4 to each twist A_{χ}, we obtain the following decomposition of $\operatorname{Sel}\left(F_{\infty}^{\prime}, A\right)$.

Corollary 2.6. Assume that G is an abelian group. Then the map

$$
\underset{\chi \in G^{\vee}}{\oplus} \operatorname{Sel}\left(F_{\infty}, A_{\chi}\right) \rightarrow \operatorname{Sel}\left(F_{\infty}^{\prime}, A\right) \otimes_{\mathcal{O}} \mathcal{O}^{\prime}
$$

obtained from the maps (2), (3) and (4) has finite kernel and cokernel.

As an immediate corollary, we have the following.
Corollary 2.7. If $\operatorname{Sel}\left(F_{\infty}, A\right)$ is Λ-cotorsion with $\mu^{\mathrm{alg}}\left(F_{\infty}, A\right)=0$, then each group $\operatorname{Sel}\left(F_{\infty}, A_{\chi}\right)$ is $\Lambda_{\mathcal{O}^{\prime}}$-cotorsion with $\mu^{\mathrm{alg}}\left(F_{\infty}, A_{\chi}\right)=0$. Moreover, if G is abelian, then

$$
\lambda^{\mathrm{alg}}\left(F_{\infty}^{\prime}, A\right)=\sum_{\chi \in G^{\vee}} \lambda^{\mathrm{alg}}\left(F_{\infty}, A_{\chi}\right)
$$

2.4. Algebraic transition formula. We continue with the notation of the previous section. We write $R\left(F_{\infty}^{\prime} / F_{\infty}\right)$ for the set of prime-to- p places of F_{∞}^{\prime} which are ramified in $F_{\infty}^{\prime} / F_{\infty}$. For a place $w^{\prime} \in R\left(F_{\infty}^{\prime} / F_{\infty}\right)$, we write w for its restriction to F_{∞}.
Theorem 2.8. Let F^{\prime} / F be a finite Galois p-extension with Galois group G which is unramified at all places dividing p. Let T be a nearly ordinary Galois representation over F with coefficients in \mathcal{O} satisfying (1)-(3). Set $A=T \otimes K / \mathcal{O}$ and assume that:
(4) $H^{0}(F, A[\pi])=H^{0}\left(F, \operatorname{Hom}\left(A[\pi], \mu_{p}\right)\right)=0$;
(5) $H^{0}\left(I_{v}, A / A_{v}^{c r}\right)$ is \mathcal{O}-divisible for all v dividing p.

If $\operatorname{Sel}\left(F_{\infty}, A\right)$ is Λ-cotorsion with $\mu^{\operatorname{alg}}\left(F_{\infty}, A\right)=0$, then $\operatorname{Sel}\left(F_{\infty}^{\prime}, A\right)$ is Λ-cotorsion with $\mu^{\text {alg }}\left(F_{\infty}^{\prime}, A\right)=0$. Moreover, in this case,

$$
\lambda^{\mathrm{alg}}\left(F_{\infty}^{\prime}, A\right)=\left[F_{\infty}^{\prime}: F_{\infty}\right] \cdot \lambda^{\mathrm{alg}}\left(F_{\infty}, A\right)+\sum_{w^{\prime} \in R\left(F_{\infty}^{\prime} / F_{\infty}\right)} m\left(F_{\infty, w^{\prime}}^{\prime} / F_{\infty, w}, V\right)
$$

with $V=T \otimes K$ and $m\left(F_{\infty, w^{\prime}}^{\prime} / F_{\infty, w}, V\right)$ as in Section 2.1.
Note that $m\left(F_{\infty, w^{\prime}}^{\prime} / F_{\infty, w}, V\right)$ in fact depends only on w and not on w^{\prime}. The hypotheses (4) and (5) are needed to apply the results of 11; they will not otherwise appear in the proof below. We note that the assumption that F^{\prime} / F is unramified at p is primarily needed to assure that the condition (5) holds for twists of A as well.

Since p-groups are solvable and the only simple p-group is cyclic, the next lemma shows that it suffices to consider the case of $\mathbf{Z} / p \mathbf{Z}$-extensions.
Lemma 2.9. Let $F^{\prime \prime} / F$ be a Galois p-extension of number fields and let F^{\prime} be an intermediate extension which is Galois over F. Let T be as above. If Theorem 2.8 holds for T with respect to any two of the three field extensions $F^{\prime \prime} / F^{\prime}, F^{\prime} / F$ and $F^{\prime \prime} / F$, then it holds for T with respect to the third extension.
Proof. This is clear from Corollary [2.5 except for the λ-invariant formula. Substituting the formula for $\lambda\left(F_{\infty}^{\prime}, A\right)$ in terms of $\lambda\left(F_{\infty}, A\right)$ into the formula for $\lambda\left(F_{\infty}^{\prime \prime}, A\right)$ in terms of $\lambda\left(F_{\infty}^{\prime}, A\right)$, one finds that it suffices to show that

$$
\begin{aligned}
& \sum_{w^{\prime \prime} \in R\left(F_{\infty}^{\prime \prime} / F_{\infty}\right)} m\left(F_{\infty, w^{\prime \prime}}^{\prime \prime} / F_{\infty, w}, V\right)= \\
& {\left[F_{\infty}^{\prime \prime}: F_{\infty}^{\prime}\right] \cdot \sum_{w^{\prime} \in R\left(F_{\infty}^{\prime} / F_{\infty}\right)} m\left(F_{\infty, w^{\prime}}^{\prime} / F_{\infty, w}, V\right) } \\
&+\sum_{w^{\prime \prime} \in R\left(F_{\infty}^{\prime \prime} / F_{\infty}^{\prime}\right)} m\left(F_{\infty, w^{\prime \prime}}^{\prime \prime} / F_{\infty, w^{\prime}}^{\prime}, V\right) .
\end{aligned}
$$

This formula follows upon summing the formula of Lemma 2.1 over all $w^{\prime \prime} \in$ $R\left(F_{\infty}^{\prime \prime} / F_{\infty}\right)$ and using the two facts:

- $\left[F_{\infty}^{\prime \prime}: F_{\infty}^{\prime}\right] /\left[F_{\infty, w^{\prime \prime}}^{\prime \prime}: F_{\infty, w^{\prime}}^{\prime}\right]$ equals the number of places of $F_{\infty}^{\prime \prime}$ lying over w^{\prime} (since the residue field of $F_{\infty, w}$ has no p-extensions);
- $m\left(F_{\infty, w^{\prime \prime}}^{\prime \prime} / F_{\infty, w^{\prime}}^{\prime}, V\right)=0$ for any $w^{\prime \prime} \in R\left(F_{\infty}^{\prime \prime} / F_{\infty}\right)-R\left(F_{\infty}^{\prime \prime} / F_{\infty}^{\prime}\right)$.

Proof of Theorem 2.8. By Lemma 2.9 and the preceding remark, we may assume that $F_{\infty}^{\prime} / F_{\infty}$ is a cyclic extension of degree p. The fact that $\operatorname{Sel}\left(F_{\infty}^{\prime}, A\right)$ is cotorsion with trivial μ-invariant is simply Corollary 2.5 Furthermore, by Corollary 2.7 we have

$$
\lambda^{\mathrm{alg}}\left(F_{\infty}^{\prime}, A\right)=\sum_{\chi \in G^{\vee}} \lambda^{\mathrm{alg}}\left(F_{\infty}, A_{\chi}\right) .
$$

For $\chi \in G^{\vee}$, note that χ is trivial modulo a uniformizer π^{\prime} of \mathcal{O}^{\prime} as it takes values in μ_{p}. In particular, the residual representations $A_{\chi}\left[\pi^{\prime}\right]$ and $A[\pi]$ are isomorphic. Under the hypotheses (1)-(5), the result [11, Theorem 1] gives a precise formula for the relation between λ-invariants of congruent Galois representations. In the present case it takes the form:

$$
\lambda^{\mathrm{alg}}\left(F_{\infty}, A_{\chi}\right)=\lambda^{\mathrm{alg}}\left(F_{\infty}, A\right)+\sum_{w^{\prime} \nmid p}\left(m_{F_{\infty, w}}\left(V \otimes \omega^{-1}\right)-m_{F_{\infty, w}}\left(V_{\chi} \otimes \omega^{-1}\right)\right)
$$

where the sum is over all prime-to- p places w^{\prime} of F_{∞}^{\prime}, w denotes the place of F_{∞} lying under w^{\prime} and ω is the mod p cyclotomic character. The only non-zero terms in this sum are those for which w^{\prime} is ramified in $F_{\infty}^{\prime} / F_{\infty}$. For any such w^{\prime}, we have $\mu_{p} \subseteq F_{\infty, w}$ by local class field theory so that ω is in fact trivial at w; thus

$$
\lambda^{\mathrm{alg}}\left(F_{\infty}, A_{\chi}\right)=\lambda^{\mathrm{alg}}\left(F_{\infty}, A\right)+\sum_{w^{\prime} \in R\left(F_{\infty}^{\prime} / F_{\infty}\right)}\left(m_{F_{\infty, w}}(V)-m_{F_{\infty, w}}\left(V_{\chi}\right)\right)
$$

Summing over all $\chi \in G^{\vee}$ then yields

$$
\lambda^{\mathrm{alg}}\left(F_{\infty}^{\prime}, A\right)=\left[F_{\infty}^{\prime}: F_{\infty}\right] \cdot \lambda^{\mathrm{alg}}\left(F_{\infty}, A\right)+\sum_{w^{\prime} \in R\left(F_{\infty}^{\prime} / F_{\infty}\right)} m\left(F_{\infty, w^{\prime}}^{\prime} / F_{\infty, w}, V\right)
$$

which completes the proof.

3. Analytic invariants

3.1. Definitions. Let $f=\sum a_{n} q^{n}$ be a modular eigenform of weight $k \geq 2$, level N and character ε. Let K denote the finite extension of \mathbf{Q}_{p} generated by the Fourier coefficients of f (under some fixed embedding $\overline{\mathbf{Q}} \hookrightarrow \overline{\mathbf{Q}}_{p}$), let \mathcal{O} denote the ring of integers of K and let k denote the residue field of \mathcal{O}. Let V_{f} denote a twodimensional K-vector space with Galois action associated to f in the usual way; thus the characteristic polynomial of a Frobenius element at a prime $\ell \nmid N p$ is

$$
x^{2}-a_{\ell} x+\ell^{k-1} \varepsilon(\ell)
$$

Fix a Galois stable \mathcal{O}-lattice T_{f} in V_{f}. We assume that $T_{f} \otimes k$ is an irreducible Galois representation; in this case T_{f} is uniquely determined up to scaling. Set $A_{f}=T_{f} \otimes K / \mathcal{O}$.

Assuming that f is p-ordinary (in the sense that a_{p} is relatively prime to p) and fixing a canonical period for f, one can associate to f a p-adic L-function $L_{p}\left(\mathbf{Q}_{\infty} / \mathbf{Q}, f\right)$ which lies in $\Lambda_{\mathcal{O}}$. This is well-defined up to a p-adic unit (depending upon the choice of a canonical period) and thus has well-defined Iwasawa invariants.

Let F / \mathbf{Q} be a finite abelian extension and let F_{∞} denote the cyclotomic $\mathbf{Z}_{p^{-}}$ extension of F. For a character χ of $\operatorname{Gal}(F / \mathbf{Q})$, we denote by f_{χ} the modular eigenform $\sum a_{n} \chi(n) q^{n}$ obtained from f by twisting by χ (viewed as a Dirichlet character). If f is p-ordinary and F / \mathbf{Q} is unramified at p, then f_{χ} is again p ordinary and we define

$$
L_{p}\left(F_{\infty} / F, f\right)=\prod_{\chi \in \operatorname{Gal}(F / \mathbf{Q})^{\vee}} L_{p}\left(\mathbf{Q}_{\infty} / \mathbf{Q}, f_{\chi}\right)
$$

If F / \mathbf{Q} is ramified at p, it is still possible to define $L_{p}\left(F_{\infty} / F, f\right)$; see [7] pg. 5], for example.

If F_{1} and F_{2} are two distinct number fields whose cyclotomic \mathbf{Z}_{p}-extensions agree, the corresponding p-adic L-functions of f over F_{1} and F_{2} need not agree. However, it is easy to check that the Iwasawa invariants of these two power series are equal. We thus denote the Iwasawa invariants of $L_{p}\left(F_{\infty} / F, f\right)$ simply by $\mu^{\text {an }}\left(F_{\infty}, f\right)$ and $\lambda^{\mathrm{an}}\left(F_{\infty}, f\right)$.
3.2. Analytic transition formula. Let F / \mathbf{Q} be a finite abelian p-extension of \mathbf{Q} and let F^{\prime} be a finite p-extension of F such that F^{\prime} / \mathbf{Q} is abelian. As always, let F_{∞} and F_{∞}^{\prime} denote the cyclotomic \mathbf{Z}_{p}-extensions of F and F^{\prime}. As before, we write $R\left(F_{\infty}^{\prime} / F_{\infty}\right)$ for the set of prime-to- p places of F_{∞}^{\prime} which are ramified in $F_{\infty}^{\prime} / F_{\infty}$.

Theorem 3.1. Let f be a p-ordinary modular form such that $T_{f} \otimes k$ is irreducible and p-distinguished. If $\mu^{\text {an }}\left(F_{\infty}, f\right)=0$, then $\mu^{\text {an }}\left(F_{\infty}^{\prime}, f\right)=0$. Moreover, if this is the case, then

$$
\lambda^{\mathrm{an}}\left(F_{\infty}^{\prime}, f\right)=\left[F_{\infty}^{\prime}: F_{\infty}\right] \cdot \lambda^{\mathrm{an}}\left(F_{\infty}, f\right)+\sum_{w^{\prime} \in R\left(F_{\infty}^{\prime} / F_{\infty}\right)} m\left(F_{\infty, w^{\prime}}^{\prime} / F_{\infty, w}, V_{f}\right)
$$

Proof. By Lemma 2.9 we may assume $\left[F: \mathbf{Q}\right.$] is prime-to- p. Indeed, let F_{0} be the maximal subfield of F of prime-to- p degree over \mathbf{Q}. By Lemma [2.9] knowledge of the theorem for the two extensions F^{\prime} / F_{0} and F / F_{0} would then imply it for F^{\prime} / F as well.

We may further assume that F and F^{\prime} are unramified at p. Indeed, if $F^{\text {ur }}$ (resp. $F^{\prime \text { ur }}$) denotes the maximal subfield of $F_{\infty}\left(\right.$ resp. $\left.F_{\infty}^{\prime}\right)$ unramified at p, then $F^{\mathrm{ur}} \subseteq F^{\prime \text { ur }}$ and the cyclotomic \mathbf{Z}_{p}-extension of $F^{\text {ur }}$ (resp. $F^{\prime \text { ur }}$) is F_{∞} (resp. F_{∞}^{\prime}). Thus, by the comments at the end of Section 3.1 we may replace F by $F^{\text {ur }}$ and F^{\prime} by $F^{\prime \text { ur }}$ without altering the formula we are studying.

After making these reductions, we let M denote the (unique) p-extension of \mathbf{Q} inside of F^{\prime} such that $M F=F^{\prime}$. Set $G=\operatorname{Gal}(F / \mathbf{Q})$ and $H=\operatorname{Gal}(M / \mathbf{Q})$, so that $\operatorname{Gal}\left(F^{\prime} / \mathbf{Q}\right) \cong G \times H$. Then since F and F^{\prime} are unramified at p by definition, we have

$$
\begin{equation*}
\mu^{\mathrm{an}}\left(F_{\infty}, f\right)=\sum_{\psi \in \operatorname{Gal}(F / \mathbf{Q})^{\vee}} \mu^{\mathrm{an}}\left(\mathbf{Q}_{\infty}, f_{\psi}\right) \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
\mu^{\mathrm{an}}\left(F_{\infty}^{\prime}, f\right)=\sum_{\psi \in \operatorname{Gal}\left(F^{\prime} / \mathbf{Q}\right)^{\vee}} \mu^{\mathrm{an}}\left(\mathbf{Q}_{\infty}, f_{\psi}\right)=\sum_{\psi \in G^{\vee}} \sum_{\chi \in H^{\vee}} \mu^{\mathrm{an}}\left(\mathbf{Q}_{\infty}, f_{\psi \chi}\right) \tag{6}
\end{equation*}
$$

Since we are assuming that $\mu^{\text {an }}\left(F_{\infty}, f\right)=0$ and since these μ-invariants are nonnegative, from (5) it follows that $\mu^{\text {an }}\left(\mathbf{Q}_{\infty}, f_{\psi}\right)=0$ for each $\psi \in \operatorname{Gal}(F / \mathbf{Q})^{\vee}$.

Fix $\psi \in G^{\vee}$. For any $\chi \in H^{\vee}, \psi \chi$ is congruent to ψ modulo any prime over p and thus f_{χ} and $f_{\psi \chi}$ are congruent modulo any prime over p. Then, since $\mu^{\text {an }}\left(\mathbf{Q}_{\infty}, f_{\psi}\right)=$ 0 , by [1. Theorem 1] it follows that $\mu^{\text {an }}\left(\mathbf{Q}_{\infty}, f_{\psi \chi}\right)=0$ for each $\chi \in H^{\vee}$. Therefore, by (6) we have that $\mu^{\text {an }}\left(F_{\infty}^{\prime}, f\right)=0$ proving the first part of the theorem.

For λ-invariants, we again have

$$
\lambda^{\mathrm{an}}\left(F_{\infty}, f\right)=\sum_{\psi \in \operatorname{Gal}(F / \mathbf{Q})^{\vee}} \lambda^{\mathrm{an}}\left(\mathbf{Q}_{\infty}, f_{\psi}\right)
$$

and

$$
\begin{equation*}
\lambda^{\mathrm{an}}\left(F_{\infty}^{\prime}, f\right)=\sum_{\psi \in G^{\vee}} \sum_{\chi \in H^{\vee}} \lambda^{\mathrm{an}}\left(\mathbf{Q}_{\infty}, f_{\psi \chi}\right) \tag{7}
\end{equation*}
$$

By [1] Theorem 2] the congruence between f_{χ} and $f_{\psi \chi}$ implies that

$$
\lambda^{\mathrm{an}}\left(\mathbf{Q}_{\infty}, f_{\psi \chi}\right)-\lambda^{\mathrm{an}}\left(\mathbf{Q}_{\infty}, f_{\psi}\right)=
$$

where v denotes the place of \mathbf{Q}_{∞} lying under the place v^{\prime} of M_{∞}. Note that in [1] the sum extends over all prime-to- p places; however, the terms are trivial unless χ is ramified at v. Also note that the mod p cyclotomic characters that appear are actually trivial since if $\mathbf{Q}_{\infty, v}$ has a ramified Galois p-extensions for $v \nmid p$, then $\mu_{p} \subseteq \mathbf{Q}_{\infty, v}$.

Combining this with (7) and the definition of $m\left(M_{\infty, v^{\prime}} / \mathbf{Q}_{\infty, v}, V_{f_{\psi}}\right)$, we conclude that

$$
\begin{aligned}
\lambda^{\mathrm{an}}\left(F_{\infty}^{\prime}, f\right)= & \sum_{\psi \in G^{\vee}}\left(\left[F_{\infty}^{\prime}: F_{\infty}\right] \cdot \lambda^{\mathrm{an}}\left(\mathbf{Q}_{\infty}, f_{\psi}\right)+\sum_{v^{\prime} \in R\left(M_{\infty} / \mathbf{Q}_{\infty}\right)} m\left(M_{\infty, v^{\prime}} / \mathbf{Q}_{\infty, v}, V_{f_{\psi}}\right)\right) \\
= & {\left[F_{\infty}^{\prime}: F_{\infty}\right] \cdot \lambda^{\mathrm{an}}\left(F_{\infty}, f\right)+\sum_{v^{\prime} \in R\left(M_{\infty} / \mathbf{Q}_{\infty}\right)} \sum_{\psi \in G^{\vee}} m\left(M_{\infty, v^{\prime}} / \mathbf{Q}_{\infty, v}, V_{f_{\psi}}\right) } \\
= & {\left[F_{\infty}^{\prime}: F_{\infty}\right] \cdot \lambda^{\mathrm{an}}\left(F_{\infty}, f\right)+\sum_{v^{\prime} \in R\left(M_{\infty} / \mathbf{Q}_{\infty}\right)} g_{v^{\prime}}\left(F_{\infty}^{\prime} / M_{\infty}\right) . } \\
& m\left(M_{\infty, v^{\prime}} / \mathbf{Q}_{\infty, v}, \mathbf{Z}\left[\operatorname{Gal}\left(F_{\infty, w} / \mathbf{Q}_{\infty, v}\right)\right] \otimes V_{f}\right)
\end{aligned}
$$

where $g_{v^{\prime}}\left(F_{\infty}^{\prime} / M_{\infty}\right)$ denotes the number of places of F_{∞}^{\prime} above the place v^{\prime} of M_{∞}. By Frobenius reciprocity,

$$
m\left(M_{\infty, v^{\prime}} / \mathbf{Q}_{\infty, v}, \mathbf{Z}\left[\operatorname{Gal}\left(F_{\infty, w} / \mathbf{Q}_{\infty, v}\right)\right] \otimes V_{f}\right)=m\left(F_{\infty, w^{\prime}}^{\prime} / F_{\infty, w}, V_{f}\right)
$$

where w^{\prime} is the unique place of F_{∞}^{\prime} above v^{\prime} and w. It follows that

$$
\lambda\left(F_{\infty}^{\prime}, f\right)=\left[F_{\infty}^{\prime}: F_{\infty}\right] \cdot \lambda^{\mathrm{an}}\left(F_{\infty}, f\right)+\sum_{w^{\prime} \in R\left(F_{\infty}^{\prime} / F_{\infty}\right)} m\left(F_{\infty, w^{\prime}}^{\prime} / F_{\infty, w}, V_{f}\right)
$$

as desired.

4. Additional Results

4.1. Hilbert modular forms. We illustrate our results in the case of the twodimensional representation V_{f} associated to a Hilbert modular eigenform f over a totally real field F. Although in principle our analytic results should remain true
in this context, we focus on the less conjectural algebraic picture. Fix a G_{F}-stable lattice $T_{f} \subseteq V_{f}$ and let $A_{f}=T_{f} \otimes K / \mathcal{O}$.

Let F^{\prime} be a finite Galois p-extension of F unramified at all places dividing p; for simplicity we assume also that F^{\prime} is linearly disjoint from F_{∞}. Let v be a place of F not dividing p and fix a place v^{\prime} of F^{\prime} lying over v. For a character φ of G_{v}, we define

$$
h(\varphi)= \begin{cases}-1 & \varphi \operatorname{ramified},\left.\varphi\right|_{G_{v^{\prime}}} \text { unramified, and } \varphi \equiv 1 \bmod \pi \\ 0 & \varphi \not \equiv 1 \bmod \pi \text { or }\left.\varphi\right|_{G_{v^{\prime}}} \operatorname{ramified} \\ e_{v}\left(F^{\prime} / F\right)-1 & \varphi \text { unramified and } \varphi \equiv 1 \bmod \pi\end{cases}
$$

where $e_{v}\left(F^{\prime} / F\right)$ denotes the ramification index of v in F^{\prime} / F and $G_{v^{\prime}}$ is the decomposition group at v^{\prime}. Set

$$
h_{v}(f)= \begin{cases}h\left(\varphi_{1}\right)+h\left(\varphi_{2}\right) & f \text { principal series with characters } \varphi_{1}, \varphi_{2} \text { at } v \\ h(\varphi) & f \text { special with character } \varphi \text { at } v \\ 0 & f \text { supercuspidal or extraordinary at } v\end{cases}
$$

For example, if f is unramified principal series at v with Frobenius characteristic polynomial

$$
x^{2}-a_{v} x+c_{v},
$$

then

$$
h_{v}(f)= \begin{cases}2\left(e_{v}\left(F^{\prime} / F\right)-1\right) & a_{v} \equiv 2, c_{v} \equiv 1 \bmod \pi \\ e_{v}\left(F^{\prime} / F\right)-1 & a_{v} \equiv c_{v}+1 \not \equiv 2 \bmod \pi \\ 0 & \text { otherwise }\end{cases}
$$

Theorem 4.1. Assume that f is ordinary (in the sense that for each place v dividing p the Galois representation V_{f} has a unique one-dimensional quotient unramified at v) and that

$$
H^{0}\left(F, A_{f}[\pi]\right)=H^{0}\left(F, \operatorname{Hom}\left(A_{f}[\pi], \mu_{p}\right)\right)=0
$$

If $\operatorname{Sel}\left(F_{\infty}, A_{f}\right)$ is Λ-cotorsion with $\mu^{\text {alg }}\left(F_{\infty}, A_{f}\right)=0$, then also $\operatorname{Sel}\left(F_{\infty}^{\prime}, A_{f}\right)$ is Λ cotorsion with $\mu^{\text {alg }}\left(F_{\infty}^{\prime}, A_{f}\right)=0$ and

$$
\lambda^{\mathrm{alg}}\left(F_{\infty}^{\prime}, A\right)=\left[F_{\infty}^{\prime}: F_{\infty}\right] \cdot \lambda^{\mathrm{alg}}\left(F_{\infty}, A\right)+\sum_{v} g_{v}\left(F_{\infty}^{\prime} / F\right) \cdot h_{v}(f)
$$

here the sum is over the prime-to-p places of F ramified in F_{∞}^{\prime} and $g_{v}\left(F_{\infty}^{\prime} / F\right)$ denotes the number of places of F_{∞}^{\prime} lying over such a v.
Proof. Fix a place v of F not dividing p and let w denote a place of F_{∞} lying over v. Since there are exactly $g_{v}\left(F_{\infty} / F\right)$ such places, by Theorem 2.8 it suffices to prove that

$$
\begin{equation*}
h_{v}(f)=m\left(F_{\infty, w^{\prime}}^{\prime} / F_{\infty, w}, V_{f}\right):=\sum_{\chi \in \operatorname{Gal}\left(F_{\infty, w^{\prime}}^{\prime} / F_{\infty, w}\right)^{\vee}}\left(m_{F_{\infty, w}}\left(V_{f}\right)-m_{F_{\infty, w}}\left(V_{f, \chi}\right)\right) \tag{8}
\end{equation*}
$$

This is a straightforward case analysis. We will discuss the case that V_{f} is special associated to a character φ at v; the other cases are similar. In the special case, we have

$$
\left.V_{f, \chi}\right|_{I_{F \infty, w}}= \begin{cases}K^{\prime}(\chi \varphi) & \left.\chi \varphi\right|_{G_{F \infty, w}} \text { unramified } \\ 0 & \left.\chi \varphi\right|_{G_{F \infty, w}} \text { ramified }\end{cases}
$$

Since an unramified character has trivial restriction to $G_{F_{\infty, w}}$ if and only if it has trivial reduction modulo π, it follows that

$$
m_{F_{\infty, w}}\left(V_{f, \chi}\right)= \begin{cases}1 & \varphi \equiv 1 \bmod \pi \text { and }\left.\chi \varphi\right|_{G_{F_{\infty}, w}} \text { unramified } \\ 0 & \text { otherwise }\end{cases}
$$

In particular, the sum in (8) is zero if $\varphi \not \equiv 1 \bmod \pi$ or if φ is ramified when restricted to $G_{F_{\infty, w^{\prime}}^{\prime}}$ (as then $\chi \varphi$ is ramified for all $\chi \in G_{v}^{\vee}$). If $\varphi \equiv 1 \bmod \pi$ and φ itself is unramified, then $m_{F_{\infty, w}}\left(V_{f}\right)=1$ while $m_{F_{\infty, w}}\left(V_{f, \chi}\right)=0$ for $\chi \neq 1$, so that the sum in (8) is $\left[F_{\infty, w^{\prime}}^{\prime}: F_{\infty, w}\right]-1=e_{v}\left(F^{\prime} / F\right)-1$, as desired. Finally, if $\varphi \equiv 1 \bmod \pi$ and φ is ramified but becomes unramified when restricted to $G_{v^{\prime}}$, then $m_{F_{\infty}, w}\left(V_{f}\right)=0$, while $m_{F_{\infty}, w}\left(V_{f, \chi}\right)=1$ for a unique χ, so that the sum is -1 .

Suppose finally that f is in fact the Hilbert modular form associated to an elliptic curve E over F. The only principal series which occur are unramified and we have $c_{v} \equiv 1(\bmod \pi)\left(\right.$ since the determinant of V_{f} is cyclotomic and F_{∞} has a p-extension (namely, F_{∞}^{\prime}) ramified at v), so that

$$
h_{v}(f) \neq 0 \quad \Leftrightarrow \quad a_{v}=2 \Leftrightarrow E\left(F_{v}\right) \text { has a point of order } p
$$

in which case $h_{v}(f)=2\left(e_{v}\left(F^{\prime} / F\right)-1\right)$. The only characters which may occur in a special constituent are trivial or unramified quadratic, and we have $h_{v}(f)=$ $e_{v}\left(F^{\prime} / F\right)-1$ or 0 respectively. Thus Theorem4.1]recovers [3] Theorem 3.1] in this case.
4.2. The main conjecture. Let f be a p-ordinary elliptic modular eigenform of weight at least two and arbitrary level with associated Galois representation V_{f}. Let F be a finite abelian extension of \mathbf{Q} with cyclotomic \mathbf{Z}_{p}-extension F_{∞}. Recall that the p-adic Iwasawa main conjecture for f over F asserts that the Selmer group $\operatorname{Sel}\left(F_{\infty}, A_{f}\right)$ is Λ-cotorsion and that the characteristic ideal of its dual is generated by the p-adic L-function $L_{p}\left(F_{\infty}, f\right)$. In fact, when the residual representation of V_{f} is absolutely irreducible, it is known by work of Kato that $\operatorname{Sel}\left(F_{\infty}, A_{f}\right)$ is indeed Λ-cotorsion and that $L_{p}\left(F_{\infty}, f\right)$ is an element of the characteristic ideal of $\operatorname{Sel}\left(F_{\infty}, A_{f}\right)$. In particular, this reduces the verification of the main conjecture for f over F to the equality of the algebraic and analytic Iwasawa invariants of f over F. The identical transition formulae in Theorems 2.8 and 3.1 thus yield the following immediate application to the main conjecture.

Theorem 4.2. Let F^{\prime} / F be a finite p-extension with F^{\prime} abelian over \mathbf{Q}. If the residual representation of V_{f} is absolutely irreducible and p-distinguished, then the main conjecture holds for f over F with $\mu\left(F_{\infty}, f\right)=0$ if and only if it holds for f over F^{\prime} with $\mu\left(F_{\infty}^{\prime}, f\right)=0$.

We note that in Theorem [2.8] it was assumed that F^{\prime} / F was unramified at all places over p. However, in this special case where F^{\prime} / \mathbf{Q} is abelian, this hypothesis can be removed. Indeed, one simply argues in an analogous way as at the start of Theorem 3.1 by replacing F^{\prime} (resp. F) by the maximal sub-extension of F_{∞}^{\prime} (resp. $\left.F_{\infty}\right)$ that is unramified at p.

For an example of Theorem 4.2 consider the eigenform

$$
\Delta=q \prod_{n \geq 1}\left(1-q^{n}\right)^{24}
$$

of weight 12 and level 1 . We take $p=11$. It is well known that Δ is congruent modulo 11 to the newform associated to the elliptic curve $X_{0}(11)$. The 11-adic main conjecture is known for $X_{0}(11)$ over \mathbf{Q}; it has trivial μ-invariant and λ-invariant equal to 1 (see, for instance, [1] Example 5.3.1]). We should be clear here that the non-triviality of λ in this case corresponds to a trivial zero of the p-adic L-function; we are using the Greenberg Selmer group which does account for the trivial zero.) It follows from [1 that the 11-adic main conjecture also holds for Δ over \mathbf{Q}, again with trivial μ-invariant and λ-invariant equal to 1 . Theorem 4.2 thus allows us to conclude that the main conjecture holds for Δ over any abelian 11-extension of \mathbf{Q}.

For a specific example, consider $F=\mathbf{Q}\left(\zeta_{23}\right)^{+}$; it is a cyclic 11-extension of \mathbf{Q}. We can easily use Theorem4.1 to compute its λ-invariant: using that $\tau(23)=18643272$ one finds that $h_{23}(\Delta)=0$, so that $\lambda\left(\mathbf{Q}\left(\zeta_{23}\right)^{+}, \Delta\right)=11$.

For a more interesting example, take F to be the unique subfield of $\mathbf{Q}\left(\zeta_{1123}\right)$ which is cyclic of order 11 over \mathbf{Q}. In this case we have

$$
\tau(1123) \equiv 2 \quad(\bmod 11)
$$

so that we have $h_{1123}(\Delta)=20$. Thus, in this case, Theorem 4.1 shows that $\lambda(F, \Delta)=31$.
4.3. The supersingular case. As mentioned in the introduction, the underlying principle of this paper is that the existence of a formula relating the λ-invariants of congruent Galois representations should imply a Kida-type formula for these invariants. We illustrate this now in the case of modular forms of weight two that are supersingular at p.

Let f be an eigenform of weight 2 and level N with Fourier coefficients in K some finite extension of \mathbf{Q}_{p}. Assume further than $p \nmid N$ and that $a_{p}(f)$ is not a p-adic unit. In [8], Perrin-Riou associates to f a pair of algebraic and analytic μ-invariants over \mathbf{Q}_{∞} which we denote by $\mu_{ \pm}^{\star}\left(\mathbf{Q}_{\infty}, f\right)$. (Here \star denotes either "alg" or "an" for algebraic and analytic respectively.) Moreover, when $\mu_{+}^{\star}\left(\mathbf{Q}_{\infty}, f\right)=\mu_{-}^{\star}\left(\mathbf{Q}_{\infty}, f\right)$ or when $a_{p}(f)=0$, she also defines corresponding λ-invariants $\lambda_{ \pm}^{\star}\left(\mathbf{Q}_{\infty}, f\right)$. When $a_{p}(f)=0$ these invariants coincide with the Iwasawa invariants of [6] and 9]. We also note that in 8 only the case of elliptic curves is treated, but the methods used there generalize to weight two modular forms.

We extend the definition of these invariants to the cyclotomic \mathbf{Z}_{p}-extension of an abelian extension F of \mathbf{Q}. As usual, by passing to the maximal subfield of F_{∞} unramified at p, we may assume that F is unramified at p. We define

$$
\mu_{ \pm}^{\star}\left(F_{\infty}, f\right)=\sum_{\psi \in \operatorname{Gal}(F / \mathbf{Q})^{\vee}} \mu_{ \pm}^{\star}\left(\mathbf{Q}_{\infty}, f_{\psi}\right) \quad \text { and } \quad \lambda_{ \pm}^{\star}\left(F_{\infty}, f\right)=\sum_{\psi \in \operatorname{Gal}(F / \mathbf{Q})^{\vee}} \lambda_{ \pm}^{\star}\left(\mathbf{Q}_{\infty}, f_{\psi}\right)
$$

for $\star \in\{\operatorname{alg}, \mathrm{an}\}$.
The following transition formula follows from the congruence results of [2].
Theorem 4.3. Let f be as above and assume further that f is congruent modulo some prime above p to a modular form with coefficients in \mathbf{Z}_{p}. Consider an extension of number fields F^{\prime} / F with F^{\prime} an abelian p-extension of \mathbf{Q}. If $\mu_{ \pm}^{\star}\left(F_{\infty}, f\right)=0$, then $\mu_{ \pm}^{\star}\left(F_{\infty}^{\prime}, f\right)=0$. Moreover, if this is the case, then

$$
\lambda_{ \pm}^{\star}\left(F_{\infty}^{\prime}, f\right)=\left[F_{\infty}^{\prime}: F_{\infty}\right] \cdot \lambda_{ \pm}^{\star}\left(F_{\infty}, f\right)+\sum_{w^{\prime} \in R\left(F_{\infty}^{\prime} / F_{\infty}\right)} m\left(F_{\infty, w^{\prime}}^{\prime} / F_{\infty, w}, V_{f}\right)
$$

In particular, if the main conjecture is true for f over F (with $\left.\mu_{ \pm}^{\star}\left(F_{\infty}, f\right)=0\right)$, then the main conjecture is true for f over F^{\prime} (with $\left.\mu_{ \pm}^{\star}\left(F_{\infty}^{\prime}, f\right)=0\right)$.
Proof. The proof of this theorem proceeds along the lines of the proof of Theorem [3.1] replacing the appeals to the results of [1, 11] to the results of [2]. The main result of [2] is a formula relating the $\lambda_{ \pm}^{\star}$-invariants of congruent supersingular weight two modular forms. This formula has the same shape as the formulas that appear in [1] and 11] which allows for the proof to proceed nearly verbatim. The hypothesis that f be congruent to a modular form with \mathbf{Z}_{p}-coefficients is needed because this hypothesis appears in the results of [2].

One difference to note is that in this proof we need to assume that F is a p extension of \mathbf{Q}. The reason for this assumption is that in the course of the proof we need to apply the results of [2] to the form f_{ψ} where $\psi \in \operatorname{Gal}(F / \mathbf{Q})^{\vee}$. We thus need to know that f_{ψ} is congruent to some modular form with coefficients in \mathbf{Z}_{p}. In the case that $\operatorname{Gal}(F / \mathbf{Q})$ is a p-group, f_{ψ} is congruent to f which by assumption is congruent to such a form.

References

[1] M. Emerton, R. Pollack and T. Weston, Variation of Iwasawa invariants in Hida families, to appear in Invent. Math.
[2] R. Greenberg, A. Iovita and R. Pollack, Iwasawa invariants of supersingular modular forms, preprint.
[3] Y. Hachimori and K. Matsuno, An analogue of Kida's formula for the Selmer groups of elliptic curves, J. Algebraic Geom. 8 (1999), no. 3, 581-601.
[4] K. Iwasawa, Riemann-Hurwitz formula and p-adic Galois representations for number fields, Tohoku Math. J. 33 (1981), 263-288.
[5] Y. Kida, ℓ-extensions of CM-fields and cyclotomic invariants, J. Number Theory 12 (1980), 519-528.
[6] S. Kobayashi, Iwasawa theory for elliptic curves at supersingular primes, Invent. Math. 152 (2003), 1-36.
[7] K. Matsuno, An analogue of Kida's formula for the p-adic L-functions of modular elliptic curves, J. Number Theory 84 (2000), 80-92.
[8] B. Perrin-Riou, Arithmétique des courbes elliptiques à réduction supersingulière en p, Experiment. Math. 12 (2003), no. 2, 155-186.
[9] R. Pollack, On the p-adic L-function of a modular form at a supersingular prime, Duke Math. J. 118 (2003), 523-558.
[10] W. Sinnott, On p-adic L-functions and the Riemann-Hurwitz genus formula, Comp. Math. 53 (1984), 3-17.
[11] T. Weston, Iwasawa invariants of Galois deformations to appear in Manuscripta Math.
[12] K. Wingberg, A Riemann-Hurwitz formula for the Selmer group of an elliptic curve with complex multiplication, Comment. Math. Helv. 63 (1988), 587-592.
(Robert Pollack) Department of Mathematics, Boston University, Boston, MA
(Tom Weston) Dept. of Mathematics, University of Massachusetts, Amherst, MA
E-mail address, Robert Pollack: rpollack@math.bu.edu
E-mail address, Tom Weston: weston@math.umass.edu

[^0]: Supported by NSF grants DMS-0439264 and DMS-0440708.

