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QUIVER VARIETIES AND BEILINSON-DRINFELD
GRASSMANNIANS OF TYPE A

IVAN MIRKOVIĆ AND MAXIM VYBORNOV

Abstract. We construct Nakajima’s quiver varieties of type A in terms of conjugacy
classes of matrices and (non-Slodowy’s) transverse slices naturally arising from affine
Grassmannians. In full generality quiver varieties are embedded into Beilinson-Drinfeld
Grassmannians of type A. Our construction provides a compactification of Nakajima’s
quiver varieties and a decomposition of an affine Grassmannian into a disjoint union of
quiver varieties. As an application we provide a geometric version of skew and symmetric
(GL(m), GL(n)) duality.

1. Introduction

In type A we relate Nakajima’s quiver varieties, conjugacy classes of matrices, and
Beilinson-Drinfeld Grassmannians. In particular, we embed quiver varieties into Beilinson-
Drinfeld Grassmannians. From the point of view of Nakajima’s quiver varieties our con-
struction provides a compactification of quiver varieties. From the point of view of nilpo-
tent orbits we construct new transverse slices to nilpotent orbits naturally arising from
affine Grassmannians. From the point of view of affine Grassmannians we get a de-
composition of an affine Grassmannian into a disjoint union of quiver varieties. As an
application we provide a geometric version of both the skew and the symmetric version
of the (GL(m), GL(n)) duality.

The relationship between quiver varieties and nilpotent orbits was conjectured by Naka-
jima [N1] and proved by Maffei [Maf]. What we do here is close to (and in part motivated
by) Maffei’s work, however while he uses Slodowy’s normal slices to nilpotent orbits we
use different slices suggested by the relation to the affine Grassmannians, and this makes
the construction explicit while Maffei’s approach is based on an existence result.

These observations do not literally extended beyond type A. For instance, the closures of
orbits in the affine Grassmannian are normal and this is not true for the nilpotent orbits.

1.1. The setup. We work over the field of complex numbers C. By Gm = C∗ we some-
times denote the multiplicative group of this field.

Given two (n−1)-tuples of integers d = (d1, . . . , dn−1) and v = (v1, . . . , vn−1) and a central
element c = (c1, . . . , cn−1) of the Lie algebra

∏n−1
i=1 gl(vi,C), Nakajima [N1, N2] constructs

quiver varieties M0(v, d) and M(v, d).
1
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2 IVAN MIRKOVIĆ AND MAXIM VYBORNOV

From the quiver data one can produce GL(m)-(co)weights (partitions) λ and µ of N (cf.
subsection 5.1.1), where m = d1 + · · · + dn−1, and N =

∑n−1
j=1 jdj. We will also consider

the affine Grassmannian G associated to the group G = GL(m), and a “convolution”

Grassmannian G̃ equipped with a resolution map π : G̃ → G.

The following theorem is a common generalization of (some of) the results of Kraft-Procesi
[KP], Lusztig [L1], and Nakajima [N1]. For simplicity we will only write down here the
statement in the case c = 0. In this paper we provide a complete proof of the Theorem
below announced in [MVy].

1.2. Theorem. There exist algebraic isomorphisms φ, φ̃, ψ, ψ̃ such that the following di-
agram commutes:

M(v, d)
eφ

−−−→
≃

m−1(Tλ ∩ Oµ)
eψ

−−−→
≃

π−1(L<0G · λ ∩ L≥0G · µ) ⊂ G̃

p

y m

y π

y

M0(v, d)
φ

−−−→
≃

Tλ ∩ Oµ
ψ

−−−→
≃

L<0G · λ ∩ L≥0G · µ ⊂ G,

where Tλ is our new transverse slice to the nilpotent orbit Oλ ⊆ N of type λ in the
nilpotent cone N of the gl(N,C), Oµ is the closure of the nilpotent orbit of type µ in

N , m : Õµ → Oµ is its Springer resolution, and L≥0G and L<0G are the subgroups of
non-negative and negative loops respectively in the loop group GL(m,C((z))).

1.3. The deformation. For arbitrary c, the nilpotent orbits deform to general conjugacy
classes, and the affine Grassmannian deforms to the Beilinson-Drinfeld Grassmannian
GA(n) on the n-th symmetric power of the curve A

1, or more precisely its fiber over the
point (0, c1, c1 + c2, . . . , c1 + · · · + cn−1) ∈ A(n). The general statement is formulated as
Theorem 5.3.

1.4. A transverse slice different from Slodowy’s. Our isomorphisms φ and φ̃ are
similar to those conjectured and constructed in [N1, Maf]. However, in our case Tλ is not

the Slodowy’s transverse slice but rather a different transverse slice naturally arising from
the affine Grassmannian via the isomorphism ψ. In order to illustrate the difference, let
us give an example for N = 5 and a nilpotent element x with Jordan blocks of sizes 3 and
2. If we fix the basis in which the matrix of x has the Jordan canonical form, i.e.,

x =




0 1 0 | 0 0
0 0 1 | 0 0
0 0 0 | 0 0
0 0 0 | 0 1
0 0 0 | 0 0



.
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In the Jordan basis the two transverse slices in questions are described by matrices of the
form

Slodowy’s slice =




a1 1 0 | 0 0
a2 a1 1 | b1 0
a3 a2 a1 | b2 b1
c1 0 0 | d1 1
c2 c1 0 | d2 d1



, our slice =




0 1 0 | 0 0
0 0 1 | 0 0
a3 a2 a1 | b2 b1
0 0 0 | 0 1
c2 c1 0 | d2 d1



.

Let {x, h, y} be a Jacobson-Morozov sl(2)-triple associated with x. Recall that Slodowy’s
slice is x+ Zgl(N)(y). Our slice also arises from {x, h, y}, it can be described as x+ C ⊆
gl(N), where h acts on C with non-positive integral eigenvalues, C is complementary to
[gl(N), x] in gl(N), and the action of y on C is “as close to regular nilpotent as possible”,
cf. 3.2.7. In Slodowy’s case the slice is x + C = x + Zgl(N)(y), so h acts on C with
non-positive integral eigenvalues and C is complementary to [gl(N), x] in gl(N), but by
contrast y acts on C by zero.

Our transverse slice is advantageous in the context of this work for three reasons. First,
the isomorphism φ is given by simple explicit formulas, at least when c = 0, cf. 8.1.2
and [MVy, 3.2], as opposed to an inductive procedure used in [Maf]. Second, we are able
to decompose an affine Grassmannian into a disjoint union of quiver varieties, cf. 5.4.4.
Finally, our construction provides a natural environment for geometric (GL(m), GL(n))
duality, cf. Section 9.

Remark. Slodowy’s slice was discovered by Kostant, Peterson and Slodowy, cf. [Sl, CG]
and references therein.

1.5. The paper is organized as follows. In Section 2 we recall some facts on the quiver
varieties of type A. In Section 3 we recall Grothendieck-Springer-Ginzburg theory and
discuss transverse slices to nilpotent orbits. In Section 4 we recall some facts on Beilinson-
Drinfeld Grassmannians and discuss the appearance of our transverse slice in this setting.
Section 5 contains the statement of the Main Theorem and its corollaries. In Section 6
we describe a particular case providing a construction of the conjugacy classes of matrices
via quiver varieties. Section 7 contains the proof of the main technical lemma. Section 8
finishes the proof of the Main Theorem. Finally, in Section 9 we discuss applications to
representation theory.

Acknowledgement. We are grateful to A. Braverman, I. Frenkel, D. Gaitsgory, V.
Ginzburg, M. Finkelberg, G. Lusztig, A. Maffei, A. Malkin, O. Schiffmann, and W. Wang
for useful discussions, and to MSRI, IHÉS and IAS for their hospitality and support. The
research of I.M. was supported by NSF. The research of M.V. was supported by NSF
Postdoctoral Research Fellowship in 2001-2003.
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2. Quiver varieties of type A

2.1. Definitions.

2.1.1. Let us consider the Dynkin graph of type An−1 with the following orientation Ω:

��	�
��

1
��	�
��

2
// ��	�
��

3
// . . .// ��	�
��

n−2
// ��	�
��

n−1
//

Let I = {1, . . . , n − 1} be the set of vertices and H = Ω ⊔ Ω be the set of arrows of our
quiver. For an arrow h ∈ H we denote by h′ ∈ I its initial vertex and by h′′ ∈ I its
terminal vertex.

2.1.2. Following Nakajima we attach vector spaces Vi and Di of dimensions dimVi = vi
and dimDi = di, i ∈ I to the vertices of our quiver i.e. we consider the I-graded vector
spaces V = ⊕i∈IVi and D = ⊕i∈IDi. Let v = (v1, . . . , vn−1) and d = (d1, . . . , dn−1) and
let M(v, d) be the following affine space:

M(v, w) =
⊕

h∈H

Hom(Vh′, Vh′′) ⊕
⊕

i∈I

Hom(Di, Vi) ⊕
⊕

i∈I

Hom(Vi, Di).

Following Lusztig [L4] we denote an element in M(v, w) as a triple (x, p, q), where

x = (xh)h∈H ∈
⊕

h∈H

Hom(Vh′, Vh′′),

p = (pi)i∈I ∈
⊕

i∈I

Hom(Di, Vi),

q = (qi)i∈I ∈
⊕

i∈I

Hom(Vi, Di).

(1)

2.1.3. In the An−1 case under consideration it is more convenient to use a different
notation. Following Lusztig and Maffei we will consider an element in M(v, w) as a
quadruple (x, x, p, q). The notation is summarized in the following diagram:

D1

p1

��

D2

p2

��

Dn−2

pn−2

��

Dn−1

pn−1

��

V1

q1

��

x1

44 V2

q2

��

x2

44

x1
tt

· · ·
x2

tt
Vn−2

qn−2

��

xn−2

22 Vn−1

qn−1

��

xn−2
rr

D1 D2 Dn−2 Dn−1

Also denote pj→i = xi . . . xj−1pj and qj→i = qixi−1 . . . xj .

The group G(V ) =
∏

i∈I GL(Vi) acts on M(v, w) in the following way. If g = (gi)i∈I then

(2) g(x, x, p, q) = (gi+1xig
−1
i , gixig

−1
i+1, gipi, qig

−1
i ).
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2.1.4. Let us denote by µ : M(v, d) → g(V ) the moment map associated to this action
of G(V ). Here g(V ) is the Lie algebra of G(V ). A quadruple (x, x, p, q) is in µ−1(c),
c = (c1, . . . , cn−1) if and only if the following relations are satisfied:

c1 + x1x1 = p1q1,

ci + xixi = xi−1xi−1 + piqi 2 ≤ i ≤ n− 2,

cn−1 = xn−2xn−2 + pn−1qn−1.

(3)

We denote the set of all such quadruples by Λc(v, d).

2.2. A result on invariant polynomials. Following [L4] let R be the algebra of regular
functions M(v, d) → C and let R(Λ) be the algebra of regular functions Λc(v, d) → C.
The action of G(V ) on M(v, d) (resp. Λc(v, d)) induces an action of G(V ) on R (resp.
R(Λ)). Following Lusztig [L4, 1.2] we describe two groups of invariant polynomials in
RG(V ).

(a) Let h1, h2 . . . , hr be a cycle in our graph, that is a sequence in H such that h′′1 =
h′2, h

′′
2 = h′3, . . . , h

′′
r = h′1. This cycle defines a G(V )-invariant polynomial in RG(V ) given

by (x, p, q) 7→ Tr(xhr
xhr−1 . . . xh1) : Vh′1 → Vh′1.

(b) Let h1, h2 . . . , hr be a path in our graph, that is a sequence inH such that h′′1 = h′2, h
′′
2 =

h′3, . . . , h
′′
r−1 = h′r. This path together with a linear form χ on Hom(Dh′1

, Dh′′r ) defines a

G(V )-invariant polynomial in RG(V ) given by (x, p, q) 7→ χ(qh′′rxhr
xhr−1 . . . xh1ph′1).

2.2.1. Theorem. [L4, Theorem 1.3, 5.8] The algebra R(Λ)G(V ) is generated by the in-
variant polynomials of types (a) and (b) above for (x, p, q) ∈ Λc(v, d).

Following [Maf], in the An−1 case we can improve the above theorem as follows. We switch
back to Maffei’s notation.

Lemma. Let h1, h2 . . . , hr be a cycle in our quiver. Then

Tr(xhr
xhr−1 . . . xh1) = Tr(P ),

where P is some polynomial of ql→jpi→l, i, j ∈ {1, . . . , n− 1} (necessarily l ≤ min(i, j)).

Proof. Easily follows from relations (3). �

Lemma. Let h1, h2 . . . , hr be a path in our graph and let χ be a linear form on
Hom(Dh′1

, Dh′′r ). Then

χ(qh′′rxhr
xhr−1 . . . xh1ph′1),= χ(P ),

where P is some polynomial of ql→jpi→l, i, j ∈ {1, . . . , n− 1} (necessarily l ≤ min(i, j)).

Proof. Easily follows from relations (3). �
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Notice that Tr : Di → Di is a linear form on Hom(Di, Di). Now the Lusztig’s theorem
2.2.1 and the lemmas above imply the following.

2.2.2. Theorem. The algebra of invariant functions R(Λ)G(V ) is generated by the invari-
ant polynomials χ(ql→jpi→l), where i, j ∈ {1, . . . , n − 1}, 1 ≤ l ≤ min(i, j), and χ is a
linear form on Hom(Di, Dj).

2.2.3. Following Nakajima [N2] and Lusztig [L4, 2.11] we say that a quadruple (x, x, p, q)
is stable if for any I-graded subspace U of V containing Imp and preserved by x and x,
we have U = V . The set of all stable quadruples in Λc(v, d) is denoted by Λc

s(v, d).

The following easy lemma is lifted from Maffei, [Maf, Lemma 14].

Lemma. If (x, x, p, q) ∈ Λc(v, d) then (x, x, p, q) is stable if and only if for all 1 ≤ i ≤ n−1

(4) Im xi−1 +

n−1∑

j=i

Im pj→i = Vi.

2.3. Nakajima’s quiver variety [N2, 3.12]. The quiver variety M(v, d) is the geomet-
ric quotient of Λc

s(v, d) by G(V ). In particular the set of geometric points of M is
Λc
s(v, d)/G(V ). Below we only consider such (v, d) that M(v, d) is nonempty, see [N2,

10], [Maf, Lemma 7] for explicit conditions on (v, d).

We can also consider the affine algebro-geometric quotient of Λc(v, d) by G(V ), which we
denote by

(5) M0 = Λc(v, d)//G(V ) = SpecR(Λc(v, d))G(V ).

We have a natural map p : M(v, d)→M0(v, d). Following Maffei we denote

Im p = M1(v, d) ⊂ M0(v, d).

Finally, let L(v, d) := p−1(0) ⊆ M(v, d) and denote by H(L(v, d)) its top-dimensional
Borel-Moore homology.

2.4. SL(n)-modules. In this subsection c = 0.

Theorem. [N2, 10.ii ] The space ⊕vH(L(v, d)) has the structure of a simple SL(n)-
module Wd with the highest weight d (i.e.,

∑
I diωi for the fundamental weights ωi).

The summand H(L(v, d)) is the weight space for the weight d − Cv, where C is the
Cartan matrix of type An−1.

In particular, the module Wd has a basis arising from the irreducible components of
p−1(0), or more precisely the weight space Wd(d−Cv) has a basis indexed by Irr L(v, d).
Following Lusztig [L5], we call this basis semicanonical.
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2.4.1. From SL(n) to GL(n). We may consider ⊕vH(L(v, d)) as a representation Wλ̌

of GL(n) with highest weight λ̌, where λ̌ = λ̌(d) = (λ̌1, λ̌2, . . . , λ̌n) is a partition of

N =
∑n−1

j=1 jdj defined as follows: λ̌i =
∑n

j=i dj (here dn = 0). Then H(L(v, d)) is the

weight space Wλ̌(a), where ai = vn−1 +
∑n

j=i(d−Cv)j (here (d−Cv)n = 0), cf. [N1, 8.3].

3. Grothendieck-Springer-Ginzburg theory and conjugacy classes of

matrices

In this section we fix a vector space D of dimension N .

3.1. Definitions of bases.

3.1.1. Let N = N (D) be the nilpotent cone in End(D). Let a = (a1, . . . , an) be a n-
tuple of integers such that N =

∑n
i=1 ai. We denote the variety if n-step flags in D and

its connected components as follows:

(6)
Fn = {0 = F0 ⊆ F1 ⊆ F2 ⊆ · · · ⊆ Fn = D},

Fn,a = {0 = F0 ⊆ F1 ⊆ F2 ⊆ · · · ⊆ Fn = D | dimFi − dimFi−1 = ai}.

It is well known that we have the following description of the cotangent bundle Ñ n = T ∗Fn

to this flag variety and its connected components

(7) Ñ n,a = T ∗Fn,a = {(x, F ) ∈ N × Fn,a | x(Fi) ⊆ Fi−1}.

Denote by m : Ñ n→N the projection onto the first factor, and by ma the restriction of

m to Ñ n,a.

3.1.2. Let λ̌ = λ̌1 ≥ · · · ≥ λ̌n, N =
∑n

i=1 λ̌i be a partition of N and let λ = (λ1, . . . , λm),
be the dual partition. Let x ∈ N be a nilpotent element of type λ, that is, x has Jordan
blocks of sizes λ1, . . . , λm. We will denote the fiber m−1(x) by Fn

x and its connected
components m−1(x) ∩ Fn,a by Fn,a

x .

3.1.3. Let us extend the picture above as follows. Consider the following subbundle of
the trivial vector bundle
gl(D) × Fn (resp. gl(D) × Fn,a):

(8)
g̃ = g̃n ={(x, F ) ∈ gl(D) ×Fn | x(Fi) ⊆ Fi},

g̃n,a ={(x, F ) ∈ gl(D) ×Fn,a | x(Fi) ⊆ Fi}.

We will denote the projection to the first factor by m̃ : g̃ → g = gl(D). More notation:
g̃x := m̃−1(x) and g̃n,ax := m̃−1(x) ∩ g̃n,a.
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3.1.4. Let us fix x ∈ End(D) with the spectrum (=set of eigenvalues) E ⊆ A1 such that
|E| ≤ n. For e ∈ E let the restriction of (x− e IdD) to the generalized e-eigenspace of x
be a nilpotent of type µ(e) where µ(e) = (µ1(e) ≥ µ2(e) ≥ · · · ≥ µm(e)(e)) is a partition

and |µ(e)| =
∑m(e)

i=1 µi(e) = l(e), so l(e) is the multiplicity of e. For every partition µ(e)
consider its dual µ̌(e) = (µ̌1(e) ≥ µ̌2(e) ≥ · · · ≥ µ̌n(e)(e)), so n(e) is the size of the largest
Jordan block associated with e. Let µ̃ = {µ(e)}e∈E be the collection of partitions for all
eigenvalues of x.

The data E, µ̃ define the conjugacy class of x (Jordan canonical form). Let us denote this
conjugacy class by OE,eµ.

Let us assume now that
∑

e∈E n(e) = n. Then the set of pairs

(9) M = {(e, µ̌i(e)) | e ∈ E, 1 ≤ i ≤ n(e)} ⊂ E × Z
n

is an n-element subset of E×Zn. Let us take an arbitrary bijection β : [1, n] → M , where

[1, n] is the set of integers from 1 to n. Let β1 : [1, n]
β
→M → E be the composition of

β with the projection of M to the first factor, and let β2 : [1, n]
β
→M →֒ E × Zn → Zn

be the composition of β with the inclusion of M into E × Z
n and the projection to the

second factor. Denote a = (a1, . . . , an) = (β2(1), . . . , β2(n)).

Now we can consider

(10) g̃n,a,E,eµ = {(x, F ) ∈ OE,eµ ×Fn,a | x(Fi) ⊆ Fi and x acts on Fl/Fl−1 as β1(l) Id}.

We will still denote the projection to the first factor by m̃ : g̃n,a,E,eµ → OE,eµ. Now we
need the following.

Lemma. The variety g̃n,a,E,eµ is smooth and connected, the map m̃ is projective and

dim g̃n,a,E,eµ = dimOE,eµ = N2 −
∑

e∈E

∑

i∈[1,n(e)]

µ̌2
i (e).

Proof. Actually g̃n,a,E,eµ is a vector bundle over Fn,a with the fiber over a particular flag
F being P (F )/L(F ) where P (F ) is the parabolic preserving F and L(F ) its Levi factor.
Also, if x ∈ OE,eµ, then m̃−1(x) ∩ g̃n,a,E,eµ is a point. In fact, the conjugacy class OE,eµ

is a deformation of the nilpotent class Oµ where µ̌ is the partition obtained from the
n-tuple a = (a1, . . . , an) as above by ordering the elements in the non-increasing order.

The variety g̃n,a,E,eµ is isomorphic to Ñ n,a. In particular, dimOE,eµ = dimOµ. �

3.1.5. For a finite dimensional algebraic varietyX we denote byH(X) its top-dimensional
Borel-Moore homology HBM

dimX(X). In particular, we denote

H(Fn
x ) :=

⊕

a

HBM
dimF

n,a
x

(Fn,a
x ),

H(g̃x) :=
⊕

a

HBM
dimeg

n,a
x

(g̃n,ax ).
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The following theorem is due to Ginzburg and Braverman-Gaitsgory.

3.1.6. Theorem.

(1) [CG, 4.2] Let x̌ be a nilpotent of type λ̌. The space H(Fn
x̌ ) has the structure of a

gl(n)-module Wλ with the highest weight λ.
(2) [BG] Let x be a nilpotent of type λ. The space H(g̃x) has the structure of a

gl(n)-module Wλ with the highest weight λ.

In particular, the module Wλ has two bases:

(1) A basis indexed by IrrFn
x̌ . More precisely, the weight space Wλ(a) has a basis

indexed by IrrFn,a
x̌ . It was shown in [Sav] that this basis coincides with the

semicanonical basis defined in 2.4.
(2) A basis indexed by Irr g̃x (relevant irreducible components). More precisely, the

weight space Wλ(a) has a basis indexed by Irr g̃n,ax . We call this the Spaltenstein

basis.

3.1.7. Remark. It was established in [BGV] that the Spaltenstein basis as above coin-
cides with the Mirković-Vilonen basis of [MVi1]. As far as we know the question about
the relationship between the semicanonical (as well as Lusztig’s canonical [L2, L3]) and
Mirković-Vilonen bases remains open.

3.2. On normal (transverse) slices. Let g = gl(D) and G = GL(D).

3.2.1. Normal slices to nilpotent orbits. We will say that a normal slice (in g) to a nilpotent
orbit α at e ∈ α, is a submanifold S of g such that

(1) (Infinitesimal normality.) Teα ⊕ TeS = g, (cf. [CG, 3.2.19]) and
(2) (Contraction.) There is an action of Gm on S which contracts it to e and preserves

intersections with the Lusztig strata in g. (For the definition of Lusztig strata cf.
[Mir, 5.5] and references therein.)

We will use the terminology ”normal slice” and ”transverse slice” interchangeably.

3.2.2. Lemma. For a normal slice S

(1) S ∩ α = {e}.
(2) S meets Lusztig stratum β iff α ⊆ β.
(3) S meets Lusztig strata transversally.
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3.2.3. Lemma. A sufficient data for a normal slice to the orbit Ge at e is given by a
pair (h, C) where h ∈ g is semisimple integral (i.e., eigenvalues of ad h are integral), and
[h, e] = 2e; while C ⊆ g is an h-invariant vector subspace complementary to Te(α) = [g, e],
such that the eigenvalues of h in C are ≤ 1. Then S = e+ C is a normal slice.

Proof. Such h lifts to a homomorphism ι : Gm → G and we can construct an action of Gm

on the vector space g by s ∗ x = s−2 · ι(s)x, s ∈ Gm, x ∈ g which fixes e and preserves
e+ C. �

3.2.4. For a nilpotent e let {e, h, f} be a Jacobson-Morozov sl(2)-triple. We can build
normal slices to the nilpotent orbit Ge at e using h and f .

3.2.5. Example: Slodowy’s slice. Take h, f from a Jacobson-Morozov sl(2)-triple, and let
C = Zg(f). Clearly, the conditions of Lemma 3.2.3 are satisfied, and S = e+Zg(f) is the
best-known example of a normal slice.

3.2.6. Another slice. We will consider another slice arising from a Jacobson-Morozov
sl(2)-triple {e, h, f}. First, let hg≤0 ⊆ g be the {h, f}-invariant subspace such that the
eigenvalues of h in hg≤0 are ≤ 0. Then f will act as a nilpotent in hg≤0 and to build a
normal slice S = e+ C if suffices to choose C ⊆ hg≤0 complementary to Te(α) = [g, e].

If we choose C = kerg(f) ⊆ hg≤0 we recover the Slodowy’s slice.

We would like to consider a C ⊆ hg≤0 with the property that f restricted to C is “as close

to regular nilpotent as possible”, cf. 3.2.7 for more details. In particular, if e is regular,
then f restricted to our C will be regular.

More precisely, the vector space D considered as an sl(2)-module decomposes as:

(11) D =
⊕

i

Mi ⊗ Li, and End(D) = D∗ ⊗D ≃
⊕

i,j

Hom(Mj,Mi)⊗ L∗
j ⊗ Li,

where Li is a simple sl(2)-module of highest weight i, dimLi = i + 1, and Mi is its
multiplicity in the decomposition above.

Now consider C to be a subspace

(12) C =
⊕

i,j

Hom(Mj ,Mi) ⊗ kerL∗

j
(f i+1) ⊗ kerLi

(f) ⊆ End(D),

where kerL∗

j
(f i+1) (resp. kerLi

(f)) is the kernel of the natural action of f i+1 (resp. f)

on L∗
j (resp. Li.). Notice that dim kerL∗

j
(f i+1) = i + 1, and dim kerLi

(f) = 1, and also

dimC = dimZg(f).

It is elementary to see that h, C satisfy the conditions of Lemma 3.2.3, and thus S = e+C
is a normal slice.
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3.2.7. “As close to regular nilpotent as possible”. Let e be acting on D as a nilpotent of
type λ = (λ1 ≥ λ2 ≥ · · · ≥ λm). Then we could say that

(13) D =
m⊕

i=1

Lλi−1, and End(D) =
m⊕

i,j=1

L∗
λj−1 ⊗ Lλi−1,

where Lλi−1 is a simple sl(2)-module of highest weight λi − 1, dimLi = λi. If λi ≥ λj we
have

L∗
λj−1 ⊗ Lλi−1 = Lλi+λj−2 ⊕ Lλi+λj−4 ⊕ · · · ⊕ Lλi−λj

,

λj summands in all. Let f be the element of a Jacobson-Morozov sl(2)-triple. Observe
that f restricted to C ∩ (L∗

λj−1 ⊗Lλi−1) acts as a regular nilpotent. It is easy to see that
f acts on C defined as above as a nilpotent of type

(14) λf = (λ1 ≥ λ2 ≥ λ2 ≥ λ2 ≥ · · · ≥ λm ≥ · · · ≥ λm),

where λk repeats with multiplicity 2k − 1, 1 ≤ k ≤ m. Then λf is a partition of∑m
i=1(λ̌i)

2 = N2 − dimOλ and the largest such partition possible for C ⊆ hg≤0 and C
being complementary to Te(α) = [g, e]. By contrast in the Slodowy’s situation f acts on
C = kerg(f) as 0 and so its type (1, . . . , 1) is the smallest possible partition of

∑m
i=1(λ̌i)

2.

3.3. Our slice in Jordan basis. We will adjust the notation a bit here: the nilpotent
e will be denoted x in this subsection.

3.3.1. Again, let D be a vector space, dimD = N , and N be the nilpotent cone in
End(D). Let x be a nilpotent operator of type λ = (λ1 ≥ λ2 ≥ · · · ≥ λm). Moreover,
ek,i, 1 ≤ k ≤ λi be a basis in D in which x is exactly the direct sum of nilpotent blocks
and x restricted to the span of {ek,i | 1 ≤ k ≤ λi} is the Jordan block of size λi, that is
x : ek,i 7→ ek−1,i, e1,i 7→ 0.

Now define:

(15) Tx := {x+ f, f ∈ End(D) | f l,jk,i = 0, if k 6= λi, and f l,jλi,i
= 0, if l > λi},

where f l,jk,i : Cel,j → Cek,i are the matrix elements of f in our basis. For example, if
λ = (λ1 ≥ λ2) = (3, 2) the matrices in Tx in the basis ek,i, 1 ≤ k ≤ λi will have the form

(16)




0 1 0 | 0 0
0 0 1 | 0 0

f 1,1
3,1 f 2,1

3,1 f 3,1
3,1 | f 1,2

3,1 f 2,2
3,1

0 0 0 | 0 1

f 1,1
2,2 f 2,1

2,2 0 | f 1,2
2,2 f 2,2

1,2



.

The set Tx (denoted by e+ C above) will sometimes be denoted by Tλ.
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3.3.2. For µ such that Oλ ⊆ Oµ define

Tx,µ := Tx ∩Oµ.

We have seen in 3.2.6 that

Lemma. Tx is a transverse slice to the orbit of x. In particular,

(17) dimTx,µ = dimOµ − dimOλ =

λ1∑

i=1

(λ̌i)
2 −

µ1∑

i=1

(µ̌i)
2.

3.3.3. Let λ ≤ µ and take any permutation a = (a1, . . . , an) of the dual partition µ̌. We
will restrict the resolution m to the slice Tx,µ :

T̃ ax := m−1
a (Tx,µ) ⊂ Ñ n,a.

Lemma. The variety T̃ ax is smooth and connected of dimension
∑λ1

i=1(λ̌i)
2 −
∑µ1

i=1(µ̌i)
2. It

is nonempty if and only if x ∈ Oµ.

The map ma : T̃ ax → Tx ∩ Oµ is projective.

Proof. T̃ ax is smooth because G·Tx,µ is open in g and near Tx,µ it is a product of Tx,µ and
the orbit G·x. The dimension counts follow from

dimOλ = N2 −
λ1∑

i=1

(λ̌i)
2 = N2 −

m∑

i=1

(2i− 1)λi.

�

3.3.4. We also need to study the intersection Tx ∩ OE,eµ, where OE,eµ ⊆ End(D) is a
conjugacy class defined in 3.1.4.

Lemma. We have

dimTx ∩ OE,eµ =

λ1∑

i=1

(λ̌i)
2 −

∑

e∈E

∑

i∈[1,n(e)]

µ̌2
i (e).

Moreover, Tx ∩OE,eµ is nonempty if and only of x ∈ Oµ, where µ is obtained from µ̃ as in
3.1.4.

Proof. Follows from general smoothness results. �

Lemma. The variety m̃(Tx ∩OE,eµ)∩ g̃n,a,E,eµ is smooth and connected of dimension equal
to dimTx ∩OE,eµ.

Proof. The proof is the same as above, for connectedness cf. [Sp]. �
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4. Beilinson-Drinfeld Grassmannians of type A

We recall some standard facts about the affine Grassmannians of type A. In this section
G = GL(m) unless indicated otherwise.

4.1. Local picture.

4.1.1. Let m be a positive natural number, and V a vector space of dimension m. Let
us fix a direct sum decomposition of V

(18) V = V1 ⊕ · · · ⊕ Vm,

where dimVi = 1, 1 ≤ i ≤ m. Let us fix nonzero elements ei ∈ Vi. The set {e1, . . . , em}
is a basis in V .

Let O := C[[z]] be the ring of formal power series in z and K := C((z)) be its field of
fractions. Let V (K) = V ⊗K and let L0 = V ⊗O. A lattice L in V ((z)) is an O-submodule
of V (K) such that L⊗O K = V (K).

The affine Grassmannian GG is a (reduced) ind-scheme whose C-points can be described
as all lattices in V (K) or as G(K)/G(O). Its connected components G(N) are indexed by
integers N ∈ Z. If N ≥ 0 then G(N) contains the finite dimensional subscheme

(19) GN = {lattices L in V ((z)) such that L0 ⊆ L, dimL/L0 = N}.

To a dominant coweight λ ∈ Z
m of G, one attaches the lattice Lλ = ⊕m

1 C[[z]]·z−λiei.

The G(O)-orbits Gλ in GG are parameterized by the dominant coweights (partitions) λ
via Gλ = G(O)·Lλ.

The G(O)-orbits in GN correspond to partitions µ = (µ1 ≥ µ2 ≥ · · · ≥ µm) of N into at
most m parts. These orbits can be explicitly described as follows:

(20) Gµ = {L ∈ GN | z restricted to L/L0 has Jordan blocks of sizes µ1, µ2, . . . , µm}.

4.1.2. Let G = PGL(m). Then the points of GG can be thought of as lattices in V ((z))
only up to a shift by z, or as PGL(m,K)/PGL(m,O). Set theoretically GPGL(m) is a
union of m connected components of GGL(m).

4.1.3. The orbits of PGL(m,O) on GPGL(m) are parametrized by the dominant weights of
the Langlands dual group LPGL(m) = SL(m). If we consider µ = (µ1 ≥ µ2 ≥ · · · ≥ µm)
defined up to simultaneous shift of by an integer as a dominant weight of SL(m) then the
PGL(m,O)-orbit Gµ is described as follows:

(21) Gµ = {L ∈ GN | z restricted to L/L0 has Jordan blocks of sizes µ}.

This is well defined since the lattice L is considered up to a shift by z.
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4.2. Global picture. Let X be a curve, which in our case will always be A1. Let A(n) =
A1 × · · · × A1//Sn be the symmetric n-fold product of A1

Beilinson-Drinfeld Grassmannian [BD, MVi1, MVi2] is a (reduced) ind-scheme GA(n)

whose C-points are described as follows:

(22) GA(n)(C) = {(b,V, t) | t : VX−E → (X × V )|X−E is an isomorphism },

where b = (b1, . . . , bn) ∈ A(n), E = {b1, . . . , bn} ⊆ A1, V is a vector bundle of rank m, and
t is the trivialization of V off E. The pairs (V, t) are considered up to an isomorphism.
If we fix b = (b1, . . . , bn) (and therefore E = {b1, . . . , bn}) then the corresponding ind-
subscheme of GA(n) is called the fiber of GA(n) at b and is denoted by GBDb . If n = 1 we
will also write Ge for e ∈ A1. It is well known [BD, MVi1] that

(23) Gb =
∏

e∈E

Ge.

4.2.1. Let C[z] be the ring of polynomials in z and C(z) be its field of fractions i.e.
rational functions. Let V (z) = V ⊗ C(z) and let L0 = V ⊗ O. A lattice in V (z) is an
C[z]-submodule L of V (z) such that L⊗C[z] C(z) = V (z).

The points of Gb can be described as lattices L in V (z) = V ⊗ C(z) such that their
localizations L(e) at e ∈ A1 −E are isomorphic to L0(e) = V ⊗ C[[z − e]]. Define:

GN = { lattices L ⊇ L0 | dimL/L0 = N }.

Slightly generalizing the exposition [Ngo, Partie I], we fix a polynomial P of degree n,
where n ≤ N ≤ mn. Define

GN (P ) = { lattices L ⊇ L0 | dimL/L0 = N and P (z|L/L0) = 0},

where z|L/L0
is the linear operator on L/L0 obtained by the restriction of z.

Let P =
∏

e∈E(z − e)n(e). Then a version of (23) is

(24) GN(P ) =
⊔

l(e)≥n(e)
P

e∈E l(e)=N

∏

e∈E

(Ge)l(e),

where the finite dimensional subscheme (Ge)l(e) of the affine Grassmannian Ge is defined
as in (19).

Finally, if (b1, . . . , bn) ∈ A
(n) and E = {b1, . . . , bn} ⊂ A

1, then we set GN,b(P ) := Gb ∩
GN(P ).

4.2.2. Let a = (a1, . . . , an) such that
∑n

i=1 ai = N . Let us introduce a convolution

Grassmannian G̃
n,a
N as the (reduced) scheme whose C-points are n-step flags of lattices in

V (z):

G̃
n,a
N = {L0 ⊆ L1 ⊆ . . . ⊆ Ln = L | dimLi/Li−1 = ai for 1 ≤ i ≤ n},
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where L0 = V ⊗ C[z]. We have a map πn,aN = π : G̃
n,a
N → GN such that π : (L0 ⊆ L1 ⊆

. . . ⊆ Ln) 7→ L = Ln.

Let (b1, . . . , bn) ∈ An. Let us also introduce a subscheme in the fiber of G̃n,a over the
point (b1, . . . , bn) ∈ A(n).

G̃
n,a
b = {(L0 ⊆ L1 ⊆ . . . ⊆ Ln) ∈ G̃

n,a
N | Ln ∈ Gb, and z acts on Li/Li−1 as bi},

Finally, if {b1, . . . , bn} = E ⊂ A1, and P is a polynomial as in (24), then we define

G̃
n,a
b (P ) = G̃

n,a
b ∩ π−1(GN(P )).

4.2.3. Let us also consider the local version of the convolution Grassmannian. Let µ
be a partition of N into at most m parts and let Gµ ⊆ GN be a G(O)-orbit in GN . Let
a = (a1, . . . , an) be a permutation of the dual partition µ̌. Consider the (reduced) ind-

scheme G̃aµ = Gωa1
∗ · · · ∗ Gωan

(here ωk is the k-th fundamental coweight of GL(m)) whose
C-points are n-step flags of lattices in V (O):

G̃aµ = {L0 = L0 ⊆ L1 ⊆ · · · ⊆ Ln = L | L ∈ Gµ, dimLi/Li−1 = ai, z(Li) ⊆ Li−1},

where L0 = V (O). It is known that πaµ = π : G̃aµ→Gµ is a resolution of singularities
[MVi1].

Consider L ∈ Gλ ⊆ Gµ. Observe that (πaµ)
−1(L) = Fn,a

x , where Fn,a
x is the Springer-

Ginzburg fiber defined in 3.1.2.

4.3. Perverse sheaves on affine Grassmannians. In this subsection G denotesGL(m)
or PGL(m).

Let PervG(O)(GG) be the category of G(O)-equivariant perverse sheaves on GG. We will

denote by ICµ = IC(Gµ) the intersection cohomology complex on the closure of the orbit
Gµ. There is a tensor product (convolution) construction [MVi1, MVi2] which makes the
category PervG(O)(GG) into a tensor category.

Theorem: geometric Satake correspondence [MVi1, 7.1]. The semisimple tensor
category PervG(G) is equivalent to the category RepGL of rational representations of
the Langlands dual group GL. Under this equivalence the sheaf ICµ corresponds to the
highest weight representation Vµ of GL.

Under the equivalence above the convolution ICa1 ∗ · · · ∗ ICan
corresponds to the tensor

product Va1 ⊗ · · · ⊗ Van
. By Gabber’s decomposition theorem,

(25) ICa1 ∗ · · · ∗ ICan
=
⊕

λ

Lλ ⊗ ICλ .
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On the level of representation theory, we have a decomposition

(26) Va1 ⊗ · · · ⊗ Van
=
⊕

λ

Mltλ⊗Vλ,

where the sum is over all partitions λ ≤ µ, and Mltλ are the multiplicity vector spaces.

Taking the hypercohomology in the left and right hand side of the equation (25) and
comparing it to the equation (26) we see that

(27) HomGLm
(Va1 ⊗ · · · ⊗ Van

, Vλ) = Mltλ = H(π−1(Lλ)).

4.4. Transverse slices arising from affine Grassmannians.

4.4.1. Let us recall the setup of 3.3.1: x is a nilpotent operator of type λ in End(D),
dimD = N . Let b = (b1, . . . , bm) be a permutation of λ (notice that bi ≥ 1). Consider
b as a coweight of GL(m) and consider the lattice Lb generated by the elements z−biei,
1 ≤ i ≤ m. Clearly, Lb ∈ Gλ.

Let D = Lb/L0. Then dimD = N . Define

Dj = span{ei | bi = j}, and dj = dimDj.

We have a decomposition of D as follows:

(28) D =
⊕

1≤k≤j≤n−1

z−kDj.

4.4.2. Let us consider the group ind-scheme G(C[z−1]), and let L<0G(K) be subgroup
of G(C[z−1]) which is the kernel of the map G(C[z−1]) → G defined by z−1 7→ 0. Denote
the L<0G(K)-orbit of the lattice Lb in GG by Tb.

4.4.3. We can choose a complement L−
b to Lb such that V (K) = Lb⊕L−

b . We define L−
b

as the subspace of V (K) spanned by z−jei, j > bi. Denote the projection of V (K) to Lb
along L−

b by πb.

We can describe an open neighborhood UN
b of Lb in GN as follows:

UN
b = {L ∈ GN | the projection πb : L→ Lb is an isomorphism }.

4.4.4. We can describe the set UN
b in terms of certain maps, generalizing a construction

of [L1].

Any lattice L ∈ UN
b is of the form (1 + f)Lb where f : Lb → L−

b is a linear map such that
L0 ⊆ ker f . We can decompose f as follows. Let us consider the m-dimensional vector
space Vb = {z−biei | 1 ≤ i ≤ m}. Then

f =
∞∑

k=1

z−kfk,
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where fk : Lb/L0 → Vb are linear maps. It is easy to see that since (1+f)Lb is a lattice, we
have fk = f1(z+f1)

k−1 and the operator z+f1 : Lb/L0 → Lb/L0 is nilpotent. Altogether:

(29) f =
∞∑

k=1

z−kf1(z + f1)
k−1.

Observe that if L = (1 + f)Lb then the isomorphism πb intertwines the action of z on
L/L0 with the action of z + f1 on Lb/L0.

4.4.5. Now we consider the action on GG of the group of “loop rotations” isomorphic to
the multiplicative group C

∗: z 7→ sz, s ∈ C
∗, which acts on V ((z)) = V (K) by sending

zkei to (sz)kei. Denote by s ◦ L the result of this action of s ∈ C∗ on a lattice L ∈ GG.

Consider this action on the lattices in UN
b i.e., lattices of the form L = (1 + f)Lb. Our

C∗-action on V (K) restricts to the action on Lb, L
−
b , Lb/L0 and Vb and we denote s ◦ f =

s · f · s−1 and s ◦ f1 = s · f · s−1.

We have:

s ◦ L = s ◦ (1 + f)Lb = (1 + s ◦ f)s ◦ Lb = (1 + s ◦ f)Lb

since Lb is a T -invariant point in GG. Now,

s ◦ f =
∞∑

k=1

(sz)−k(s ◦ f1)(sz + (s ◦ f1))
k−1 =

∞∑

k=1

z−ks−1(s ◦ f1)(z + s−1(s ◦ f1))
k−1,

where s−1(s ◦ f1) is the composition of (s ◦ f1) and the operator s−1 IdVb
on Vb.

4.4.6. Now the following lemma is clear:

Lemma. lims→∞ s ◦ f = 0 if and only if lims→∞ s−1(s ◦ f1) = 0.

4.4.7. Let us now study s ◦ f1. We will consider here f1 as a map from Lb/L0 to itself
equipped with the basis {z−kiei |1 ≤ i ≤ m, 1 ≤ ki ≤ bi}. If u ∈ Lb/L0 is a vector then

u =
∑

k,i

uk,iz
−kei.

Denote the matrix elements of f1 is this basis by f l,jk,i where f l,jk,i : Cz−lej → Cz−kei. Now
recall that by construction we have

f l,jk,i = 0, if k 6= λi.

Then

f(u)k,i = 0, if k 6= λi,

f(u)λi,i =
∑

l,j

f l,jk,iul,j.
(30)
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Now for s ◦ f1 = s · f1 · s−1 we have:

(s ◦ f1)(u)k,i = 0, if k 6= ci,

(s ◦ f1)(u)λi,i =
∑

l,j

s−λif l,jλi,i
ul,js

l =
∑

l,j

sl−λif l,jλi,i
ul,j.(31)

4.4.8. Lemma. The following are equivalent:

(1) lims→∞ s−1(s ◦ f1) = 0.

(2) f l,jλi,i
= 0 if l > λi.

Proof. Follows immediately from (31). �

4.4.9. Lemma. A lattice L ∈ GG is in the L<0G(K)-orbit of Lb if and only if
lims→∞ s ◦ L = Lb.

Proof. We have the following decomposition [F, Corollary 2.2]:

G(K) = G([z−1])X∗(T )G(O).

Then
G = G(K)/G(O) =

⋃

λ∈X∗(T )

G([z−1])(λ ·G(O)).

Now G([z−1]) = L<0G(K)G is a semidirect product. So,

G =
⋃

λ∈X∗(T )

L<0G(K)G(λ ·G(O)).

The orbits of L<0G(K) intersect the orbits of G(O) transversally, [F, Section 2. Remark].
This means in particular that if p ∈ G · λ, then (L<0G(K) · p) ∩G · λ = p. Then we have

(32) G =
⊔

λ∈X+
∗ (T )

p∈G·λ

L<0G(K) · p,

where X+
∗ (T ) is the set of dominant coweights of G.

Since for g ∈ L<0G(K) we have lims→∞(s ◦ g) = 1, it is clear that

L<0G(K) · p ⊆ {L ∈ G | lim
s→∞

s ◦ L = p}.

Since we have the disjoint decomposition (32), we actually have

L<0G(K) · p = {L ∈ G | lim
s→∞

s ◦ L = p}.

�

4.4.10. Lemma. If Tb := L<0G(K) · Lb then Tb ∩ GN ⊆ UN
b .

Proof. Clear. �
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4.4.11. Again, recall the setup of 3.3.1 and the definition of the variety Tx. Let x+ f1 ∈
Tx. Construct a map

(33)

ψ : Tx ∩ N → UN
b ,

ψ : x+ f1 7→ (1 +

∞∑

k=1

z−kf1(z + f1)
k−1)Lb.

4.4.12. Lemma. The image of ψ defined above is contained in Tb ∩ GN . Moreover, the

map ψ : Tx ∩ N
≃
→Tb ∩ GN is an isomorphism of algebraic varieties.

Proof. By definition of Tx, Lemma 4.4.8, and Lemma 4.4.9

ψ(Tx ∩ N ) = {L ∈ UN
b | lim

s→∞
s ◦ L = Lb} = Tb ∩ UN

b .

Since by Lemma 4.4.10 Tb ∩ GN ⊆ UN
b , and UN

b ⊆ GN we have Tb ∩ UN
b = Tb ∩ GN . �

4.4.13. Recall the setup of 3.3.3. Also, let π = πaµ : G̃aµ→Gµ is a resolution of singularities,
cf. 4.2.3.

We can lift the map ψ to the map

ψ̃ : T̃ ax→π−1(Tb ∩ Gµ) ⊆ G̃aµ

since a (x + f1)-invariant n-step flag in D will give rise to a n-step flag of lattices in
L = ψ(x+ f1).

Lemma. The map ψ̃ is an isomorphism of algebraic varieties. Moreover, the following
diagram of morphisms

(34)

T̃ ax
eψ

−−−→ π−1(Tb ∩ Gµ)

ma

y π

y

Tx,a
ψ

−−−→ Tb ∩ Gµ

commutes.

4.5. Global version of the map ψ.

4.5.1. Recall the setup of 4.4.1. Let us consider the scheme GN and let Lb be the lattice
in V (z) generated by the elements z−biei, 1 ≤ i ≤ m.

Just as in the local case considerm-dimensional vector subspace Vb = {z−biei | 1 ≤ i ≤ m}.
of V (z), and consider a linear map f1 : Lb/L0 → Vb. (Notice that D = Lb/L0 ≃ Lb/L0

where Lb and L0 are the analogous local lattices.)
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4.5.2. Lemma. For any u ∈ Lb/L0 and any e ∈ A1, we have

(1 +
∞∑

k=1

z−kf1(z + f1)
k−1)(u) = (1 +

∞∑

k=1

(z − e)−kf1(z − e+ f1)
k−1)(u).

Proof. Binomial formula. �

4.5.3. Now consider z + f1 as an operator on D = Lb/L0, let E be its spectrum and let
pre : D → De, for e ∈ E, be the projection to the generalized e-eigenspace.

Once again, recall the setup of 3.3.1 and the definition of the variety Tx. For x + f1 ∈
Tx ⊆ End(D) define the subspace ψ(x+ f1) in V (z) as follows

(35) ψ(x+ f1) = (
∑

e∈E

(1 +
∞∑

k=1

(z − e)−kf1(z − e+ f1)
k−1) pre)Lb.

Lemma. The subspace ψ(x+ f1) is a lattice in V (z) and therefore an element in GN .

Proof. The same as in the local case. �

Summarizing, we have constructed an embedding

ψ : Tx →֒ GN

As in the local case, this embedding lifts to an embedding ψ̃ : m̃−1(Tx) ∩ g̃n,a →֒ G̃
n,a
N in

such a way that the diagram

(36)

m̃−1(Tx) ∩ g̃n,a
eψ

−−−→
⊂

G̃
n,a
N

ma

y π

y

Tx
ψ

−−−→
⊂

GN

commutes.

5. Main Results

5.1. Combinatorial data.
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5.1.1. From quiver data to GL(n)-data. Let d = (d1, . . . , dn−1) and v = (v1, . . . , vn−1) be
two (n − 1)-tuples of non-negative integers. We will transform this ”quiver data” into
some GL(n) weights.

(1) Let C be the Cartan matrix of type An−1. By (d − Cv)j we will denote the j-th
component of the (n− 1)-tuple d− Cv.

(2) Let N =
∑n−1

j=1 jdj and let m =
∑n−1

j=1 dj.

(3) Let λ̌ = (λ̌1, λ̌2, . . . , λ̌n) be a partition of N defined as follows (here dn = 0):

λ̌i =
n∑

j=i

dj.

(4) Let λ be the dual partition.
(5) Let a = (a1, . . . , an) be defined as follows, cf. [N1, 8.3], (here (d− Cv)n = 0):

(37) ai = vn−1 +
n∑

j=i

(d− Cv)j.

(6) Let µ̌ be the partition obtained from a by permutation and let µ be the dual
partition.

We can view λ̌ as a highest weight of GL(n) and a as a weight in the highest weight
GL(n)-module Wλ̌, cf. 2.4.1.

5.1.2. From GL(n)-data to a conjugacy class. Let c = (c1, . . . , cn−1) be in the center of

g(V ), where g(V ) =
∏n−1

i=1 gl(Vi) and dimVi = vi.

First of all, denote

(38) b1 = 0 and bi = c1 + · · ·+ ci−1 for 2 ≤ i ≤ n.

Let b = (b1, . . . , bn) ⊂ A
n. Let P be the polynomial P (t) =

∏n
i=1(t− bi).

Consider E = E(c) = {b1, . . . , bn} as a subset of A1 and consider b as a map [1, n] → E
defined by b(i) = bi.

For every e ∈ E denote I(e) := b−1(e) = {i ∈ [1, n] | bi = e}. Now take a as in (37)
and let a(e) = (ai)i∈I(e) and let µ̌(e) be the partition obtained from a(e) by permutation.
Let µ(e) be the dual partition, and let µ̃ = {µ(e)}e∈E be the collection of all partitions
attached to eigenvalues. Let OE,eµ be the conjugacy class in End(D), dimD = N attached
to the data E, µ̃ as in 3.1.4.

5.2. Now we can formulate our main theorem. For notation on quiver varieties see
2.3, on Springer-Ginzburg resolutions see 3.1, on transverse slices see 3.3, and finally on
Beilinson-Drinfeld Grassmannians see 4.2.
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5.3. Theorem. Let N,m, v, d, a, c, b, E, λ, µ̃ be as above. There exist algebraic isomor-

phisms φ, φ̃ and algebraic immersions ψ, ψ̃ such that the following diagram commutes:

(39)

M(v, d)
eφ

−−−→
≃

m̃−1(Tλ) ∩ g̃n,a,E,eµ
eψ

−−−→
⊂

G̃
n,a
b (P )

p

y em

y π

y

M1(v, d)
φ

−−−→
≃

Tλ ∩ OE,eµ
ψ

−−−→
⊂

GN,b(P ).

5.4. Remarks and Corollaries.

5.4.1. Remark. When c = 0 we can describe the images of the maps ψ and ψ̃ and obtain
a more precise result stated in the introduction and [MVy]. In particular, (ψ ◦ φ)(0) =

Lλ ∈ G0, and ψ̃ ◦ φ̃ restricts to an isomorphism

(40) ψ̃ ◦ φ̃ : L(v, d) ≃ π−1(Lλ).

We believe that one should be able to generalize these statements for arbitrary c.

5.4.2. Dimensions. Let c = 0. First of all we’ll check that the varieties M(v, d) and

T̃ ax have the same dimension. According to Nakajima [N2, Corollary 3.12] M(v, d), if
nonempty, is a smooth variety of dimension tv(2d−Cv) where C is the Cartan matrix of
type An−1. If λ̌ and µ̌ are defined by v, d as in 5.1.1, then we have

dim M(v, d) = tv(2d− Cv) = 2
n−1∑

i=1

vidi − 2
n−1∑

i=1

v2
i + 2

n−2∑

i=1

vivi+1

=
n−1∑

i=1

[(λ̌i)
2 − (µ̌i)

2] = dim T̃x,µ.

(41)

We will list here two applications of our Main Theorem.

5.4.3. A compactification of quiver varieties. The closure in GN,b(P ) of the image
of M1(v, d) under the map ψ ◦φ gives us a compactification of M1(v, d). Analogously, the

closure in G̃
n,a
b (P ) of the image of M(v, d) under the map ψ̃◦ φ̃ gives us a compactification

of the quiver variety M(v, d).

5.4.4. A decomposition of the affine Grassmannian. The following is a corollary of
the main theorem. Here c = 0.
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Corollary. We can decompose Gµ into the following disjoint union:

(42) Gµ =
⊔

y∈G·λ
λ≤µ

M0(v, d)y,

where λ varies over the set of dominant coweights of G, G · λ is the G-orbit of λ in GG,
and M0(v, d)y is a copy of quiver variety M0(v, d) for every point y ∈ G · λ, with v, d
obtained from λ, µ by reversing the procedures of 5.1.1.

Proof. As in the proof of 4.4.9, we have:

(43) GG =
⊔

λ∈X+
∗ (T )

y∈G·λ

L<0G(K) · y.

Then:

(44) Gµ =
⊔

λ∈X+
∗ (T )

y∈G·λ

(L<0G(K) · y) ∩ Gµ =
⊔

λ∈X+
∗ (T )

y∈G·λ

M0(v, d)y

since every (L<0G(K) · y) ∩ Gµ, for y ∈ G · λ is isomorphic to a copy of M0(v, d). �

5.4.5. Remarks.

(1) An “affine analogue” of our construction has recently appeared in the paper [BF].
(2) We would also like to mention another example of a decomposition of an infi-

nite Grassmannian into a disjoint union of quiver varieties. Generalizing a result
of G. Wilson [W], V. Baranovsky, V. Ginzburg, and A. Kuznetsov [BGK] con-
structed a decomposition of (a part of) adelic Grassmannian into a disjoint union
of deformed versions of quiver varieties M(v, d) associated to affine quivers of type
A.

6. On quiver varieties and conjugacy classes of matrices

6.1. Definitions. Let us consider a particular case of the Main Theorem. Let d =
(N, 0, . . . , 0) and v = (v1, . . . , vn−1) be the (n − 1)-tuple of non-negative integers such
that N ≥ v1 ≥ v2 ≥ · · · ≥ vn−1.

6.1.1. Define the algebraic morphisms φ̃ : M(v, d)→g̃n,a,E,eµ and φ : M1(v, d)→OE,eµ as
follows:

(45)
φ̃ : (x, x, p, q)7→(q1p1, {0} ⊆ ker p1 ⊆ ker x1p1 ⊆ ker xn−1 . . . x1p1),

φ : (x, x, p, q)7→q1p1.

The following theorem is a common generalization of (some of) the results of [KP] and
[N1], cf. [CB].
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6.2. Theorem. The maps φ, φ̃ defined above are isomorphisms of algebraic varieties and
the following diagram commutes

(46)

M(v, d)
eφ

−−−→ g̃n,a,E,eµ

p

y em

y

M1(v, d)
φ

−−−→ OE,eµ

Proof. Following the logic of [N2, Maf], it is not hard to check that φ̃ is a bijective
morphism between two smooth varieties of the same dimension and thus an isomorphism.
The map φ is a closed immersion and it is surjective since both p and m̃ are surjective. �

6.2.1. In particular, if all the numbers 0, c1, c1 + c2, . . . , c1 + c2 + · · · + cn−1 are pair-
wise distinct, then the quiver variety M(v, d) is isomorphic to the conjugacy class of a
semisimple element (diagonal matrix)

diag(b1, . . . , b1, b2, . . . , b2, . . . , bn, . . . , bn),

where b1 = 0 appears with multiplicity a1, b2 = c1 appears with multiplicity a2, and so
on, and bn = c1 + c2 + . . . , cn−1 appears with multiplicity an.

6.2.2. Remark. In fact one can also prove that the quiver variety M0(v, d) is isomorphic
to a conjugacy class which is generally different from the conjugacy class considered
above. The two classes coincide when the SL(n) weight d − Cv is dominant, i.e. when
a1 ≥ a2 ≥ · · · ≥ an.

7. Proof of the Main Lemma

7.1. D’après Maffei.

7.1.1. We borrow Maffei’s [Maf] notations and conventions. Let v = (v1, . . . , vn−1) and
d = (d1, . . . , dn−1) be two (n− 1)-tuples of integers and let us define (n− 1)-tuples ṽ and

d̃ as follows:

d̃1 :=
n−1∑

j=1

jdj ,

d̃i := 0, for i > 1,

ṽi := vi +

n−1∑

j=i+1

(j − i)dj.

(47)
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Our goal is to construct a map from Λc(v, d) to Λc(ṽ, d̃), that is we have to send a

quadruple (x, x, p, q) ∈ Λc(v, d) to a quadruple (Ã, B̃, γ̃, δ̃) ∈ Λc(ṽ, d̃). First of all, the

I-graded vector spaces Ṽi and D̃i such that dim Ṽi = ṽi and D̃i = d̃i are constructed as

follows. Let D
(k)
j be a copy of Dj.

D̃1 =
⊕

1≤k≤j≤n−1

D
(k)
j ,

D̃i = 0, for i > 1,

Ṽi = Vi ⊕
⊕

1≤k≤j−i≤n−i−1

D
(k)
j .

(48)

We need the following subspaces of Ṽi.

(49) D′
i =

⊕

i+1≤j≤n−1
1≤k≤j−i

D
(k)
j , D+

i =
⊕

i+2≤j≤n−1
2≤k≤j−i

D
(k)
j , D−

i =
⊕

i+2≤j≤n−1
1≤k≤j−i−1

D
(k)
j .

In order to make the notation more homogeneous we set Ṽ0 := D̃1, Ã0 = γ̃1, B̃0 = δ̃1.

We will name the blocks of the maps Ãi and B̃i as follows

(50)

π
D

(h)
j

Ãi|D(h′)

j′

= itj
′,h′

j,h π
D

(h)
j

B̃i|D(h′)

j′

= isj
′,h′

j,h

π
D

(h)
j

Ãi|Vi
= itVj,h π

D
(h)
j

B̃i|Vi+1
= isVj,h

πVi+1
Ãi|D(h′)

j′

= itj
′,h′

V πVi
B̃i|D(h′)

j′

= isj
′,h′

V

We define also the following operator zi on D′
i

(51)

zi|D(1)
j

= 0,

zi|D(h)
j

= IdDj
: D

(h)
j →D

(h−1)
j

7.1.2. Following Maffei let us introduce the following degrees:

(52)
deg(itj

′,h′

j,h ) = min(h− h′ + 1, h− h′ + 1 + j′ − j),

deg(isj
′,h′

j,h ) = min(h− h′, h− h′ + j′ − j).

7.1.3. A quadruple (Ã, B̃, γ̃, δ̃) ∈ Λc(ṽ, d̃) is called transversal if it satisfies the following
two groups of relations for 0 ≤ i ≤ n− 2
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(1) first group (Maffei)

(53)

itj
′,h′

j,h = 0 if deg(tj
′,h′

j,h ) < 0

itj
′,h′

j,h = 0 if deg(tj
′,h′

j,h ) = 0 and (j′, h′) 6= (j, h + 1)

itj
′,h′

j,h = IdDj
if deg(tj

′,h′

j,h ) = 0 and (j′, h′) = (j, h + 1)
itVi,j,h = 0

itj
′,h′

V = 0 if h′ 6= 1

isj
′,h′

j,h = 0 if deg(sj
′,h′

j,h ) < 0

isj
′,h′

j,h = 0 if deg(sj
′,h′

j,h ) = 0 and (j′, h′) 6= (j, h)

isj
′,h′

j,h = IdDj
if deg(sj

′,h′

j,h ) = 0 and (j′, h′) = (j, h)
isVj,h = 0 if h 6= j − i

isj
′,h′

V = 0

(2) second group

(54) π
D

(h)
j

B̃iÃi|D(h′)

j′

− xi = 0 unless h = j − i

Let us denote the set of all transversal elements in Λc(ṽ, d̃) by S. The set of all stable

transversal elements is denoted by Ss = S ∩ Λc,s(ṽ, d̃).

7.1.4. We will need more notation. First of all denote

(55) bij = ci+2 + · · ·+ cj for − 1 ≤ i ≤ n− 3, and i+ 2 ≤ j ≤ n− 1.

Now we introduce some invariant polynomials of qi→jpj→i as follows. First,

(56) P (i, 1, j) = qi+2→jpj→i+2

and for 2 ≤ h′ ≤ j − i− 1

P (i, h′, j) = qi+h′+1→jpj→i+h′+1

+

j−i−h′−1∑

k=1

(−1)kσk(b
i
i+2, . . . , b

i
i+h′−1+k)qi+h′+1+k→jpj→i+h′+1+k

+ (−1)j−i−h
′−1σj−i−h′(b

i
i+2, . . . , b

i
j−1).

(57)

where σk is the k-th elementary symmetric function.

We also fix the notation for binomial coefficients(
n
k

)
=

n!

k!(n− k)!
.

7.2. Main Lemma. We can now formulate our main lemma
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Lemma.

(i) There exists a unique G(V )-equivariant map Φ : Λc(v, d)→S such that

(58)
πVi+1

Ãi|Vi
= xi πVi

B̃i|Vi+1
= xi

iti+1,1
V = pi+1

isVi+1,1 = qi+1

(ii) The blocks of Ãi, B̃i not defined in the equations (53) and (58) are described as
follows:

(59) itj
′,1
V = pj′→i+1

isVj,j−i = qi+1→j

When j′ 6= j we have

(60)

itj
′,h′

j,h = 0 if (j′, h′) 6= (j, h + 1)

isj
′,h′

j,h = 0 if (j′, h′) 6= (j, h) and h 6= j − i

and

(61) isj
′,h′

j,j−i = qi+h′+1→jpj′→i+h′+1

When j = j′ we have

(62) itj,h
′

j,h =





0, if h′ = 1

(−1)h−h
′+1

(
h− 1

h′ − 2

)
ch−h

′+1
i+1 , if 2 ≤ h′ ≤ h+ 1

And finally,

(63) isj,h
′

j,h =





(
h− 1

h′ − 1

)
ch−h

′

i+1 , if h 6= j − i

P (i, h′, j) +

(
h− 1

h′ − 1

)
ch−h

′

i+1 , if 1 ≤ h′ ≤ h, and h = j − i

(iii) For x ∈ Λc(v, d) we have Φ(x) ∈ Ss if and only if x ∈ Λc
s(v, d). Thus the restriction

of Φ to the stable points provides the G(V )-equivariant map Φs : Λc
s(v, d)→Ss

(iv) The maps Φ and Φs are isomorphisms of algebraic varieties.

Proof. Following Maffei, we prove the lemma by decreasing induction on i. If i = n − 2

the maps Ãn−2 and B̃n−2 are completely defined by the relations (58) and (53) and it is

easy to see that Ãn−2B̃n−2 = cn−1.

Assume that Ãk, B̃k are defined for k > i by the formulas in the lemma.

We have the following equations for Ãi and B̃i:

(64) ÃiB̃i = B̃i+1Ãi+1 + ci+1

(65) π
D

(h)
j

B̃iÃi|D(h′)

j′

− zi = 0 unless h = j − i.



28 IVAN MIRKOVIĆ AND MAXIM VYBORNOV

Observe that

πVi+1
ÃiB̃i|Vi+1

= AiBi + pi+1qi+1 = Bi+1Ai+1 + ci+1 = πVi+1
B̃i+1Ãi+1|Vi+1

+ ci+1.

Then, in agreement with formulas (59)

πVi+1
ÃiB̃i|D(h)

j

= πVi+1
B̃i+1Ãi+1|D(h)

j

= Kh,1Bi+1pj→i+2 = Kh,1pj→i+1,

π
D

(h)
j

ÃiB̃i|Vi+1
= π

D
(h)
j

B̃i+1Ãi+1|Vi+1
= Kh,j−i−1qi+2→jAi+1 = Kh,j−i−1qi+1→j.

where

Kp,q =

{
1, p = q

0, p 6= q

is the Kronecker symbol.

Now, in order to simplify the notation a bit we set tj
′,h′

j,h := itj
′,h′

j,h and sj
′,h′

j,h := isj
′,h′

j,h

Case I: j 6= j′. In this case the equation (64) and translates into the following equations

for tj
′,h′

j,h and sj
′,h′

j,h :
(66)

sj
′,h′

j,h+1 +
∑

h′<h′′<h+1
h′−j′<h′′−j′′<h+1−j

tj
′′,h′′

j,h sj
′,h′

j′′,h′′ + tj
′,h′

j,h =

{
0, if h 6= j − i− 1

qi+h′+1→jpj′→i+h′+1, if h = j − i− 1.

while the equation (65) translates into the following equations for tj
′,h′

j,h and sj
′,h′

j,h , h 6= j−i:

(67) tj
′,h′

j,h +
∑

h′−1<h′′<h
h′−1−j′<h′′−j′′<h−j

sj
′′,h′′

j,h tj
′,h′

j′′,h′′ + sj
′,h′−1
j,h = 0

We claim that the system of equations (66) and (67) has a unique solution indicated in
the statement of the lemma. We will prove this claim by induction on h and h′.

First of all, observe that from the equation (67) we have tj
′,1
j,1 = 0.

We make two induction assumptions (k ≥ 1):

(1) tj
′,h′

j,h = 0 for all (h′, h) such that h′ ≤ h ≤ k for all j 6= j′ at the same time.

(2) sj
′,h′

j,h+1 = 0 for all (h′, h) such that h′ < h ≤ k+ 1 ≤ j − i for all j 6= j′ at the same
time.

Induction Step 1. Consider the equation (67) for h = k + 1. By assumption (2) we have

sj
′,h′−1
j,k+1 = 0 and sj

′′,h′′

j,k+1 = 0 for j′′ 6= j. If j′′ = j, then j′′ 6= j′ and by assumption (1)

tj
′,h′

j′′,h′′ = 0 for h′′ ≤ k. Now from equation (67) we see that tj
′,h′

j,k+1 = 0 for h′ ≤ k + 1.
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Induction Step 2. Consider the equation (66) for h = k + 1. By induction step (1)

tj
′,h′

j,k+1 = 0 and tj
′′,h′′

j,k+1 = 0 for j′′ 6= j. If j′′ = j, then j′′ 6= j′ and by assumption (2)

sj
′,h′

j′′,h′′ = 0. Now from equation (66) we see that sj
′,h′

j,k+2 = 0 for h′ < k + 2.

Finally, if h + 1 = j − i, then the equations (66) and the induction steps 1 and 2 yield:

(68) sj
′,h′

j,j−i = qi+h′+1→jpj′→i+h′+1.

Case II: j = j′. In this case we fix j and simplify the notation further a bit, by setting

th
′

h := tj,h
′

j,h and sh
′

h := sj,h
′

j,h . Now, taking into account Case I, the equation (64) and

translates into the following equations for th
′

h and sh
′

h :

(69) sh
′

h+1 +
∑

h′<h′′<h+1

th
′′

j,hs
h′

h′′ + th
′

h =





0, if h 6= j − i− 1 and h 6= h′

ci+1 if h 6= j − i− 1 and h = h′

P (i, h′, j), if h = j − i− 1 and h 6= h′

P (i, h′, j) + ci+1, if h = j − i− 1 and h = h′

(In order to compute the right hand side, we need to use the following combinatorial
formula

σa(c, c+ b1, . . . , c+ bp) =
a∑

l=0

cl
(
p− a+ l + 1

l

)
σa−l(b1, . . . , bp)

for a, p ∈ Z, 1 ≤ a ≤ p. We assume here that σ0(b1, . . . , bp) = 1.)

The equation (65) translates into the following equations for tj
′,h′

j,h and sj
′,h′

j,h , h < j − i:

(70) th
′

h +
∑

h′−1<h′′<h

sh
′′

h t
h′

h′′ + sh
′−1
h = 0

Again, we claim that the system of equations (69) and (70) has a unique solution indicated
in the statement of the lemma. Again, we will prove this claim by induction on h and h′.

First of all, observe that from the equation (70) we have t11 = 0.

We make two induction assumptions (k ≥ 1):

(1) th
′

h is given by equations (60) for all (h′, h) such that h′ ≤ h ≤ k.
(2) sh

′

h is given by equations (61) for all (h′, h) such that h′ < h ≤ k + 1 ≤ j − i.

Proceeding by induction as in Case I and using the formula (for b, l ∈ Z, 0 ≤ b ≤ l − 2)

l∑

a=b

(−1)l−a
(
l
a

)(
a + 1
b+ 1

)
= 0

it is easy to see that all th
′

h and sh
′

h+1 are given by formulas (60) and (61) respectively.
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We have proved the assertions (i) and (ii) of the lemma. The assertion (iii) follows from
the construction and Lemma 2.2.3 exactly as in [Maf, Lemma 19]. The assertion (iv)
follows from the construction, cf. [Maf, Lemma 19]. �

7.2.1. It is important for us to record the formula for B̃0Ã0 = δ̃1γ̃1. To simplify notation,
we set

bl := b−1
l = c1 + · · · + cl,

and

P ′(h′, j) :=

j−h′−1∑

k=1

(−1)kσk(b1, . . . , bh′−2+k)qh′+k→jpj→h′+k + (−1)j−h
′−1σj−h′(b1, . . . , bj−1).

Now we have

(71) (δ̃1γ̃1)
j′,h′

j,h =





IdDj
, if h′ = h + 1, j′ = j,

qh′→jpj′→h′ +Kj,j′P
′(h′, j), if h = j,

0, otherwise .

where Kp,q is the Kronecker symbol, σk is the k-th elementary symmetric function, and
we assume that the value of σk at the empty collection of variables is zero.

Finally, let us record the specialization of the above formula for the case c = 0. Clearly,
in this case P ′(h′, j) = 0 and we have

(72) (δ̃1γ̃1)
j′,h′

j,h =





IdDj
, if h′ = h+ 1, j′ = j,

qh′→jpj′→h′, if h = j,

0, otherwise.

8. Proof of the Main Theorem

In this section we complete the proof of the Main Theorem (Theorem 5.3.)

8.1. The isomorphisms φ and φ̃. The argument in this subsection is for the case c = 0.
The argument for a general c is completely analogous. In the proof we mostly follow the
logic of [Maf].

Lemma. Let (Ã, B̃, γ̃, δ̃) ∈ S and let g̃ ∈ G(Ṽ ) be such that g̃(Ã, B̃, γ̃, δ̃) ∈ S. Then
g̃i(Vi) ⊆ Vi and if we denote gi = g̃i|Vi

we have

(73) g̃(Ã, B̃, γ̃, δ̃) = g(Ã, B̃, γ̃, δ̃).

Proof. The proof is lifted verbatim from [Maf, Lemma 22]. �
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8.1.1. Let D = D̃1 as in 7.1.1. Then dimD = N = d̃1 :=
∑n−1

j=1 jdj. Observe that (ṽ, d̃)

as constructed in 7.1.1 must satisfy the conditions of Section 6 in order for M1(ṽ, d̃) and

M(ṽ, d̃) to be nonempty, cf. [Maf, 1.4] and therefore, if nonempty, M1(ṽ, d̃) ≃ Oµ and

M(ṽ, d̃) ≃ T ∗Fn,a (for c = 0), where µ, a are defined as in 5.1.1. (For a general c the
nilpotent orbit Oµ deforms into a general conjugacy class, cf. 3.1.4, 5.1.2.) Now recall the
definition (cf. 3.3.1) of the transverse slice Tx to the orbit Oλ where λ is obtained from

(v, d) as in 5.1.1. Let Tx,µ = Tx ∩ Oµ be as in 3.3.1 and let T̃ ax be as in 3.3.3.

8.1.2. Now we will construct the maps φ0 and φ̃ completing the following commutative
diagrams.

(74)

Λc(v, d)
Φ

−−−→ Sy
y

M0(v, d)
φ0

−−−→ M0(ṽ, d̃)

Λc
s(v, d)

Φs

−−−→ Ssy
y

M(v, d)
eφ

−−−→ M(ṽ, d̃)

We denote φ := φ0|M1(v,d) : M1(v, d) → M0(ṽ, d̃). Since M1(ṽ, d̃) ≃ Oµ an element of
M1(v, d) will be sent by φ to an operator y+ f ∈ End(D), where y is nilpotent of type λ
and f is given by the explicit formulas (72) (and (71) for arbitrary c). A simple inspection

shows that Im φ ⊆ Tx,µ, and Im φ̃ ⊆ T̃ ax .

8.1.3. Lemma. The map φ is a closed immersion.

Proof. It is enough to prove that φ0 is closed immersion. Recall that

M0(v, d) = Λc(v, d)//G(V ) = SpecR(Λc(v, d))G(V ),

M0(ṽ, d̃) = Λc(ṽ, d̃)//G(Ṽ ) = SpecR(Λc(ṽ, d̃))G(eV ).
(75)

We will prove that the restriction map φ∗ : R(Λc(ṽ, d̃))G(eV ) → R(Λc(v, d))G(V ) is surjec-
tive.

By Theorem 2.2.2 the algebra R(Λc(ṽ, d̃))G(eV ) is generated by χ̃(δ̃1γ̃1) where χ̃ is a linear

form on Hom(D̃1, D̃1). If δ̃1γ̃1 is of the form (72) and

χ̃ = χ ∈ Hom(D
(h′)
j′ , D

(j)
j )∗ ⊆ Hom(D̃1, D̃1)

∗,

then for 1 ≤ h′ ≤ min(j, j′) we have

χ̃(δ̃1γ̃1) = χ(π
D

(j)
j

(δ̃1γ̃1)|D(h′)

j′

) = χ(qh′→jpj′→h′),

which are all the generators of the algebra R(Λc(v, d))G(V ) according to the Theorem
2.2.2. �
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8.1.4. Lemma. The map φ̃ : M(v, d) → T̃ ax is proper and injective.

Proof. We have the following diagrams

(76)

M(v, d)
eφ

−−−→ T̃ ax

p

y ma

y

M0(v, d)
φ0−−−→ M0(ṽ, d̃)

M(v, d)
eφ

−−−→ T̃ ax

p

y ma

y

M1(v, d)
φ

−−−→ Tx,µ

Since φ is a closed immersion and the morphisms p and ma are projective, we see that φ̃

is proper. Since all orbits in Λc
s(v, d) and Λc

s(ṽ, d̃) are closed, φ̃ is injective. �

8.1.5. Lemma. The map φ̃ : M(v, d) → T̃ ax is an isomorphism of algebraic varieties.

Proof. Since φ̃ is a proper injective morphism between connected smooth varieties of the

same dimension, φ̃ is an analytic isomorphism and therefore an algebraic isomorphism. �

Lemma. The map φ : M1(v, d) → Tx,µ is an isomorphism of algebraic varieties.

Proof. Since ma is surjective, from the diagram (76) we see that φ is surjective. Since φ
is a surjective closed immersion, and both M1(v, d) and Tx,µ are reduced varieties over C,
φ is an algebraic isomorphism. �

8.2. The immersions ψ and ψ̃. These immersions were constructed in section 4.5.

9. Application to representation theory: (gl(n), gl(m))-duality

The relationship between quiver varieties and affine Grassmannians provides a natural
framework for (GL(n), GL(m)) duality.

9.1. Skew (GL(n), GL(m)) duality.

9.1.1. Let V = Cm and W = Cn be two vector spaces. Let us consider the gl(m) ×
gl(n) bimodule V ⊗W and its N -th exterior power ∧N(V ⊗W ). We have the following
decomposition [H, 4.1.1]:

(77) ∧N (V ⊗W ) =
⊕

λ

Vλ ⊗Wλ̌,

where λ are all partitions of N which fit into the n × m box, Vλ is the highest weight
representation of gl(m) with highest weight λ and Wλ̌ is the highest weight representation
of gl(n) with highest weight λ̌.



33

9.1.2. Considering V⊗W as a gl(m) module V⊗Cn, we have the following decomposition:

(78) ∧N (V ⊗W ) =
⊕

a1+···+an=N

∧a1V ⊗ · · · ⊗ ∧anV.

Considered as a representation of the torus (C×)n ⊆ gl(n) the vector space ∧a1V ⊗ · · · ⊗
∧anV has weight a = (a1, . . . , an). Thus decompositions (77) and (78) imply the following
formula

(79) Homgl(m)(∧
a1V ⊗ · · · ⊗ ∧anV, Vλ) ≃Wλ̌(a),

where Wλ̌(a) is the weight space corresponding to weight a of the gl(n) highest weight
module Wλ̌.

9.1.3. Geometric skew duality. We construct a based version of the isomorphism (79),
i.e., a geometric skew (GL(n), GL(m)) duality. More precisely, with N, v, d, a, λ as in
5.1.1, we identify the right hand side with H(π−1(Lλ)), where Lλ is a lattice in the
affine Grassmannian G, and the left hand side with H(L(v, d)) by Theorem 2.4. The
identification of irreducible components Irr π−1(Lλ) = Irr L(v, d), which follows from the
isomorphism (40) matches the natural basis of the space of intertwiners HomGL(m)(∧

a1V ⊗
· · · ⊗ ∧anV, Vλ) arising from the affine Grassmannian construction (i.e., Irrπ−1(Lλ)), and
the natural basis of the weight space Wλ̌(a) in the Nakajima construction (i.e., Irr L(v, d)).
Altogether:

HomGL(m)(∧
a1V ⊗ · · · ⊗ ∧anV, Vλ) ≃ H(π−1(Lλ)) ≃ H(L(v, d)) ≃Wλ̌(a).

9.1.4. Dually, we have

(80) Homgl(n)(∧
c1W ⊗ · · · ⊗ ∧cmW,Wλ̌) = Vλ(c),

where Vλ(c) is the weight space corresponding to the weight c = (c1 . . . , cm) of the gl(m)
highest weight module Vλ.

9.2. Symmetric (GL(m), GL(m)) duality.

9.2.1. Analogously, if we consider theN -th symmetric power SymN(V ⊗V ) of the gl(m)×
gl(m) bimodule V ⊗ V , we have the following decomposition (a particular case of [H,
2.1.2]):

(81) SymN(V ⊗ V ) =
⊕

λ

Vλ ⊗ Vλ,

where the sum is over all partitions λ of N with at most m parts.

Considering V ⊗ V as a gl(m) module V ⊗ Cm, we have the following decomposition:

(82) SymN (V ⊗ V ) =
⊕

c1+···+cm=N

Symc1 V ⊗ · · · ⊗ Symcm V.
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Thus decompositions (81) and (82) imply the following formula

(83) Homgl(m)(Symc1 V ⊗ · · · ⊗ Symcm V, Vλ) = Vλ(c),

where Vλ(c) is the weight space corresponding to weight c of the gl(m) highest weight
module Vλ.

9.2.2. Combining the equations (80) and (83) we get

(84) Homgl(n)(∧
c1W ⊗ · · · ⊗ ∧cmW,Wλ̌) = Homgl(m)(Symc1 V ⊗ · · · ⊗ Symcm V, Vλ).

9.2.3. Geometric symmetric duality. Geometry allows us to find a based isomorphism of
the left and right hand side of (84). Let N, v, d, a, λ be as in 5.1.1. First of all it follows
from the quiver tensor product constructions of Malkin [Mal] and Nakajima [N4] that the
relevant irreducible components Irr g̃n,cx of the Spaltenstein fiber over a nilpotent of type
λ index a natural basis in the left hand side of (84). Here

g̃n,cx = {(x, F ) ∈ gl(D)×Fm,c | x(Fi) ⊆ Fi and x acts on Fi/Fi−1 as a regular nilpotent }.

Now consider another convolution Grassmannian:

G̃c = Gc1ω1 ∗ · · · ∗ Gcmω1

= { L0 ⊆ L1 ⊆ · · · ⊆ Ln | dimLi/Li−1 = ci, z|Li/Li−1
is a regular nilpotent },

(85)

where ω1 is the first fundamental weight of GL(m). We have a map π : G̃c → G defined
by π : (L0 ⊆ L1 ⊆ . . . ⊆ Ln) 7→ L = Ln. Consider π−1(Lλ) for Lλ ∈ G. It follows from
the Geometric Satake Correspondence that the set of relevant irreducible components
Irr π−1(Lλ) indexes a basis in the right hand side of (84).

It is clear that the varieties g̃n,cx ≃ π−1(Lλ) are isomorphic. This isomorphism gives us a
bijection Irr g̃n,cx = Irrπ−1(Lλ).

Summarizing:

HomGL(n)(∧
c1W ⊗ · · · ⊗ ∧cmW,Wλ̌) ≃ H(g̃n,cx )

≃ H(π−1(Lλ))

≃ HomGL(m)(Symc1 V ⊗ · · · ⊗ Symcm V, Vλ).

9.2.4. Remark. The second author has greatly benefited from a class taught by W. Wang
at Yale [Wa1]. The “geometric symmetric duality” above has a lot in common with
the construction described in [Wa2] and we believe that the “geometric skew duality”
construction answers a question posed by Weiqiang Wang.
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