University of Massachusetts Amherst ScholarWorks@UMass Amherst

Mathematics and Statistics Department Faculty Publication Series

Mathematics and Statistics

2005

KIDA'S FORMULA AND CONGRUENCES

R Pollack

T Weston

University of Massachusetts - Amherst, weston@math.umass.edu

Follow this and additional works at: https://scholarworks.umass.edu/math_faculty_pubs

Part of the Physical Sciences and Mathematics Commons

Recommended Citation

Pollack, R and Weston, T, "KIDA'S FORMULA AND CONGRUENCES" (2005). Mathematics and Statistics Department Faculty Publication Series. 1195.

Retrieved from https://scholarworks.umass.edu/math_faculty_pubs/1195

This Article is brought to you for free and open access by the Mathematics and Statistics at ScholarWorks@UMass Amherst. It has been accepted for inclusion in Mathematics and Statistics Department Faculty Publication Series by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please contact scholarworks@library.umass.edu.

KIDA'S FORMULA AND CONGRUENCES

ROBERT POLLACK AND TOM WESTON

1. Introduction

Let f be a modular eigenform of weight at least two and let F be a finite abelian extension of \mathbf{Q} . Fix an odd prime p at which f is ordinary in the sense that the p^{th} Fourier coefficient of f is not divisible by p. In Iwasawa theory, one associates two objects to f over the cyclotomic \mathbf{Z}_p -extension F_{∞} of F: a Selmer group $\text{Sel}(F_{\infty}, A_f)$ (where A_f denotes the divisible version of the two-dimensional Galois representation attached to f) and a p-adic L-function $L_p(F_{\infty}, f)$. In this paper we prove a formula, generalizing work of Kida and Hachimori–Matsuno, relating the Iwasawa invariants of these objects over F with their Iwasawa invariants over p-extensions of F.

For Selmer groups our results are significantly more general. Let T be a lattice in a nearly ordinary p-adic Galois representation V; set A = V/T. When $\mathrm{Sel}(F_\infty, A)$ is a cotorsion Iwasawa module, its Iwasawa μ -invariant $\mu^{\mathrm{alg}}(F_\infty, A)$ is said to vanish if $\mathrm{Sel}(F_\infty, A)$ is cofinitely generated and its λ -invariant $\lambda^{\mathrm{alg}}(F_\infty, A)$ is simply its p-adic corank. We prove the following result relating these invariants in a p-extension.

Theorem 1. Let F'/F be a finite Galois p-extension that is unramified at all places dividing p. Assume that T satisfies the technical assumptions (1)–(5) of Section 2. If $\operatorname{Sel}(F_{\infty},A)$ is Λ -cotorsion with $\mu^{\operatorname{alg}}(F_{\infty},A)=0$, then $\operatorname{Sel}(F'_{\infty},A)$ is Λ -cotorsion with $\mu^{\operatorname{alg}}(F'_{\infty},A)=0$. Moreover, in this case

$$\lambda^{\mathrm{alg}}(F_{\infty}',A) = [F_{\infty}':F_{\infty}] \cdot \lambda^{\mathrm{alg}}(F_{\infty},A) + \sum_{w'} m(F_{\infty,w'}'/F_{\infty,w},V)$$

where the sum extends over places w' of F'_{∞} which are ramified in F'_{∞}/F_{∞} . If V is associated to a cuspform f and F' is an abelian extension of \mathbf{Q} , then the same results hold for the analytic Iwasawa invariants of f.

Here $m(F'_{\infty,w'}/F_{\infty,w},V)$ is a certain difference of local multiplicities defined in Section 2.1. In the case of Galois representations associated to Hilbert modular forms, these local factors can be made quite explicit; see Section 4.1 for details.

It follows from Theorem 1 and work of Kato that if the p-adic main conjecture holds for a modular form f over \mathbf{Q} , then it holds for f over all abelian p-extensions of \mathbf{Q} ; see Section 4.2 for details.

These Riemann-Hurwitz type formulas were first discovered by Kida [5] in the context of λ -invariants of CM fields. More precisely, when F'/F is a p-extension of CM fields and $\mu^-(F_{\infty}/F) = 0$, Kida gave a precise formula for $\lambda^-(F'_{\infty}/F')$ in terms of $\lambda^-(F_{\infty}/F)$ and local data involving the primes that ramify in F'/F. (See also [4] for a representation theoretic interpretation of Kida's result.) This formula was generalized to Selmer groups of elliptic curves at ordinary primes by Wingberg [12] in the CM case and Hachimori–Matsuno [3] in the general case. The analytic

Supported by NSF grants DMS-0439264 and DMS-0440708.

analogue was first established for ideal class groups by Sinnott [10] and for elliptic curves by Matsuno [7].

Our proof is most closely related to the arguments in [10] and [7] where congruences implicitly played a large role in their study of analytic λ -invariants. In this paper, we make the role of congruences more explicit and apply these methods to study both algebraic and analytic λ -invariants.

As is usual, we first reduce to the case where F'/F is abelian. (Some care is required to show that our local factors are well behaved in towers of fields; this is discussed in Section 2.1.) In this case, the λ -invariant of V over F' can be expressed as the sum of the λ -invariants of twists of V by characters of $\operatorname{Gal}(F'/F)$. The key observation (already visible in both [10] and [7]) is that since $\operatorname{Gal}(F'/F)$ is a p-group, all of its characters are trivial modulo a prime over p and, thus, the twisted Galois representations are all congruent to V modulo a prime over p. The algebraic case of Theorem 1 then follows from the results of [11] which gives a precise local formula for the difference between λ -invariants of congruent Galois representations. The analytic case is handled similarly using the results of [1].

The basic principle behind this argument is that a formula relating the Iwasawa invariants of congruent Galois representations should imply of a transition formula for these invariants in p-extensions. As an example of this, in Section 4.3, we use results of [2] to prove a Kida formula for the Iwasawa invariants (in the sense of [8, 6, 9]) of weight 2 modular forms at supersingular primes.

2. Algebraic invariants

2.1. Local preliminaries. We begin by studying the local terms that appear in our results. Fix distinct primes ℓ and p and let L denote a finite extension of the cyclotomic \mathbf{Z}_p -extension of \mathbf{Q}_ℓ . Fix a field K of characteristic zero and a finite-dimensional K-vector space V endowed with a continuous K-linear action of the absolute Galois group G_L of L. Set

$$m_L(V) := \dim_K (V_{I_L})^{G_L},$$

the multiplicity of the trivial representation in the I_L -coinvariants of V. Note that this multiplicity is invariant under extension of scalars, so that we can enlarge K as necessary.

Let L' be a finite Galois p-extension of L. Note that L' must be cyclic and totally ramified since L contains the \mathbf{Z}_p -extension of \mathbf{Q}_ℓ . Let G denote the Galois group of L'/L. Assuming that K contains all [L':L]-power roots of unity, for a character $\chi:G\to K^\times$ of G, we set $V_\chi=V\otimes_K K(\chi)$ with $K(\chi)$ a one-dimensional K-vector space on which G acts via χ . We define

$$m(L'/L,V) := \sum_{\chi \in G^{\vee}} m_L(V) - m_L(V_{\chi})$$

where G^{\vee} denotes the K-dual of G.

The next result shows how these invariants behave in towers of fields.

Lemma 2.1. Let L'' be a finite Galois p-extension of L and let L' be a Galois extension of L contained in L'. Assume that K contains all [L'':L]-power roots of unity. Then

$$m(L''/L, V) = [L'' : L'] \cdot m(L'/L, V) + m(L''/L', V).$$

Proof. Set $G = \operatorname{Gal}(L''/L)$ and $H = \operatorname{Gal}(L''/L')$. Consider the Galois group $G_L/I_{L''}$ over L of the maximal unramified extension of L''. It sits in an exact sequence

$$(1) 0 \to G_{L''}/I_{L''} \to G_L/I_{L''} \to G \to 0$$

which is in fact split since the maximal unramified extensions of both L and L'' are obtained by adjoining all prime-to-p roots of unity.

Fix a character $\chi \in G^{\vee}$. We compute

$$\begin{split} m_L(V_\chi) &= \dim_K \left((V_\chi)_{I_L} \right)^{G_L} \\ &= \dim_K \left(\left(((V_\chi)_{I_{L''}})_G \right)^{G_{L''}} \right)^G \\ &= \dim_K \left(\left(((V_\chi)_{I_{L''}})^{G_{L''}} \right)_G \right)^G \quad \text{since (1) is split} \\ &= \dim_K \left(\left((V_\chi)_{I_{L''}} \right)^{G_{L''}} \right)^G \quad \text{since G is finite cyclic} \\ &= \dim_K \left((V_{I_{L''}})^{G_{L''}} \otimes \chi \right)^G \quad \text{since χ is trivial on $G_{L''}$.} \end{split}$$

The lemma thus follows from the following purely group-theoretical statement applied with $W=(V_{I_{L''}})^{G_{L''}}$: for a finite dimensional representation W of a finite abelian group G over a field of characteristic zero containing $\mu_{\#G}$, we have

$$\begin{split} \sum_{\chi \in G^{\vee}} \left(\langle W, 1 \rangle_{G} - \langle W, \chi \rangle_{G} \right) &= \\ \# H \cdot \sum_{\chi \in (G/H)^{\vee}} \left(\langle W, 1 \rangle_{G} - \langle W, \chi \rangle_{G} \right) + \sum_{\chi \in H^{\vee}} \left(\langle W, 1 \rangle_{H} - \langle W, \chi \rangle_{H} \right) \end{split}$$

for any subgroup H of G; here $\langle W, \chi \rangle_G$ (resp. $\langle W, \chi \rangle_H$) is the multiplicity of the character χ in W regarded as a representation of G (resp. H). To prove this, we compute

$$\begin{split} &\sum_{\chi \in G^{\vee}} \left(\left\langle W, 1 \right\rangle_{G} - \left\langle W, \chi \right\rangle_{G} \right) \\ &= \#G \cdot \left\langle W, 1 \right\rangle_{G} - \left\langle W, \operatorname{Ind}_{1}^{G} 1 \right\rangle_{G} \\ &= \#G \cdot \left\langle W, 1 \right\rangle_{G} - \#H \cdot \left\langle W, \operatorname{Ind}_{H}^{G} 1 \right\rangle_{G} + \#H \cdot \left\langle W, \operatorname{Ind}_{H}^{G} 1 \right\rangle_{G} - \left\langle W, \operatorname{Ind}_{1}^{G} 1 \right\rangle_{G} \\ &= \#H \cdot \sum_{\chi \in (G/H)^{\vee}} \left(\left\langle W, 1 \right\rangle_{G} - \left\langle W, \chi \right\rangle_{G} \right) + \sum_{\chi \in H^{\vee}} \left(\left\langle W, \operatorname{Ind}_{H}^{G} 1 \right\rangle_{G} - \left\langle W, \operatorname{Ind}_{H}^{G} \chi \right\rangle_{G} \right) \\ &= \#H \cdot \sum_{\chi \in (G/H)^{\vee}} \left(\left\langle W, 1 \right\rangle_{G} - \left\langle W, \chi \right\rangle_{G} \right) + \sum_{\chi \in H^{\vee}} \left(\left\langle W, 1 \right\rangle_{H} - \left\langle W, \chi \right\rangle_{H} \right) \end{split}$$

by Frobenius reciprocity.

2.2. Global preliminaries. Fix a number field F; for simplicity we assume that F is either totally real or totally imaginary. Fix also an odd prime p and a finite extension K of \mathbf{Q}_p ; we write \mathcal{O} for the ring of integers of K, π for a fixed choice of uniformizer of \mathcal{O} , and $k = \mathcal{O}/\pi$ for the residue field of \mathcal{O} .

Let T be a nearly ordinary Galois representation over F with coefficients in \mathcal{O} ; that is, T is a free \mathcal{O} -module of some rank n endowed with an \mathcal{O} -linear action of

the absolute Galois group G_F , together with a choice for each place v of F dividing p of a complete flag

$$0 = T_n^0 \subset T_n^1 \subset \cdots \subset T_n^n = T$$

stable under the action of the decomposition group $G_v \subseteq G_F$ of v. We make the following assumptions on T:

(1) For each place v dividing p we have

$$(T_v^i/T_v^{i-1}) \otimes k \ncong (T_v^j/T_v^{j-1}) \otimes k$$

as $k[G_v]$ -modules for all $i \neq j$;

- (2) If F is totally real, then rank $T^{c_v=1}$ is independent of the archimedean place v (here c_v is a complex conjugation at v);
- (3) If F is totally imaginary, then n is even.

Remark 2.2. The conditions above are significantly more restrictive then are actually required to apply the results of [11]. As our main interest is in abelian (and thus necessarily Galois) extensions of \mathbf{Q} , we have chosen to include the assumptions (2) and (3) to simply the exposition. The assumption (1) is also stronger then necessary: all that is actually needed is that the centralizer of $T \otimes k$ consists entirely of scalars and that $\mathfrak{gl}_n/\mathfrak{b}_v$ has trivial adjoint G_v -invariants for all places v dividing p; here \mathfrak{gl}_n denotes the p-adic Lie algebra of GL_n and \mathfrak{b}_v denotes the p-adic Lie algebra of the Borel subgroup associated to the complete flag at v. In particular, when T has rank 2, we may still allow the case that $T \otimes k$ has the form

$$\left(\begin{array}{cc} \chi & * \\ 0 & \chi \end{array}\right)$$

so long as * is non-trivial. (Equivalently, if T is associated to a modular form f, the required assumption is that f is p-distinguished.)

Set $A = T \otimes_{\mathcal{O}} K/\mathcal{O}$; it is a cofree \mathcal{O} -module of corank n with an \mathcal{O} -linear action of G_F . Let c equal the rank of $T_v^{c_v=1}$ (resp. n/2) if F is totally real (resp. totally imaginary) and set

$$A_v^{\operatorname{cr}} := \operatorname{im}(T_v^c \hookrightarrow T \twoheadrightarrow A).$$

We define the Selmer group of A over the cyclotomic \mathbf{Z}_p -extension F_{∞} of F by

$$\operatorname{Sel}(F_{\infty}, A) = \ker \left(H^{1}(F_{\infty}, A) \to \left(\bigoplus_{w \nmid p} H^{1}(F_{\infty, w}, A) \right) \times \left(\bigoplus_{w \mid p} H^{1}(F_{\infty, w}, A/A_{v}^{\operatorname{cr}}) \right) \right).$$

The Selmer group $\operatorname{Sel}(F_{\infty},A)$ is naturally a module for the Iwasawa algebra $\Lambda_{\mathcal{O}} := \mathcal{O}[[\operatorname{Gal}(F_{\infty}/F)]]$. If $\operatorname{Sel}(F_{\infty},A)$ is $\Lambda_{\mathcal{O}}$ -cotorsion (that is, if the dual of $\operatorname{Sel}(F_{\infty},A)$ is a torsion $\Lambda_{\mathcal{O}}$ -module), then we write $\mu^{\operatorname{alg}}(F_{\infty},A)$ and $\lambda^{\operatorname{alg}}(F_{\infty},A)$ for its Iwasawa invariants; in particular, $\mu^{\operatorname{alg}}(F_{\infty},A) = 0$ if and only if $\operatorname{Sel}(F_{\infty},A)$ is a cofinitely generated \mathcal{O} -module, while $\lambda^{\operatorname{alg}}(F_{\infty},A)$ is the \mathcal{O} -corank of $\operatorname{Sel}(F_{\infty},A)$.

Remark 2.3. In the case that T is in fact an *ordinary* Galois representation (meaning that the action of inertia on each T_v^i/T_v^{i-1} is by an integer power e_i (independent of v) of the cyclotomic character such that $e_1 > e_2 > \ldots > e_n$), then our Selmer group $\text{Sel}(F_{\infty}, A)$ is simply the Selmer group in the sense of Greenberg of a twist of A; see [11, Section 1.3] for details.

2.3. Extensions. Let F' be a finite Galois extension of F with degree equal to a power of p. We write F'_{∞} for the cyclotomic \mathbf{Z}_p -extension of F' and set $G = \operatorname{Gal}(F'_{\infty}/F_{\infty})$. Note that T satisfies hypotheses (1)–(3) over F' as well, so that we may define $\operatorname{Sel}(F'_{\infty}, A)$ analogously to $\operatorname{Sel}(F_{\infty}, A)$. (For (1) this follows from the fact that G_v acts on $(T_v^i/T_v^{i-1}) \otimes k$ by a character of prime-to-p order; for (2) and (3) it follows from the fact that p is assumed to be odd.)

Lemma 2.4. The restriction map

(2)
$$\operatorname{Sel}(F_{\infty}, A) \to \operatorname{Sel}(F'_{\infty}, A)^G$$

has finite kernel and cokernel.

Proof. This is straightforward from the definitions and the fact that G is finite and A is cofinitely generated; see [3, Lemma 3.3] for details.

We can use Lemma 2.4 to relate the μ -invariants of A over F_{∞} and F'_{∞} .

Corollary 2.5. If $Sel(F_{\infty}, A)$ is Λ -cotorsion with $\mu^{alg}(F_{\infty}, A) = 0$, then $Sel(F'_{\infty}, A)$ is Λ -cotorsion with $\mu^{alg}(F'_{\infty}, A) = 0$.

Proof. This is a straightforward argument using Lemma 2.4 and Nakayama's lemma for compact local rings; see [3, Corollary 3.4] for details.

Fix a finite extension K' of K containing all [F':F]-power roots of unity. Consider a character $\chi:G\to \mathcal{O}'^{\times}$ taking values in the ring of integers \mathcal{O}' of K'; note that χ is necessarily even since [F':F] is odd. We set

$$A_{\chi} = A \otimes_{\mathcal{O}} \mathcal{O}'(\chi)$$

where $\mathcal{O}'(\chi)$ is a free \mathcal{O}' -module of rank one with $G_{F_{\infty}}$ -action given by χ . If we give A_{χ} the induced complete flags at places dividing p, then A_{χ} satisfies hypotheses (1)–(3) and we have

$$A_{\chi,v}^{\mathrm{cr}} = A_v^{\mathrm{cr}} \otimes_{\mathcal{O}} \mathcal{O}'(\chi) \subseteq A_\chi$$

for each place v dividing p. We write $\mathrm{Sel}(F_\infty,A_\chi)$ for the corresponding Selmer group, regarded as a $\Lambda_{\mathcal{O}'}$ -module; in particular, by $\lambda^{\mathrm{alg}}(F_\infty,A_\chi)$ we mean the \mathcal{O}' -corank of $\mathrm{Sel}(F_\infty,A_\chi)$, rather than the \mathcal{O} -corank. We write G^\vee for the set of all characters $\chi:G\to\mathcal{O}'^\times$.

Note that as $\mathcal{O}'[[G_{F'}]]$ -modules we have

$$A \otimes_{\mathcal{O}} \mathcal{O}' \cong A_{\chi}$$

from which it follows easily that

(3)
$$\left(\operatorname{Sel}(F'_{\infty}, A) \otimes_{\mathcal{O}} \mathcal{O}'(\chi) \right)^{G} = \operatorname{Sel}(F'_{\infty}, A_{\chi})^{G}$$

Moreover, in the case that G is abelian,

(4)
$$\operatorname{Sel}(F'_{\infty}, A) \otimes_{\mathcal{O}} \mathcal{O}' \cong \bigoplus_{\chi \in G^{\vee}} \left(\operatorname{Sel}(F'_{\infty}, A) \otimes_{\mathcal{O}} \mathcal{O}'(\chi) \right)^{G}.$$

Applying Lemma 2.4 to each twist A_{χ} , we obtain the following decomposition of $\mathrm{Sel}(F'_{\infty},A)$.

Corollary 2.6. Assume that G is an abelian group. Then the map

$$\bigoplus_{\chi \in G^{\vee}} \operatorname{Sel}(F_{\infty}, A_{\chi}) \to \operatorname{Sel}(F'_{\infty}, A) \otimes_{\mathcal{O}} \mathcal{O}'$$

obtained from the maps (2), (3) and (4) has finite kernel and cokernel.

As an immediate corollary, we have the following.

Corollary 2.7. If $Sel(F_{\infty}, A)$ is Λ -cotorsion with $\mu^{alg}(F_{\infty}, A) = 0$, then each group $Sel(F_{\infty}, A_{\chi})$ is $\Lambda_{\mathcal{O}'}$ -cotorsion with $\mu^{alg}(F_{\infty}, A_{\chi}) = 0$. Moreover, if G is abelian, then

$$\lambda^{\mathrm{alg}}(F'_{\infty}, A) = \sum_{\chi \in G^{\vee}} \lambda^{\mathrm{alg}}(F_{\infty}, A_{\chi}).$$

2.4. Algebraic transition formula. We continue with the notation of the previous section. We write $R(F_{\infty}'/F_{\infty})$ for the set of prime-to-p places of F_{∞}' which are ramified in F_{∞}'/F_{∞} . For a place $w' \in R(F_{\infty}'/F_{\infty})$, we write w for its restriction to F_{∞} .

Theorem 2.8. Let F'/F be a finite Galois p-extension with Galois group G which is unramified at all places dividing p. Let T be a nearly ordinary Galois representation over F with coefficients in \mathcal{O} satisfying (1)–(3). Set $A = T \otimes K/\mathcal{O}$ and assume that:

- (4) $H^0(F, A[\pi]) = H^0(F, \text{Hom}(A[\pi], \mu_p)) = 0;$
- (5) $H^0(I_v, A/A_v^{cr})$ is \mathcal{O} -divisible for all v dividing p.

If $\operatorname{Sel}(F_{\infty}, A)$ is Λ -cotorsion with $\mu^{\operatorname{alg}}(F_{\infty}, A) = 0$, then $\operatorname{Sel}(F'_{\infty}, A)$ is Λ -cotorsion with $\mu^{\operatorname{alg}}(F'_{\infty}, A) = 0$. Moreover, in this case,

$$\lambda^{\mathrm{alg}}(F_{\infty}',A) = [F_{\infty}':F_{\infty}] \cdot \lambda^{\mathrm{alg}}(F_{\infty},A) + \sum_{w' \in R(F_{\infty}'/F_{\infty})} m(F_{\infty,w'}'/F_{\infty,w},V)$$

with $V = T \otimes K$ and $m(F'_{\infty,w'}/F_{\infty,w},V)$ as in Section 2.1.

Note that $m(F'_{\infty,w'}/F_{\infty,w},V)$ in fact depends only on w and not on w'. The hypotheses (4) and (5) are needed to apply the results of [11]; they will not otherwise appear in the proof below. We note that the assumption that F'/F is unramified at p is primarily needed to assure that the condition (5) holds for twists of A as well

Since p-groups are solvable and the only simple p-group is cyclic, the next lemma shows that it suffices to consider the case of $\mathbf{Z}/p\mathbf{Z}$ -extensions.

Lemma 2.9. Let F''/F be a Galois p-extension of number fields and let F' be an intermediate extension which is Galois over F. Let T be as above. If Theorem 2.8 holds for T with respect to any two of the three field extensions F''/F', F'/F and F''/F, then it holds for T with respect to the third extension.

Proof. This is clear from Corollary 2.5 except for the λ -invariant formula. Substituting the formula for $\lambda(F'_{\infty}, A)$ in terms of $\lambda(F_{\infty}, A)$ into the formula for $\lambda(F''_{\infty}, A)$ in terms of $\lambda(F'_{\infty}, A)$, one finds that it suffices to show that

$$\begin{split} \sum_{w'' \in R(F''_{\infty}/F_{\infty})} m(F''_{\infty,w''}/F_{\infty,w}, V) &= \\ [F''_{\infty}: F'_{\infty}] \cdot \sum_{w' \in R(F'_{\infty}/F_{\infty})} m(F'_{\infty,w'}/F_{\infty,w}, V) \\ &+ \sum_{w'' \in R(F''_{\infty}/F'_{\infty})} m(F''_{\infty,w''}/F'_{\infty,w'}, V). \end{split}$$

This formula follows upon summing the formula of Lemma 2.1 over all $w'' \in R(F''_{\infty}/F_{\infty})$ and using the two facts:

- $[F''_{\infty}: F'_{\infty}]/[F''_{\infty,w''}: F'_{\infty,w'}]$ equals the number of places of F''_{∞} lying over w' (since the residue field of $F_{\infty,w}$ has no p-extensions);
- $m(F''_{\infty,w''}/F'_{\infty,w'},V) = 0$ for any $w'' \in R(F''_{\infty}/F_{\infty}) R(F''_{\infty}/F'_{\infty})$.

Proof of Theorem 2.8. By Lemma 2.9 and the preceding remark, we may assume that F'_{∞}/F_{∞} is a cyclic extension of degree p. The fact that $\mathrm{Sel}(F'_{\infty}, A)$ is cotorsion with trivial μ -invariant is simply Corollary 2.5. Furthermore, by Corollary 2.7, we have

$$\lambda^{\mathrm{alg}}(F'_{\infty}, A) = \sum_{\chi \in G^{\vee}} \lambda^{\mathrm{alg}}(F_{\infty}, A_{\chi}).$$

For $\chi \in G^{\vee}$, note that χ is trivial modulo a uniformizer π' of \mathcal{O}' as it takes values in μ_p . In particular, the residual representations $A_{\chi}[\pi']$ and $A[\pi]$ are isomorphic. Under the hypotheses (1)–(5), the result [11, Theorem 1] gives a precise formula for the relation between λ -invariants of congruent Galois representations. In the present case it takes the form:

$$\lambda^{\mathrm{alg}}(F_{\infty}, A_{\chi}) = \lambda^{\mathrm{alg}}(F_{\infty}, A) + \sum_{w' \nmid p} \left(m_{F_{\infty, w}}(V \otimes \omega^{-1}) - m_{F_{\infty, w}}(V_{\chi} \otimes \omega^{-1}) \right)$$

where the sum is over all prime-to-p places w' of F'_{∞} , w denotes the place of F_{∞} lying under w' and ω is the mod p cyclotomic character. The only non-zero terms in this sum are those for which w' is ramified in F'_{∞}/F_{∞} . For any such w', we have $\mu_p \subseteq F_{\infty,w}$ by local class field theory so that ω is in fact trivial at w; thus

$$\lambda^{\mathrm{alg}}(F_{\infty}, A_{\chi}) = \lambda^{\mathrm{alg}}(F_{\infty}, A) + \sum_{w' \in R(F'_{\infty}/F_{\infty})} \left(m_{F_{\infty,w}}(V) - m_{F_{\infty,w}}(V_{\chi}) \right).$$

Summing over all $\chi \in G^{\vee}$ then yields

$$\lambda^{\mathrm{alg}}(F_{\infty}',A) = [F_{\infty}':F_{\infty}] \cdot \lambda^{\mathrm{alg}}(F_{\infty},A) + \sum_{w' \in R(F_{\infty}'/F_{\infty})} m(F_{\infty,w'}'/F_{\infty,w},V)$$

which completes the proof.

3. Analytic invariants

3.1. **Definitions.** Let $f = \sum a_n q^n$ be a modular eigenform of weight $k \geq 2$, level N and character ε . Let K denote the finite extension of \mathbf{Q}_p generated by the Fourier coefficients of f (under some fixed embedding $\bar{\mathbf{Q}} \hookrightarrow \bar{\mathbf{Q}}_p$), let \mathcal{O} denote the ring of integers of K and let k denote the residue field of \mathcal{O} . Let V_f denote a two-dimensional K-vector space with Galois action associated to f in the usual way; thus the characteristic polynomial of a Frobenius element at a prime $\ell \nmid Np$ is

$$x^2 - a_{\ell}x + \ell^{k-1}\varepsilon(\ell)$$
.

Fix a Galois stable \mathcal{O} -lattice T_f in V_f . We assume that $T_f \otimes k$ is an irreducible Galois representation; in this case T_f is uniquely determined up to scaling. Set $A_f = T_f \otimes K/\mathcal{O}$.

Assuming that f is p-ordinary (in the sense that a_p is relatively prime to p) and fixing a canonical period for f, one can associate to f a p-adic L-function $L_p(\mathbf{Q}_{\infty}/\mathbf{Q}, f)$ which lies in $\Lambda_{\mathcal{O}}$. This is well-defined up to a p-adic unit (depending upon the choice of a canonical period) and thus has well-defined Iwasawa invariants.

Let F/\mathbf{Q} be a finite abelian extension and let F_{∞} denote the cyclotomic \mathbf{Z}_p -extension of F. For a character χ of $\mathrm{Gal}(F/\mathbf{Q})$, we denote by f_{χ} the modular eigenform $\sum a_n \chi(n) q^n$ obtained from f by twisting by χ (viewed as a Dirichlet character). If f is p-ordinary and F/\mathbf{Q} is unramified at p, then f_{χ} is again p-ordinary and we define

$$L_p(F_{\infty}/F, f) = \prod_{\chi \in \operatorname{Gal}(F/\mathbf{Q})^{\vee}} L_p(\mathbf{Q}_{\infty}/\mathbf{Q}, f_{\chi}).$$

If F/\mathbf{Q} is ramified at p, it is still possible to define $L_p(F_{\infty}/F, f)$; see [7, pg. 5], for example.

If F_1 and F_2 are two distinct number fields whose cyclotomic \mathbf{Z}_p -extensions agree, the corresponding p-adic L-functions of f over F_1 and F_2 need not agree. However, it is easy to check that the Iwasawa invariants of these two power series are equal. We thus denote the Iwasawa invariants of $L_p(F_\infty/F, f)$ simply by $\mu^{\mathrm{an}}(F_\infty, f)$ and $\lambda^{\mathrm{an}}(F_\infty, f)$.

3.2. Analytic transition formula. Let F/\mathbf{Q} be a finite abelian p-extension of \mathbf{Q} and let F' be a finite p-extension of F such that F'/\mathbf{Q} is abelian. As always, let F_{∞} and F'_{∞} denote the cyclotomic \mathbf{Z}_p -extensions of F and F'. As before, we write $R(F'_{\infty}/F_{\infty})$ for the set of prime-to-p places of F'_{∞} which are ramified in F'_{∞}/F_{∞} .

Theorem 3.1. Let f be a p-ordinary modular form such that $T_f \otimes k$ is irreducible and p-distinguished. If $\mu^{an}(F_{\infty}, f) = 0$, then $\mu^{an}(F'_{\infty}, f) = 0$. Moreover, if this is the case, then

$$\lambda^{\mathrm{an}}(F_{\infty}',f) = [F_{\infty}':F_{\infty}] \cdot \lambda^{\mathrm{an}}(F_{\infty},f) + \sum_{w' \in R(F_{\infty}'/F_{\infty})} \!\!\! m(F_{\infty,w'}'/F_{\infty,w},V_f).$$

Proof. By Lemma 2.9, we may assume $[F: \mathbf{Q}]$ is prime-to-p. Indeed, let F_0 be the maximal subfield of F of prime-to-p degree over \mathbf{Q} . By Lemma 2.9, knowledge of the theorem for the two extensions F'/F_0 and F/F_0 would then imply it for F'/F as well.

We may further assume that F and F' are unramified at p. Indeed, if F^{ur} (resp. F'^{ur}) denotes the maximal subfield of F_{∞} (resp. F'_{∞}) unramified at p, then $F^{\mathrm{ur}} \subseteq F'^{\mathrm{ur}}$ and the cyclotomic \mathbf{Z}_p -extension of F^{ur} (resp. F'^{ur}) is F_{∞} (resp. F'_{∞}). Thus, by the comments at the end of Section 3.1, we may replace F by F^{ur} and F' by F'^{ur} without altering the formula we are studying.

After making these reductions, we let M denote the (unique) p-extension of \mathbf{Q} inside of F' such that MF = F'. Set $G = \operatorname{Gal}(F/\mathbf{Q})$ and $H = \operatorname{Gal}(M/\mathbf{Q})$, so that $\operatorname{Gal}(F'/\mathbf{Q}) \cong G \times H$. Then since F and F' are unramified at p by definition, we have

(5)
$$\mu^{\mathrm{an}}(F_{\infty}, f) = \sum_{\psi \in \mathrm{Gal}(F/\mathbf{Q})^{\vee}} \mu^{\mathrm{an}}(\mathbf{Q}_{\infty}, f_{\psi})$$

and

(6)
$$\mu^{\mathrm{an}}(F'_{\infty}, f) = \sum_{\psi \in \mathrm{Gal}(F'/\mathbf{Q})^{\vee}} \mu^{\mathrm{an}}(\mathbf{Q}_{\infty}, f_{\psi}) = \sum_{\psi \in G^{\vee}} \sum_{\chi \in H^{\vee}} \mu^{\mathrm{an}}(\mathbf{Q}_{\infty}, f_{\psi\chi}).$$

Since we are assuming that $\mu^{\rm an}(F_{\infty}, f) = 0$ and since these μ -invariants are non-negative, from (5) it follows that $\mu^{\rm an}(\mathbf{Q}_{\infty}, f_{\psi}) = 0$ for each $\psi \in \operatorname{Gal}(F/\mathbf{Q})^{\vee}$.

Fix $\psi \in G^{\vee}$. For any $\chi \in H^{\vee}$, $\psi \chi$ is congruent to ψ modulo any prime over p and thus f_{χ} and $f_{\psi\chi}$ are congruent modulo any prime over p. Then, since $\mu^{\rm an}(\mathbf{Q}_{\infty}, f_{\psi}) = 0$, by [1, Theorem 1] it follows that $\mu^{\rm an}(\mathbf{Q}_{\infty}, f_{\psi\chi}) = 0$ for each $\chi \in H^{\vee}$. Therefore, by (6) we have that $\mu^{\rm an}(F'_{\infty}, f) = 0$ proving the first part of the theorem.

For λ -invariants, we again have

$$\lambda^{\mathrm{an}}(F_{\infty}, f) = \sum_{\psi \in \mathrm{Gal}(F/\mathbf{Q})^{\vee}} \lambda^{\mathrm{an}}(\mathbf{Q}_{\infty}, f_{\psi}).$$

and

(7)
$$\lambda^{\mathrm{an}}(F_{\infty}', f) = \sum_{\psi \in G^{\vee}} \sum_{\chi \in H^{\vee}} \lambda^{\mathrm{an}}(\mathbf{Q}_{\infty}, f_{\psi\chi}).$$

By [1, Theorem 2] the congruence between f_{χ} and $f_{\psi\chi}$ implies that

$$\lambda^{\mathrm{an}}(\mathbf{Q}_{\infty}, f_{\psi\chi}) - \lambda^{\mathrm{an}}(\mathbf{Q}_{\infty}, f_{\psi}) = \sum_{v' \in R(M_{\infty}/\mathbf{Q}_{\infty})} \left(m_{\mathbf{Q}_{\infty,v}}(V_{f_{\psi\chi}} \otimes \omega^{-1}) - m_{\mathbf{Q}_{\infty,v}}(V_{f_{\psi}} \otimes \omega^{-1}) \right)$$

where v denotes the place of \mathbf{Q}_{∞} lying under the place v' of M_{∞} . Note that in [1] the sum extends over all prime-to-p places; however, the terms are trivial unless χ is ramified at v. Also note that the mod p cyclotomic characters that appear are actually trivial since if $\mathbf{Q}_{\infty,v}$ has a ramified Galois p-extensions for $v \nmid p$, then $\mu_p \subseteq \mathbf{Q}_{\infty,v}$.

Combining this with (7) and the definition of $m(M_{\infty,v'}/\mathbf{Q}_{\infty,v},V_{f_{\psi}})$, we conclude that

$$\lambda^{\mathrm{an}}(F'_{\infty}, f) = \sum_{\psi \in G^{\vee}} \left([F'_{\infty} : F_{\infty}] \cdot \lambda^{\mathrm{an}}(\mathbf{Q}_{\infty}, f_{\psi}) + \sum_{v' \in R(M_{\infty}/\mathbf{Q}_{\infty})} m(M_{\infty, v'}/\mathbf{Q}_{\infty, v}, V_{f_{\psi}}) \right)$$

$$= [F'_{\infty} : F_{\infty}] \cdot \lambda^{\mathrm{an}}(F_{\infty}, f) + \sum_{v' \in R(M_{\infty}/\mathbf{Q}_{\infty})} \sum_{\psi \in G^{\vee}} m(M_{\infty, v'}/\mathbf{Q}_{\infty, v}, V_{f_{\psi}})$$

$$= [F'_{\infty} : F_{\infty}] \cdot \lambda^{\mathrm{an}}(F_{\infty}, f) + \sum_{v' \in R(M_{\infty}/\mathbf{Q}_{\infty})} g_{v'}(F'_{\infty}/M_{\infty}) \cdot m(M_{\infty, v'}/\mathbf{Q}_{\infty, v}, \mathbf{Z}[\mathrm{Gal}(F_{\infty, w}/\mathbf{Q}_{\infty, v})] \otimes V_{f})$$

where $g_{v'}(F'_{\infty}/M_{\infty})$ denotes the number of places of F'_{∞} above the place v' of M_{∞} . By Frobenius reciprocity,

$$m(M_{\infty,v'}/\mathbf{Q}_{\infty,v},\mathbf{Z}[\mathrm{Gal}(F_{\infty,w}/\mathbf{Q}_{\infty,v})]\otimes V_f)=m(F'_{\infty,w'}/F_{\infty,w},V_f)$$

where w' is the unique place of F'_{∞} above v' and w. It follows that

$$\lambda(F_{\infty}',f) = [F_{\infty}':F_{\infty}] \cdot \lambda^{\mathrm{an}}(F_{\infty},f) + \sum_{w' \in R(F_{\infty}'/F_{\infty})} m(F_{\infty,w'}'/F_{\infty,w},V_f)$$

as desired. \Box

4. Additional Results

4.1. Hilbert modular forms. We illustrate our results in the case of the twodimensional representation V_f associated to a Hilbert modular eigenform f over a totally real field F. Although in principle our analytic results should remain true in this context, we focus on the less conjectural algebraic picture. Fix a G_F -stable lattice $T_f \subseteq V_f$ and let $A_f = T_f \otimes K/\mathcal{O}$.

Let F' be a finite Galois p-extension of F unramified at all places dividing p; for simplicity we assume also that F' is linearly disjoint from F_{∞} . Let v be a place of F not dividing p and fix a place v' of F' lying over v. For a character φ of G_v , we define

$$h(\varphi) = \begin{cases} -1 & \varphi \text{ ramified, } \varphi|_{G_{v'}} \text{ unramified, and } \varphi \equiv 1 \bmod \pi; \\ 0 & \varphi \not\equiv 1 \bmod \pi \text{ or } \varphi|_{G_{v'}} \text{ ramified;} \\ e_v(F'/F) - 1 & \varphi \text{ unramified and } \varphi \equiv 1 \bmod \pi \end{cases}$$

where $e_v(F'/F)$ denotes the ramification index of v in F'/F and $G_{v'}$ is the decomposition group at v'. Set

$$h_v(f) = \begin{cases} h(\varphi_1) + h(\varphi_2) & f \text{ principal series with characters } \varphi_1, \varphi_2 \text{ at } v; \\ h(\varphi) & f \text{ special with character } \varphi \text{ at } v; \\ 0 & f \text{ supercuspidal or extraordinary at } v. \end{cases}$$

For example, if f is unramified principal series at v with Frobenius characteristic polynomial

$$x^2 - a_n x + c_n$$

then

$$h_v(f) = \begin{cases} 2(e_v(F'/F) - 1) & a_v \equiv 2, c_v \equiv 1 \bmod \pi \\ e_v(F'/F) - 1 & a_v \equiv c_v + 1 \not\equiv 2 \bmod \pi \\ 0 & \text{otherwise.} \end{cases}$$

Theorem 4.1. Assume that f is ordinary (in the sense that for each place v dividing p the Galois representation V_f has a unique one-dimensional quotient unramified at v) and that

$$H^{0}(F, A_{f}[\pi]) = H^{0}(F, \text{Hom}(A_{f}[\pi], \mu_{p})) = 0.$$

If $\operatorname{Sel}(F_{\infty}, A_f)$ is Λ -cotorsion with $\mu^{\operatorname{alg}}(F_{\infty}, A_f) = 0$, then also $\operatorname{Sel}(F'_{\infty}, A_f)$ is Λ -cotorsion with $\mu^{\operatorname{alg}}(F'_{\infty}, A_f) = 0$ and

$$\lambda^{\mathrm{alg}}(F'_{\infty}, A) = [F'_{\infty} : F_{\infty}] \cdot \lambda^{\mathrm{alg}}(F_{\infty}, A) + \sum_{v} g_{v}(F'_{\infty}/F) \cdot h_{v}(f);$$

here the sum is over the prime-to-p places of F ramified in F'_{∞} and $g_v(F'_{\infty}/F)$ denotes the number of places of F'_{∞} lying over such a v.

Proof. Fix a place v of F not dividing p and let w denote a place of F_{∞} lying over v. Since there are exactly $g_v(F_{\infty}/F)$ such places, by Theorem 2.8 it suffices to prove that

(8)
$$h_v(f) = m(F'_{\infty,w'}/F_{\infty,w}, V_f) := \sum_{\chi \in Gal(F'_{\infty,w'}/F_{\infty,w})^{\vee}} (m_{F_{\infty,w}}(V_f) - m_{F_{\infty,w}}(V_{f,\chi})).$$

This is a straightforward case analysis. We will discuss the case that V_f is special associated to a character φ at v; the other cases are similar. In the special case, we have

$$V_{f,\chi}|_{I_{F_{\infty,w}}} = \begin{cases} K'(\chi\varphi) & \chi\varphi|_{G_{F_{\infty,w}}} \text{ unramified;} \\ 0 & \chi\varphi|_{G_{F_{\infty,w}}} \text{ ramified.} \end{cases}$$

Since an unramified character has trivial restriction to $G_{F_{\infty,w}}$ if and only if it has trivial reduction modulo π , it follows that

$$m_{F_{\infty,w}}(V_{f,\chi}) = \begin{cases} 1 & \varphi \equiv 1 \bmod \pi \text{ and } \chi \varphi|_{G_{F_{\infty,w}}} \text{ unramified;} \\ 0 & \text{otherwise.} \end{cases}$$

In particular, the sum in (8) is zero if $\varphi \not\equiv 1 \mod \pi$ or if φ is ramified when restricted to $G_{F'_{\infty,w'}}$ (as then $\chi \varphi$ is ramified for all $\chi \in G_v^{\vee}$). If $\varphi \equiv 1 \mod \pi$ and φ itself is unramified, then $m_{F_{\infty,w}}(V_f) = 1$ while $m_{F_{\infty,w}}(V_{f,\chi}) = 0$ for $\chi \not\equiv 1$, so that the sum in (8) is $[F'_{\infty,w'}:F_{\infty,w}] - 1 = e_v(F'/F) - 1$, as desired. Finally, if $\varphi \equiv 1 \mod \pi$ and φ is ramified but becomes unramified when restricted to $G_{v'}$, then $m_{F_{\infty,w}}(V_f) = 0$, while $m_{F_{\infty,w}}(V_{f,\chi}) = 1$ for a unique χ , so that the sum is -1.

Suppose finally that f is in fact the Hilbert modular form associated to an elliptic curve E over F. The only principal series which occur are unramified and we have $c_v \equiv 1 \pmod{\pi}$ (since the determinant of V_f is cyclotomic and F_{∞} has a p-extension (namely, F'_{∞}) ramified at v), so that

$$h_v(f) \neq 0 \quad \Leftrightarrow \quad a_v = 2 \quad \Leftrightarrow \quad E(F_v) \text{ has a point of order } p$$

in which case $h_v(f) = 2(e_v(F'/F) - 1)$. The only characters which may occur in a special constituent are trivial or unramified quadratic, and we have $h_v(f) = e_v(F'/F) - 1$ or 0 respectively. Thus Theorem 4.1 recovers [3, Theorem 3.1] in this case.

4.2. The main conjecture. Let f be a p-ordinary elliptic modular eigenform of weight at least two and arbitrary level with associated Galois representation V_f . Let F be a finite abelian extension of \mathbf{Q} with cyclotomic \mathbf{Z}_p -extension F_{∞} . Recall that the p-adic Iwasawa main conjecture for f over F asserts that the Selmer group $\mathrm{Sel}(F_{\infty}, A_f)$ is Λ -cotorsion and that the characteristic ideal of its dual is generated by the p-adic L-function $L_p(F_{\infty}, f)$. In fact, when the residual representation of V_f is absolutely irreducible, it is known by work of Kato that $\mathrm{Sel}(F_{\infty}, A_f)$ is indeed Λ -cotorsion and that $L_p(F_{\infty}, f)$ is an element of the characteristic ideal of $\mathrm{Sel}(F_{\infty}, A_f)$. In particular, this reduces the verification of the main conjecture for f over F to the equality of the algebraic and analytic Iwasawa invariants of f over F. The identical transition formulae in Theorems 2.8 and 3.1 thus yield the following immediate application to the main conjecture.

Theorem 4.2. Let F'/F be a finite p-extension with F' abelian over \mathbf{Q} . If the residual representation of V_f is absolutely irreducible and p-distinguished, then the main conjecture holds for f over F with $\mu(F_{\infty}, f) = 0$ if and only if it holds for f over F' with $\mu(F'_{\infty}, f) = 0$.

We note that in Theorem 2.8, it was assumed that F'/F was unramified at all places over p. However, in this special case where F'/\mathbf{Q} is abelian, this hypothesis can be removed. Indeed, one simply argues in an analogous way as at the start of Theorem 3.1 by replacing F' (resp. F) by the maximal sub-extension of F'_{∞} (resp. F_{∞}) that is unramified at p.

For an example of Theorem 4.2, consider the eigenform

$$\Delta = q \prod_{n \ge 1} (1 - q^n)^{24}$$

of weight 12 and level 1. We take p=11. It is well known that Δ is congruent modulo 11 to the newform associated to the elliptic curve $X_0(11)$. The 11-adic main conjecture is known for $X_0(11)$ over \mathbf{Q} ; it has trivial μ -invariant and λ -invariant equal to 1 (see, for instance, [1, Example 5.3.1]). We should be clear here that the non-triviality of λ in this case corresponds to a trivial zero of the p-adic L-function; we are using the Greenberg Selmer group which does account for the trivial zero.) It follows from [1] that the 11-adic main conjecture also holds for Δ over \mathbf{Q} , again with trivial μ -invariant and λ -invariant equal to 1. Theorem 4.2 thus allows us to conclude that the main conjecture holds for Δ over any abelian 11-extension of \mathbf{Q} .

For a specific example, consider $F = \mathbf{Q}(\zeta_{23})^+$; it is a cyclic 11-extension of \mathbf{Q} . We can easily use Theorem 4.1 to compute its λ -invariant: using that $\tau(23) = 18643272$ one finds that $h_{23}(\Delta) = 0$, so that $\lambda(\mathbf{Q}(\zeta_{23})^+, \Delta) = 11$.

For a more interesting example, take F to be the unique subfield of $\mathbf{Q}(\zeta_{1123})$ which is cyclic of order 11 over \mathbf{Q} . In this case we have

$$\tau(1123) \equiv 2 \pmod{11}$$

so that we have $h_{1123}(\Delta)=20$. Thus, in this case, Theorem 4.1 shows that $\lambda(F,\Delta)=31$.

4.3. The supersingular case. As mentioned in the introduction, the underlying principle of this paper is that the existence of a formula relating the λ -invariants of congruent Galois representations should imply a Kida-type formula for these invariants. We illustrate this now in the case of modular forms of weight two that are supersingular at p.

Let f be an eigenform of weight 2 and level N with Fourier coefficients in K some finite extension of \mathbf{Q}_p . Assume further than $p \nmid N$ and that $a_p(f)$ is not a p-adic unit. In [8], Perrin-Riou associates to f a pair of algebraic and analytic μ -invariants over \mathbf{Q}_{∞} which we denote by $\mu_{\pm}^{\star}(\mathbf{Q}_{\infty}, f)$. (Here \star denotes either "alg" or "an" for algebraic and analytic respectively.) Moreover, when $\mu_{\pm}^{\star}(\mathbf{Q}_{\infty}, f) = \mu_{\pm}^{\star}(\mathbf{Q}_{\infty}, f)$ or when $a_p(f) = 0$, she also defines corresponding λ -invariants $\lambda_{\pm}^{\star}(\mathbf{Q}_{\infty}, f)$. When $a_p(f) = 0$ these invariants coincide with the Iwasawa invariants of [6] and [9]. We also note that in [8] only the case of elliptic curves is treated, but the methods used there generalize to weight two modular forms.

We extend the definition of these invariants to the cyclotomic \mathbb{Z}_p -extension of an abelian extension F of \mathbb{Q} . As usual, by passing to the maximal subfield of F_{∞} unramified at p, we may assume that F is unramified at p. We define

$$\mu_{\pm}^{\star}(F_{\infty}, f) = \sum_{\psi \in \operatorname{Gal}(F/\mathbf{Q})^{\vee}} \mu_{\pm}^{\star}(\mathbf{Q}_{\infty}, f_{\psi}) \quad \text{and} \quad \lambda_{\pm}^{\star}(F_{\infty}, f) = \sum_{\psi \in \operatorname{Gal}(F/\mathbf{Q})^{\vee}} \lambda_{\pm}^{\star}(\mathbf{Q}_{\infty}, f_{\psi})$$

for $\star \in \{alg, an\}$.

The following transition formula follows from the congruence results of [2].

Theorem 4.3. Let f be as above and assume further that f is congruent modulo some prime above p to a modular form with coefficients in \mathbf{Z}_p . Consider an extension of number fields F'/F with F' an abelian p-extension of \mathbf{Q} . If $\mu_{\pm}^{\star}(F_{\infty}, f) = 0$, then $\mu_{\pm}^{\star}(F_{\infty}, f) = 0$. Moreover, if this is the case, then

$$\lambda_{\pm}^{\star}(F_{\infty}',f) = [F_{\infty}':F_{\infty}] \cdot \lambda_{\pm}^{\star}(F_{\infty},f) + \sum_{w' \in R(F_{\infty}'/F_{\infty})} m(F_{\infty,w'}'/F_{\infty,w},V_f).$$

In particular, if the main conjecture is true for f over F (with $\mu_{\pm}^{\star}(F_{\infty}, f) = 0$), then the main conjecture is true for f over F' (with $\mu_{\pm}^{\star}(F'_{\infty}, f) = 0$).

Proof. The proof of this theorem proceeds along the lines of the proof of Theorem 3.1 replacing the appeals to the results of [1, 11] to the results of [2]. The main result of [2] is a formula relating the λ_{\pm}^{\star} -invariants of congruent supersingular weight two modular forms. This formula has the same shape as the formulas that appear in [1] and [11] which allows for the proof to proceed nearly verbatim. The hypothesis that f be congruent to a modular form with \mathbf{Z}_p -coefficients is needed because this hypothesis appears in the results of [2].

One difference to note is that in this proof we need to assume that F is a p-extension of \mathbf{Q} . The reason for this assumption is that in the course of the proof we need to apply the results of [2] to the form f_{ψ} where $\psi \in \operatorname{Gal}(F/\mathbf{Q})^{\vee}$. We thus need to know that f_{ψ} is congruent to some modular form with coefficients in \mathbf{Z}_p . In the case that $\operatorname{Gal}(F/\mathbf{Q})$ is a p-group, f_{ψ} is congruent to f which by assumption is congruent to such a form.

References

- [1] M. Emerton, R. Pollack and T. Weston, Variation of Iwasawa invariants in Hida families, to appear in Invent. Math.
- [2] R. Greenberg, A. Iovita and R. Pollack, Iwasawa invariants of supersingular modular forms, preprint.
- [3] Y. Hachimori and K. Matsuno, An analogue of Kida's formula for the Selmer groups of elliptic curves, J. Algebraic Geom. 8 (1999), no. 3, 581–601.
- [4] K. Iwasawa, Riemann-Hurwitz formula and p-adic Galois representations for number fields, Tohoku Math. J. 33 (1981), 263–288.
- Y. Kida, \(\ell-\)-extensions of CM-fields and cyclotomic invariants, J. Number Theory 12 (1980), 519–528.
- [6] S. Kobayashi, Iwasawa theory for elliptic curves at supersingular primes, Invent. Math. 152 (2003), 1–36.
- [7] K. Matsuno, An analogue of Kida's formula for the p-adic L-functions of modular elliptic curves, J. Number Theory 84 (2000), 80–92.
- [8] B. Perrin-Riou, Arithmétique des courbes elliptiques à réduction supersingulière en p, Experiment. Math. 12 (2003), no. 2, 155–186.
- [9] R. Pollack, On the p-adic L-function of a modular form at a supersingular prime, Duke Math. J. 118 (2003), 523–558.
- [10] W. Sinnott, On p-adic L-functions and the Riemann-Hurwitz genus formula, Comp. Math. 53 (1984), 3-17.
- [11] T. Weston, Iwasawa invariants of Galois deformations to appear in Manuscripta Math.
- [12] K. Wingberg, A Riemann-Hurwitz formula for the Selmer group of an elliptic curve with complex multiplication, Comment. Math. Helv. 63 (1988), 587-592.

(Robert Pollack) DEPARTMENT OF MATHEMATICS, BOSTON UNIVERSITY, BOSTON, MA

(Tom Weston) DEPT. OF MATHEMATICS, UNIVERSITY OF MASSACHUSETTS, AMHERST, MA *E-mail address*, Robert Pollack: rpollack@math.bu.edu *E-mail address*, Tom Weston: weston@math.umass.edu