University of Massachusetts Amherst ScholarWorks@UMass Amherst

Cranberry Station Extension meetings

Cranberry Station Outreach and Public Service
Activities

2011

Insect Management Research and Recommendations

Anne L. Averill *University of Massachusetts - Amherst*, averill@eco.umass.edu

Follow this and additional works at: https://scholarworks.umass.edu/cranberry_extension
Part of the Horticulture Commons

Recommended Citation

Averill, Anne L., "Insect Management Research and Recommendations" (2011). *Cranberry Station Extension meetings*. 118. Retrieved from https://scholarworks.umass.edu/cranberry_extension/118

This Article is brought to you for free and open access by the Cranberry Station Outreach and Public Service Activities at ScholarWorks@UMass Amherst. It has been accepted for inclusion in Cranberry Station Extension meetings by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please contact scholarworks@library.umass.edu.

Entomology Outline

- ☐ Cranberry fruitworm management: recommendations for early varieties
- ☐ Cranberry weevil management
- ☐ Tipworm research
- ☐ Pollination in cranberry

Cranberry fruitworm: management on early varieties

IPM recommendations

Now:

- Observe 50% out of bloom
- Spray 7-10 days later
 for Howes and EB
- Spray sooner for Stevens and BL

Under consideration:

- Observe 50% out of bloom
- Spray 7-10 days later for Howes
- Spray 0-5 days later for early varieties, but only with Delegate or new CFWkiller to be registered in 2011

- 20 sites
- Many had paired
 Stevens and EB beds
- % out-of-bloom was monitored for each bed
- 50% OOB was determined

- Egg infestation determined
 - Took berry samples every few days and examined for eggs

 Damage checked in late July berry samples

- Collected spray records
 - Compounds used for 1st fruitworm (number of sites)
 - Intrepid (2)
 - Diazinon (8)
 - Lorsban (1)
 - Delegate (8)

 Spray date: How many days before or after 50% OOB = blue bars

 Divided fruit infestation by original egg infestation = red bars

ST: Delegate sites, days b/a 50% OOB and fruit infestation

EB: Diazinon sites, days b/a 50% OOB and fruit infestation

EB: All sites, days b/a 50% OOB and fruit infestation

Variety	Mean % egg infestation	Mean % fruit infestation	Number of sites with no egg infestation
Stevens	2.91	2.88	5
Early Blacks	0.70	0.68	8

Conclusions

- Field data continue to support change in recommendation
- Spray around 50%
 OOB for early
 varieties
- Delay for Howes

 Delegate is a viable alternative for CFW management

Cranberry weevil management II

Exploiting aggregation behavior in insects

Aggregation is often mediated by chemical cues=pheromones

Pheromone trap calling together many individuals of an insect species.

Anthonomus weevil group

Pepper weevil

Cotton boll weevil

Aggregation pheromones used to bait traps in IPM programs

Novel strategies for cranberry weevil management

Cesar Rodriguez-Saona Rutgers

Zsofia Szendrei MSU

Agenor Mafra-Neto. ISCA, Inc

Isolationg the aggregation pheromone in cranberry weevil

Applications: baited traps are more effective

ISCA technique

• SPLATTM (Specialized Pheromone & Lure Application Technology):

Biologically inert matrix for the release of semiochemicals and/or pesticides

Applied in blobs with dosing gun

Lure and kill strategy: Integrate aggregation pheromone with insecticide in matrix

Cranberry weevil adults overwinter in the woods surrounding bogs

 Dollops would be applied only in field edges, where spring weevils are active

Lower summer generation

Advantages

- Reduce insecticide inputs
 - discrete attractive point source (instead of cover spray)
- Males and females killed