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COHOMOLOGY OF CONGRUENCE SUBGROUPS OF SL4(Z). III

AVNER ASH, PAUL E. GUNNELLS, AND MARK MCCONNELL

Abstract. In two previous papers [AGM02,AGM08] we computed cohomol-
ogy groups H5(Γ0(N); C) for a range of levels N , where Γ0(N) is the congru-
ence subgroup of SL4(Z) consisting of all matrices with bottom row congruent
to (0, 0, 0, ∗) mod N . In this note we update this earlier work by carrying
it out for prime levels up to N = 211. This requires new methods in sparse
matrix reduction, which are the main focus of the paper. Our computations
involve matrices with up to 20 million nonzero entries. We also make two
conjectures concerning the contributions to H5(Γ0(N); C) for N prime coming
from Eisenstein series and Siegel modular forms.

1. Introduction

In two previous papers [AGM02,AGM08] we computed the cohomology in de-
gree 5 of congruence subgroups Γ0(N) ⊂ SL4(Z) with trivial C coefficients, where
Γ0(N) is the subgroup of SL4(Z) consisting of all matrices with bottom row con-
gruent to (0, 0, 0, ∗) mod N . The highest level we reached was N = 83. We also
computed some Hecke operators on these cohomology groups and identified the
cohomology as either cuspidal or as coming from the boundary (Eisensteinian).

In this paper we concentrate on explaining new techniques we have developed to
reduce very large sparse matrices. These techniques have enabled us to carry out
our computations for much higher values of the level N . We explain in Section 2
that our algorithms differ from others in the literature because we must compute
change of basis matrices. As an oversimplified illustration, imagine solving Ax = b

for an invertible matrix A. Classical dense methods produce an invertible change
of basis matrix P where PA has a desirable form, and we solve for x by computing
Pb. When A is large and sparse, computing P is much too expensive if finding x

is our only goal. Iterative methods like Wiedemann’s produce x more simply. In
this paper, however, we compute explicit cocycles in our cohomology groups, and
compute their images under Hecke operators. As explained in (2.2), change of basis
matrices are essential for this task. (See Section 2 for references. The illustration
is oversimplified because the actual A have less than full rank and are not even
square.)

1991 Mathematics Subject Classification. Primary 11F75, 65F05, 65F50, Secondary 11F23,
11F46, 65F30, 11Y99, 11F67.

Key words and phrases. Automorphic forms, cohomology of arithmetic groups, Hecke opera-
tors, sparse matrices, Smith normal form, Eisenstein cohomology, Siegel modular forms, paramod-
ular group.

AA wishes to thank the National Science Foundation for support of this research through
NSF grant DMS-0455240. PG wishes to thank the National Science Foundation for support of
this research through NSF grant DMS-0801214. We thank T. Ibukiyama and C. Poor for helpful
conversations. Finally we thank the referees for helpful references and comments.

1

http://arxiv.org/abs/0903.3201v2
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The linear algebra issues are compounded when computing the Smith normal
form (SNF) of integer matrices. Modern SNF methods reduce mod p for a range
of p, solve at each p by iterative methods, and lift to a final result over Z by Chinese
remaindering techniques. It seems unknown, though, how to find the SNF change
of basis matrices by Chinese remaindering. Hence we use a different approach (2.1).
See (2.3.6) for a comparison of times. Although iterative methods can be efficiently
parallelized, this paper does not use parallel techniques.

In future installments of this project we will look at torsion classes in H5(Γ0(N); Z)
as well as twisted coefficient modules. For the torsion classes, we will test Conjec-
ture B of [Ash92] that asserts that they have attached Galois representations. The
new sparse matrix techniques discussed here will be of great importance in carrying
this project forward.

In the paper [vGvdKTV97] of Van Geemen, Van der Kallen, Top, and Verberk-
moes, cohomology classes for GL(3) were found by working modulo small primes
and using the LLL algorithm to reconstruct integral solutions. This is a useful
method that various people (including ourselves in the past) have followed. How-
ever, in this paper we work solely modulo a 5 digit prime p without lifting to Z.
Lifting to Z would be a huge computatonal effort at larger levels. The prime p
is small enough to make computation fast, and large enough to make us morally
certain that we are actually finding the complex betti numbers and Hecke eigenval-
ues. The fact that all our data is accounted for by Eisenstein series and liftings of
automorphic forms confirms this.

We continue to find that the cuspidal part consists of functorial lifts of Siegel
modular forms from paramodular subgroups of Sp4(Q) that are not Gritsenko lifts,
as described in [AGM08] for levels N = 61, 73, 79. We conjecture that these func-
torial lifts will always occur, at least for prime level, in Conjecture 2 of Section 4.
These lifted forms correspond to selfdual automorphic representations on GL(4)/Q.
We were hoping to find non-lifted cuspidal cohomology classes, which would corre-
spond to non-selfdual automorphic representations. Unfortunately, we found none.
We see no reason why they should not exist for larger N , but no one has proven
their existence. It should be noted that non-selfdual Galois representations, that
by Langlands’ philosophy would predict non-selfdual automorphic representations
for GL(4) of the type we are searching for, were constructed by J. Scholten [Sch02].

Our data for the boundary cohomology for prime level leads to our Conjecture 1
of Section 4 that identifies its constituents as various Eisensteinian lifts of certain
classical cuspforms of weights 2 and 4, and of certain cuspidal cohomology classes
for GL(3)/Q. This conjecture is a refinement of Conjecture 1 of [AGM08].

We ought to have similar conjectures for composite level, but we don’t have
enough data to justify an attempt to make them. The size of the matrices and the
complexity of computing the Hecke operators increases as N grows larger or more
composite. Therefore at a certain point we stopped computing for composite N
but were able to continue for prime N up to level 211. Similarly the size of the
computation of the Hecke operators at a prime l increases dramatically with l, so
that in fact for the new levels in this paper, we compute the Hecke operators at
most for l = 2.

The index of Γ0(N) in SL4(Z) grows like O(N3). Thus the matrices we need to
reduce are on the order of N3 ×N3. This growth in size is what makes this com-
putational project so much more difficult to carry out for large N , compared to the
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cohomology of congruence subgroups of SL2(Z), SL3(Z), Sp4(Z), and other lower
rank groups. The implied constant in the O(N3) is larger when N is composite,
which is why we eventually had to restrict ourselves to prime N . Also the Hecke
operator computations become much more lengthy for composite N .

Please refer to [AGM02] for explanations of why we look in degree 5, the de-
composition of the cohomology into the cuspidal part and the part coming from
the Borel–Serre boundary, and how we perform the computations. We also review
there the number theoretic reasons for being interested in this cohomology, primar-
ily because of connections to Galois representations and motives. In [AGM08] the
reader will find how we identified the cuspidal part of the cohomology as lifted from
GSp(4)/Q and why this must be so for selfdual classes of prime level.

In [AGM02] we explained that the well-rounded retract W of the symmetric space
for SL4(R) is a contractible cell complex on which SL4(Z) acts cellularly with finite
stabilizers of orders divisible only by 2, 3 and 5, and that W has only finitely many
cells modulo SL4(Z). Therefore we can use the chain complex C∗(W/Γ0(N); F) to
compute H∗(Γ0(N); F) for any field F of characteristic not equal to 2, 3 or 5. In
practice we substitute a large finite field for C as justified in [AGM02].

Also in [AGM02] we described explicitly and in detail how to handle the data
structures needed to construct the chain complex from W/Γ0(N) and hence to
create the matrices whose nullspaces modulo column spaces are isomorphic to the
cohomology.

In this paper we continue to use this set-up. The new thing here is the method
explained in Section 2, which enables us to take N as far as 211.

In Section 3 we give the background on Eisenstein cohomology and Siegel mod-
ular forms needed to present our computational results and to formulate our con-
jectures. Finally, in Section 4 we state two conjectures about the structure of
H5(Γ0(N); C) for N prime, give the results of our computations of H5(Γ0(N); C)
for N prime, 83 ≤ N ≤ 211, and verify the two conjectures in this range. The first,
Conjecture 1, improves on [AGM02, Conjecture 1] by fixing the weight 4 part of
the Eisensteinian cohomology to those weight 4 cuspforms f whose central special
value vanishes. We also feel confident now of conjecturing that our list of classes
for the boundary cohomology is complete in this case. The second, Conjecture 2,
states exactly which cuspidal paramodular Siegel forms at prime level show up in
the cuspidal cohomology.

2. Computational Methods

Our problem is to find H5 of a complex of free R-modules for some ring R,

(1) 0←− C6 d5

←− C5 d4

←− C4 ←− · · ·

Let ni = rank Ci. View the Ci as a space of column vectors, and represent the di as
matrices. All the matrix entries lie in Z. It is possible to carry out our computations
over R = Z, obtaining the torsion in the cohomology along with the free part. Our
next paper (IV in this series) will study the torsion. In the present paper, we work
over a field. However, we will intersperse remarks on the computational problem
for more general R, with an eye to future papers in the series.

In principle we want to work over R = C, because our purpose is to study
automorphic forms. To avoid round-off error and numerical instability, however,
we replace C with a finite field Fp of prime order p. If p is large enough, it is
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extremely likely that dimHi(Γ0(N); Fp) will equal dimHi(Γ0(N); C) for the N we
consider, and that Hecke computations will work compatibly. We generally use
p = 12379, the fourth prime after 12345. We give details about the choice of p
in (2.3.3).

The matrices are sparse matrices, meaning only a small fraction of the entries
in each row and column are nonzero. Our largest matrices, those for d4, have
dimension n5 × n4 ≈ N3/10 × 25N3/72 for prime N . However, at most 6 of the
entries in each column are nonzero, and at most 26 in each row. The 6 and 26 are
independent of N . The matrices for d5 have dimension n6 × n5 ≈ N3/96×N3/10
for prime N . All these estimates are a few times larger for composite N . We give
more precise estimates for the ni in (2.1.4). The relative sizes are shown in Figure 1.

N3/10

25/72N3

N3/10

N3/96

d5 d4

Figure 1. Relative sizes of the matrices d5, d4 in our cochain
complex. We will exploit the fact that d4 is wider than its height.

Given an m×n sparse matrix A, our fundamental computational task is to find
the Smith normal form (SNF) decomposition

(2) A = PDQ.

Here P ∈ GLm(R), Q ∈ GLn(R), D is zero except on the diagonal, and the nonzero
diagonal entries satisfy dii | di+1,i+1 for all i. There is a ρ with dii 6= 0 for 0 ≤ i < ρ
and dii = 0 for i ≥ ρ; when R is a field, ρ is the rank of A. We call P and Q change

of basis matrices.
To carry out the calculations, we used Sheafhom 2.2, a free software pack-

age written by the third author [McCb, McCa]. Sheafhom performs large-scale
computations in the category of finitely-generated R-modules, where R is any
principal ideal domain supporting exact computation. Most development work
in Sheafhom has been for domains that are not fields, especially Z and other
rings of integers of class number 1. In this sense it differs from most of the sparse
matrix literature, which looks at R and C [DER89,GVL96,Dav06,Mat03] or finite
fields [Wie86, LO91, PS92, Tei98]. The differences are because we need to com-
pute P and Q, as explained in the introduction. For matrices over Z, one can find
the SNF D matrix efficiently by reducing modulo a number of primes [DSV01] [DE-
VGU07], or by other techniques [HHR93] [BCP97]. Yet it is not clear how to find P
and Q by reducing by multiple primes. The need for the change of basis matrices
is why Sheafhom aims to work globally.

Fill-in is a concern in sparse linear algebra over any ring R. Imagine two vectors
that both have a nonzero at i0. Add a scalar multiple of the first to the second in
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order to zero out the value at i0. In general, the result will have nonzeros in the
union of the positions where the originals had nonzeros, apart from i0. (We follow
the standard convention in the sparse matrix literature and abbreviate “nonzero
entries” to “nonzeros.”) For very sparse vectors, the number of nonzeros almost
doubles. Fill-in is this growth in the number of nonzeros.

A separate issue when R is infinite is integer explosion. Over Z, the length
(number of digits) of the product of two numbers is roughly the sum of the lengths
of the factors. A vector operation that zeroes out one position will tend to increase
the length of the numbers in the rest of the vector. Sheafhom’s purpose is to avoid
fill-in and integer explosion as much as possible. With R = Fp, integer explosion is
not an issue, and the focus is on avoiding fill-in.

We find the SNF by performing a sequence of elementary operations : permuting
two columns, adding a scalar multiple of one column to another, and multiplying a
column by a unit of R, plus the same for rows. The algorithm is described in (2.1.2).

Algorithms that operate on only one side of the matrix are more familiar. These
include the Hermite normal form (HNF) A = HQ [Coh93, (2.4.2)]. Over a field,
HNF is the same as Gaussian elimination on columns, with H in column-echelon
form and Q ∈ GLn(Z).

In principle, we prefer SNF to HNF because we are working with cochain com-
plexes. To evaluate Hecke operators on Hi, we need to compute with the map
ker di → (ker di)/(im di−1) that reduces cocycles modulo coboundaries. This re-
quires the P matrix of di−1 and the Q matrix of di. When computing all of H∗, it
is natural to compute P and Q for d∗ at the same time.

When the di are very large, however, we must compromise by omitting computa-
tion of the change-of-basis matrices that are not needed. Since this paper is about
H5, we compute for d5 only D and Q, and for d4 only P and D. The biggest savings
arise because the largest matrices, d4, are significantly wider than their height, as
Figure 1 shows. The Q matrices for d4, those on the longer side, are fortunately
the ones we can forget.

HNF does have one advantange over SNF when one is forgetting the Q matrix: it
can be computed by the following disk HNF algorithm. Write the whole matrix A to
disk, then read it back in one column at a time. As one reads each column, one puts
the matrix accumulated so far into HNF. Over R = Fp, this means using standard
Gaussian elimination on columns, with no special pivoting algorithm. Again, the
savings arise because d4 has a short side and a long side. The echelon form never
exceeds n5 × n5, the square on the short side.

With the wrong matrices, though, disk HNF is a recipe for disaster. It can
succeed only if the matrix has low co-rank. The co-rank of an m × n matrix is
min(m, n) minus the rank ρ of the matrix. Assume m ≤ n from now on (this holds
for our d5 and d4), so the co-rank is m − ρ. Imagine that, after some work, one
must put such a matrix into column-echelon form using Gaussian elimination. We
claim that the echelon form will have a great deal of fill-in, no matter how cleverly
the pivots are chosen. The echelon form will have ρ pivot rows with only a single
nonzero. The remaining m − ρ rows will in general be dense—no pivot has had
a chance to clear out their entries, and by the law of averages they will mostly
be nonzero. Hence there are about (m − ρ) · ρ = (co-rank) · (rank) nonzeros in
the echelon matrix. We cannot stop ρ from being large. But when m − ρ is also
large, the product (m − ρ) · ρ is prohibitively large. These observations are for
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the final result of a computation; usually fill-in is even worse in the middle of the
computation, before all the pivot rows have been established.

The main technical observation of this paper is to use the change of basis matrices
in a simple way to transform d4 into an equivalent matrix η of low co-rank. We
start with SNF on η, switch to disk HNF when the fill-in of SNF forces us to do so,
and rely on the low co-rank to make disk HNF succeed. The matrix η is defined in
Equation 3 below.

In (2.1) and (2.2) we present these ideas more precisely.

2.1. Computing the SNF. Let A by an m × n matrix with entries in a field R
where exact computation is possible. We define elementary matrices Pl ∈ GLm(R)
as usual [Jac85, p. 182]. These are permutation, translation, and dilation matrices,
corresponding to the elementary operations listed above. Replacing A with PlA or
P−1

l A performs an elementary row operation on A. Multiplying on the right by an
elementary matrix Ql ∈ GLn(R) performs an elementary column operation.

2.1.1. The Markowitz algorithm. Markowitz [DER89, (7.2)] [HHR93] is a well-
established approach to reducing fill-in. It is a greedy algorithm, reducing fill-in
as much as possible at each step. Let aij be a nonzero. Let ri be the number of
nonzeros in aij ’s row, and cj the number in its column. If one adds a multiple of
row i to row k in order to zero out the akj entry, one creates up to ri − 1 new
nonzeros in row k. Using row i to clear out the entire column j produces up to
(ri−1)(cj−1) new entries. The Markowitz algorithm, in its simplest form, chooses
at each step the pivot aij that minimizes the Markowitz count (ri−1)(cj−1). (If R
were Z, we would also need to address integer explosion, by avoiding pivots with
large absolute value even if they have low Markowitz count.)

It can be slow to compute the Markowitz count for all aij . One approach is to
look at only a few rows with small ri—say the smallest ten rows—and minimize the
Markowitz count only for those rows. Early versions of the Sheafhom code used
this approach. Currently, we prefer to avoid fill-in at whatever cost in speed, and
we always search over all entries. To speed up the search, we store the ri and cj in
arrays and update the arrays with every elementary operation.

2.1.2. Statement of the algorithm. We now describe Sheafhom 2.2’s SNF algo-
rithm. Implementation details are deferred to (2.3).

The main strength of the algorithm is the interplay between the Markowitz count
and disk HNF when the co-rank is low. Outside these aspects, it is like many SNF
algorithms [Jac85, (3.7)] [Coh93, (2.4.4)].

The algorithm uses an index c, the pivot index or corner , which just says the
current pivot is at acc. The active region is where c ≤ i < m and c ≤ j < n.
Outside the active region, the matrix has nonzeros on the diagonal and nowhere
else.

The parameter τ controls when we switch from SNF to disk HNF. It is chosen
by the user based on heuristics and experience; see (2.3.6) for details. The part
of the algorithm with τ is stated when we are forgetting the Q’s, as we always do
for d4; it would be easy to extend this part for the P ’s also.

If one does not need to remember P and Q, one simply omits the part of the
algorithm that writes them out. Our implementation overwrites A with D.
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Input: an m × n sparse matrix A = (aij) with entries in a field R. If we are
not finding the Q change of basis matrices, we are given in addition a parameter τ
(defaulting to τ =∞).

Output: A finite list (P0, P1, P2, . . . ) of m×m elementary matrices, a finite list
(. . . , Q2, Q1, Q0) of n × n elementary matrices, and an m × n diagonal matrix D,
such that

A = (P0P1P2 · · · ) ·D · (· · ·Q2Q1Q0) = PDQ

as in Equation 2.
Step 0. Set c = 0.
Step 1. If the number of nonzeros in the active region is ≥ τ , and if disk HNF

has not run yet, run disk HNF on the active region. That is, write the active region
to disk, find its column-echelon form while reading it back one column at a time,
and replace the old active region in memory with the echelon form, keeping track
of the Q’s.

Step 2. If the active region is entirely zero, including the case c = min(m, n),
then return the lists of P ’s and Q’s, return A overwritten with D, and terminate
the algorithm.

Step 3. Choose a nonzero in the active region that minimizes the Markowitz
count. This is the pivot . Use a row and column permutation if necessary to move
the pivot to the acc position (this is complete pivoting). If the row permutation is
A→ P−1

l A, then append Pl to the right side of the list of P ’s. (Of course Pl = P−1
l

for order-two permutations.) Similarly, append the column permutation Ql to the
left side of the list of Q’s.

Step 4. For all j with c < j < n and acj 6= 0, subtract a multiple of column c from

column j to make acj = 0. For each of these elementary operations A → AQ−1
l ,

append Ql to the left side of the list of Q’s.
Step 5. For all i with c < i < m and aic 6= 0, subtract a multiple of row c

from row i to make aic = 0. For each of these elementary operations A → P−1
l A,

append Pl to the right side of the list of P ’s. (If R were not a field, steps 4 and 5
would need to be extended when aij/acc has a nonzero remainder for some aij in
the active region.)

Step 6. Increment c and go to step 1.

2.1.3. Representing change-of-basis matrices. It is important that we return P and
Q as lists of elementary matrices. The products P0P1P2 · · · and · · ·Q2Q1Q0 are
likely to be dense; we could never hold them in RAM, much less compute their
inverses. Fortunately, it is easy to work with them as lists. Given a matrix B,
compute QB by multiplying B on the left by Q0, Q1, and so on. To compute
Q−1B, run through the Ql in the opposite order, decreasing l, and multiply B on
the left by Q−1

l . Similar comments apply to the Pl, and to transposes.
The lists are still too big to fit in RAM, so we store them on disk. We read once

through them every time we need to operate with P or Q. We use a text-based data
format where each elementary matrix takes up only about 20 characters. Storing a
translation matrix, for example, only requires storing the two indices and the value
of the off-diagonal entry. Reading the elementary matrices in left-to-right order is
straightforward. To read in right-to-left order, we use a pointer that steps backward
through the file.
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2.1.4. Sizes of the matrices. We will need more precise estimates for the ni =
dimCi. We refer the reader to [AGM02] for the definitions. The ni are approx-
imated by sums of terms of the form |P3(Z/NZ)|/|Γσ|. Here P3 = P3(Z/NZ)
is projective three-space over the ring Z/NZ, and Γσ are the stabilizer groups of
certain basis cells in the well-rounded retract W .

n6 ≈
1

96
|P3|

n5 ≈

(

1

24
+

1

24
+

1

60

)

|P3| =
1

10
|P3|

n4 ≈

(

1

8
+

1

6
+

1

24
+

1

72

)

|P3| =
25

72
|P3|

If N has the prime factorization
∏

pei

i , then

|P3| = N3
∏ 1 + pi + p2

i + p3
i

p3
i

.

When N is prime, this reduces to the familiar formula |P3| = 1 + N + N2 + N3.
In general, if we consider the set {pi} of primes dividing N to be fixed, then |P3|
is a constant times N3, where the constant depends on the set. In the range of N
we consider, up to the low 200’s, the largest constant we encounter is 4.04, for
N = 2 · 3 · 5 · 7 = 210. This factor of 4 is why we said that our estimates for the ni

are a few times larger for composite N than for prime N .
The ≈ symbols arise because the orbits of Γσ in W are generically of size |Γσ|

but are occasionally smaller. What is more, we only count the orientable orbits.
Experiments with N in the range 40 to 100 suggest that the error in the ≈ is at
worst 0.3% for prime N and 0.6% for composite N .

2.2. Computing cohomology. Let d5 and d4 be as in Formula 1, with ni =
dimCi. We now describe how we use Sheafhom to compute H5 of the complex.

First, compute the SNF d5 = (?)D5Q5 with P5 omitted. Let ρ5 = rank D5 =
rank d5.

Second, define

(3) η = Q5d
4.

Since d∗ is a cochain complex, the topmost ρ5 rows of η are zero. Delete these rows,
still calling the matrix η. Thus η has dimension (n5 − ρ5)× n4.

Third, compute the SNF η = PηDη(?), with Qη omitted. Let ρη = rank Dη =
rank η. Note that rank d4 = ρη, since d4 and η differ only by a change of basis and
deleting some zero rows.

We can now report the Betti number h5 = dim H5:

h5 = n5 − ρ5 − ρη.

We need not only the Betti number, though, but an explicit list z1, . . . , zh5
of

cocycles in ker d5 that descend modulo im d4 to a basis of the cohomology. Let B
be the (n5−ρ5)×h5 matrix with the identity in the bottom h5×h5 block and zeroes
elsewhere. Compute B̄ = PηB. Add to the top of B̄ the ρ5 rows of zeroes that we

deleted from η, still calling it B̄. Then the columns of Q−1
5 B̄ are an appropriate

list of cocycles zj.
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Our Hecke operator algorithm takes a cocycle y and maps it to its Hecke trans-
late, a cocycle y′. For simplicity, assume y = zj. The Hecke translate z′j is generally
not in the span of the zj . Rather, z′j = s1,jz1+ · · ·+sh5,jzh5

+bj, where the si,j ∈ R

are scalars and bj ∈ im d4 is a coboundary. Computing the si,j and bj is straight-
forward, since Q5, Pη, and the zj are all stored on disk. Ultimately, we express
each Hecke operator as the h5 × h5 matrix (si,j) with respect to our cohomology
basis.

2.2.1. Co-rank of η. Using η may seem inelegant because it violates the symmetry
of a cochain complex. Since the complex is

0←− C6 P5D5Q5

←− C5 P4D4Q4

←− C4 ←− · · · ,

it is more elegant to compute H5 using Q5 and P4, which are both n5×n5 matrices.
However, η has one great virtue: by removing the rows of zeroes from its top, we

have dropped its co-rank down to h5. We observe that h5 is never more than 80 for
the N we consider, while ρ5 could reach into the millions. This difference is what
allows disk HNF to succeed.

Let us give more precise estimates. The Betti number h6 = dimH6 equals n6−ρ5

since our chain complex has only 0’s after degree 6. We observe that h6 is never
more than about 40 in our range of N . Thus ρ5 ≈ N3/96−40. Estimating h5 as 80,
the rank ρη = ρ4 ≈ N3/10 − (N3/96 − 40) − 80. Both 40 and 80 are negligible
for large N , so ρη ≈ (1/10 − 1/96)N3 = 43/480N3. For η, the co-rank is again
about 80, meaning the number of entries in η’s echelon form is (co-rank) · (rank)
≈ 80 · ρη = 80 · (43/480)N3 ≈ 7N3. But the number of entries in d4’s echelon form
is ≈ (n5−ρ4)ρ4 ≈ ((1/10)N3− (43/480)N3) · ((43/480)N3) = (1/96)(43/480)N6 ≈
0.0009N6. At N ≈ 200, the latter is ≈ 7500N3. In other words, the echelon form
of d4 has about 1000 times more entries than the echelon form of η when N is
near 200.

This analysis was for Gaussian elimination, not SNF. When we compute the SNF
of matrices of large co-rank, we observe the same behavior empirically. Figure 2
compares the fill-in for the SNF computations of d4 and η at the same level N = 53.
Both matrices have 52766 columns and rank 13614. The example uses Markowitz
only, not disk HNF. We show only the pivot indices c ≥ 12000, since the graphs
look the same to the left of that point. The fill-in for d4 is clearly the worse of the
two, with a peak over three times higher than for η. In general, the SNF algorithm
displays “catastrophic cancellation”: the number of nonzeros in the active region
tends to grow rapidly until almost the end of the algorithm, when the number
decreases sharply to zero. Catastrophic cancellation begins for d4 at row 13464 and
for η at about row 13084.

The fill-in for our smaller matrix d5 is harder to predict. There are many columns
with only one or two entries. These allow Markowitz to reduce the matrix with
no fill-in at all, at least in the initial stages. Later, the number of nonzeros grows
rapidly as for d4, with an even more precipitous cancellation at the end. Figure 3
gives the example for level N = 103.

2.3. Implementation. Sheafhom 2.2 is written in Common Lisp, which is the
ideal language for it in many ways. Common Lisp source code compiles to very
efficient machine code; carefully-written Lisp is as fast as C++ [Gat00]. Yet writing
high-level code in Lisp is easier than in C or C++. Like its inheritor Python,
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Lisp has an outer real-eval-print loop that promotes high-level thinking and rapid
development. Type safety is built in. Lisp’s object-oriented package CLOS is the
most flexible of any language’s. Arbitrary-precision integers and rationals are part
of the language standard and can be very fast.

Sheafhom 2.1 and 2.2 were developed with Allegro Common Lisp (ACL) from
Franz, Inc. Under Linux we use the free implementation Steel Bank Common Lisp
(SBCL). Sheafhom 2.0 was developed in Java. Sheafhom 1.x was developed in
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Carnegie-Mellon University Common Lisp (CMUCL), the parent of SBCL. All the
Lisps mentioned here produce high-quality compiled code.

Sheafhom 1.x was restricted to R = Q, but had general support for the de-
rived category of complexes of sheaves over cell complexes. It was also ported to
Macaulay 2 [GS].

2.3.1. Overview of data structures. Any sparse matrix package uses data structures
that store only the nonzeros. Sheafhom stores a sparse matrix as an array of sparse
vectors representing the columns. A sparse vector is a linked list of nonzero sparse
elements. A sparse element represents an ordered pair (i, v) with i ∈ N, v ∈ R.
When this sparse element occurs in column j, it means the i, j entry of the matrix
has nonzero value v. The rest of (2.3) gives further details.

2.3.2. Testing platforms. To explain the test data we will present later, we give some
details about the two machines we use most. Portland, our Windows machine, is a
laptop with a 1.30 GHz Celeron M processor and 992 MB of RAM, running ACL 8.1
under Windows XP 2002. Athens, our Linux machine, is a 64-bit laptop with a
2.20 GHz Intel Core2 Duo processor and 3.9 GB of RAM, running SBCL 1.0.12
under Linux 2.6 (Ubuntu 8).

2.3.3. Implementation of sparse elements. For general rings R, Sheafhom imple-
ments the indices i ∈ N and values v ∈ R as objects. They are allocated on the
heap, and contain type information needed to use them in an object-oriented way.
For these rings, we store (i, v) as a pair of pointers to i and to v. The pair of point-
ers is a native data structure in Lisp, the cons , the fundamental building block for
linked lists and tree structures.

The cons implementation is convenient, but, as in all languages, the indirection
carries a penalty in efficiency. Lisp may store the numbers on a different memory
page from the conses themselves, forcing the machine to flip back and forth between
pages.

When R = Fp, we implement sparse elements more efficiently. We typically use
primes p a little less than 215, so that sums and products in [0, p) can be computed
in a 32-bit integer before reducing mod p. Let k be the smallest integer such that
p < 2k. (For our favorite prime 12379, k = 14.) Each v ∈ Fp fits in k bits. We
would like to pack (i, v) into a single 32-bit integer, but we cannot. With k = 14,
say, there would only be 18 bits left for the index, and we need a larger range of
indices than 218 ≈ 106. Therefore, on a 32-bit machine, we pack (i, v) into an
arbitrary-precision integer, but arrange things so the integer will fit into 32 bits at
the critical stages of the computation. Let M be an upper bound on the number
of rows in the matrix. We store (i, v) as the integer

(4) (M − i− 1) · 2k + v.

Near the end of a computation, when space is critical, i will be close to M . Hence
M − i− 1 will be small and Formula 4 will fit in 32 bits.

On a 64-bit machine, we store (i, v) even more simply as

(5) i · 2k + v.

For us, this never exceeds a 64-bit integer. When k = 14, for instance, it would
exceed it only if i > 264−14 = 250 ≈ 1015, whereas our largest m are around 106

or 107. By declaring the sparse element to be a 64-bit integer throughout the
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program, we avoid the separate heap allocations for i and v, the pair of pointers
holding i and v, and the object-oriented indirection.

In all of Sheafhom’s implementations of sparse elements, operations in the
ring R really operate on the sparse elements. For instance, the sum of (i1, v1) and
(i2, v2) is a new sparse element with value v1 + v2 ∈ R and with some i determined
by the context, typically i = i1.

2.3.4. Implementation of sparse vectors and matrices. Sheafhom’s sparse matrix
data structure is an array of sparse vectors giving the columns, together with ar-
rays of the row lengths ri and column lengths cj used for Markowitz. Sheafhom

implements a sparse vector as a singly linked list of sparse elements, sorted by in-
creasing index i. The backbone of the linked list (as opposed to the sparse elements
it holds) is again built from conses. Implementing vectors as a linked list is flexible,
compared to constantly allocating and reallocating arrays in C. Lists grow in size
as fill-in occurs, and shrink as entries cancel each other out. As they shrink, the
memory is reclaimed by the garbage collector.

Sheafhom includes a macro with-splicer as a mini-language for surgery on
lists. with-splicer iterates down a list and offers read, insert, modify and delete
operations for individual elements, plus splicing commands to add and remove
larger chunks. We allocate as few new backbone conses as possible.

Implementing sparse vectors as singly-linked lists is flexible, as we have said,
but it involves the usual risks because accessing a single element might take time
linear in the length of the list. We can avoid this trap with a little care. To find
the sum x + y of sparse vectors x and y, for example, we run through the vectors
in parallel and accumulate the sum as we go. Similar comments apply to scalar
multiplication, subtraction, and the dot product.

One place we might encounter quadratic behavior is step 5 of the SNF algo-
rithm (2.1.2). If the pivot row and column have ri and cj entries respectively, a
direct approach would require (ri − 1)(cj − 1) operations, each linear in the length
of the column. The trick here is simply to put step 4 before step 5. Step 4 handles
the column operations linearly as in the previous paragraph, and step 5 then has
ri = 1.

Another likely place for slow behavior is multiplying a sparse matrix B on the
left by an elementary matrix. This includes the important computation of η (Equa-
tion 3). An elementary operation with rows i and j might involve a linear sweep
down ri + rj columns. We handle this situation by taking the transpose of B,
multiplying on the right by the transposes of the elementary matrices, and taking
a final transpose to put everything back at the end. The transpose of B takes time
linear in the number of entries, which for a sparse matrix is small by definition.

2.3.5. Comparison of sparse element implementations. Table 1 shows a test of
speed and space requirements for the three implementations of sparse elements
over F12379 on our Linux machine. We timed the SNF computation for the d4 ma-
trix for level N = 53, the matrix of Figure 2. The matrix is 15218× 52766. We
used only the Markowitz portion of (2.1.2), no disk HNF. Since we were on a 64-bit
machine, each sparse element in Formula (5) takes 8 bytes. Formula (4) has about
the same space requirement, especially towards the end of a computation when i is
close to M . The (i, v) representation requires 8 bytes for each of i and v, plus 16
bytes for the cons itself, for a total of 32 bytes. To all these figures we must add
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16 bytes for the cons in the backbone of the sparse vector that holds the sparse
element.

2.3.6. Overall speed and space requirements. To summarize, our implementations of
sparse elements are optimized for both space and speed, and our sparse vector and
matrix algorithms avoid speed traps leading to quadratic time unnecessarily. On the
other hand, at the higher layers of the algorithm, we sacrifice speed, minimizing fill-
in at all costs. For instance, we mentioned in (2.1.1) that we do a full Markowitz
scan at each pivot step. This takes about one third of the total time for the
algorithm until we switch to disk HNF.

The largest matrix we have handled so far has size 845, 712× 3, 277, 686. This
is the η matrix for level N = 211. It has close to 20 million nonzeros. We carried
out the computation on our Linux machine, using the implementation of F12379 in
Formula 5. The sizes of d5 and d4 are 98, 351× 944, 046 and 944, 046× 3, 277, 686,
respectively. We reduced d5 using only the Markowitz portion of (2.1.2), with no
disk HNF. We reduced η using both Markowitz and disk HNF, switching when
the active region had τ equal to about 116 million nonzeros. Converting d4 to η as
in (3) took significant time by itself, since it called for over three million elementary
column operations on the transpose of d4. How the running time broke down is
shown in Table 2.

It is interesting to compare our running times with those in [DEVGU07]. They
compute for GL7(Z) at level N = 1, while we do SL4(Z) at N = 211. The number
of nonzeros is roughly comparable, 37 million versus 20 million. Both computations
took about one month. They computed mod p for several p, but used 50 processors;
we did one p on one processor. We find ourselves joking that

GL7 = GL4 + 2113.

How the running time broke down is shown in Table 2. We do not distinguish
between the wall-clock time and CPU time because they are essentially the same.
We ran the computation on our Linux machine on a single processor. The machine
was doing nothing besides the computation. Occasional tests with top showed
the CPU running consistently at 100%. We presume one of the two cores ran
the computation, and the other took care of background jobs like displaying the
desktop.

Recall that τ is the maximum number of nonzeros allowed in the active region
before switching from Markowitz to disk HNF. Table 3 shows the largest τ we have
used successfully. They depend on the chosen implementation of sparse elements, as
well as on the operating system and version of Lisp. A + means we have relatively
little data for this combination of parameters, and τ could likely go higher than
shown. Values without a + represent a reasonable maximum, determined by long
experience and many out-of-memory crashes. The number of bytes is computed as
in (2.3.5) for our Linux machine. On our Windows machine, a 32-bit integer counts
4 bytes, a cons 8 bytes.

2.3.7. Other approaches. We mention a few more sparse matrix techniques that
appear in the literature.

Many scientific applications involve sparse matrices with a pattern, such as tridi-
agonal or banded diagonal. The matrices in this paper have no recognizable sparsity
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implementation total time space per entry

(i, v) as a cons 2768 sec 48 bytes
Formula 4 1385 sec 24 bytes
Formula 5 784 sec 24 bytes

Table 1. Comparison of sparse element implementations.

SNF of d5 1
4 day

converting d4 to η 5 1
2 days

SNF of η, Markowitz portion 12 days
SNF of η, disk HNF portion 13 days

Table 2. Overall speed for level N = 211.

machine and RAM implementation largest τ space per entry total space

Windows 1GB (i, v) as a cons 30M 24 720MB
Windows 1GB (4) 22M+ 12 264MB+
Linux 4GB (4) 42M+ 24 1.0GB+
Linux 4GB (5) 148M 24 3.55GB

Table 3. Maximum number of nonzeros allowed in the active region.

pattern. A matrix coming from a d-dimensional topological space would have a pat-
tern in d dimensions, but not when flattened into a two-dimensional table of rows
and columns.

The RSA challenge matrices described in [PS92] had some special properties.
The columns on the left were very sparse, and could be used to clean out the
somewhat denser columns on the right. Rows and columns with only two entries
gave an even quicker reduction step [LO91]. The [DEVGU07] matrices had many
rows with only one entry [DEVGU07, 2.6.4], a result of cancellation at the low level
N = 1. By and large, our matrices do not have these properties. The sparsity is
almost entirely uniform. The d5 have a substantial fraction of columns with one or
two entries, but not d4.

Block-triangularization is another well-established technique for sparse matrices.
Given an m × n matrix A, we look for permutation matrices Pb and Qb so that
B = PbAQb is block upper-triangular : it has square blocks down the diagonal
and nothing but zeroes below the blocks. The matrix can then be reduced one
block at a time, either to HNF or SNF. The upper-triangular part can be handled
directly by back-solving. Since we only permute the matrix entries, there is no
fill-in and no integer explosion. Assume for the moment that A is square and
of full rank, and that after a row permutation the diagonal aii is all nonzero.
For such A, the block-triangular form is unique, and the way to find it is well
known [DER89, Ch. 6]. When A is not of full rank, the block decomposition is
generalized to the Dulmage-Mendelsohn decomposition, which is roughly upper-
triangular [Dav06, (8.4)]. In our case, A is a fraction of a percent away from
full rank and from having nonzeros down the diagonal; for square A of this type,
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finding the Dulmage-Mendelsohn decomposition takes about the same time and
space resources as block decomposition. So far these algorithms are polynomial
time. A new idea is needed, however, when A is not square but rectangular, as it
is for us. One can find the Dulmage-Mendelsohn decomposition of the left-hand
m×m square, then swap in columns from the wide section on the right in a way
that shrinks the left-hand diagonal blocks. Deciding which columns to swap is in
general an NP-hard problem. The third author has found good decompositions of
some rectangular A using a heuristic for which columns to swap in. One iterates
the procedure “do Dulmage-Mendelsohn, then swap in columns” many times. We
defer the details to a future paper.

3. Eisenstein cohomology and Paramodular forms

In this section we provide the necessary background to state Conjectures 1 and
2 and explain our computational results in Section 4.

3.1. Hecke eigenclasses and Galois representations. We will describe some
classes appearing in H5(Γ0(N); C) in terms of the Galois representations conjec-
turally attached to them. Thus we begin by recalling what this means [AGM08].

Let ξ ∈ H5(Γ0(N); C) be a Hecke eigenclass. In other words, ξ is an eigenvector
for certain operators

T (l, k) : H5(Γ0(N); C)→ H5(Γ0(N); C),

where k = 1, 2, 3 and l is a prime not dividing N . These operators correspond to
the double cosets Γ0(N)D(l, k)Γ0(N), where D(l, k) is the diagonal matrix with
4− k ones followed by k l’s. (One can also define analogues of the operators Ul for
l | N , although we do not consider them in this paper.) Suppose the eigenvalue of
T (l, k) on ξ is a(l, k). We define the Hecke polynomial H(ξ) of ξ by

(6) H(ξ) =
∑

k

(−1)klk(k−1)/2a(l, k)T k ∈ C[T ].

Now we consider the Galois side. Let Gal(Q̄/Q) be the absolute Galois group of
Q. Let ρ : Gal(Q̄/Q)→ GLn(Q̄p) be a continuous semisimple Galois representation
unramified outside pN . Fix an isomorphism ϕ : C→ Q̄p. Then we say the eigenclass
ξ is attached to ρ if for all l not dividing pN we have

ϕ(H(ξ)) = det(1− ρ(Frobl)T ),

where Frobl ⊂ Gal(Q̄/Q) is the Frobenius conjugacy class over l. Let ε be the
p-adic cyclotomic character, so that ε(Frobl) = l for any prime l coprime to p. We
denote the trivial representation by i.

3.2. Eisenstein cohomology. Let X = SL4(R)/SO(4) be the global symmetric
space, and let XBS be the partial compactification constructed by Borel and Serre
[BS73]. The quotient Y := Γ0(N)\X is an orbifold, and the quotient Y BS :=
Γ0(N)\XBS is a compact orbifold with corners. We have

H∗(Γ0(N); C) ≃ H∗(Y ; C) ≃ H∗(Y BS; C).

Let ∂Y BS = Y BS rY . The Hecke operators act on the cohomology of the bound-
ary H∗(∂Y BS; C), and the inclusion of the boundary ι : ∂Y BS → Y BS induces a map
on cohomology ι∗ : H∗(Y BS; C)→ H∗(∂Y BS; C) compatible with the Hecke action.
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The kernel H∗

! (Y BS; C) of ι∗ is called the interior cohomology; it equals the im-
age of the cohomology with compact supports. The goal of Eisenstein cohomology
is to use Eisenstein series and cohomology classes on the boundary to construct
a Hecke-equivariant section s : H∗(∂Y BS; C) → H∗(Y BS; C) mapping onto a com-
plement H∗

Eis(Y
BS; C) of the interior cohomology in the full cohomology. We call

classes in the image of s Eisenstein classes. (In general, residues of Eisenstein se-
ries can give interior, noncuspidal cohomology classes, with infinity type a Speh
representation, but as noted in [AGM02], these do not contribute to degree 5.)

3.3. Paramodular forms. We now give some background on Siegel modular forms.
We will skip the basic definitions, which can be found in many places (e.g. [vdG08]),
and instead emphasize paramodular forms. Since our main application is cohomol-
ogy of subgroups of SL4(Z), we will focus on Sp4.

Let K(N) be the subgroup of Sp4(Q) consisting of all matrices of the form








Z NZ Z Z

Z Z Z N−1Z

Z NZ Z Z

NZ NZ NZ Z









.

The group K(N) is called the paramodular group. It contains as a subgroup the
standard congruence subgroup Γ′

0(N) modeled on the Klingen parabolic; that is,
Γ′

0(N) ⊂ Sp4(Z) is the intersection K(N) ∩ Sp4(Z). Paramodular forms are Siegel
modular forms that are modular with respect to K(N). Clearly such forms are
also modular with respect to Γ′

0(N), although modular forms on the latter are not
necessarily paramodular. Note also that in the embedding i : Sp4(Z)→ SL4(Z), we
have i(Γ′

0(N)) = i(Sp4(Z)) ∩ SL4(Z).
The paramodular forms of interest to us are those of prime level N and weight

3. We denote the complex vector space of such forms by P3(N). One can show that
P3(N) consists entirely of cuspforms, i.e. there are no weight 3 paramodular Eisen-
stein series. Recently T. Ibukiayama [Ibu07] proved a general dimension formula
for P3(N):

Theorem 1. [Ibu07, Theorem 2.1] Let N be prime and let κ(a) be the Kronecker

symbol ( a
N ). Define functions f, g : Z→ Q by

f(N) =











2/5 if N ≡ 2, 3 mod 5,

1/5 if N = 5,

0 otherwise,

and

g(N) =

{

1/6 if N ≡ 5 mod 12,

0 otherwise.

We have dim P3(2) = dimP3(3) = 0. For N ≥ 5, we have

dimP3(N) = (N2 − 1)/2880

+ (N + 1)(1− κ(−1))/64 + 5(N − 1)(1 + κ(−1))/192

+ (N + 1)(1− κ(−3))/72 + (N − 1)(1 + κ(−3))/36

+ (1− κ(2))/8 + f(N) + g(N)− 1.
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For any N , the space of weight k paramodular forms contains a distinguished
subspace PG

3 (N) originally constructed by Gritsenko [Gri95]. This space is defined
by a lift from the space Jcusp

k,N of cuspidal Jacobi forms of weight k and index N

to P3(N). We will not define Jacobi forms here, and instead refer the reader to
[EZ80] for background. For our purposes, we will only need to know the dimension
dimPG

3 (N) = dimJcusp
3,N . Formulas for the dimensions of spaces of Jacobi forms

can be found in [EZ80, pp. 121, 131-132]; the following reformulation is due to
N. Skoruppa:

Theorem 2. We have

(7) dim Jcusp
3,N =

m−1
∑

j=1

s(k + 2j − 1)−
⌊ j2

4m

⌋

,

where s(k) is the dimension of the space of cuspidal elliptic modular forms of full

level and weight k.

Let P nG
3 (N) be the Hecke complement in P3(N) of the subspace PG

3 (N) of
Gritsenko lifts. The dimension of this space is easily determined by Theorems 1
and 2.

We conclude our discussion of paramodular forms by defining the Hecke poly-
nomial attached to an eigenform. More details can be found in [PY09]. Let l be a
prime not dividing N . Then associated to l there are two Hecke operators Tl and
Tl2 . For an eigenform h ∈ P3(N) we denote the corresponding eigenvalues by δl,
δl2 :

Tlh = δlh, Tl2h = δl2h.

We define the Hecke polynomial attached to h by

(8) HSp(h) = 1− δlT + (δ2
l − δl2 − l2)T 2 − δll

3T 3 + l6T 4.

This polynomial is essentially the local factor at l attached to the spinor L-function
for h.

4. Conjectures and computational results

In this section we present two conjectures on the structure of H5(Γ0(N); C) for N
prime, and conclude by describing our computational evidence for them.

4.1. Notation. We begin by fixing notation for the different constituents of the
cohomology.

• Weight two holomorphic modular forms: Let σ2 be the Galois representa-
tion attached to a holomorphic weight 2 newform f of level N with trivial
Nebentypus. Let α be the eigenvalue of the classical Hecke operator Tl on
f . Let IIa(σ2) and IIb(σ2) be the Galois representations in the first two
rows of Table 5 (see p. 21).
• Weight four holomorphic modular forms: Let σ4 be the Galois representa-

tion attached to a holomorphic weight 4 newform f of level N with trivial
Nebentypus. Let β be the eigenvalue of the classical Hecke operator Tl on
f . Let IV(σ4) be the Galois representation in the third row of Table 5.
• Cuspidal cohomology classes from subgroups of SL3(Z): Let τ be the Ga-

lois representation conjecturally attached to a pair of nonselfdual cuspidal
cohomology classes η, η′ ∈ H3(Γ∗

0(N); C), where Γ∗

0(N) ⊂ SL3(Z) is the
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congruence subgroup with bottom row congruent to (0, 0, ∗) modulo N .
Let γ be the eigenvalue of the Hecke operator Tl,1 on η, and let γ′ be its
complex conjugate. Let IIIa(τ) and IIIb(τ) be the Galois representations
in the last two rows of Table 5.

If f is a weight 2 or weight 4 eigenform as above, or a weight 3 paramodular
eigenform, we denote by df the degree of the extension of Q generated by the Hecke
eigenvalues of f . We say that two eigenforms f, g are Galois conjugate if there is an
automorphism σ ∈ Gal(Q̄/Q) such that the Hecke eigenvalues of f are taken into
those of g by σ. We say f, g are equivalent if g is a Q-linear combination of f and
its Galois conjugates. We extend these notions in the obvious way to eigenclasses
η ∈ H3(Γ∗

0(N); C).
For any modular form of weight k with Fourier expansion f(z) =

∑

n ane2πinz,
let L(s, f) be the Dirichlet series

∑

n an/ns. The series L(s, f) can be completed
to a function Λ(s, f) satisfying a functional equation of the shape s→ k − s.

4.2. Eisenstein cohomology.

Conjecture 1. Let N be prime. Then the cohomology group H5(Γ0(N); C) con-

tains the following Eisenstein subspaces:

(1) For each equivalence class of weight two holomorphic newforms of level N ,

choose a representative f with associated Galois representation σ2. Then

there are two df -dimensional subspaces in the cohomology, one attached to

the Galois representation IIa(σ2), and the other to the Galois representation

IIb(σ2).
(2) For each equivalence class of weight four holomorphic newforms of level N ,

choose a representative f with associated Galois representation σ4. Then if

the central special value Λ(2, f) vanishes, there is a df -dimensional subspace

in the cohomology attached to the Galois representation IV(σ4).
(3) For each equivalence class of nonselfdual cuspidal cohomology classes in

H3(Γ∗

0(p); C), Γ∗

0(p) ⊂ SL3(Z), choose a representative η and let τ be

the conjecturally associated Galois representation. Then there are two dη-

dimensional subspaces, one attached to the Galois representation IIIa(τ),
and the other to the Galois representation IIIb(τ).

Furthermore, for N prime this is a complete description of the Eisenstein subspace

of H5(Γ0(N); C).

In our earlier paper [AGM08], we also gave a conjecture about some Eisenstein
subspaces of H5. In fact, for weight 2 modular forms and for SL3-cuspidal cohomol-
ogy, there is no difference between [AGM08, Conjecture 1] and the conjecture here.
The new part is in the contribution of the weight 4 modular forms. In [AGM08], our
data was only sufficient to suggest that the weight 4 forms f appearing were those
whose completed L-functions Λ(s, f) have a minus sign in their functional equa-
tions. Certainly this contains the subspace of forms whose central special value
vanishes, but there are additional forms that also contribute (cf. Example 1 below).

Because of our extensive computations, we feel confident that Conjecture 1 com-
pletely describes the Eisenstein subspace for prime level. However, Conjecture 1 is
not true for composite N , as already remarked in the paragraph after [AGM08, Ex-
ample 1].
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4.3. Paramodular forms.

Conjecture 2. For N prime, choose an equivalence class of eigenforms in P nG
3 (N),

and let h be a representative. Let dh be the degree of the extension of Q generated

by the eigenvalues of h. Then the cuspidal cohomology H5
cusp(Γ0(N); C) contains a

2dh-dimensional subspace spanned by Hecke eigenclasses. If ξ is an eigenclass in

this space, then up to Galois conjugacy the Hecke polynomial H(ξ) of ξ from (6)
agrees with the Hecke polynomial HSp(h) of h from (8).

We remark that this equality means that ξ is the functorial lift of h with respect
to the natural inclusion of L-groups: LGSp4 →

LGL4.

4.4. Computational results. These are listed in Table 4, which shows our com-
puted Betti numbers and the dimensions of the constituents of the cohomology
predicted by Conjectures 1 and 2. For levels ≤ 101, we checked that the Hecke
polynomial for l = 2 is correct.

Example 1. We consider the case N = 127. There are two weight 2 eigenforms,
with Hecke eigenvalues defining respectively a cubic and a septic field. There are
three weight 4 eigenforms, with Hecke eigenvalues defining fields of degrees 1, 13,
and 17. The degree 13 eigenform has minus sign in the functional equation of its
L-function, which means its central special value vanishes. However, there is also
another vanishing at this level: the rational eigenform also has vanishing central
special value, vanishing that is not forced by the sign of the functional equation.
Thus together these modular forms account for a 2 × 10 + 14 = 34 dimensional
subspace of H5(Γ0(N); C).

For the rest of the cohomology, we must consider SL3 and paramodular contri-
butions. There is no cuspidal cohomology for Γ∗

0(127) ⊂ SL3(Z). The space of non-
Gritsenko lifts has dimension 3. Thus we see an additional 6-dimensional subspace
of H5 coming from these Siegel modular forms, which means dimH5(Γ0(127); C) ≥
40. Indeed our computations indicate that this Betti number equals 40.
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