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0. Introduction

Abstract. We prove most of Lusztig’s conjectures from [Lu], including the existence
of a canonical basis in the Grothendieck group of a Springer fiber. The conjectures also
predict that this basis controls numerics of representations of the Lie algebra of a semi-
simple algebraic group over an algebraically closed field of positive characteristic. We
check this for almost all characteristics.

To this end we construct a non-commutative resolution of the nilpotent cone which
is derived equivalent to the Springer resolution. On the one hand, this noncommutative
resolution is shown to be compatible with the positive characteristic localization equiva-
lences of [BMR1]. On the other hand, it is compatible with the t-structure arising from
an equivalence with the derived category of perverse sheaves on the affine flag variety
of the Langlands dual group [ArkB] inspired by local geometric Langlands duality. This
allows one to apply Frobenius purity theorem of [BBD] to deduce the desired properties
of the basis.

We expect the noncommutative counterpart of the Springer resolution to be of inde-
pendent interest from the perspectives of algebraic geometry and geometric Langlands
duality.

Let G be a reductive group over an algebraically closed field k of characteristic p > h

and g be its Lie algebra (here h denotes the Coxeter number of G). Let P be a partial

flag variety and consider the space g̃P of pairs of a parabolic subalgebra p ∈ P and an

element in it. For the full flag variety B we usually denote g̃B simply by g̃. We have a

map µP : g̃P → g.

In [BMR1], [BMR2] we have shown that the derived category of g-modules with a fixed

generalized central character is equivalent to the derived category of coherent sheaves

on g̃∗P set-theoretically supported on Pe = µ−1
P (e); here the partial flag variety P and

e ∈ g∗ depend on the central character. A numerical consequence of this equivalence is

an isomorphism between the Grothendieck groups of the abelian categories modfg(U(g)σ)

and Coh(Pe), where U(g)σ is the quotient of the enveloping algebra by a central character

σ and modfg denotes the category of finite dimensional (equivalently, finitely generated)

modules. This implies, in particular, that the number of irreducible representations with

a fixed central character σ equals the rank of the Grothendieck group of Coh(Pe), which

is known to coincide with the sum of Betti numbers of Pe.

To derive more precise information about numerical invariants of g-modules one needs

a characterization of the elements in K0(Coh(Pe)) which correspond to irreducible g-

modules and their projective covers. Such a characterization is suggested by the work of

Lusztig [Lu]. In loc. cit. he describes certain properties of a basis in the Grothendieck
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group of a Springer fiber and conjectures that a basis with such properties exists and

controls (in a certain precise sense) numerical invariants of irreducible U(g)σ modules.

(He also shows that a basis with such properties is essentially unique). The properties

of a basis are similar to those enjoyed by Kazhdan-Lusztig bases of a Hecke algebra and

canonical bases in modules over a quantum group, for this reason we will refer to a basis

satisfying Lusztig’s axioms as a canonical basis.

In the present paper we prove most of the conjectures from [Lu]. The first step is the con-

struction of a non-commutative counterpart of the Springer resolution as a lift of modular

representation categories to characteristic zero. By this we mean a certain noncommuta-

tive algebra A0 defined canonically up to a Morita equivalence whose center is identified

with the algebra O(N ) of regular functions on the nilpotent cone N ⊂ g∗; here g is taken

over R = Z[ 1
h!
]. This noncommutative resolution is canonically derived equivalent to the

ordinary Springer resolution, i.e. it comes with a canonical equivalence of triangulated

categories Db(modfg(A0)) ∼= Db(Coh(Ñ )) where Ñ is the cotangent bundle to the flag

variety. Furthermore, for k as above and any e ∈ N (k), the base change A0 ⊗O(N ) ke is

canonically Morita equivalent to a central reduction of U(gk).

The above properties of A0 imply that the numerics of non-restricted modular represen-

tation categories is independent of (sufficiently large) characteristic and show that A0

provides a lifting of such representation categories to characteristic zero. As a side com-

ment recall that a similar construction for representations of the algebraic group Gk (this

setting is very close to restricted representations of the Lie algebra gk) was obtained in

[AJS]. In that case the resulting category in characteristic zero turns out to be equiva-

lent to representations of a quantum group at a root of unity. We expect that a similar

statement holds for non-restricted Lie algebra modules considered in the present work,

see Conjecture 1.7.1 below. Apart from that Conjecture, we avoid quantum groups in

this paper.

The method of construction of the noncommutative resolution A0 is based on an action of

the affine braid group Baff on the derived categories Db(Coh(Ñ )), Db(Coh(g̃B)). Here the

action of the generators of Baff is described by certain simple correspondences. The fact

that the corresponding functors obey the relations of Baff is proven in [BR]. The algebra

A0 is determined (uniquely up to a Morita equivalence) by the t-structure on Db(Coh(Ñ ))

corresponding to the tautological one under the equivalence with Db(modfg(A0)). This
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t-structure is characterized in terms of the action of Baff. The comparison with modular

localization and the proof of existence of a t-structure with required properties is based

on compatibility of the Baff action with intertwining (or shuffling) functors on the derived

categories of modular representations. Notice that the latter are closely connected with

“translation through the wall” functors, thus translation functors play a prominent role in

our argument. The use of translation functors to establish independence of the category

of modular representations on characteristic goes back (at least) to [AJS].

From the arguments alluded to above one can derive that the basis in the Grothendieck

group of a Springer fiber corresponding to irreducible gk modules satisfies all the axioms

of a canonical basis except for one, the so-called asymptotic orthogonality property. The

latter is reduced to certain compatibility between the above t-structures and the multi-

plicative group action on Slodowy slices. It says that the grading on the slice algebras,

i.e. the algebras “controlling” the derived category of coherent sheaves on the resolution

of a Slodowy slice, can be arranged to be positive. By this we mean that components of

negative degrees in the algebra vanish, while the degree zero component is semi-simple.

An analogous reformulation of Kazhdan-Lusztig conjectures is due to Soergel. Another

feature parallel to Kazhdan-Lusztig theory is Koszul property of the slice algebras, see

[BGS] for the corresponding facts about category O.

Properties of this type are usually deduced from a Theorem of [BBD] about weights

of Frobenius acting on the stalks of l-adic intersection cohomology sheaves. Our proof

also follows this strategy. The l-adic sheaves are brought into the picture by the result

of [ArkB] which provides an equivalence between the derived category of G-equivariant

sheaves on Ñ (over a field of characteristic zero) and a certain subcategory of the derived

category of constructible sheaves on the affine flag variety F l of the Langlands dual group.

This result is a categorical counterpart of one of the key ingredients in the proof of the

tamely ramified local Langlands conjecture.

Below we show that the t-structure of perverse sheaves of F l is compatible with the

t-structure coming from the equivalence with Db(modfg(A0)). This is achieved by inter-

preting the Baff action on the perverse sheaves side as the geometric counterpart of the

action of elements of the standard basis of the affine Hecke algebra on the anti-spherical

module.
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Thus the key step in our argument is compatibility between the two t-structures on

Db(Coh(Ñ )), one coming from modular representations via the equivalence of [BMR1]

and another from perverse sheaves on F l via the equivalence of [ArkB]. An indication

of such a compatibility can be (and has been) found by unraveling logical connections

between the works of G. Lusztig. However, we do not claim to have arrived at a conceptual

explanation of this coincidence.

A possible conceptual approach to the material presented in this paper is via the local

geometric Langlands duality formalism. Recall [FG, Fr] that the latter theory seeks

to attach to a (geometric) local Langlands parameter a certain triangulated category, a

categorification of a representation of a p-adic group attached to the Langlands parameter

by the classical local Langlands conjectures. According to [FG] this triangulated category

should arise as the derived category of an abelian category. That abelian category can

conjecturally be identified with the category of modules over an affine Lie algebra at the

critical level with a fixed central character. We propose the category of modules over the

above algebra A0 with a fixed central character as another construction for the so-called

category of Iwahori equivariant objects in a local Langlands category, see Conjecture 1.7.2

for a concrete statement arising from comparing of our results with that of [FG, FG1].

We also hope that the t-structures on the derived categories of coherent sheaves (in

particular, those on derived categories of coherent sheaves on varieties over C) constructed

below are of interest from the algebro-geometric point of view. We expect that the

construction generalizes to other symplectic resolutions of singularities (cf. [BeKa], [Ka])

and is related to Bridgeland stability conditions; the latter topic is the subject of the

forthcoming paper [AnnoB].

The paper is organized as follows. In section 1 we describe the affine braid group action

on the derived categories of coherent sheaves and state existence and uniqueness of a

t-structure characterized in terms of this action. We refer to [BR] for construction of the

Baff actions and a proof of its properties.

Section 2 presents a proof of the facts about the t-structures. Uniqueness is deduced

directly from a categorical counterpart of the quadratic relations satisfied by the action of

a simple reflection s̃α ∈ Baff (the action of s̃α on the corresponding Grothendieck groups

satisfies quadratic relations because this action of Z[Baff] factors through the affine Hecke
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algebra). Existence is shown by reduction to positive characteristic, where the statement

is deduced from localization in positive characteristic [BMR1], [BMR2].

Sections 3 and 4 present parabolic versions of the construction of t-structures. (They are

not needed for the proof of Lusztig’s conjectures: sections 5 and 6 are logically independent

of sections 3 and 4).

Section 5 recalls Lusztig’s conjectures [Lu] and reduces them to a positivity property of

a grading on the slice algebras, stated in detail in 5.3.2. We finish the section by showing

that positivity of the grading implies Koszul property of the graded algebras.

Section 6 proves this compatibility by relating the t-structure to perverse sheaves on

affine flag variety of the Langlands dual group, which are related to our categories of

coherent sheaves via the result of [ArkB]. Once the relationship between our graded

abelian categories and perverse sheaves is established, the desired property of the grading

follows from the purity theorem, similarly to the proof of Kazhdan-Lusztig conjecture.

Appendix A contains a proof of a technical statement about compatibility of the Springer

representation of the Weyl group on cohomology of a Springer fiber with a certain in-

volution of the cohomology space. This is needed in analysis of the involution of the

(equivariant) cohomology space appearing in Lusztig’s formulation of his conjectures.

Appendix B by Eric Sommers establishes a property of the central element in an SL(2)

subgroup of G, which also enters comparison of our categorical picture with the formulas

from [Lu].
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Special Year on Representation Theory at Princeton Institute for Advanced Study led by

George Lusztig, we are very grateful to IAS and to Lusztig for the inspiring atmosphere.
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with various people, an incomplete list includes Michel van den Bergh, Jim Humphreys,
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0.1. Notations and conventions. Let GZ be a split reductive group over Z. We work

over the base ring R = Z[ 1
h!
] where h is the maximum of Coxeter numbers of simple

factors. So we denote by G = GR the base change of GZ to R and its Lie algebra by

g = gR.

We will use the notation k for geometric points of R, i.e., maps R → k where k is an

algebraically closed field. We will use an abbreviation FGP for the set of geometric points

of R that have finite characteristic. Let N⊆g be the nilpotent cone and B the flag variety.

We denote by Ñ = T ∗B −→N the Springer resolution and by g̃ −→ g the Grothendieck

map. For convenience, we fix a nondegenerate invariant quadratic form on g and use it

to identify g and g∗, hence also g̃∗ and g̃.

LetH be the abstract Cartan group of G with Lie algebra h. Let Λ = X∗(H) be the weight

lattice of G, Q ⊂ Λ be the root lattice and W the Weyl group. Our choice of positive

roots is such that for a Borel subalgebra b with a Cartan subalgebra t, the isomorphism

t ∼= h determined by b carries roots in b into negative roots. Let I⊆Iaff be the vertices

of the Dynkin diagram for the Langlands dual group Ǧ and of the affine Dynkin diagram

for Ǧ, we consider them as affine-linear functionals on h∗.

Set Waff = W ⋉ Λ, WCox
aff = W ⋉ Q. Then WCox

aff is a Coxeter group corresponding to

the affine Dynkin graph of the Langlands dual group Ǧ, also WCox
aff ⊂ Waff is a normal

subgroup with an abelian quotient Waff/W
Cox
aff
∼= Λ/Q ∼= π1(Ǧ). Thus Waff is the ex-

tended affine Weyl group for Ǧ. Let B ⊂ BCox
aff ⊆Baff denote the braid groups attached

to W , WCox
aff , Waff respectively. Let W sc

aff⊇W
Cox
aff and Bsc

aff⊇B
Cox
aff correspond to the simply

connected cover of the derived subgroup of G.

Thus Baff contains reduced expressions w̃, w ∈ Waff, and also a subgroup isomorphic to

Λ consisting of the elements θλ, λ ∈ Λ, such that θλ = λ̃ when λ is a dominant weight.

Denote by B+
aff⊆B

Cox
aff the semigroup generated by lifts s̃α of all simple reflections sα in

BCox
aff .
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Coh(X)⊆qCoh(X) are the categories of coherent and quasicoherent sheaves on X . For a

noetherian scheme Y we sometimes denote RHomY
def
= RHomDb(Coh(Y )). The fiber prod-

ucts in this paper are taken in the category of schemes (as opposed to fiber product of

varieties with the reduced scheme structure), unless stated otherwise. For a closed sub-

scheme Y⊆X we denote by CohY(X ) the category of coherent sheaves on X supported

set theoretically on Y . In this paper we will consider formal neighborhood of Y in X only

in the case when Y⊆X is a base change of an affine closed embedding. In this situation,

by the formal neighborhood Ŷ we will understand the completion of X along Y ; this is

locally the spectrum of the completion of algebras.(1)

For any abelian category C we denote its Grothendieck group by K0(C) and in a particular

case of coherent sheaves on a scheme X or finitely generated modules over an algebra A

we denote K(X) = K0[Coh(X)] and K(A) = K0[modfg(A)].

Pull-back or push-forward functors on sheaves are understood to be the derived functors,

and Homi(x, y) means Hom(x, y[i]).

The base changes of g̃ and Ñ with respect to a g-scheme S −→ g will be denoted by

S̃ = S×g g̃ and S̃ ′ = S×g Ñ . For a complex of coherent sheaves E on g̃ (respectively, Ñ )

we let ES (respectively, E ′S) denote its pull-back to S̃ (respectively, S̃ ′).

1. t-structures on cotangent bundles of flag varieties: statements and

preliminaries

As stated above, our basic object is the base change G = GR of a split reductive group

GZ over Z to the base ring R = Z[ 1
h!
] (where h is the maximum of Coxeter numbers of

simple factors).

Our main goal in the first two sections is to construct a certain t-structure T ex on

Db(Coh(g̃)), called the exotic t-structure. The induced t-structure on Db(Coh(g̃k)) for

a field k of positive characteristic is related to representations of the Lie algebra gk. In

this section we state the results on T ex after recalling the key ingredients: the action of

the affine braid group on Db(Coh(g̃)), tilting generators in Db(Coh(g̃)) and representation

theoretic t-structures. Some proofs are postponed to later sections.

1Notice that we ignore the topology on completions of algebras. This somewhat unnatural setting
makes base changes to a formal neighborhood fit into the framework of Theorem 1.3.2.
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The next three subsections are devoted to a certain action of Baff on the derived categories

of (equivariant) coherent sheaves. In 1.1 we explain a basic formalism of convolutions on

derived categories of coherent sheaves available under certain flatness assumptions, use it

to define geometric action of a group on the derived categories of coherent sheaves and

state the existence of a certain geometric action of Baff on g̃, Ñ .

A strengthened version of this result is presented in 1.3 where existence of a compatible

collection of geometric actions of Baff on the fiber product spaces g̃S, ÑS (under some con-

ditions on S) is stated. In fact, such compatible collections of actions arise naturally from

a more transparent structure which is a direct generalization of the notion of a geometric

action to the case when the space is not necessarily flat over the base. This generaliza-

tion involves basics of DG-schemes theory. In an attempt to make the statements more

transparent we present an informal discussion of this more general construction in 1.2.

Thus from the formal point of view subsection 1.2 and theorem 1.1.1 are not needed. We

have included them in an attempt to make the exposition more transparent.

1.1. Geometric action of the affine braid group. Definition. By a weak homo-

morphism from a group to a monoidal category we will mean a homomorphism from the

group to the group of isomorphism classes of invertible objects. A weak action of a group

on a category C is a weak homomorphism from the group to the monoidal category of

endo-functors of C.

Let X be a finite type flat scheme over a Noetherian base S. Then the category

D−(qCoh(X ×S X)) is a monoidal category where the monoidal structure comes from

convolution: F1 ∗ F2 = pr13∗(pr
∗
12(F1)

L
⊗ pr∗23(F2)) where pr12, pr23, pr13 are the three

projections X ×S X ×S X → X ×S X . This monoidal category acts on D−(qCoh(X)) by

F : G 7→ pr1∗(F
L
⊗ pr∗2(G)).

By a weak geometric action of a group on X over S, we will understand a weak homo-

morphism from the group to D−(qCoh(X ×S X)).

We will say that the action is finite if its image is contained in the full subcategory

Db(Coh(X ×S X)) and the corresponding action on the derived category of sheaves on X

preserves Db(Coh(X)) ⊂ D−(qCoh(X)).
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For a map S ′ → S we can base change the above structure in a straightforward way.

Namely, the pull-back functor D−(qCoh(X ×S X))→ D−(qCoh(XS′ ×S′ XS′) is monoidal

and the pull-back functor D−(qCoh(X))→ D−(qCoh(XS′)) is compatible with the action

of the monoidal categories. Thus a weak geometric action of a group on X over S induces

a weak geometric action of the same group on the fiber product space XS′ over S ′.

1.1.1. Action of Baff on g̃, Ñ over R. The Weyl group W acts on g̃reg
def
= g̃×gg

reg. Let

Γw ⊂ g̃×g g̃ be the closure of the graph of the action of w ∈ W and set Γ′
w = Γw ∩ Ñ 2.

Theorem. There exists a unique finite weak geometric action of Baff on g̃ (respectively, on

Ñ ) over R, such that:

i) for λ ∈ Λ, θλ corresponds to the direct image of the line bundle Og̃(λ) (respectively,

OÑ (λ)) under the diagonal embedding.

ii) for a finite simple reflection sα ∈ W , s̃α ∈ B corresponds to the structure sheaf OΓsα

(respectively, s̃α 7→ OΓ′
sα
).

The proof appears in [BR]. We denote the weak geometric action on g̃ by Baff ∋ b7→ Kb ∈

Db[Coh(g̃×Rg̃)].

Remark. By the discussion preceding the Theorem, we also get geometric actions of Baff

on, say, g̃k, Ñk where k is a field mapping to R. For applications below we need to consider

more general base changes, these are dealt with in 1.3 below.

1.1.2. Remark. It is possible to deduce the Theorem from the results of [BMR1] which

provide an action of Baff on the derived category of modular representations using the

reduction to prime characteristic techniques of section 2 below. This would make the

series of [BMR1], [BMR2] and the present paper self-contained. However, this would

further increase the amount of technical details without adding new conceptual features

to the picture. For this reason we opted for a reference to a more satisfactory proof in

[BR], (see also [Ri1] for a partial result in this direction).

1.2. Digression: convolution operation via DG-schemes. This subsection serves

the purpose of motivating the formulation in the next Theorem 1.3.2 which is a strength-

ening of Theorem 1.1.1. It relies on some basic elements of the formalism of DG-schemes.
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Neither that formalism nor the statements of the present subsection will be used in the

rest of the paper (except for Remark 1.5.4). See [BR] for details.

Let X → S be again a morphism of finite type with S Noetherian, but let us no longer

assume that it is flat. Then one can consider the derived fiber product2 X2
S = X

L
×S X ,

this is a differential graded scheme whose structure sheaf is the derived tensor product

O(X)
L
⊗O(S) O(X).

Definitions similar to the ones presented in 1.1 work also in this context providing the tri-

angulated category DGCoh(X2
S) of coherent OX2

S
-modules with the convolution monoidal

structure. This monoidal category acts on the category Db(Coh(X)).

The example relevant for us is when S = gR and X = g̃R or X = ÑR. Notice that in

the first case one can show that Tor
Og

>0(Og̃,Og̃) = 0 which implies that the derived fiber

product reduces to the ordinary fiber product and DGCoh(g̃
L
×g g̃) ∼= Db(Coh(g̃ ×g g̃)).

However, even in this case the definition of monoidal structure can not (to our knowledge)

be given without using derived schemes, as it involves the triple fiber product g̃
L
×g g̃

L
×g g̃

where higher Tor vanishing does not hold.

Given a pair of morphisms X → S → U we get a natural morphism iSU : X2
S → X2

U . It

turns out that the functor of direct image (iSU )∗ can be equipped with a natural monoidal

structure and the action of DGCoh(X2
S) on D

b(Coh(X)) factors through DGCoh(X2
U).

For example, we can take X = g̃ or Ñ , S = g, U = R. The composed map X → U is

flat, so the construction of the monoidal structure and the action in this case reduces to

the more elementary case described in Theorem 1.1.1.

The advantage of considering the finer structure of a geometric action on X over S rather

than the weaker structure of a geometric action on X over U (which in our example

happens to be more elementary) is the possibility to perform the base change construction

for the base S.

Namely, given a morphism S ′ → S consider XS′ = S ′
L
×S X and X2

S′ := XS′

L
×S′ XS′

∼=

(X
L
×S X)

L
×S S

′. Then Db[Coh(X2
S′)] is a monoidal category acting on Db[Coh(XS′)].

2It may be more logical to denote the fiber product by
R
× as it can be thought of as a right derived

functor in the category of schemes, corresponding to the left derived functor
L
⊗ in the category of rings,

opposite to the category of affine schemes.
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The functor of pull-back under the morphism X2
S′ → X2

S turns out to be monoidal while

the pull-back and push-forward functors for the morphism XS′ → XS are compatible with

the module category structure. In particular a (weak) geometric action of a group Γ on

X over S yields weak actions of Γ on DGCoh(XS′) for any S ′ → S. This way our action

of Baff yields some actions considered by other authors, see Remark 1.3.3.

The geometric actions of Baff on g̃, Ñ from Theorem 1.1.1, actually lift to geometric

actions over g and this provides a rich supply of interesting base changes of the action.

Rather than spelling out the details on geometric actions over base g we will here record

a collection of actions of Baff on the derived categories of a class of exact base change

varieties and the compatibilities they enjoy. The exactness condition on the base change

S → g guarantees that g̃S (or ÑS) is an ordinary scheme rather than a DG-scheme. It

excludes some examples natural from representation-theoretic perspective, see Remark

1.5.4, but is still sufficient for our present purposes.

1.3. Baff actions on exact base changes. We say that a fiber product X1 ×Y X2 is

exact if

TorOY
>0 (OX1 ,OX2) = 0. (1)

(We also say that the base change X1 −→X of X2 is exact.) We let BC (respectively, BC′)

denote the category of affine Noetherian g schemes S → g such that the base change of g̃

(respectively, Ñ ) to S is exact. We set S̃ = S ×g g̃ and S̃ ′ = S ×g Ñ . 3

1.3.1. Lemma. Base changes S̃, S̃ ′, Γsα×gS and Γ′
sα×gS are exact for the following maps

S −→ g: (i) gR for any Noetherian R-scheme R; (ii) the spectrum X̂ of a completion of

OgR at any closed X⊆gR, (iii) any normal slice S ⊂ gR to a nilpotent orbit in gR.

Proof. (iii) The conjugation map G×S −→g is smooth since the differential in the direc-

tion of G produces orbital directions and the one in direction of S produces the normal

directions. �

1.3.2. Action of braid group on base changes. We will use the action of G×Gm on g (and

all related objects), where Gm acts on g by dilations.

3It may be possible to treat the two cases uniformly by considering also base changes with respect to
the morphism g̃→ h. We do not develop this approach here.
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Theorem. Let G be a group with a fixed homomorphism to G×Gm.

a) Let S be a scheme with a G action and S −→g be a G-equivariant affine map. If it is

in BC (respectively, in BC ′), then the category Db(CohG(S̃)) (respectively, Db(CohG(S̃ ′))),

carries a canonical weak action of Baff such that

• (i) For a finite simple reflection sα ∈ W the generator s̃α acts by convolution

with OΓsα×gS, respectively OΓ′
sα×gS, provided that the fiber product Γsα ×g S,

respectively Γ′
sα ×g S, is exact.

• (ii) The generators θλ, λ ∈ Λ act by tensoring with the line bundle O(λ).

For a G-morphism S1 → S2 in BC (respectively, BC ′), the pull-back and push-forward

functors are compatible with the Baff action. The change of equivariance functors for

G ′ → G commute with the Baff action.

b) Let k be an algebraically closed field of characteristic zero or p > h and e ∈ g∗k

be a nilpotent element. If the group G fixes e, then the induced action of Baff on

K0(CohGBk,e
(g̃k)) = K0(CohGBk,e

(Ñk)) = KG(Bk,e) factors through the standard action of

the affine Hecke algebra [Lu] in the following way.

• (i) For a finite simple reflection sα, the action of s̃α on the K-group of Bk,e is by

s̃α = (−v)−1Tsα, (2)

where Tsα is the action (from [Lu]), of the Hecke algebra on the K-group.

• (ii) For λ ∈ Λ the action of θλ ∈ Baff is compatible with the action of θλ in the

affine Hecke algebra defined in [Lu].

In particular, under the Chern character map(4) K0(CohBk,e
(g̃k)) → H∗(Bk,e), the action

of B⊆Baff on the source factors through the Springer representation of W on the target.

Remark. Notice that the statement involving Ñ is not a particular case of the state-

ment about g̃, because (in particular), the fiber product N×gg̃ is not reduced, so is not

isomorphic to Ñ = (N×gg̃)
red as a scheme.

4Here by homology we mean l-adic homology (l 6= char(k)), or the classical homology with rational
coefficients if k = C.
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1.3.3. Examples. (1) When S ⊂ gC is the slice to the subregular orbit, then S̃ ′ is the

minimal resolution of a Kleinian singularity. The Baff action in this case is generated by

reflections at spherical objects, (see [Br] or references therein).

(2) Let us notice a relation to an action on coherent sheaves on affine Grassmannians.

Let S be a normal slice to a nilpotent en in sl(2n), with two equal Jordan blocks. Then

by the result of [Anno] the restriction to B⊆Baff of the above action on S̃ ′, coincides

with the action constructed by Cautis and Kamnitzer [CK] (up to a possible change of

normalization).

1.3.4. Some properties of the action. Let b → Π(b) denote the composed map Baff →

Waff →Waff/Λ = W . Let i∆ : g̃→ g̃×g g̃ and pr : g̃→ h be the diagonal embedding and

the projection.

Lemma. a) For F ∈ Db(Coh(h)) and b ∈ Baff we have

Kb ∗ i
∆
∗ pr

∗(F) ∗Kb−1
∼= i∆∗ pr

∗(Π(b)∗F).

b) For α ∈ I, Ks̃α
−1
∼= Ωtop

Γsα

∼= OΓsα
〈−ρ,−α + ρ〉.

c) w̃(O) ∼= O for w ∈ W .

Proof. a) It suffices to construct the isomorphism for the generators of Baff. These

isomorphisms come from the fact that Kθλ and Ks̃α are supported on the preimage under

the map g̃×g g̃→ h×h/W h of, respectively, the diagonal and the graph of sα.

b) is proved in [Ri1].

c) This reduces immediately to the case of SL2 where it follows from the description of

Γsα as the blow up of g̃ along the zero section B. �

1.4. Certain classes of t-structures on coherent sheaves.

1.4.1. Braid positive and exotic t-structures on T ∗(G/B). A t-structure on Db(Coh(S̃)),

is called braid positive if for any vertex α of the affine Dynkin graph of the dual group

the action of s̃α ∈ Baff is right exact. It is called exotic if it is braid positive and also the

functor of direct image to S is exact with respect to this t-structure on Db(Coh(S̃)) and

ordinary t-structure on Db(Coh(S)).
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1.4.2. Locally free t-structures. Here we isolate a class of t-structures which admit certain

simple construction. One advantage is that such t-structures can be pulled-back under

reasonable base changes (say, base changes that are affine and exact, see lemma 2.5.2.a).

For a map of Noetherian schemes f : X → S we will say that a coherent sheaf E on X is a

(relative) tilting generator if the functor from Db(Coh(X)) to Db(Coh(f∗End(E)op)) given

by F 7→ Rf∗RHom(E ,F) is an equivalence. This in particular implies that f∗End(E)

is a coherent sheaf of rings, that the functor lands in the bounded derived category of

coherent modules, and that Rf∗Hom(E , E) = f∗Hom(E , E).

If E ∈ Db(Coh(X)) is a relative tilting generator, then the tautological t-structure on the

derived category Db[Coh(f∗(End(E)op))] induces a t-structure TE on Db(Coh(X)). We call

it the E t-structure. We say that a t-structure is locally free over S if it is of the form TE

where the relative tilting generator E is a vector bundle. Then TE is given by

F ∈ D≥0 ⇐⇒ Rf∗RHom
<0(E ,F) = 0 and F ∈ D≤0 ⇐⇒ Rf∗RHom

>0(E ,F) = 0.

If S is affine we omit “relative” and say that E is a tilting generator of Db[Coh(X)]. Then

E is a projective generator for the heart of TE . In particular, two tilting generators E , E ′

define the same t-structure iff they are equiconstituted, where two objects M1,M2 of an

additive category are called equiconstituted if for k = 1, 2 we have Mk
∼=

⊕
N

⊕dik
i for some

Ni and d
i
k > 0.

1.4.3. Weak generators and tilting generators. We say that an object X of a triangulated

category D is a weak generator if X⊥ = 0, i.e. if Hom•(X,S) = 0⇒ S = 0.

For future reference we recall the following

Theorem. [HvdB, Thm 7.6](5) Assume that the scheme X is projective over an affine

Noetherian scheme. Then a coherent sheaf E is a tilting generator if and only if E is a

weak generator for D(qCoh(X)) and it is a quasi-exceptional object, i.e., Exti(E , E) = 0

for i 6= 0.

1.5. Exotic t-structures and noncommutative Springer resolution.

5In loc. cit. this statement is stated under the running assumption that the scheme is of finite type
over C. However, the same proof works in the present generality.
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1.5.1. Theorem. Let S −→ g be an exact base change of g̃ (resp. of Ñ ) with affine Noe-

therian S.

a) There exists a unique exotic t-structure T ex
S on the derived category of coherent sheaves

on S̃ (resp S̃ ′). It is given by:

D≥0,ex = {F ; R pr∗(b
−1F) ∈ D≥0(Coh(S)) ∀b ∈ B+

aff};

D≤0,ex = {F ; R pr∗(bF) ∈ D
≤0(Coh(S)) ∀b ∈ B+

aff}.

b) This t-structure is locally free over S. In fact, there exists a G×Gm-equivariant vector

bundle E on g̃ such that for any S as above, its pull-back ES to S̃ (resp. E ′S to S̃ ′), is a

tilting generator over S, and the corresponding t-structure is the exotic structure T ex. In

particular, the pull-back ES is a projective generator of the heart of T ex
S .

Proof. In proposition 2.2.1 we check that, for S as above, any exotic t-structure satisfies

the description from (a). This proves uniqueness. The existence of a vector bundle E on

g̃ whose pull backs produce exotic t-structures for any S as above is proved in 2.5.5. �

We denote the heart of the exotic t-structure T ex
S by Ecoh(S̃) (resp. Ecoh(S̃ ′)).

1.5.2. Remark. While the definition of an exotic t-structure involves only the

non-extended affine Weyl group WCox
aff , the Theorem shows that the same property

– the right exactness of the canonical lifts w̃ ∈ Baff – also holds for all w in the

extended affine Weyl group Waff. In particular, the stabilizer Ω of the fundamental

alcove in Waff acts by t-exact automorphisms of Db(Coh(S̃)) (this is an abelian group

Ω ∼= Λ/Q ∼= Waff/W
Cox
aff
∼= π1(Ǧ)).

1.5.3. Algebras A and A0. The exotic t-structures described in Theorem 1.5.1 can

also be recorded as follows. For any S as in the Theorem we get an associative

algebra AS
def
= End(ES)op (respectively, A0

S
def
= End(E ′S)

op), together with an equivalence

Db[Coh(g̃S)] ∼= Db[modfg(AS)] (respectively, D
b[Coh(ÑS)] ∼= Db[modfg(A0

S)]), sending

ES to the free rank one module. It is clear that the algebra together with the equivalence

of derived categories determines the t-structure, while the t-structure determines the

algebra uniquely up to a Morita equivalence.

According to the terminology of, say, [BoOr], the noncommutative O(N )-algebra A0 =

End(E|Ñ ) is a noncommutative resolution of singularities of the singular affine algebraic
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variety N , while A = End(E) is a noncommutative resolution of the affinization g×h/Wh

of g̃. In view of its close relation to Springer resolution, we call A0 a noncommutative

Springer resolution, while A will be called a noncommutative Grothendieck resolution of

g×h/Wh, cf. [B3].

For future reference we record some properties of the algebra A that directly follow from

the Theorem.

Lemma. (a) A is a vector bundle and a Frobenius algebra over g.

(b) A0 def
= End(E|Ñ ) is a base change A0 ∼= A

L
⊗O(h)O0 of A = End(E) in the direction of

h.

(c) Algebras associated to base changes S → g are themselves base changes in the direction

of g: AS
∼= A⊗O(g) O(S) (resp. A

0
S
∼= A0 ⊗O(g) O(S)).

Proof. (a) The sheaf of algebras A = End(E) is Frobenius for the trace functional tr.

Since g̃ and g are Calabi-Yau and have the same dimension, Grothendieck duality implies

that the sheaf A = (g̃
π
−→ g)∗A is self-dual. In particular, it is a Cohen-Macaulay sheaf, so

since g is smooth this implies that it is a vector bundle. Moreover, since g̃ is finite and flat

over the regular locus gr⊆g, Frobenius structure tr on A induces a Frobenius structure

on A|gr . Now, since the complement is of codimension three, this extends to a Frobenius

structure on the algebra bundle A.

For (b) we have

A0 (1)
= RΓ(A|Ñ )

(2)
= RΓ(A

L
⊗O(h) O0) = RΓ(A)

L
⊗O(h) O0

(3)
= A

L
⊗O(h) O0,

here vanishing statements (1) and (3) come from E and E|Ñ being tilting generators, while

(2) follows from Ñ = g̃×h0 and flatness of g̃ −→h.

(c) follows from base change isomorphisms RΓ(End(ES)) ∼= O(S)
L
⊗O(g) A (and similarly

for S ′), which follow from the exactness assumption on base change to S. Since the space

in the right hand side belongs to D≤0 while the space in the left hand side lies in D≥0,

both in fact lie in homological degree zero and the above isomorphisms hold.

1.5.4. Remark on DG-version of the theorem. We have required exactness of base change

to avoid dealing with DG-schemes. Using some basic elements of that formalism one can

derive the following generalization of Theorems 1.3.2 and 1.5.1. Let S be an arbitrary
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affine Noetherian scheme equipped with a morphism S → g. First, Baff acts naturally on

the triangulated category DGCoh(g̃
L
×g S) of differential graded coherent sheaves on the

derived fiber product DGCoh(g̃
L
×g S). Then this allows us to extend the definition of an

exotic t-structure to that context.

Finally, let E be as in the theorem and A = End(E) as above, then we have an equivalence

of triangulated categories (the tensor product A ⊗Og
O(S) does not have to be derived

since A is flat over O(g) by Lemma 1.5.3) :

DGCoh(g̃
L
×g S) ∼= Db(modfg[A⊗Og

O(S)]).

The t-structure on DGCoh(g̃
L
×g S) corresponding to the tautological t-structure on

Db(modfg[A⊗Og
O(S)]) is the unique exotic t-structure.

In particular, when S = {e} is a k point of g where k is an algebraically closed field

of characteristic p > h, then the category modfg[A ⊗Og
Oe] is identified with a regular

block in the category of Uk,e-modules, where the subscript denotes reduction of Uk by the

corresponding maximal ideal in the Frobenius center. The category DGCoh(g̃
L
×g e) of

coherent sheaves on the DG Springer fiber is studied in [Ri2].

1.6. Representation theoretic t-structures on derived categories of coherent

sheaves. We now record a particular case of Theorem 1.5.1 that follows from the results of

[BMR1], [BMR2]. In the next section we will deduce the general case from this particular

case.

Fix k ∈ FGP and a nilpotent e ∈ N (k).

1.6.1. The center of Ugk. The description of the center of enveloping algebra in charac-

teristic p > h is Z(Ugk) ∼= Og∗
k
(1)×

h∗
k
/W (1)h

∗
k
/W , where X(1) denotes the Frobenius twist of

a k-scheme X and the map h∗k → h∗k
(1) is Artin-Schreier map [BMR1]. When X is one of

gk, hk we can use the canonical Fp-rational structure to identify k-scheme X(1) with X .

This gives isomorphism g∗k
(1)×h∗

k
/W (1)h∗k/W

∼= g∗k×h∗
k
/Wh∗k/W

∼= gk×hk/Whk/W .

A compatible pair of e ∈ gk and λ ∈ hk, gives a central character of Uk which we

can then (partially) impose on Uk or mod(Uk). We denote Uλ
k,e = Uk⊗Z(Uk)kλ,e, while

U λ̂
k,ê is the completion of Uk at (λ, e) and modλe (Uk) is the category of modules with

generalized character (λ, e). Similarly, we get Uλ
k or Uk,e by imposing a central character
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in one direction only and we may combine these ideas in various ways to get objects like

modλ(Uk,ê).

1.6.2. Representation theoretic t-structures. By the main result of [BMR1], for integral

regular λ we have canonical equivalence of categories of g-modules and coherent sheaves(6)

Db(Coh(B̂k,e)) −−−→∼=
Db[modfg(Uλ̂

k,ê)]

⊆

x ⊆

x
Db(CohBk,e

(g̃k)) −−−→∼=
Db[modfg,λe (Uk)]

and

Db(Coh(B̂k,e
′
)) −−−→

∼=
Db[modfg(Uλ

k,ê)]

⊆

x ⊆

x
Db(CohBk,e

(Ñk)) −−−→∼=
Db[modfge (Uλ

k)]

.

(Recall that index Bk,e means sheaves set-theoretically supported on Bk,e.) Here, the

second line is Theorem 5.4.1 in [BMR1], the first line is stated in the footnote on the

same page.

These equivalences provide each of the derived categories of coherent sheaves with a t-

structure – the image of the tautological t-structure on the derived category of modules.

According to lemma 6.1.2.a in [BMR1], this t-structure depends only on the alcove to

which λ+ρ
p

belongs, not on λ itself.

We call the t-structure obtained from λ such that λ+ρ
p

is in the fundamental alcove (e.g.

λ = 0), the representation theoretic t-structure on the derived category of coherent sheaves

(RT t-structure for short).

Here by an alcove we mean a connected component of the complement to the affine coroot

hyperplanes Hα̌,n = {λ|〈α̌, λ〉 = n}, in the dual space h∗R to the real Cartan algebra hR;

here α̌ runs over the set of coroots and n ∈ Z. The fundamental alcove A0 is the locus of

points where all positive coroots take values between zero and one. Let Alc be the set of

alcoves.

1.6.3. Theorem. For any k ∈ FGP and e ∈ N (k) the RT t-structure on Db[CohBk,e
(g̃k)],

Db[CohBk,e
(Ñk)] is exotic. Therefore, for λ ∈ Λ such that λ+ρ

p
∈ A0, there are canonical

equivalences of categories

modfg(U λ̂
ê )
∼= Ecoh(B̂k,e) and modfg(Uλ

ê )
∼= Ecoh(B̂k,e

′
).

6A priori such equivalences require a choice of a splitting bundle for certain Azumaya algebra, by
“canonical equivalences” we mean that we use the standard splitting bundle from [BMR1, Remark 5.2.2.2].
Also, we are suppressing Frobenius twist X(1) from the notation using identifications X(1) ∼= X that are
available when X is defined over the prime subfield.
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The proof is based on

1.6.4. Proposition. The equivalence of Theorem 5.4.1 of [BMR1] is compatible with the

Baff action.

Proof follows from [Ri1, Section 5]. �

1.6.5. Proof of Theorem 1.6.3. In [BMR2, 2.2.1] the action I∗α of Coxeter generators s̃α

of Baff is defined through a canonical distinguished triangle

M → Rα(M)→ s̃α(M), M ∈ Db(mod0,fg(Uk)),

where Rα is the so called reflection functor. Thus exactness of Rα implies that s̃α acts by

right exact functors. Also, we have a commutative diagram [BMR2, Lemma 2.2.5]:

Db(modfge (U0
k ) −−−→ Db[CohBk,e

(Ñk)]

T−ρ
0

y
yRΓ

Db(modfge (U−ρ
k )) −−−→ Db[Cohe(Nk)]

Here the horizontal arrows are localization equivalences, and T−ρ
0 is the translation func-

tor. Thus exactness of T−ρ
0 implies that the RT t-structure satisfies the normalization

requirement in the definition of an exotic t-structure. �

1.6.6. Equivariant version of representation theoretic t-structures. We will also need

an equivariant version of localization Theorem of [BMR1] and its relation to exotic

t-structures.

Let k, e, λ be as in Theorem 1.6.3 and let C be a torus with a fixed map to the centralizer

of e in G.

Recall a traditional enhancement ofmod(Uλ
e ). Since e vanishes on the image of c = Lie(C)

in g, the action of c on any object of mod(Uλ
e ) has zero p-character. The category of

restricted c-modules is semi-simple with simple objects indexed by c∗(Fp) = X∗(C)/p;

thus every M ∈ mod(Uλ
e ) carries a canonical grading by X∗(C)/p. One considers the

category modgr(U
λ
e ) whose object is an Uλ

e module together with a grading by X∗(C).

The grading should be compatible with the natural X∗(C) grading on Uλ
e and the induced

X∗(C)/p grading should coincide with the above canonical one.
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The goal of this subsection is to describe a geometric realization for modgr(U
λ
e ). To

simplify the statement of the derived equivalences we need to enlarge the category (without

changing the set of irreducible objects nor the Grothendieck group).

Define the categories modfg(U λ̂
ê , C), modfg(Uλ

ê , C) as follows. An object M of

modfg(U λ̂
ê , C) (respectively, modfg(Uλ

ê , C)) is an object of modfg(U λ̂
ê ) (respectively,

modfg(Uλ
ê )) together with a C action (equivalently, an X∗(C) grading) such that:

(i) The action map U → End(M) is C-equivariant.

(ii) Consider the two actions of c on M : the derivative αC of the C action and the

composition αg of the maps c→ g→ End(M). We require that the operator αg(x)−αC(x)

is nilpotent for all x ∈ c.

Notice that the actions αg and αC commute; moreover, condition (i) implies that the

difference αg(x)− αC(x) commutes with the action of g.

Also, if M ∈ modfg(U λ̂
e ) then the action αg is semi-simple, thus in this case conditions

(i,ii) above imply that αg = αC and M ∈ modfggr (U
λ̂
ê ). This applies in particular when M

is irreducible.

For future reference we mention also that one can consider the categories modC,fg(U λ̂
ê ),

modC,fg(Uλ
ê ) of modules equipped with a C action subject to the condition (i) above

only. A finite dimensional module M in one of these categories splits as a direct sum

M =
⊕
η∈c∗

Mη of generalized eigenspaces of operators αC(x) − αg(x), x ∈ c; moreover,

Mη = 0 unless η ∈ c∗(Fp).

For a general M ∈ modC,fg(U λ̂
ê ) the quotient Mn of M by the n-th power of the maximal

ideal in ZFr corresponding to e is finite dimensional. It is easy to see that the above

decompositions for Mn for different n are compatible, thus we get a decomposition of the

category

modC,fg(U λ̂
ê ) =

⊕

η∈c∗(Fp)

modC,fg
η (U λ̂

ê ), (3)

and similarly for modC,fg(Uλ
ê ). Notice that modC,fg

0 (U λ̂
ê ) = modfg(U λ̂

ê , C) and for η̃ ∈

X∗(C) twisting the C-action by η gives an equivalence modC,fg
θ (U λ̂

ê )
∼= modC,fg

θ+η (U
λ̂
ê ) where

η = η̃mod p ·X∗(C).
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1.6.7. Theorem. a) There exist compatible equivalences of triangulated categories

Db[CohC(B̂k,e)] ∼= Db[modfg(U λ̂
ê , C)] and Db[CohC(B̂k,e

′
)] ∼= Db[modfg(Uλ

ê , C)].

b) Under the functor of forgetting the equivariant structure, these equivariant equivalences

are compatible with the equivalences of [BMR1] from 1.6.2.

c) The representation theoretic t-structures that these equivalences define on categories of

coherent sheaves coincide with the exotic t-structures, so we have induced equivalences

modfg(U λ̂
ê , C)

∼= EcohC(B̂k,e) and modfg(Uλ
ê , C)

∼= EcohC(B̂k,e
′
).

The equivalences will be constructed in 5.2.4. Compatibility with forgetting the equiv-

ariance will be clear from the construction, while compatibility with t-structures follows

from compatibility with forgetting the equivariance.

1.6.8. Splitting vector bundles. Theorem 1.6.3 has a geometric consequence. Recall that

for k ∈ FGP, e ∈ Nk and λ ∈ Λ the Azumaya algebra coming from λ-twisted differen-

tial operators splits on the formal neighborhood B̂k,e
′
of the Springer fiber B′

k,e in Ñk.

Let Esple (λ) be the splitting vector bundle constructed in [BMR1, Remark 5.2.2.2] (the

unramified shift of λ that we use is −ρ).

Corollary. When λ+ρ
p

lies in the fundamental alcove,(7) the splitting vector bundle Esple (λ)

does not depend on p up to equiconstitutedness. More precisely, there exists a vector

bundle V on g̃, defined over R, whose base change to B̂k,e
′
is equiconstituted with Esple (λ)

for every k, e, λ as above.

Proof. Take E as in Theorem 1.5.1 and V = E∗. Then, in view of Proposition 5.1.4,

both the base change E
B̂k,e

and the dual of the splitting bundle Esple (λ)∗ are projective

generators for Ecoh(B̂k,e), thus they are equiconstituted.(8) �

7The result can be generalized for an arbitrary alcove, see 1.8 below.
8The reason that E gets dualized is a difference of conventions. For a tilting generator E it is standard

to use RHom(E ,−) to get to modules over an algebra, while for a splitting bundle V one uses V
L
⊗−. The

first functor produces a rank one free module over the algebra when applied to E and the second when
applied to V ∗.
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Example. In particular, Fr∗(OBk
) does not depend on p > h up to equiconstitutedness.

The reason is that for e = 0 and λ = 0 the splitting bundle for the restriction of DBk
to

B̂k,e
′
can be chosen so that its restriction to the zero section Bk is Fr∗(OBk

) (cf. [BMR1]).

1.7. Quantum groups, affine Lie algebras and exotic sheaves. We finish the sub-

section by stating two conjectures on other appearances of the noncommutative Springer

resolution (and therefore also of exotic sheaves) in representation theory. Let e ∈ NC and

denote A0
e

def
= A0

C⊗O(NC)Oe.

Let UDK
ζ be the De Concini-Kac form of the quantum enveloping algebra of gC at a root

of unity ζ of odd order l > h [DK]. Recall that the center of UDK
ζ contains a subalgebra

Zl, the so-called l-center. The spectrum of Zl contains the intersection of the variety of

unipotent elements in GC with the big Bruhat cell B+B−. We identify the varieties of

unipotent elements in GC and nilpotent elements in gC. Fix e ∈ N (C) such that the

corresponding unipotent element lies in the big cell.

1.7.1. Conjecture. The categorymodfg(A0
e) is equivalent to a regular block in the category

of UDK
ζ -modules with central character corresponding to e.

A possible way to approach this conjecture is by extending the techniques of the present

paper to the framework of Backelin and Kremnizer [BK].

The next conjecture is motivated by the conjectures and results of [FG], see the Intro-

duction.

1.7.2. Conjecture. 9 Fix a nilpotent GC-oper O on the formal punctured disc with residue

e ∈ N (C). The category Ae of Iwahori-integrable modules over the affine Lie algebra ĝC

at the critical level with central character corresponding to O, is equivalent to the category

of A0
e-modules:

Ae
∼= mod(A0

e).

1.8. t-structures assigned to alcoves. In 1.6.2 we used representation theory to attach

to each alcove a collection of t-structures on formal neighborhoods of Springer fibers in

characteristic p > h. The particular case of the fundamental alcove yields the exotic

9This Conjecture is proved in a forthcoming paper by Qian Lin.
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t-structure (Theorem 1.6.3). The following generalization of Theorem 1.5.1 shows that

all these t-structures can also be lifted to g̃R and ÑR and hence to zero characteristic.

For A1, A2 ∈ Alc we will say that A1 lies above A2 if for any positive coroot α̌ and

n ∈ Z, such that the affine hyperplane Hα̌,n = {λ, | 〈α̌, λ〉 = n} separates A1 and A2,

alcove A1 lies above Hα,n, while A2 lies below Hα̌,n, in the sense that for λi ∈ Ai we have

〈α̌, λ2〉 < n < 〈α̌, λ1〉.

Recall the right action of Waff on the set of alcoves, it will be denoted by w : A 7→ Aw.

1.8.1. Lemma. a) There exists a unique map Alc×Alc → BCox
aff ⊆Baff, (A1,A2) 7→ bA1,A2,

such that

• i) bA1,A2bA2,A3 = bA1A3 for any A1,A2,A3 ∈ Alc.

• ii) bA,Aw = w̃ for w ∈ WCox
aff and A ∈ Alc, provided that Aw lies above A.

b) This map satisfies:

bλ+A1,λ+A2 = bA1,A2 for λ ∈ Λ,

b
A0,λ+Aw−1

0
= θλw̃

−1 for w ∈ W, λ ∈ Q,

where λ+ A denotes the λ-shift of A.

c) The element bA1,A2 admits the following topological description. Let h∗C,reg = h∗C \

∪α̌,n (Hα̌,n)C. Notice that a homotopy class of a path in h∗C,reg connecting two alcoves A1

and A2 in h∗R, determines an element in BCox
aff = π1(h

∗
C,reg/W

Cox
aff , •), because each alcove

is contractible, and alcoves are permuted transitively by WCox
aff , so they all give the same

base point • in h∗C,reg/W
Cox
aff .

Let λ ∈ h∗ be a regular dominant weight. Then the subspace −iλ+ h∗R does not intersect

any of the affine coroot hyperplanes in h∗C. For two points x ∈ A1, y ∈ A2 consider

the path from x to y which is a composition of the following three paths: t 7→ x − itλ

(0 ≤ t ≤ 1), any path from x− iλ to y − iλ in −iλ + h∗R and the path t 7→ y − i(1 − t)λ

(0 ≤ t ≤ 1). Then bA1,A2 is represented by this path.

Proof. Uniqueness in (a) is clear since for any two alcoves there exists an alcove which is

above both of them. To check existence define bA1,A2 as in part c). Then property (i) is

clear. To see property (ii) it suffices to consider the case when w = sα is a simple reflection.

Then s̃α is represented by the loop which starts at the fundamental alcove A0 and runs a

half-circle (in a complex line given by the direction α) around the hyperplane of the affine
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coroot α, in the positive (counterclockwise) direction and ending at sα(A0) = Asα
0 . The

element z of WCox
aff such that zA0 = A sends Asα

0 to Asα while the simple affine coroot is

sent to an affine linear functional taking positive values on A and negative values on Asα.

Thus the two loops are manifestly homotopic.

b) The first property in (b) follows from uniqueness in (a), as translation by λ commutes

with the right action of Waff and preserves the partial order on alcoves. To check the

second one, let us first consider the case when either λ = 0 or w = 1. If λ = 0 the

statement follows from (ii) as A0 lies above w(A0) = Aw
0 for w ∈ W . When w = 1 and λ

is dominant, then θλ = λ̃ and λ+A0 lies above A0, so the claim follows from (a,ii). Then

the case w = 1 and arbitrary λ follows from the first property in b). Finally, the general

case follows from (a,i) since b
λ+A0,λ+Aw−1

0
= b

A0,Aw−1
0

= w̃−1 by the first property in (b).

Example. bA0,−A0 = b
A0,A

w0
−1

0

= w̃0
−1, hence b−A0,A0 = (b

A0,A
w0

−1

0

)−1 = w̃0.

1.8.2. The first part of the next Theorem is a reformulation of Theorem 1.5.1.

Theorem. (cf. [B3, 2.1.5]) a) Let X = g̃ and S ∈ BC or let X = Ñ and S ∈ BC ′.

There is a unique map from Alc to the set of t-structures on Db[Coh(S×gX)], A 7→ T S,X
A

such that

(1) (Normalization) The derived global sections functor RΓ is t-exact with respect to

the t-structure T S,X
A0

corresponding to the fundamental alcove A0.

(2) (Compatibility with the braid action) The action of the element bA1,A2 sends T
S,X
A1

to T S,X
A2

.

(3) (Monotonicity) If A1 lies above A2, then D
≥0
A1
(X) ⊇ D≥0

A2
(X).

b) For a fixed alcove A, the t-structures T S,X
A are compatible with base change S1 → S

in the sense that the direct image functor is t-exact.

c) For each S the t-structure T S,X
A is locally free and one can choose the corresponding

tilting generators ESA , S ∈ BCX , as pull-backs of a G×Gm-equivariant locally free tilting

generator EA on g̃.

d) When A = A0 is the fundamental alcove then T S,X
A0

is the exotic t-structure of Theorem

1.5.1.
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e) If vector bundle ESA is a tilting generator for T S,X
A then the dual (ESA )

∗ is a tilting

generator for T S,X
−A .

The proof will be given in section 2.6.

2. Construction of exotic t-structures

2.1. Action of simple reflections s̃α
±1 on coherent sheaves. We will need an addi-

tional property of the action, which can be viewed as a geometric version of the quadratic

relation in the affine Hecke algebra.

We start with an elementary preliminary Lemma.

2.1.1. Lemma. For any α ∈ Iaff, s̃α is conjugate in the extended affine braid group Bsc
aff to

some s̃β , β ∈ I.

Proof. Consider first the case when α ∈ Iaff is connected in the affine Dynkin diagram to

some root β ∈ I of the same length. Then u = sαsβ has length two and usα = sαsβsα =

sαsβsα = sβu has length three, so ũs̃α = s̃βũ in Baff. Therefore, s̃α = ũ−1
s̃β . This

observation suffices in all cases but Cn.

For Cn the affine Dynkin diagram is a line with two roots of equal length α ∈ Iaff − I

and β ∈ I at the ends. The stabilizer Ω of the fundamental alcove in the extended affine

Weyl group W sc
aff acts on the affine Dynkin diagram and an element ω ∈ Ω realizes the

symmetry that exchanges α and β. Since the length function vanishes on Ω we find that

sα = ωsβ in W sc
aff lifts to s̃α = ω̃s̃β in Bsc

aff. �

We are ready to deduce the desired property of the action. To state it we need some

notations. As before, we denote the above weak geometric action by Baff ∋ b7→ Kb ∈

Db[Coh(g̃×gg̃)]. For a root α ∈ Iaff let Hα ⊂ h∗ be the hyperplane passing through 0 ∈ h∗

and parallel to the affine-linear hyperplane of α.

2.1.2. Proposition. a) For every simple root α ∈ Iaff we have an exact triangle in

Db[Coh(g̃×gg̃)]:

Ks̃α
−1

aα−→ Ks̃α
bα−→ ∆∗(Og̃×hHα), (4)

where ∆ : g̃→ g̃2 is the diagonal embedding.
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b) For every α ∈ Iaff, and every F ∈ D = Db(Coh(g̃S)) we have a (canonical) isomorphism

in the quotient category D/〈F〉

s̃α(F) ∼= s̃α
−1(F) mod 〈F〉.

Here 〈F〉 denotes the thick triangulated subcategory generated by F , i.e. the smallest full

triangulated subcategory closed under direct summands and containing F .

Proof. a) By Lemma 1.3.4(a) validity of the claim for a given α ∈ Iaff implies its validity

for any β ∈ Iaff such that s̃β is conjugate to s̃α in Bsc
aff. Thus in view of Lemma 2.1.1 it

suffices to prove the claim for α ∈ I. By Lemma 1.3.4(b) we have only to check that the

divisor Dα
def
= ∆(g̃×h Hα) in Γsα satisfies

OΓsα
(−Dα) ∼= OΓsα

〈−ρ,−α + ρ〉. (5)

It is easy to see that Dα is the scheme-theoretic intersection of Γsα with the diagonal

∆g̃ = Γe. Set Zα = g̃ ×g̃α g̃. Then Γsα and ∆g̃ are irreducible components of Zα and (5)

follows from the isomorphism of line bundles on Zα: J∆g̃
∼= OZα〈−ρ,−α + ρ〉, where J

stands for the ideal sheaf. It suffices to check that the two line bundles have isomorphic

restrictions to ∆g̃ and to a fiber of the projection pr2 : Zα → g̃ (which is isomorphic to

P1). It is easy to see that in both cases these restrictions are isomorphic to OZα(−α),

OP1(−1) respectively. Thus (5) is verified.

The distinguished triangle in (a) implies that for F ∈ D we have canonical distinguished

triangle s̃α
−1(F) → s̃α(F) → F ′ where F ′ = ODα ∗ F . On the other hand, the obvious

exact sequence of coherent sheaves 0→ O∆g̃

α
−→ O∆g̃

→ ODα → 0 yields a distinguished

triangle F → F → F ′ which shows that F ′ ∈ 〈F〉. This implies (b). �

2.2. Uniqueness. Here we prove the following description of the braid positive

t-structure.

2.2.1. Proposition. Let S −→g be an exact affine base change of g̃ −→g (resp. of Ñ −→g).

If an exotic t-structure on S̃ (resp. S̃ ′) exists then it is unique and given by

D≥0 = {F ; RΓ(b−1(F)) ∈ D≥0(Ab) ∀b ∈ B+
aff};

D≤0 = {F ; RΓ(b(F)) ∈ D≤0(Ab) ∀b ∈ B+
aff}.
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2.2.2. Let A = D≥0∩D≤0 be the heart of an exotic t-structure T and let H i
T : D → A be

the corresponding cohomology functors. Recall that we denote for w ∈ Waff by w̃ ∈ Baff

its canonical lift.

Lemma. For M ∈ A let AM ⊂ A be the Serre subcategory generated by M . Then for

any α ∈ Iaff

H i
T (s̃αM), H i

T (s̃α
−1M) ∈ AM for i 6= 0, and H0

T (s̃αM) ∼= H0
T (s̃α

−1M) mod AM

Proof. Proposition 2.1.2(b) implies that H i
T (s̃αM) ∼= H i

T (s̃α
−1M) mod AM for all i. On

the other hand, by the definition of braid positivity we have H i
T (s̃αM) = 0 for i > 0 while

H i
T (s̃α

−1M) = 0 for i < 0. �

2.2.3. Corollary. Set D−1 = D and let D0 ⊂ D be the full subcategory of objects F such

that RΓ(F) = 0. For i > 0 define inductively a full triangulated subcategory Di ⊂ D by:

Di = {F ∈ Di−1 ; s̃α(F) ∈ Di−1 ∀α ∈ Iaff}.

Set Ai = Di ∩ A, i ≥ 0, then we have

a) Ai is a Serre abelian subcategory in A.

b) Any exotic t-structure T induces a bounded t-structure on Di, whose heart is Ai.

c) For i > 0 and any α ∈ Iaff, the composition of s̃α with the projection to D/〈Ai〉 sends

Ai to Ai−1/Ai ⊂ Di−1/Di; it induces an exact functor Ai → Ai−1/Ai.

Proof. We prove the statements together by induction. Assume they are known for i ≤ i0.

The statement (c) implies that for any α1, . . . , αi0+1 the functor

F 7→ RkΓ(s̃α1 · · · s̃αi0+1
(F))

restricted to Ai0 vanishes for k 6= 0, and induces an exact functor Ai0 → V ect. The

subcategory Ai0+1 ⊂ Ai0 is, by definition, the intersection of the kernels of all such

functors; this shows it is a Serre abelian subcategory in Ai0, hence in A. Thus (a) holds

for i = i0 + 1.

Moreover, we see that for F ∈ Di0 vanishing of R•Γ(s̃α1 · · · s̃αi0+1
(F)) implies that for an

exotic t-structure T all R•Γ(s̃α1 · · · s̃αi0+1
Hk

T (F)) vanish for k ∈ Z. Thus for F ∈ Di0+1 we

have Hk
T (F) ∈ Di0+1 for all k. This shows that the truncation functors preserves Di0+1,

i.e. (b) holds for i = i0 + 1.
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Finally statement (c) for i = i0 + 1 follows from Lemma 2.2.2. �

2.2.4. Proof of Proposition 2.2.1. Let T be an exotic t-structure. Assume that F ∈ D,

F 6∈ D≤0, and let i > 0 be the largest integer such that H i
T (F) = M 6= 0. It suffices to

show that RiΓ(b(F)) 6= 0 for some b ∈ B+
aff.

Lemma 2.4.1(a) implies that
⋂
i

Ai = {0}, so M 6∈ Ad for some d; let d be smallest integer

with this property. If d = 0 then RiΓ(F) 6= 0, so we are done. Otherwise let b = s̃α1 · · · s̃αd

be an element such that b(M) 6∈ D0. Then by Corollary 2.2.3 we have R0Γ(b(M)) 6= 0.

Consider the exact triangle

τT<i(F)→ F →M [−i],

and apply b to it. Since b̃ is T -right exact, and RΓ is T -exact, we see that RΓ(b(τ<i(F))) ∈

D<i(V ect), thus we see that RiΓ(b(F))−→
∼=
RiΓ(b(M)[−i]) 6= 0.

This proves the description of D≤0
T , the description of D>0

T is proved similarly. �

2.3. Reflection functors Rα for coherent sheaves. Reflection functors can be con-

sidered as a categorical counterpart of the idempotent of the sign representation in a Levi

subalgebra of a Hecke algebra (or the group algebra of the affine Weyl group). Reflection

functors on representation categories are usually defined using translation functors which

are direct summands of the functor of tensoring by a finite dimensional representation. In

this subsection we define geometric reflection functors and show some favorable properties

they share with reflection functors in representation theory. In fact, using the results of

[BMR2] it is not hard to check that these functors are compatible with the usual reflection

functors for modules over the Lie algebra in positive characteristic. We neither check this

in detail nor use in the present paper; however, the proof of Theorem 1.6.3 above is closely

related to this fact.

For α ∈ Iaff, let Ξα ∈ Db[Cohg̃×gg̃(g̃
2)] denote the pull-back of the extension K−1

s̃α
→ Ks̃α →

O∆×hHα under the surjection O∆ → O∆×hHα, so we have an extension K−1
s̃α
→ Ξα → O∆.

We define the reflection functor Rα by the integral kernel Ξα.

2.3.1. Adjoints of reflection functors. We first consider finite simple roots α ∈ I. Let

Pα⊇B be a minimal parabolic of type α. The canonical projection g̃ = G×Bb
πα−→ g̃α is

generically a ramified two-sheet covering.
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Lemma. For α ∈ I, Ξα = Og̃×g̃α g̃ and the reflection functor Rα is isomorphic to the

functor (πα)
∗(πα)∗.

Proof. We will only consider the case of sl2, the general case follows by considering an

associated bundle. Notice that g̃×g̃α g̃ has two irreducible components ∆g̃ and Sα which

meet transversely along ∆Ñ . Then OSα(−ρ,−ρ) is the ideal of ∆g̃ ∩ Sα inside Sα and of

∆g̃ inside ∆g̃ ∪ Sα = g̃×g̃α g̃. So, one has

0 −−−→ OSα(−ρ,−ρ) −−−→ Og̃×g̃α g̃ −−−→ O∆g̃
−−−→ 0y

y
y

0 −−−→ OSα(−ρ,−ρ) −−−→ OSα −−−→ O∆
Ñ
−−−→ 0.

The lower line is the construction of the exact triangle in the Proposition 2.1.2.a), and

then the upper line says that Ξα is Og̃×g̃α g̃. The claim for Rα follows.

Corollary. For any simple root α ∈ Iaff :

(a) We have two canonical distinguished triangles

K−1
s̃α
→ Ξα → O∆g̃

and O∆g̃
→ Ξα → Ks̃α. (6)

(b) The left and right adjoints of Rα are both isomorphic to Rα.

(c) Rα is exact relative to an exotic t-structure.

Proof. The first triangle appears in the definition of Ξα. To get the second one it suffices,

in view of Lemma 1.3.4(b), to show that

S(Ξα)[− dim g] ∼= Ξα (7)

for all α ∈ Iaff, where S denotes Grothendieck-Serre duality. For α ∈ I isomorphism (7)

follows from Lemma 2.3.1.

Furthermore, Lemma 1.3.4(b) implies that the conjugation action of b ∈ Baff commutes

with Serre duality. Thus (7) holds in general by Lemma 2.1.1.

This proves (a). To get (b) we use the following general fact. If X is Gorenstein and

F ∈ Db[Coh(X ×X)], then it is not hard to show that the left adjoint to the functor of

(left) convolution with F is given by (left) convolution with

F v def
= ι∗ (RHom(F ,OX2)⊗ pr∗2KX) = ι∗

(
SX2(F)⊗ pr∗1K

−1
X

)
; (8)
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where ι : X2 → X2 is the involution ι(x, y) = (y, x) while KX = Ωtop
X [dimX ] is the

dualizing sheaf on X .

Now isomorphism (7) implies (b) in view of (8).

Statement (c) follows from (a), since left exactness of Rα follows from the first distin-

guished triangle, while right exactness follows from the second one. �

Remark. Notice that unlike the generators for the affine braid group action, the geometric

reflection functors do not induce a functor on the derived category of sheaves on Ñ (or

varieties obtained from the latter by base change). This is related to the fact that the

restriction of Ξα to the preimage of 0 under the first projection to h is not supported

(scheme-theoretically) on the preimage of 0 under the second projection.

2.4. Weak generators for the derived category arising from reflection functors.

The notion of a weak generator was recalled in subsection 1.4.3. In the present subsection

we construct weak generators for D[qCoh(g̃)], which will turn out to be locally free sheaves

satisfying the requirements of Theorem 1.5.1.

For a finite sequence J = (α1, α2, . . . , αk) of elements of Iaff, we set

ΞJ
def
= Rα1 · · ·Rαk

(Og̃).

For a finite collection J of finite sequences let ΞJ
def
=

⊕
J∈J

ΞJ . Notice that these are

G×Gm equivariant by construction.

2.4.1. Lemma. a) There exists a finite collection of elements bi ∈ B+
aff, such that each of

the two objects ⊕bi(Og̃) and ⊕b
−1
i (Og̃) is a weak generator for D[qCoh(g̃)].

b) There exists a finite collection J of finite sequences of Iaff, such that ΞJ is a weak

generator for D[qCoh(g̃)].

Proof. Pick a very ample line bundle O(λ) on g̃ with λ ∈ Λ; thus there exists a locally

closed embedding g̃
i
→֒ PN , such that O(λ) ∼= OPN (1)

∣∣
g̃
. It is well-known (and follows

from [Be]) that the object
N⊕
i=0

O(i), generates Db[Coh(Pn)] as a Karoubian triangulated

category. Then so does also its O(−N) twist
N⊕
i=0

O(−i).
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If G ∈ Db[Coh(Pn)] generates Db[Coh(Pn)] as a Karoubian triangulated category, we

claim that i∗G is a weak generator for D(qCoh(g̃)). To see this, let F ∈ D(qCoh(g̃)) be

a complex such that Ext•(i∗(G),F) = 0. Since the Karoubian triangulated subcategory

of Db[qCoh(g̃)] generated by the restriction i∗G contains all i∗OPn(k), k ∈ Z, we have

Ext•(i∗OPn(k),F) = 0. Assuming that F 6= 0 we can find d such that the d-th cohomology

sheaf of F does not vanish. There exists a coherent subsheaf G in the kernel of the

differential ∂d : Fd → Fd+1 which is not contained in the image of ∂d+1. The sheaf G(k) is

generated by global sections for some k ≫ 0, thus we get a nonzero map i∗OPn(−k)[−d]→

F contradicting the above.

Thus the collection of multiples of λ, bi = i·λ ∈ Λ+ ⊂ B+
aff, 0 ≤ i ≤ N , satisfies the

requirement in (a). To deduce (b) from (a) it suffices to show that for every b ∈ Baff there

exists a finite collection of finite sequences Ji in Iaff such that b(Og̃) lies in the triangulated

subcategory generated by ΞJi. Let us express b as a product b = s̃α1

±1· · ·s̃αd

±k with

αj ∈ Iaff. The exact triangles (6) imply that b(Og̃) lies in the triangulated category

generated by all ΞJ where J runs over subsequences of (α1, . . . , αk). �

2.5. Existence. This subsection contains a construction of exotic t-structures.

For an object E ∈ Db[Coh(g̃)] and (R −→k) ∈ FGP we denote by E 0̂k the pull-back of Ek

to the formal neighborhood B̂k of the zero section in g̃k.

For S ∈ BC or S ∈ BC′ (see section 1.3 for the notation) we will say that a tilting generator

E ∈ Coh(g̃S) (respectively, E ∈ Coh(ÑS)) is exotic if the t-structure TE (notation of 1.4.2)

is braid positive.

Theorem. Let E be any weak generator E = ΞJ from Lemma 2.4 with J ∋ ∅. Let ES

(respectively, E ′S) be the sheaf on g̃S (respectively, ÑS) obtained from E by pull-back.

Then for any S ∈ BC (respectively, S ∈ BC′) ES (respectively, E ′S) is a locally free exotic

tilting generator.

2.5.1. Reduction to the formal neighborhood of zero section in finite characteristic. The

proof of the Theorem in subsection 2.5.5 will proceed by reduction to the case of pos-

itive characteristic which is done by invoking the representation theoretic picture. The

reduction is achieved in the following Proposition.
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Proposition. Let E be an object of Db(Coh(g̃)) containing O as a direct summand.

a) If E is an exotic locally free tilting generator then for any S ∈ BC (respectively, S ∈ BC′)

the sheaf ES on g̃S (respectively, E ′S on ÑS) obtained by pull-back from E is a locally free

exotic tilting generator.

b) Assume that E is Gm equivariant and E 0̂k is an exotic locally free tilting generator for

any (R→ k) ∈ FGP. Then E itself is an exotic locally free tilting generator.

2.5.2. Lemma. a) If E ∈ Db[CohGm(g̃)] is such that for any (R −→k) ∈ FGP the object E 0̂k
is a locally free sheaf, then E is a locally free sheaf.

b) If E ,F ∈ Db[CohGm(g̃)] are such that Ext>0

Coh(B̂k)
(E 0̂k ,F

0̂
k) = 0 for any (R −→k) ∈ FGP,

then Ext>0
Coh(g̃)(E ,F) = 0.

Proof. (a) Let U be the maximal open subset such that H i(E)
∣∣
U
is a locally free sheaf

and H i(E)
∣∣
U
= 0 for i 6= 0. Then U is Gm-invariant, and the condition on E shows that

this set contains all closed points of the zero fiber. Hence U = g̃.

Statement (b) is obtained by applying similar considerations to the object

π∗(RHom(E ,F)) where π is the Grothendieck-Springer map. Here we use the formal

function theorem which shows that Exti(E 0̂k ,F
0̂
k ) is the space of sections of the pull-back

of Riπ∗RHom(Ek,Fk) to the formal neighborhood of zero. �

2.5.3. Lemma. Let E be a tilting generator for Db(Coh(X)) where X = S̃ or X = S̃ ′ for

some S in BC or in BC′. Then E t-structure onDb(Coh(X)) is exotic iff Homi(E , s̃α(E)) = 0

for i > 0 and E contains O as a direct summand.

Proof. Assume that E t-structure is exotic. Since O represents the functor RΓ which is

exact with respect to this t-structure, it is a direct summand of any projective generator

of the heart, in particular of E (a tilting generator is a projective generator of the heart

of the corresponding t-structure). Also, right exactness of s̃α and projectivity of E show

that Homi(E , s̃α(E)) = 0 for i > 0. Conversely, if O is a direct summand of E , then the

derived global sections functor is t-exact. Also, if Hom>0(E , s̃α(E)) = 0, then s̃α(E) lies

in D≤0 with respect to this t-structure, which implies that s̃α sends D≤0 to itself. �

2.5.4. Proof of Proposition 2.5.1. a) It is obvious that the pull-back functor sends a locally

free sheaf containing O as a direct summand to a locally free sheaf containing O as a direct
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summand, while pull-back under an affine morphism sends a weak generator of D(qCoh)

to a weak generator of D(qCoh). In view of the characterization of tilting generators

quoted in Theorem 1.4.3 and criterion for a t-structure to be exotic from Lemma 2.5.3,

it remains to see that Exti(ES, ES) = 0, Exti(ES, s̃α(ES)) = 0 for i > 0 (or the similar

equalities for ES′). The required equalities follow by the base change theorem which is

applicable due to the Tor vanishing condition. This proves part (a).

Assume now that E satisfies the conditions of (b). Then E is locally free by Lemma

2.5.2(a). By Lemma 2.5.2(b) it satisfies the above Ext vanishing conditions. Thus E is a

tilting generator by Theorem 1.4.3, and it is an exotic tilting generator in view of Lemma

2.5.3. �

2.5.5. Proof of theorem 2.5. Let J be a finite collection of finite sequences in Iaff such

that ΞJ is a weak generator for Db(Coh(g̃)) and J ∋ ∅. We have to check that E = ΞJ

satisfies the properties from the theorem 2.5. We will first reduce the verification to formal

neighborhoods of zero sections over closed geometric points of positive characteristic, then

the claim will follow from translation to g-modules.

Recall from 2.4 that E is G×Gm-equivariant by construction and O is a direct summand

of E since ∅ ∈ J . Therefore, by the Proposition 2.5.1 it suffices to check that for any

R −→k in FGP the restriction E 0̂k of E to the formal neighborhood of the zero section in

g̃k or Ñk is a locally free tilting generator for an exotic t-structure.

This will follow once we show that E 0̂k is a projective generator for the heart of the RT t-

structure. Indeed, then E 0̂k is locally free because another projective generator for the same

heart is locally free (any splitting vector bundle for the Azumaya algebra of differential

operators on Bk). Also the t-structure given by E 0̂k is the RT t-structure, but we know

that it is exotic from Theorem 1.6.3.

To check that E 0̂k is a projective generator for the heart of the RT t-structure it is enough

to check that it is (1) a projective object of the heart, and (2) is a weak generator.

Statement (2) is clear since E is a weak generator for Db(qCoh(g̃)). To check (1) it is

enough to treat the case of g̃, the case of Ñ follows because direct image under closed em-

beddings Ñ →֒ g̃ is exact relative to the RT t-structures, this is clear since it corresponds

to the full embedding of the categories of modular representations mod(Uλ)→ mod(U λ̂).

We now consider the case of g̃.
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The pull-back functor under an exact base change preserves convolutions, so each sum-

mand of E 0̂ = Ξ0̂
J is of the form Rα1,k · · ·Rαp,kÔk where Ôk is the structure sheaf of the

formal neighborhood of the zero section in g̃k, and the functor Rα,k is the convolution

with the base change of Ξα under gk −→g.

The structure sheaf Ôk is projective for the RT structure because RT structure is exotic

by Theorem 1.6.3, so the functor RHom(Ôk,−) is exact (it can be identified with the

direct image to g). Thus we will be done if we show that functors Rα,k preserve the

subcategory of projective objects in the RT heart.

The latter property is equivalent to the existence of a right adjoint to Rα,k which is exact

relative to the RT t-structure. According to the Lemma 2.3.1 the right adjoint of Rα is

isomorphic to Rα itself and Rα can be written as an extension of the identity functor

with either the action of s̃α or s̃α
−1, the same then holds for Rα,k. On g-modules s̃α is

right exact and s̃α
−1 is left exact. Since the equivalence of categories of representations

and of coherent sheaves intertwines the two actions of Baff 1.6.4 we see that Rα,k is both

left and right exact for the RT t-structure. �

2.5.6. Example. For G = SL2 vector bundle E and therefore also the algebra A can be

described explicitly. E is a sum of positive multiples of Og̃ and Og̃(1)
def
= (g̃ −→B)∗OP1(1).

We know that Og̃ is a summand of E and since ρsα fixes the fundamental alcove according

to Remark 1.5.2, (ρsα)
∼ Og̃ = Og̃(1) is also a summand. To see that these are all

indecomposable summands, it suffices to see that Og̃ and Og̃(1) are weak generators of

DbCoh(g̃). This is true since OP1,OP1(1) are weak generators of DbCoh(P1) and g̃→֒P1×g.

For further explicit computations of this sort (over algebraically closed fields) we refer to:

[BMR1] for the (sub)regular case, and the case e = 0 for SL3; and to [Anno] for the case

when e ∈ sl(2n) has two Jordan blocks of equal size.

2.6. Proof of Theorem 1.8.2. In a), the compatibility with the affine braid group

action (axiom (2)) says that the choice of a t-structure T S,X
A0

determines the t-structures

T S,X
A = bA0,A(T

S,X
A0

) for all A. We need to check that this collection of t-structures satisfies

the monotonicity property (3) if and only if the t-structure T S,X
A0

is exotic.

Notice that for a simple reflection we have bA0,sαA0 = s̃±1
α where the power is +1 exactly

when sαA0 is above A0, i.e., when α is not in the finite root system. So, braid positivity of

T S,X
A0

is implied by monotonicity – it amounts to monotonicity applied to pairs of alcoves
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A0, sαA0 where sα runs over all simple reflections. On the other hand, assume T S,X
A0

is

braid positive. To check property (3) for the collection T S,X
A = bA0,A(T

S,X
A0

), it suffices to

consider a pair of neighboring alcoves A2 = Asα
1 . Then the automorphism b−1

A0,A1
sends the

pair of t-structures (T S,X
A1

, T S,X
A2

) to the pair (T S,X
A0

, s̃α(T
S,X
A0

)), thus the desired relation

between T S,X
A1

and T S,X
A2

follows from braid positivity.

Thus part (a) – and at the same time part (d) – of the Theorem follows from existence

and uniqueness of exotic t-structure (Theorem 1.5.1).

Part (b) follows from compatibility of the affine braid group action with base change

(Theorem 1.3.2).

For (c) notice that for any S,X , a projective generator for the heart of T S,X
A can be

obtained by pull-back from a projective generator for the heart of T g,g̃
A which is of the

form bA,A0(ΞJ ). So we just need to check that EA
def
= bA0,A(ΞJ ) ∈ Db(Coh(g̃)) is a locally

free sheaf.

As in the above arguments, it suffices to check that for any k ∈ FGP the pull-back

of bA0,A(ΞJ) to the formal neighborhood of Bk in g̃k is locally free. This follows from

compatibility with localization for gk-modules at a Harish-Chandra central character λ

such that λ+ρ
p

lies in the alcove A, as explained in section 1.6.

(e) It remains to check that E∗A is a tilting generator for T gR,g̃
−A . We will prove the equivalent

claim that b−A,A0(E
∗
A) is a tilting generator for the exotic t-structure.

We will check that: (i) (ESA )
∗ is a tilting generator for T S,g̃

−A where S is the formal neighbor-

hood of the zero section Bk in g̃k for k ∈ FGP, and also that (ii) O is a direct summand

in b−A,A0(E
∗
A). Then Proposition 2.5.1(b) implies the desired statement.

Statement (i) is immediate from the standard isomorphism (DL
X)

op ∼= DL−1⊗ΩX
X where X

is a smooth algebraic variety over a field, L is a line bundle, ΩX is the line bundle of

top degree forms, and DL
X is the sheaf of L-twisted differential operators (cf. [BMR1]).

In particular, we get (Dλ
B)

op ∼= D
−2ρ−λ
B which shows that the dual of a splitting vector

bundle for Dλ
B on the formal neighborhood of the zero section is a splitting vector bundle

for D−2ρ−λ
B . It is easy to see that the choice of the splitting vector bundle for Dλ

B as in

[BMR1, Remark 5.2.2.2] leads to dual vector bundles for λ and −2ρ− λ.
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To check the claim that O is a direct summand in b−A,A0(E
∗
A) recall that for w ∈ W ,

λ ∈ Q such that A = λ + w−1A0 one has bA0,A = θλw̃
−1 (Lemma 1.8.iii). Since −A =

−λ + w−1w0A0 = −λ + (w0w)
−1A0, this also implies that bA0,−A = θ−λw̃0w

−1 and so

b−A,A0 = w̃0wθλ.

Since O is a summand in EA0, the sheaf EA = bA0,AEA0 = θλw̃
−1EA0 has a summand

θλw̃
−1O ∼= O(λ) (recall that w̃O ∼= O for w ∈ W by Lemma 1.3.4(c)) and θλ(O) ∼= O(λ).

Therefore, O(−λ) is a direct summand in E∗A and b−A,A0(E
∗
A) = w̃0wθλ(E

∗
A) has a summand

w̃0wθλ O(−λ) ∼= w̃0w O ∼= O. �

3. t-structures on g̃P corresponding to alcoves on the wall

Let P be a partial flag variety and consider the space g̃P of pairs of a parabolic subalgebra

p ∈ P and an element in it. We have a map πP : g̃→ g̃P .

Recall that we consider the partition of ΛR = Λ ⊗Z R into alcoves, which are connected

components of the complement to the hyperplanes Hα̌,n := {λ ; 〈λ, α̌〉 = n} parametrized

by all α ∈ ∆ and n ∈ Z. The fundamental alcove A0⊆ΛR is given by 0 < 〈λ, α̌〉 < 1 for

all positive coroots α̌.

The P-wall WP⊆ΛR is given by 〈λ, α̌〉 = 0 for roots α in the Levi root subsystem defined

by P. By a P-alcove we mean a connected component of the complement in WP to those

affine coroot hyperplanes which do not contain it.

Let S → g be an affine exact base change of X −→ g where X = g̃P (in particular, X

can be g̃ = g̃B). An example would be a (Slodowy) slice (the proof for g̃ in Lemma 1.3.1

works also for g̃P). The base change of πP to S is a map πS
P : g̃S → g̃P,S.

3.0.1. Lemma. Let ̟ : X → Y be a proper morphism of finite Tor dimension and assume

that R̟∗OX
∼= O⊕N

Y for some N . Let TX , TY be t-structure on Db(Coh(X)), Db(Coh(Y ))

respectively.

a) If ̟∗ is t-exact, then TY is given by

F ∈ D<0
TY
⇐⇒ ̟∗F ∈ D<0

TX
; F ∈ D>0

TY
⇐⇒ ̟∗F ∈ D>0

TX
.

In particular, TY is then uniquely determined by TX .

The same applies with ̟∗ replaced by ̟!.
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b) If E is a projective generator for the heart of TX and ̟! is t-exact then ̟∗(E) is a

projective generator for the heart of TY .

c) Assume that TX corresponds to a tilting generator EX , and TY corresponds to a tilting

generator EY . Then the functor ̟! is t-exact iff EY is equiconstituted with ̟∗(EX).

The functor ̟∗ is t-exact iff ̟∗(EY ) is a direct summand in E⊕N
X for some N .

Proof. The “⇒” implication in (a) is immediate from the t-exactness assumption. We

check the converse for D<0, the argument for D>0 is similar. If F 6∈ D<0 then we

have a nonzero morphism φ : F → G, G ∈ D≥0
TY
. The projection formula shows that

̟∗ ◦ ̟∗ ∼= Id⊕N , thus the map ̟∗(φ) : ̟∗F −→̟∗G is not zero. Since ̟∗(G) ∈ D≥0
TX

this implies that ̟∗(F) 6∈ D<0
TX

. This proves the statement about ̟∗, the proof for ̟! is

parallel, using the fact that ̟∗ ◦ ̟! ∼= Id⊕N (this isomorphism follows from the one for

̟∗̟
∗ by Grothendieck-Serre duality).

To prove (b) recall that a functor between abelian categories sends projective objects to

projective ones provided that its right adjoint is exact. Thus ̟∗ sends projective objects

in the heart of TX to projective ones in the heart of TY if ̟! is t-exact. Also it sends weak

generators of D(qCoh(X)) to weak generators of D(qCoh(Y )) since ̟! is conservative

(kills no objects), which is clear from ̟∗ ◦̟! ∼= Id⊕N .

The “only if” direction in the first statement in (c) follows from (b), while the “if” part

is clear from the definition of the t-structure corresponding to a tilting generator and ad-

jointness between ̟∗ and ̟!. The second statement is clear from the fact that a functor

between abelian categories is exact if and only if its left adjoint sends a projective gener-

ator to a projective object (equivalently, to a summand of a some power of a projective

generator). �

Recall from 1.8 that there is a collection of locally free t-structures T S
A on S̃ indexed by

alcoves A, and one can choose the corresponding tilting generator ESA as a pull-back of a

G×Gm-equivariant locally free tilting generator EA on g̃.

3.0.2. Theorem. a) There exists a unique map AP 7→T S
AP

from the set of P-alcoves AP to

the set of t-structures on Db(Coh(g̃P,S)) such that:
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If AP is a P-alcove in the closure of an alcove A then both of the functors (πS
P)∗ and

(πS
P)

∗ ∼= (πS
P)

!, between Db(Coh(g̃S)) and Db(Coh(g̃P,S)), are exact for t-structures T S
A

and T S
AP

.

b) Each T S
AP

is bounded and locally free. Moreover, for A, AP as above, any projective

generator ESA for T S
A produces a locally free projective generator ESAP

= R(πS
P)∗(E

S
A ) for

T S
AP

.

c) If S lies over a geometric point k of R then (πS
P)∗ sends any irreducible object in the

heart of T S
A either to zero, or to an irreducible object in the heart of T S

AP
. This gives a

bijection of T S
A -irreducibles with non-zero images and T S

AP
-irreducibles.

Proof. Isomorphism (πS
P)

∗ ∼= (πS
P)

! follows from the fact that g̃, g̃P are smooth over R of

the same dimension.

The direct image (g̃ −→ g)∗Og̃ is Og×h/W h and this is a free module of rank |W | over Og

since the same is true for O(h) as a module for O(h/W ). Thus Lemma 3.0.1 applies.

Uniqueness of a t-structure T S
AP

for which (πS
P)

∗ is t-exact follows from Lemma 3.0.1(a).

The remaining part of statements (a,b) is equivalent, in view of Lemma 3.0.1(c), to the

following statement:

(•S) R(πS
P)∗(E

S
A ) is a locally free tilting generator. Moreover, (πS

P)
∗R(πS

P)∗(E
S
A ) is a direct

summand in (ESA )
⊕N for some N .

In the special case when S is the formal neighborhood 0̂k of zero in gk, k ∈ FGP, state-

ments (a,b) and hence (•S), follow from results of [BMR2]. More precisely, the t-structure

arising from the singular localization theorem and compatible splitting bundle satisfies

the exactness properties because direct and inverse image functors correspond to transla-

tion functors to/from the wall [BMR2, Lemma 2.2.5], which are well known to be exact.

A projective generator for the heart of the t-structure can in this case be chosen to be

a splitting bundle on 0̂k for an Azumaya algebra D̃ on g̃
(1)
P [BMR2, Remark 1.3.5]. This

projective generator (and hence any) is clearly locally free.

The general case of (•S) follows from the above special case by the reasoning of section 2.

First, R(πS
P)∗(E

S
A ) is a weak generator because ESA is a weak generator and the right adjoint

functor (πS
P)

! is conservative.
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Now (b) would follow once we verify that R(πS
P)∗(E

S
A ) is locally free and satisfies the Ext

vanishing condition in Theorem 1.4.3, while Hom(ESA , (π
S
P)

∗R(πS
P)∗(E

S
A )) is projective as

a module over End(ESA ) (notice that vanishing of Exti(ESA , (π
S
P)

∗R(πS
P)∗(E

S
A )) for i 6= 0

follows from the tilting property of R(πS
P)∗(E

S
A ))). It suffices to do it in the “absolute”

case S = g. Then local freeness and Ext vanishing follow from the above special case

in view of Lemma 2.5.2. Similarly, projectivity holds since it holds after base change

to any algebraically closed field of positive characteristic and completing by the grading

topology.

Finally (c) follows from the next Proposition. �

We keep the notations of the Theorem, fix (and drop from notations) the alcove A, and

S = g. Set A = End(E)op, AP = End(EP)op, M = Hom(E , π∗
P(EP)). Thus M is an

A−AP bimodule.

3.0.3. Proposition. a) Under the above equivalences Db(Coh(g̃)) ∼= Db(modfg(A)),

Db(Coh(g̃P)) ∼= Db(modfg(AP)) the functor Rπ∗ is identified with the functor

N 7→ N
L
⊗M.

b) The natural map O(h∗)⊗O(h∗)WL A
op
P −→ EndA(M) is an isomorphism.

Proof. a) is obvious from the definitions. It suffices to prove that (b) becomes true after

base change to the formal neighborhood of zero in g∗k, k ∈ FGP. It is clear that validity

of the statement is independent on the choice of tilting generators E , EP for the hearts

of a given t-structure. An appropriate choice of E , EP yields A = Γ(D̃), AP = Γ(D̃P),

while M is the space of sections of the bimodule Bµ
λ providing the equivalence between

the Azumaya algebras D̃λ̂, D̃µ̂ on FN(Ñ )g̃ [BMR2, Remark 1.3.5]. Then the statement

follows from

EndA(M) = Γ(End
D̃λ̂(B

µ
λ)) = Γ(D̃µ̂)op

∼= Γ(π∗
P(D̄

µ̂)op) = O(h∗)⊗O(h∗/WL) Γ((D̄
µ̂)op) = O(h∗)⊗O(h∗/WL) AP .

4. t-structures on T ∗(G/P ) corresponding to alcoves on the wall

Let P ⊂ G be a parabolic, P = G/P , L⊆P be a Levi subgroup. The projection B → P

yields the maps T ∗(P)
pr1
←− T ∗(P)×P B

i
→֒ T ∗B.
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Let ΛP ⊂ Λ be the sublattice of weights orthogonal to coroots in L. We have embeddings

of finite index ΛP ⊂ Pic(P), Λ ⊂ Pic(B) compatible with the pull-back under projection

map B → P.

(If G is simply connected then both embeddings are isomorphisms .)

4.1. t-structures in positive characteristic. In the next Proposition we work over a

field k = k̄ of characteristic p > h. As in [BMR2, 1.10], Dλ
P denotes the sheaf of crystalline

differential operators on P with a twist λ ∈ ΛP .

Proposition. For a weight λ ∈ ΛP such that the element “(λ+ρ) mod p” of h∗ is regular,

consider the functor

π⋆ : Db(Coh(T ∗P)) −→Db(Coh(T ∗B)), π⋆F = i∗pr
∗
1(F)⊗O(ρ)

and its left adjoint π⋆G = (pr1)∗i
∗[G(−ρ)].

a) If R>0Γ(Dλ
P) = 0 then there exists a unique t-structure on Db(Coh(T ∗P)), such that the

functor π⋆ is t-exact, where the target is equipped with the t-structure TA corresponding

to the alcove A containing λ.

This t-structure is locally free and a Gm-equivariant projective generator of its heart is

given by EP
def
= π⋆EA for any Gm-equivariant projective generator EA of the heart of TA.

b) If the map Ug → Γ(Dλ
P ) is surjective, then the t-exact functor π⋆ sends irreducible

objects to irreducible ones, and it is injective on isomorphism classes of irreducibles.

Proof. The functor π⋆F = i∗pr
∗
1(F)⊗O(ρ) is conservative, thus its left adjoint π⋆ sends

a generator to a generator. Thus for a t-structure on Db(Coh(T ∗P)) the functor π⋆ is

t-exact iff EP = π⋆[EA] is a projective generator of its heart. This shows uniqueness in (a)

and reduces the rest of statement (a) to showing that EP is a tilting vector bundle.

As above, it suffices to check that the restriction of EP to the formal neighborhood of the

zero section of T ∗P, is a tilting vector bundle. Reversing the argument of the previous

paragraph we see that it suffices to show the existence of a locally free t-structure on

Db(CohP(T
∗P)) such that π⋆ is t-exact.

It is shown in [BMR2, 1.10] that under the assumptions of (a) the derived global sections

functor RΓ : Db[modfg(Dλ
P)]→ Db[modfg(Γ(Dλ

P))] is an equivalence. Furthermore, Dλ
P is

an Azumaya algebra over T ∗P(1) which is split on the formal neighborhood of the fibers
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of the moment map µP : T ∗P(1) → (g∗)(1), in particular on the formal neighborhood

of the zero fiber. Thus we get an equivalence between Db[CohP(T
∗P)] and the derived

category of modules over a certain algebra [BMR2, Corollary 1.0.4]. In view of [BMR2,

Proposition 1.10.7] we see that the resulting t-structure on Db[CohP(T
∗P)] satisfies the

desired exactness property, thus (a) is proved.

The same Proposition also implies claim (b), since it shows that the functor between the

abelian hearts induced by the functor Db(Cohµ−1
P

(e)(T
∗P))

π⋆

−→ Db(Cohπ−1(e)(T
∗B)), can

be identified with the pull-back functor between the categories of modules (with a fixed

generalized central character) corresponding to the ring homomorphism Uλ(g)→ Γ(Dλ
P).

If this ring homomorphism is surjective then the pull-back functor sends irreducible mod-

ules to irreducible ones and distinguishes the isomorphism classes of irreducibles. �

4.2. Lifting to characteristic zero. We now return to considerations over an arbitrary

base. Let S → g be a base change exact for both T ∗(B)→ g an T ∗(P) → g. Again, any

Slodowy slice is an example of such S. Making base change to S we get maps iS, pr1,S

and the functor π⋆
S : Db[Coh(S̃P)] −→Db[Coh(S̃)], where S̃P = S×gT

∗P.

Theorem. There exists an integer N > 0 (depending on the type of G only), such that

the following is true provided that N is invertible on S.

(a) Fix an alcove A. Assume that there exists a weight λ ∈ ΛP , such that λ+ρ
p
∈ A.

Then there exists a unique t-structure T S̃P

A on Db(Coh(S̃P )), such that the functor π⋆
S :

Db[Coh(S̃P)] −→Db[Coh(S̃)] is t-exact, where the target is equipped with the t-structure

T S
A corresponding to A.

The t-structure T S̃P

A is locally free over S, a projective generator of its heart is given by

ESP = pr1,S∗
i∗S[EA(−ρ)] for any projective generator EA of the heart of T S

A .

(b) Let k be a geometric point of R such that the pull-back map O(gk)→ Γ(O(T ∗(Pk)))

is surjective. Then the t-exact functor π⋆
S sends irreducible objects to irreducible ones

and is injective on isomorphism classes of irreducibles.

Proof. It is well known [Bro] that for fields k of characteristic zero, hence also for k of

a sufficiently large positive characteristic, we have H>0(T ∗Pk,O) = 0. It follows that

the cohomology vanishing condition of Proposition 4.1(a) holds over such a field. Thus

Proposition 4.1 shows that statement (a) is true when S = g∗k where k is an algebraically
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closed field of sufficiently large positive characteristic. Then the general case follows, as

in the proof of Theorem 1.5.1, by Proposition 2.5.1. This proves part (a).

The general case of statement (b) follows by a standard argument from the case when k

has (large) positive characteristic. (Notice that if the map O(gk)→ O(T ∗Pk) is surjective

for k of characteristic zero, then it is surjective for k of large positive characteristic). In

the latter case the statement follows from Proposition 4.1(b), since surjectivity of the map

O(gk)→ O(T
∗Pk) implies surjectivity of the map U(gk)→ Γ(Dλ

Pk
). �

4.2.1. Remark. a) It is well known that conditions of part (b) hold when G is of type An

and k is of characteristic zero.

b) The twist by ρ appearing in the last Theorem is caused by normalizations in the

definition of the braid group action. Removing thus shift would produce a shift in the

preceding Theorem.

c) Notice that control on the set of primes for which the result is valid is weaker here

than in other similar results of [BMR2] and sections 1, 3. The only reason for this is that

higher cohomology vanishing for the sheaf O(T ∗P) has not been established in general

(to our knowledge) in positive characteristic p except for indefinitely large p.

4.2.2. Remark. It can be deduced from the results of [Ri2] that the construction of the

present subsection is related to that of the preceding one by Koszul duality (see loc. cit.

for details).

The matching of combinatorial parameters is explained in the next subsection.

4.3. Shifting the alcoves. The set of t-structures constructed in this subsection is in-

dexed by the set of alcoves A such that λ+ρ
p
∈ A for some integral λ ∈ ΛP . Let us denote

this set by AlcP .

4.3.1. Lemma. The set AlcP is in a canonical bijection with the set of P-alcoves. The

bijection sends A ∈ AlcP to the interior of Ā ∩ WP .
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Proof. By a P-chamber we will mean a connected component of the complement in the

P-wall WP , of intersections with coroot hyperplanes not containing the wall. The P-

chambers are in bijection with parabolic subalgebras in the Langlands dual(10) algebra ǧ

with a Levi ľ⊆ǧ whose semisimple part is given by coroots orthogonal to λ.

A Weyl chamber is a connected component of the complement to coroot hyperplanes in

h∗R. We will say that a Weyl chamber is near the P wall if it contains a P-chamber in

its closure. The set of Weyl chambers is in bijection with the set of Borel subalgebras

with a fixed Cartan. So, a Weyl chamber is near the P-wall iff the corresponding Borel

subalgebra b̌ is contained in a parabolic subalgebra with Levi ľ, in other words if the

subspace ľ+ b̌ ⊂ ǧ is a subalgebra.

It suffices to show that for every weight λ ∈ ΛP such that λ+ ρ is regular, λ+ ρ lies in a

Weyl chamber which is near the P wall. This amounts to showing that if α̌, β̌ and α̌+ β̌

are coroots and 〈α̌, λ+ ρ〉 > 0, 〈β̌, λ〉 = 0, then either 〈α̌+ β̌, λ+ ρ〉 > 0 or 〈α̌+ β̌, λ〉 = 0.

It is enough to check that 〈α̌+ β̌, λ+ ρ〉 > 0 assuming β̌ is a simple negative coroot in ľ.

For such β̌ we have 〈β̌, λ+ρ〉 = 〈β̌, ρ〉 = −1, so 〈α̌+ β̌, λ+ρ〉 ≥ 0. However, since we have

assumed that λ+ρ is regular and α̌+ β̌ is a coroot, this implies that 〈α̌+ β̌, λ+ρ〉 6= 0. �

10Of course, these are also in bijection with parabolic subalgebras in g with the fixed Levi. However,
the argument uses coroots rather than roots, hence the appearance of Ǧ.
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5. Applications to Representation Theory

The results of section 2 imply independence of the numerics of gk modules on the char-

acteristic p of the base field k for p≫ 0. This is spelled out in subsection 5.1.

In 5.3, 5.4 we briefly recall Lusztig’s conjectural description of the numerical structure of

the theory and reduce its verification to a certain positivity property of a grading on the

category of representations.

Given the results of sections 1, 2 it is easy to construct a family of gradings on the cate-

gory. However, showing that this family contains a grading which satisfies the positivity

property is more subtle. This is established in section 6 by making use of the results of

[ArkB]. This reduction relies onG-equivariant versions of some of the above constructions.

This technical variation is presented in 5.2.

To simplify notations we only treat the case of a regular block and a nilpotent Frobe-

nius central character, generalization to any block and an arbitrary p-central character is

straightforward.

5.1. Generic independence of p. In this section E is a vector bundle on g̃ that satisfies

Theorem 1.5.1.b (so up to equiconstitutedness it is (i) unique, and (ii) of the form ΞJ

from Theorem 2.5); while A is the R-algebra End(E)op.

5.1.1. Theorem. The algebra A satisfies the following. For any k ∈ FGP and any e ∈ Nk,

there are canonical Morita equivalences compatible with the action of Og×h/W h :

U 0̂
k,ê ∼ A0̂

k,ê and U0
k,ê ∼ A0

k,ê.

Here, U 0̂
k,ê, A

0̂
k,ê are completions of Uk and Ak = A⊗Rk, at the central ideals corresponding

to e and to 0 ∈ h (resp., A0
k,ê, U

0
k,ê are completions of U0

k and A0
k = Ak⊗O(h)k0 at the central

ideals corresponding to e).

Proof. Recall that A0 def
= A⊗O(h)O0 is the algebra End(E|Ñ )op (Lemma 1.5.3), and that

there are canonical equivalences

modfg(U 0̂
ê )
∼= Ecoh(B̂k,e)

restriction
←−−−−− Ecoh(g̃) ∼= modfg(A)

and modfg(U0
ê )
∼= Ecoh(B̂k,e

′
)

restriction
←−−−−− Ecoh(Ñ ) ∼= modfg(A0). Both times, the first

equivalence is from Theorem 1.6.3, and the second one is the fact that E (resp. E|Ñ ) is a

tilting generator and that the locally free t-structure it produces is the exotic t-structure.
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The following induced equivalences of categories are the desired Morita equivalences of

algebras:

modfg(U 0̂
ê )
∼= Ecoh(B̂k,e) ∼= modfg(A0̂

k,ê) and modfg(U0
ê )
∼= Ecoh(B̂k,e

′
) ∼= modfg(A0

k,ê).

We can define an action of O(g×h/W h/W )k on the leftmost terms using the center of Uk.

Recall that it is isomorphic to Ogk×hk/W
hk/W , where map hk −→ hk is the Artin-Schreier

map (see 1.6.1). However, for a regular λ ∈ Λ (say λ = 0) and any e ∈ Nk, the completion

of this center at the point (e,Wλ) is canonically isomorphic to the completion ofOgk×hk/W
hk

(where this time hk → hk/W is just the quotient map), at the point (e, λ). �

5.1.2. Remarks. (1) Let e ∈ N (R). Since Morita invariance is inherited by central reduc-

tions we get also R-algebras A0
e, A

0̂
e, A

0
ê whose base change to any k ∈ FGP is Morita

equivalent to the corresponding central reductions U0
k,e, U

0̂
k,e, U

0
k,ê of the enveloping alge-

bra. Here U 0̂
k,e is the most popular version – its category of modules is the principal block

of the category of Uk,e-modules.

(2) A similar result for representations of algebraic groups (rather than Lie algebras) has

been established by Andersen, Jantzen and Soergel [AJS]. This is equivalent to the case

e = 0 of the theorem.

5.1.3. Cartan matrices. Recall that the set of nilpotent conjugacy classes in gk does not

depend on the algebraically closed field k provided its characteristic is a good prime.

Corollary. There exists a finite set of primes Π such that for any k, k′ ∈ FGP with

characteristics outside Π, the following holds. If the conjugacy classes of e ∈ Nk, e
′ ∈ Nk′

correspond to each other, then the Cartan matrices(11) of U 0̂
e , U

0̂
e′ coincide.

The same applies to U0
e , U

0
e′.

Proof. For a finite rank R-algebra A independence of the Cartan matrix of Ak on k, for

an algebraically closed field k of sufficiently large characteristic, is well known (cf. also

Lemma 5.1.5 below). Thus the claim follows from part (1) of the the previous Remark. �

11By this we mean the matrix whose entries are multiplicities of irreducible modules in indecomposable
projective ones.
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5.1.4. Lifting irreducible and projective objects. In the remainder of the subsection we will

enhance the last Corollary to a geometric statement.

A quasifinite domain over a commutative ring R is a commutative ring R over R such

that there exists R′⊇R such that R′ is a finite domain over R and R is a finite localization

of R′.

Proposition. For any e ∈ N (R) there exists a quasifinite domain R over R, such that

there exist

• a finite set Ie,

• a collection Ei, i ∈ Ie, of locally free sheaves on B̂R,e, and

• a collection of complexes of coherent sheaves Li ∈ Db[Coh(B̂R,e

′
)], i ∈ Ie;

with the following properties.

Let λ ∈ Λ be such that λ+ρ
p

is in the fundamental alcove. Then for every finite charac-

teristic geometric point k of R, the set of isomorphism classes of irreducible Uλ
k,e mod-

ules is canonically parametrized by Ie, we denote this Ie ∋ i 7→ Lk,i ∈ Irr(Uλ
k,e). This

parametrization is such that the equivalence of [BMR1] sends:

• (I) irreducible Lk,i to (Li)k
def
= Li

L
⊗Rk ∈ Db[Coh(B̂k,e

′
)];

• (P1) the projective cover of Lk,i over U
λ̂
k,ê to (Ei)k

def
= Ei⊗Rk ∈ Db[Coh(B̂k,e)];

• (P2) the projective cover of Lk,i over U
λ
k,ê to (Ei)k

∣∣
B′
k,e
∈ Db[Coh(B̂k,e

′
)];

• (P3) the projective cover of Lk,i over U
λ̂
k,e to Ei

L
⊗Og

ke ∈ Db[Coh(B̂k,e)].

Proof. The first three claims are immediate from the Theorem 5.1.1, together with the

next general Lemma. Part (P3) follows from part (P1) because the localization equivalence

is compatible with derived tensor product over the center, while the enveloping algebra

U is flat over its Frobenius center. �

5.1.5. Lemma. a) Let R be a quasifinite domain over Z and A be a finite rank flat al-

gebra over R. Then there exist a quasifinite domain R
′ over R and collections Li, Pi

of AR′-modules indexed by I = Irr(AQ), such that for any geometric point k of R′ the

corresponding Ak modules (Li)k, (Pi)k, i ∈ I, provide complete nonrepeating lists of

irreducible Ak-modules and their projective covers.
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b) The same holds for topological algebras of the form lim←−Ai where Ai are as in (a)

and Ai → Ai+1 is a square zero extension, i.e., a surjective homomorphism with zero

multiplication on the kernel.

Sketch of proof. Part (b) follows from (a) since irreducibles for (Ai)k do not depend on

i and any projective module admits a lifting to a projective module over a square zero

extension.

(a) Let Lo
i , i ∈ I, be the complete list of irreducible modules for AQ and let P o

i be the

indecomposable projective cover of Lo
i . These modules lift to a finite extension R1 of R,

i.e., there are AR1-modules Pi, Li such that (Pi)Q
∼= P o

i , (Li)Q
∼= Lo

i . (For that choose a

presentation for a module as a cokernel of a map between finitely generated free modules

and multiply the matrix of the map by an element in R to make its entries integral over

Z. Then R1 is obtained by adjoining the new entries to R.)

After a finite localization R2 of R1 we can also achieve that each Pi is projective. The

reason is that for some di > 0, the sum ⊕I (Pi)
⊕di
Q is a free AQ-modules, so ⊕I P

⊕di
i

becomes a free module after a finite localization R2.

After further replacing R2 by a finite localization R3 we can achieve that (Pi)k are pairwise

non-isomorphic indecomposable modules. For this consider two AR2-modules M,N and

a commutative R2 algebra R. The existence of (i) an isomorphism MR
∼= NR, and (ii) a

nontrivial idempotent in End(MR); amounts to existence of an R point of a certain affine

algebraic variety over R2. Such an algebraic variety has a Q point iff it has a k point for

all finite geometric points k of Spec(R2) of almost any prime characteristic. Here, R3 is

obtained from R2 by inverting finitely many primes.

Finally, Hom(Pi, Lj) is a finite R3-module such that Hom(Pi, Lj)⊗Q ∼= Q
δij
. Thus after

a finite localization R
′ we can assume that Hom(Pi, Lj) ∼= (R′)δij . �

5.1.6. Remark. Our proof of Lusztig conjectures about numerics of modular representa-

tions gives the result for p≫ 0 only, because we rely on the (very general) Lemma 5.1.5,

which is not constructive in the sense that it provides no information on the set of primes

one needs to invert in R to get R
′ with needed properties. The same problem appears

in [AJS] which contains results that are essentially equivalent to the case e = 0 of our

results. Notice that Fiebig has found an explicit (and very large) bound M and showed

that the argument of [AJS] works for p > M [Fi].
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5.1.7. Remark. The following is just the extra information one finds in the proofs of

Theorem 5.1.1 and Proposition 5.1.4.

Corollary. Let E be a vector bundle on g̃ as in 1.5.1, then the algebra A in Theorem 5.1.1

can be chosen as A = End(E)op. For any e ∈ N (R), the collection Ei in Proposition 5.1.4,

can be chosen as representatives of isomorphism classes of indecomposable constituents

of the restriction of E to B̂R,e.

Ie is the set of isomorphism classes of irreducible modules of A|ê ⊗RC (i.e., of Ae⊗RC for

Ae = A⊗O(g)Oe).

5.1.8. Numerical consequences. For k ∈ FGP and e ∈ N (k) recall the isomorphisms of

Grothendieck groups

K(U0
k,e)
∼= K(Bk,e),

K(Bk,e)Q ∼= K(BQ,e)Q,
K(BQ,e)

∼= K((AQ)
0
e).

(9)

The first isomorphism is [BMR1] Corollary 5.4.3, the second one follows from [BMR1]

Lemma 7.2.1 and Proposition 7.1.7, and the last one is immediate from Theorem 1.5.1

above. By “homotopy invariance of the Grothendieck group” we have K0[modfg(U0
k,e)] =

K0[modfg(U 0̂
k,e)] = K0[modfg(U0

k,ê)], and the same for U replaced by A.

Corollary. a) For almost all characteristics p the composed isomorphism

K[modfg(U0
k,e)]Q

∼= K[modfg((AQ)
0
e)]Q

sends classes of irreducibles to classes of irreducibles and classes of indecomposable pro-

jectives to classes of indecomposable projectives; the same applies to U 0̂
k,e and U

0
k,ê.

(b) For all p > h the composition sends the class of the dual of baby Verma Uk-module

of “highest” weight zero, to the class of a structure sheaf of a point.(12)

(c) Multiplicities of irreducible modules in baby Verma modules are independent of p for

large p.

12A baby Verma module for U0
k,e involves data of a Borel subalgebra b ∈ Bk,e which we view geomet-

rically as a point of Bk,e. Notice that it is easy to see that the class [Ob] ∈ K(Bk,e) is independent of the
choice of b.
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5.2. Equivariant versions and Slodowy slices. From now on we denote by G a copy

of the group G×Gm, supplied with a map G −→G×Gm by (g, t) 7→(g, t2). Since G × Gm

acts on g by (g, t) x
def
= t·gx the group G acts on g by (g, t) : x

def
= t2 gx,

5.2.1. Equivariant tilting t-structures.

Proposition. Let R′ be a Noetherian R-algebra. Let S → gR′ be a map of affine schemes

over R′ which satisfies the Tor vanishing condition from 1.3 relative to g̃R′ .

Let H be a flat affine algebraic group over R′ endowed with a morphism φ : H → GR′ .

We assume that H acts on S and that the map S → gR′ (respectively S → NR′) is

H-equivariant. Then we have a natural equivalence

Db(CohH(S̃)) ∼= Db(modH,fg(AS)), respectively Db(CohH(S̃ ′)) ∼= Db(modH,fg(A0
S)).

Proof. We construct the first equivalence, the second one works the same. The tilting

bundle E constructed in section 2 is manifestly G × Gm equivariant. Thus the vector

bundle ES and the algebra AS carry natural H-equivariant structures. Therefore, for

F ∈ CohH(S̃) and M ∈ modH,fg(AS), the AS-modules Hom(ES,F) and M
L
⊗AS

ES ∈

CohH(S̃) carry natural H-equivariant structures. Passing to the derived functors we get

two adjoint functors CH , IH between Db(CohH(S̃)) and Db(modH,fg(AS)). A standard

argument shows that these functors are compatible with the pair of adjoint functors

C, I between Db(Coh(S̃)) and Db(modfg(AS)), which are given by the same formulas.

Moreover, this compatibility extends to the adjunction morphisms between the identity

functors and compositions IHCH , CHIH and IC, CI. Since the adjunction morphisms are

isomorphisms in the non-equivariant setting, they are also isomorphisms in the equivariant

one. �

5.2.2. Slodowy slices. Let k be a geometric point of R. Fix a nilpotent e ∈ N (k) such that

there is a homomorphism ϕ : SL(2) → G such that dϕ ( 0 1
0 0 ) = e.(13) The corresponding

sl2 triple e, h, f defines a Slodowy slice Sk,e
def
= e + Zgk(f) transversal to the conjugacy

class of e.

Let C be a maximal torus in the centralizer of the image of ϕ, it is also a maximal torus

in the centralizer Ge of e. Let φ : Gm → G by φ(t)
def
= ϕ

(
t 0
0 t−1

)
. We denote by Gm a

13This is always possible if p > 3h− 3 [Hu].
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copy of the group Gm and by C̃ the group C×Gm supplied with a morphism i : C̃ → G

by i(c, t)
def
= (cφ(t), t−1). The action of C̃ on g is by (c, t) x = t−2 cφ(t)x, it preserves the

Slodowy slice Sk,e and the action of t ∈ Gm contracts it to e for t→∞.

Now we use the fact that C contains φ(−1)z for some z ∈ Z(G), see Appendix B. Notice

that the element m = (φ(−1)z,−1) ∈ C̃ is sent to (φ(−1)zφ(−1),−1) = (z,−1) ∈ G.

So, the action of C̃ on g factors through the quotient by the subgroup generated by m.

5.2.3. Equivariant lifts of irreducibles and indecomposable projectives. Let k be a geomet-

ric point of R and let e ∈ N (k). Let H be a torus endowed with a map into the stabilizer

of e in Gk. We say that for an object F in the derived category of coherent sheaves its

equivariant lifting is an object in the equivariant derived category whose image under

forgetting the equivariance functor is isomorphic to F .

Proposition. Let H be a k-torus mapping to Gk and fixing e, h, f , so that in particular it

preserves Sk,e.

a) Every irreducible exotic sheaf L on either of the spaces: S̃k,e, S̃k,e
′
, B̂k,e, B̂k,e

′
, g̃k, Ñk,

whose (set-theoretic) support is contained in Bk,e admits an H-equivariant lift L̃. Any

other lift is isomorphic to a twist of L̃ by a character of H .

b) Every projective exotic sheaf W on either of the spaces: S̃k,e, S̃k,e
′
, B̂k,e, B̂k,e

′
admits

an H-equivariant lifting W̃. If W is indecomposable then every equivariant lifting of W

is isomorphic to a twist of W̃ by a character of H .

c) Assume that char(k) = 0. Then there exists a quasifinite R-domain R′, such that the

following holds.

• i) The nilpotent e, torus H and the homomorphism H → G are defined over R′.

• ii) For each L ∈ Db(CohBk,e
(S̃k,e

′
)), W ∈ Coh(S̃k,e

′
) and equivariant lifts L̃, W̃

as above there exist LR′ , WR′ ∈ Db(CohHR′ (S̃ ′
R′,e)) and their equivariant lifts

L̃R′, W̃R′ , such that their base change to k is isomorphic to L,W, L̃, W̃ .

• iii) For every geometric point k′ of R′ the base change to k′ of LR′ , WR′ and

L̃R′, W̃R′ are, respectively, irreducible and indecomposable projective equivariant

exotic sheaves. Every equivariant irreducible or indecomposable projective exotic

sheaf on S̃k′,e, S̃
′
k′,e, B̂k′,e, B̂k′,e

′
arises in this way.
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Proof. It is clear that the direct image of an irreducible exotic sheaf L ∈ Db(CohB′
k,e
(S̃k,e

′
))

under each of the closed embeddings S̃k,e
′
→֒ Ñk, S̃k,e

′
→֒ S̃k,e →֒ g̃k is again an irreducible

exotic sheaf supported on B′
k,e, and all irreducible exotic sheaves on these spaces supported

on Bk,e are obtained this way. The resulting sheaves on g̃k, Ñk can be also thought of as

sheaves on B̂k,e, B̂k,e
′
respectively. Thus in (a) it suffices to consider the case of S̃k,e

′
only.

Applying Proposition 5.2.1 we get an equivalence Db(CohH(S̃k,e
′
)) ∼= Db(modH,fg(A0

Sk,e
)).

Thus, statement (a) reduces to showing that every irreducible A0
S module with central

character e admits an H equivariant structure. The torus H acts trivially on the finite

set of irreducible A0
S-modules with central character e. It follows that H acts projectively

on such a representation. Since every cocharacter of PGL(n)k admits a lifting to GL(n)k,

we see that the representation admits an H equivariant structure. This proves (a).

Similarly, in order to check (b) it suffices to equip indecomposable projective modules

over the respective algebras with an H equivariant structure. By a standard argument,

projective cover of an irreducible module in the category of graded (equivalently, H-

equivariant) modules is also a projective cover in the category of non-graded modules,

which yields (b).

To check (c), it suffices to consider equivariant projective modules on S̃k,e
′
(then the rest

follows as in 5.1.4). Equivariant indecomposable projectives over k are direct summands

of E
S̃k,e

′ . We can find a quasifinite R-domain R′ such that the corresponding idempotents

are defined and orthogonal over R′. �

5.2.4. Equivariant localization. In this subsection we link C-equivariant exotic sheaves to

representations graded by weights of C by proving Theorem 1.6.6. In this argument it

will be important to distinguish between a variety and its Frobenius twist, so we bring

the twist back into the notations. We concentrate on the first equivalence, the second one

is similar.

The torus C(1) acts on B̂k,e(1), composing this action with the Frobenius morphism C →

C(1) we get an action of C on B̂k,e(1). Consider the category of equivariant coherent sheaves

CohC(B̂k,e(1)). The finite group scheme C1 = Ker(C
Fr
−→ C(1)) maps to automorphisms

of the identity functor in this category; since the category of C1-modules is semisimple
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with simple objects indexed by c∗(Fp) = X∗(C)/p, the category splits into a direct sum

CohC(B̂k,e
(1)) =

⊕

η∈X∗(C)/p

CohCη (10)

where CohCη consists of such equivariant sheaves that C1 acts on each fiber by the character

η. Notice that CohC0 (B̂k,e
(1)) ∼= CohC

(1)
(B̂k,e(1)) canonically and for every η̃ ∈ X∗(C) the

functor of twisting by η̃ provides an equivalence CohCθ (B̂k,e
(1)) ∼= CohCθ+η(B̂k,e

(1)) where

η = η̃mod pX∗(C).

The sheaf of algebras D̃ is equivariant with respect to the G action, hence D̃|
B̂k,e

(1) is equi-

variant with respect to the action of C on B̂k,e(1). Consider the category modC,fg(D̃|
B̂k,e

(1))

of C-equivariant coherent sheaves of modules over this C-equivariant sheaf of algebras;

here ”coherent” refers to coherence as a sheaf of O-modules over the scheme B̂k,e
(1). A

sheaf F ∈ modC,fg(D̃|
B̂k,e

(1)) carries two commuting actions of c, αC and αg (see 1.6.6)

whose difference commutes with the action of D̃.

It is easy to see (cf. 1.6.6) that every F ∈ modC,fg(D̃|
B̂k,e

(1)) splits as a direct sum

F =
⊕

η∈c∗(Fp)

Fη where αg(x)− αC(x)− 〈x, η〉Id induces a pro-nilpotent endomorphism of

Fη. Here by a pro-nilpotent endomorphism we mean one which becomes nilpotent when

restricted to any finite nilpotent neighborhood of Be(1).

Thus we get a decomposition of the category

modC,fg(D̃|
B̂k,e

(1)) =
⊕

η∈c∗(Fp)

modC,fg
η (D̃|

B̂k,e
(1)). (11)

Let E be a splitting bundle for the Azumaya algebra D̃ on B̂k,e(1). We claim that E admits

a C-equivariant structure compatible with the equivariant structure on D̃|
B̂k,e

(1) = End(E).

For λ, µ ∈ h∗(Fp) the bimodule providing Morita equivalence between the restrictions of

D̃ to the formal neighborhoods of the preimages of λ and µ under the projections from

the spectrum of the center of D̃ to h∗ (see [BMR1, 2.3]) is manifestly G-equivariant, thus

it suffices to consider the case λ = −ρ. Then D̃|
B̂k,e

(1) is identified with the pull-back of

a C-equivariant Azumaya algebra on the formal neighborhood of e ∈ g∗(1). We construct

compatible C-equivariant splitting bundles on the n-th infinitesimal neighborhood of e for

all n by induction in n. The base of induction follows from the fact that every extension
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of C by Gm splits, while the induction step follows from splitting of an extension of C by

an additive group. Thus existence of a C-equivariant splitting bundle is established.

We fix such a C-equivariant structure on E ; we can and will assume that the restriction

of the resulting equivariant D̃ module to a finite order neighborhood of Bk,e belongs

to modC,fg(D̃|
B̂k,e

(1)) (since this restriction is an indecomposable sheaf of D̃-modules,

this can be achieved by twisting an arbitrarily chosen equivariant lift of E by a

character of C). Then we get a functor F 7→ F ⊗O E from CohC
(1)

(B̂k,e
(1)) to the

category modC,fg(D̃|
B̂k,e

(1)) of C-equivariant sheaves of modules over a C-equivariant

sheaf of algebras. We will compose this functor with the global sections functor

Db[modC,fg(D̃|
B̂k,e

(1))] → Db[modC,fg(U λ̂
ê )]. We claim that the composition lands in the

full subcategory Db[modfg(U λ̂
ê , C)] and provides the desired equivalence. This follows

from the next

Lemma. a) The derived global sections functor provides an equivalence

RΓ : Db[modC,fg(D̃|
B̂k,e

(1))]→ Db[modC,fg(U λ̂
ê )].

b) The functor F 7→ F ⊗ E provides an equivalence CohC(B̂k,e(1))→ modC,fg(D̃|
B̂k,e

(1)).

c) Both of these equivalences are compatible with the canonical c∗(Fp)-decompositions of

categories. In particular for 0 ∈ c∗(Fp), we get equivalences

modfg(U λ̂
ê , C)

∼= EcohC
(1)

(B̂k,e
(1)).

Proof. (a) follows by the argument of Proposition 5.2.1 (the two adjoint functors commute

with forgetting the equivariance).

(b) is just the observation that once E is equivariant, the standard equivalence between

coherent sheaves on g̃ and modules over the sheaf of algebras A = End(E) extends to the

equivariant setting.

(c) follows from the definition of the decompositions.

5.3. Gradings and bases in K-theory. In this subsection we work over a geometric

point k of R. We reduce the conjectures of [Lu] which motivated this project to a certain

property (⋆) of exotic sheaves. All substantial proofs of claims in this subsection are
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postponed to subsection 5.4. In the next section 6 we will see that property (⋆) (thus a

proof of Lusztig’s conjectures) follows (for large p) from the results of [ArkB].

5.3.1. Construction of gradings. On the formal neighborhood B̂k,e of a Springer fiber Bk,e

in g̃k, there is a canonical (up to isomorphism) vector bundle ⊕i∈Ie Ei which is a minimal

projective generator for the heart Ecoh(B̂k,e) of the exotic t-structure. We just take Ei’s

to be representatives for isomorphism classes of indecomposable summands in the pull

back E|
B̂k,e

of any vector bundle E from Theorem 1.5.1.

By Proposition 5.2.3, vector bundles Ei admit a Gm equivariant structure. We temporarily

fix such a structure in an arbitrary way and let Ẽi ∈ Coh
Gm(B̂k,e) denote the resulting

equivariant bundle. In view of Lemma 5.2.3, any other choice yields an equivariant vector

bundle isomorphic to a twist Ẽi(d) by some character d ∈ Z of Gm.

Consider the restriction of Ẽi to the formal neighborhood of Bk,e in S̃k,e
′
. Since Gm ⊂ C̃

acts on S̃k,e
′
contracting it to the projective variety Bk,e, there exists a unique (up to

a unique isomorphism), C̃ equivariant vector bundle on S̃k,e
′
whose restriction to the

formal neighborhood of Bk,e is identified with Ẽi|S̃k,e
′ . We denote this vector bundle by

ẼSi ∈ Coh
Gm(S̃k,e

′
).

To summarize, ẼSi is a set of representatives for equivalence classes of indecomposable

projective Gm-equivariant exotic sheaves on S̃k,e
′
modulo Gm-shifts.

5.3.2. Property (⋆). The following statement will be the key to the proof of Lusztig’s

conjectures.

(⋆)





There exists a choice of Gm-equivariant lifts Ẽi, i ∈ Ie, which is
invariant under the action of the centralizer of e, h in G and such that:

(i⋆) Hom
CohGm(S̃k,e

′
)
(ẼSi , Ẽ

S
j (d)) = 0 for d > 0,

(ii⋆) Hom
CohGm(S̃k,e

′
)
(ẼSi , Ẽ

S
j ) = kδij .

Such a choice is unique up to twisting all Ẽi by the same character of Gm.

In other words Hom
Coh(S̃k,e

′
)
(ẼSi , Ẽ

S
j ) has no negative Gm weights and the zero weight spaces

are spanned by the identity maps.

5.3.3. Normalizations. Assuming that (⋆) holds for k and e, we will reserve notation

Ẽi for Gm-equivariant vector bundles on B̂k,e, satisfying the above conditions. Recall
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that the vector bundle which is a tilting generator for the exotic t-structure has O as a

direct summand, this implies that Ei0
∼= O

B̂k,e
′ for some i0 ∈ Ie. We will assume that

Ẽi0 = OB̂k,e
(2 dimBe); since the collection Ẽi is unique up to a simultaneous twist by some

character of Gm, this fixes the set of isomorphism classes of Ẽi uniquely.

According to Proposition 5.2.2 we can equip the vector bundle Ẽi with some C̃ equi-

variant structure compatible with the Gm equivariant structure fixed above. Let Ẽi,0

denote the resulting C̃-equivariant vector bundle and set Ẽi,λ = Ẽi,0(λ) for λ ∈ X∗(C).

As above, from Ẽi,λ we obtain a C̃-equivariant vector bundle ẼSi,λ on S̃k,e
′
. As we vary

i ∈ Ie and λ ∈ X∗(C), vector bundles Ẽi,λ on B̂k,e (resp., ẼSi,λ on S̃k,e
′
) form a com-

plete list of representatives modulo Gm-shifts, of indecomposable exotic projectives in

Db[CohC̃(B̂k,e)] (resp. D
b[CohC̃(S̃k,e

′
)]). Also, we define irreducible exotic objects L̃i,λ of

Db(CohC̃(B̂k,e)) (respectively, L̃i ofD
b(CohGm(B̂k,e))) such that Ext•

DbCohC̃(B̂k,e)
(Ẽi,λ, L̃j,µ) =

kδijδ
λ
µ , Ext•

DbCohGm (B̂k,e)
(Ẽi, L̃j) = kδij .

5.3.4. Uniformity of K-groups. Although not strictly necessary for the the proof of Con-

jectures, the following result allows a neater formulation of the next Theorem and clarifies

the picture

Fix two geometric points of Spec(R): k0 of characteristic zero and k of characteristic

p > h. Recall that for a flat Noetherian scheme X over R one has specialization map

SpX : K(Xk0)→ K(Xk).

Proposition. The maps SpBe, SpS̃e
, Sp

S̃e
′ are isomorphisms.

Proof. Tensoring the maps with Q we get isomorphisms because the modified Chern

character map identifies K(Be)⊗Q̄l with the dual of l-adic cohomology: in [BMR1] it was

shown in Lemmas 7.4.2 and 7.4.1 that the map is injective, however the dimensions are

the same by Theorem 7.1.1 and Lemma 7.4.3. The independence of l-adic cohomology

on the base field was established by Lusztig ([Lu2] section 24, in particular theorem 24.8

and subsection 24.10).

On the other hand, using the above equivalences of categories we see that over the field

k the classes of irreducible (respectively, projective) objects, form bases in respective

Grothendieck groups. In particular, each of the K-groups is a free abelian group of finite

rank and the Ext pairing between K(Bk,e) and K(S̃k,e) is perfect. The corresponding
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statements for k0 were proved by Lusztig. It is clear that the specialization map is

compatible with this pairing. Thus the pair of maps SpBe, SpS̃e
is an example of the

following situation. We are given free abelian groups A, A′, B, B′, all of the same finite

rank, maps F : A→ B, F ′ : A′ → B′ and perfect pairings A×A′ → Z, B ×B′ → Z such

that 〈F (x), F ′(y)〉 = 〈x, y〉 for all x ∈ A, y ∈ A′. It is clear that in this situation F , F ′

have to be isomorphisms.

5.3.5. Reduction of Lusztig’s conjectures to (⋆). Lusztig’s conjectures from [Lu] will be

recalled in detail in sections 5.3.6, 5.3.7 and 5.4.1. In 5.3.6 we will state our precise results

and then we will see in 5.3.7 that they imply the following Theorem.

Theorem. (1) If (⋆) holds for some geometric point k of R′, then Conjectures 5.12, 5.16 of

[Lu] hold (existence of certain signed bases of K-groups of complex schemes BC,e and S̃C,e
′
).

The two bases discussed in Conjecture 5.12 are given by the classes of L̃k
i,λ(−2 dimBe),

Ẽki,λ, i ∈ Ie, λ ∈ X
∗(C); and the two bases discussed in Conjecture 5.16 are given by the

classes of L̃k
i , Ẽ

k
i .

(14)

(2) If (⋆) holds for some k ∈ FGP , then Conjecture 17.2 of loc. cit. (relation to modular

representations over k; omit the last paragraph in 17.2 on the quantum version(15)) holds

for k.

5.3.6. A reformulation of Lusztig’s conjectures. Here we formulate a list of properties that

naturally appear from the present point of view. Then in 5.3.7 we will recall Lusztig’s

conjectures and show that they follow from these properties. We will omit [Lu], Conjecture

5.16 since it is similar to loc. cit. Conjecture 5.12; the only difference is that 5.12 deals

with coherent sheaves equivariant with respect to the torus C̃, while 5.16 is about sheaves

equivariant with respect to a one-parameter subgroup Gm ⊂ C̃. So the existence of bases

with properties from 5.12 implies the same for 5.16 and Lusztig’s uniqueness argument

(recalled in footnote (18)) applies equally to both conjectures.

The K-group of a torus T is the group algebra of its character lattice RT
def
= Z[X∗(T )],

it contains a subsemiring R+
T = Z+[X

∗(T )]. Let KT
def
= Frac(RT ) be the fraction field

14Super index k means that we use the sheaves defined over k. A priori these define elements of
K-groups for k-schemes, however by Proposition 5.3.4 these K-groups are canonically identified for all k.

15The quantum version is closely related to Conjecture 1.7.1 above.
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of RT . Denote by ∂ : RC̃ → RGm
the constant coefficient map

∑
ν∈X∗(C) pν [ν]7→p0 ([Lu,

5.9]).

Recall from [Lu, Theorem 1.14.c] that the direct image map gives an embedding

KC̃(Bk,e)→֒KC̃(S̃k,e
′
). Lusztig’s conjectures involve certain involutions βe on KC̃(Bk,e)

and βS on KC̃(S̃k,e
′
) (denoted β̃, β in [Lu]), a certain pairing ( ‖ ) on K(S̃k,e

′
) with

values in the fraction field KC̃ , and a certain element ∇e of KC̃ . We denote by P 7→ P v

the involution of KC̃ corresponding to inversion on C̃.

The following proposition will be verified in 5.4.4.

Proposition. Let k be a geometric point of R such that (⋆) holds for k. Define ẼSi , Ẽ
S
i,λ,

L̃i, L̃i,λ as in 5.3.3.

(A) The following subsets are bases over the ring RGm
= Z[v±1] (we often omit the super

index k):

Bk
S

def
= {[ẼSi,λ]; i ∈ Ie, λ ∈ X

∗(C)}⊆KC̃(S̃k,e
′
),

Bk
e

def
= {v−2dimBe[L̃i,λ]; i ∈ Ie, λ ∈ X

∗(C)}}⊆KC̃(Bk,e).

Elements of BS are fixed by βS and elements of Be by βe:

βe(v
−2dimBe[L̃i,λ]) = v−2 dimBe [L̃i,λ], (12)

βS([Ẽ
S
i,λ]) = [ẼSi,λ]. (13)

Both bases satisfy the condition of asymptotic orthonormality: (16)

(b1‖b2) ∈

{
v−1RC [[v

−1]] if b2 6∈ X∗(C)b1,
1 + v−1RC [[v

−1]] if b2 = b1.
(14)

(B) The two bases are dual for the pairing ( ‖ ).

(C) (BS‖BS)⊆
1
∇e
R+

C [v
−1] ∩ R+

C [[v
−1]] and (Be‖Be)⊆ RC [v

−1]. (17)

(D) For b1, b2 ∈ BS, each of the coefficient polynomials cνb1,b2 ∈ Z+[v
−1
], ν ∈ X∗(C), in

the expansion ∇e(b1‖b2) =
∑

ν∈X∗(C) c
ν
b1,b2

[ν] ∈ R+
C [v

−1], is either even or odd.

16To make sense of it we use the embedding R
C̃
⊂ RC((v

−1)) and the induced embedding of fraction

fields.
17For basis Be the corresponding positivity statement (Be‖Be)⊆ R+

C [v
−1] follows from the result of

section 5.5 below.
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(E) Basis BS is the unique RGm
basis of KC̃(S̃k,e

′
) which is pointwise fixed by βS, satisfies

asymptotic orthonormality, a normalization property BS ∋ v2dim(Be)[O
S̃k,e

′ ] and either of

positivity properties: (BS‖BS) ∈ R+
C [[v

−1]] or (BS‖BS) ∈
1
∇e
R+

C [v
−1].

(F) If p = char(k) > 0 then there is a canonical isomorphisms KC(Bk,e)
ιe−→
∼=

K0[modfg(U 0̂
k,e, C)] which sends Be to classes of irreducible modules and ∇v

eBS to classes

of indecomposable projective modules.

(G) If p = char(k) > 0 then for bi ∈ BS, the evaluation of the polynomial ∂[∇e(b1‖b2)]

at 1 ∈ Gm is equal to the corresponding entry of the Cartan matrix of modfg(U 0̂
k,e, C),

i.e., the dimension of the Hom space between the corresponding indecomposable projec-

tive objects. The dimension of the Hom space in category modfg(U 0̂
k,e) is given by the

evaluation of the polynomial ∇e(b1‖b2) at the point (1, 1) ∈ C×Gm. �

5.3.7. Proof of Theorem 5.3.5 modulo Proposition 5.3.6. Regarding K-groups, Lusztig

considers the case k = C and defines B±
Be
⊆KC̃(Bk,e)βe and B±

Λe
⊆KC̃(S̃k,e

′
)βS by the con-

dition of asymptotic norm one: (b‖b) ∈ 1+v−1Z[[v−1]]. Conjectures [Lu, 5.12] (a,b) assert

that these are signed RGm
-bases. Parts (c,d) of the Conjecture 5.12 say that signed bases

B±
Be
,B±

Λe
are asymptotically orthonormal and parts (e,f) of the conjecture say that the

two bases are dual.

Since the identifications of K-groups in Proposition 5.3.4 are easily shown to be compatible

with involutions βe, βS and pairing ( ‖ ), we see that if we define B±
Be
,B±

Λe
in the same

way for all k, what we get will be independent of k and the same will hold for validity of

conjectures (a-f). However, if (⋆) is known for some k then conjectures (a-f) follow from

(A) and (B). The point is that (A) implies that for this k one has B±
Be

= Bk
e ⊔ −B

k
e

and B±
Λe

= Bk
S ⊔ −B

k
S, so these are indeed signed bases.(18)

Part (g) of the Conjecture says that ∂(∇eb1‖b2) ∈ ±Z≥0[(−v)
−1] for b1, b2 ∈ B±

Λe
, i.e.,

for b1, b2 ∈ Bk
S. Using the X∗(C)-action on Bk

S we see that this is equivalent to the claim

that for bi ∈ Bk
S all coefficient polynomials cνb1,b2 , ν ∈ X

∗(C) of ∇e(b1‖b2) (see (D) for

18 This is a standard argument. Let ξ ∈ KC̃(S̃k,e

′

) with (ξ‖ξ) ∈ 1 + v−1Z[[v−1]]. Write ξ as∑
b∈BS, n∈Z

cnb v
n b. If N is the highest power of v that appears then

∑
b (cNb )2 ≥ 1 and asymp-

totic orthonormality of the basis implies that
∑

b (cNb )2 = 1 and N = 0. If also βSξ = ξ then c−n
b = cnb

since βS(vx) = v−1βSx. Therefore, c
n
b 6= 0 implies n = 0 and such b is unique.
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notation), are in ±Z≥0[(−v)−1]. This follows from the first claim in (C) and the “parity

vanishing” statement (D).

Part (h) of the conjecture says that Bk
S satisfies the normalization property from (E).

Thus part (1) of the Theorem is established. For part (2) recall that Conjecture 17.2

claims that if a subcategory M⊆modC,fg(Uk,e) is a generic block then there exists a bi-

jection Irr(M)−→
∼=
B±

Λe
/{±1} which is compatible with the action of X∗(C) and identifies

the Cartan matrix of modC,fg(Uk,e) with the matrix |∂[∇e(b1‖b2)(1,−1)]|, b1, b2 ∈ B±
Λe
, of

absolute values of evaluations at (1,−1) ∈ C×Gm = C̃.

We know that the subcategory M = modC,fg(U 0̂
k,e) is a generic block (see [BG]). Also,

Proposition 5.3.6 together with the established part (1) of the Theorem yields bijections

B±
Λe
/{±1} ∼= BS

∼= Irr(M). Now the difference between Lusztig’s formulation and the

second sentence in (G) is that the former uses evaluation at −1 ∈ Gm and absolute value,

while the latter uses evaluation at 1 ∈ Gm. This is accounted for by the parity vanishing

property (D).

5.3.8. Pairing (−‖−) and Poincare series of sheaves on S̃k,e
′
. The next Lemma explains

the categorical meaning of the pairing (−‖−). To present it we need another notation.

Let Rep+(C̃) be the category of representations U of C̃ with finite multiplicities and with

Gm-isotypic components Ud, d ∈ Z, vanishing for d << 0. We denote by [U ] its image in

the K-group K0[Rep+(C̃)] ∼= RC((v)) where v is the image of the standard representation

of Gm in the K-group. This extends to a map U 7→[U ] from Db[Rep+(C̃)] to K0[Rep+(C̃)].

Now, for F ∈ DbCohC̃(S̃k,e
′
) we have RΓ(F) ∈ Db[Rep+(C̃)] and it is easy to show

(see also [Lu]), that [RΓ(F)] ∈ RC((v)) is Laurent series of a rational function, i.e.,

it lies in KC̃ ⊂ RC((v)). Of course, if G ∈ DbCohGm(S̃k,e
′
) then the same applies to

RHom(F ,G) = RΓ[RHom(F ,G)].

Recall that P 7→ P v denotes the involution of KC̃ corresponding to inversion on C̃.

Lemma. Let F ,G ∈ Db(CohC̃(S̃k,e
′
)).

a) If G is set theoretically supported on B′
k,e and the class [G] is invariant under βe, then

(F‖G) = [RHom(G,F)].

b) If [G] is invariant under βS then (F‖G) = [RHom(F ,G)]v.
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c) Let F,G ∈ DbCohC̃(B̂k,e) be such that the restrictions of F (respectively, G) to the

formal neighborhood of B′
k,e in S̃k,e

′
is isomorphic to the restriction of F (respectively, G).

If [G] is invariant under βS then

∇e(F‖G) = [RHom(F,G)
L
⊗O(ê) ke]

v.

The Lemma will be proven in section 5.4.2.

5.4. Proofs for subsection 5.3. In 5.4.1 we recall βe, βS, ( ‖ ) and in 5.4.2 we check

formulas for (b‖c) when c is fixed by βe or βS. Then we prove in 5.4.3 that βe fixes the

K-class of (a shift of) L̃i,λ and βS fixes the class of Ẽi,λ. This is all the preparation we

need for the proof of Proposition 5.3.6 in 5.4.4.

5.4.1. Involutions βe, βS and Υ. Involutions βS on KC̃(S̃k,e
′
) and βe on KC̃(Bk,e) =

KC̃(B′
k,e) are defined in [Lu, section 5.11, page 304] by

βS
def
= (−v)−dimB+2dimBeΥT−1

w0
D and βe

def
= (−v)− dimBΥ◦T−1

w0
◦D.

Here Υ is a certain involution, Tw0 is an element of a standard basis for the affine Hecke

algebra corresponding to the long element w0 ∈ W and D is the Grothendieck duality

functor. Since the direct image for the closed embedding i : B′
k,e → S̃k,e

′
intertwines

Grothendieck duality functors, we have i∗βe = v−2 dimBeβSi∗, since i∗ is an embedding we

write this as βS = v2 dimBeβe.

Actually, (−v)−dimBT−1
w0

is the effect on the K-group of the action of w̃0 ∈ B on

Db(CohC̃(S̃k,e
′
)) (see Theorem 1.3.2.b). Therefore, βe = Υw̃0D.

The only information about Υ (defined in [Lu, 5.7]) that we will use is as follows:

Υ =
l∑

s=1

asg
∗
s , with gs ∈ A(C̃, k·e), ord(gs) <∞ and as ∈ Q,

∑

s

as = 1; (15)

Υ = Tw0 ◦ D. (16)

Here, A(C̃, k·e) is the group of automorphisms of G normalizing the line k · e and C̃, bar

denotes the induced action on the Grothendieck group K0(CohC(S̃k,e
′
)) and Tw0 is the

action of w0 ∈ W on K(S̃k,e
′
) from [Lu].
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Claim (15) is immediate from the definition of Υ in [Lu] and (16) will be shown in the

Appendix A.

Lusztig defines pairing ( : ) on KC̃(S̃k,e
′
) by ([F ] : [G])

def
= [RΓ(F

L
⊗ G)] (see [Lu, 2.6]),

and uses it to define the pairing ( ‖ ) by

([F ] ‖ [G])
def
= (−v)dimB−2 dimBe([F ] : Tw0Υ[G]) = v−2 dimBe([F ] : w̃0

−1Υ[G])

(see [Lu, 5.8]). Since βe = βe
−1 = Dw̃0

−1Υ gives Dβe = w̃0
−1Υ, we have

([F ]‖[G]) = v−2 dimBe([F ] : Dβe[G]) = ([F ] : DβS[G]).

These pairings on KC̃(S̃k,e
′
) descend to pairings on KC(S̃k,e

′
) which we denote the same

way. We will denote ([F ] ‖ [G]) simply by (F‖G).

Remark. The involutions βe, βS are K-group avatars of dualities that would fix irreducibles

(resp. projectives) corresponding to the fundamental alcove A0 The point is that (if one

neglects Gm equivariance), the duality RHom(−,O) takes projectives for A0 to projectives

for −A0, and then w̃0 returns them to projectives for A0.
(19) This composition creates

a permutation of indecomposable projectives or irreducibles for A0, in order to undo

this permutation Lusztig describes in terms of the centralizer action a Z[v, v−1] linear

involution Υ on the K-group which induces the same permutation. This is a generalization

of the relation of the Chevalley involution to duality of irreducible representations of

reductive groups.

5.4.2. Proof of Lemma 5.3.8. a) βe-invariance of [G] gives

(F‖G) = ([F ] : (v)−2 dimBeDβe[G]) = ([F ] : (v)−2dimBeD[G]).

However,

D[G] = [RHom(G,Ω
S̃k,e

′)[dim S̃k,e
′
] ] = v2 dimBe [RHom(G,O

S̃k,e
′)].

For the second equality recall that for the standard symplectic form ω on Ñ , restriction

ω|
S̃k,e

′ is again symplectic, so its top wedge power ωdim(Be)|
S̃k,e

′ is a non-vanishing section

of the canonical line bundle Ω
S̃k,e

′. Now the claim follows since ω is invariant under

the action of G and transforms by the tautological character under the action of Gm by

dilations, while Gm acts by a combination of G and square of dilations.

19Notice that because of the difference between dimensions of supports, the analogous procedure for
irreducibles would use RHom(−,O)[2 dimBe] instead of RHom(−,O).
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Thus we see that

(F‖G) = (F : RHom(G,O)) = [RΓ(F
L
⊗ RHom(G,O))] = [RHom(G,F)].

b) βS-invariance of [G] gives

(F‖G) = ([F ] : DβS[G]) = ([F ] : D[G]) = [RΓ(F
L
⊗ DG)] = [RΓ(DRHom(F ,G))].

It is easy to show that if C̃ acts linearly on a vector space V and Gm contracts it to the

origin for Gm ∋ t → ∞, then for any K ∈ Db[CohC̃(V )] one has [RΓ(DK)] = [RΓ(K)]v.

Applying this to the sheaf K = (S̃k,e
′
→ Sk,e)∗RHom(G,F) on the space Sk,e

∼= Zg(f) we

get the result.

c) For a finite dimensional C̃-module V Lusztig denotes by V
def
= [∧•V ] ∈ RC̃ the image

of the super-module ∧•V in KC̃ . So, for K ∈ Db[CohC̃(V )] and i : 0→֒V use of Koszul

complex gives

[i∗i
∗K] = [K

L
⊗O(V ) O(V )⊗k ∧

•V ∗] = V ∗ [K] = V
v

[K].

By definition ∇e
def
= Zg(f) h

−1
([Lu, 3.1]), where C̃ acts on h by (c, t)h = c−2h.

As in 5.3.1, there is a unique
o

G ∈ Db[CohC̃(S̃k,e)] which agrees with G on S̃k,e∩B̂k,e. Notice

that because the restrictions to S̃k,e
′
∩ B̂k,e agree for

o

G, G and G, we also have
o

G|
S̃k,e

′
∼= G.

Now, in order to calculate the K-class of RHom(F,G) ⊗O(ê) ke
∼= RHom(F,G ⊗O(ê) ke),

observe that by the definition of
o

G we have G
L
⊗O(ê) O(Sk,e ∩ ê) ∼=

o

G
L
⊗O(Sk,e) O(Sk,e ∩ ê),

and this gives G
L
⊗O(ê) ke

∼=
o

G
L
⊗O(Sk,e) ke. Similarly, F gives

o

F with analogous properties.

Therefore in KC̃ = RC̃ one has

[RHom
B̂k,e

(F,G)
L
⊗O(ê) ke] = [RHom

B̂k,e
(F,

o

G
L
⊗O(Sk,e) ke)] = [RHom

B̂k,e∩S̃k,e
(F|S̃k,e

,
o

G
L
⊗O(Sk,e) ke)].

When we replace F|S̃k,e
with

o

F|
B̂k,e

we can view this as

[RHomS̃k,e
(
o

F,
o

G
L
⊗O(Sk,e) ke)] = Zg(f)

∗ [RHomS̃k,e
(
o

F,
o

G)] =
Zg(f)

∗

h∗
[RHomS̃k,e

(
o

F,
o

G
L
⊗O(h) k0).

Now,
o

G
L
⊗O(h) k0

∼=
o

G|
S̃k,e

′ ∼= G. The same observation for
o

F and adjunction give

= ∇v

e [RHomS̃k,e
(
o

F,G)] = ∇v

e [RHomS̃k,e
′(F ,G)].

So, the claim follows from b).
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5.4.3. Proof of invariance of the bases under the involutions. (ℵ) Proof of (13).

(ℵ.i) Reduction to: βS preserves ⊕i,λ Q[ẼSi,λ]. According to [Lu], the restriction of

equivariance map induces an isomorphism KC̃(S̃k,e
′
)/(v − 1)−→

∼=
KC(S̃k,e

′
). The Q-vector

subspace ⊕i,λ Q[ẼSi,λ] in K
C̃(S̃k,e

′
)Q maps isomorphically to KC(S̃k,e

′
)Q. In view of (16),

the action of βS on KC(S̃k,e
′
)Q is trivial, so it suffices to see that the vector subspace

⊕i,λ Q[ẼSi,λ] is invariant under βS.

We will factor βS into ΥD, a functor DF
def
= w̃0

(
RHom(F ,O)

)
(4 dimBe) and Υ

which is only defined on the K-group. Indeed, βS = v2 dimBeβe = v2dimBeΥw̃0D

and Ω
S̃k,e

′ = O
S̃k,e

′(2 dimBe) (see the beginning of 5.4.2), so that DF =

RHom(F ,O
S̃k,e

′)(2 dimBe)[2 dimBe]. We will actually show that ⊕i,λ Q[ẼSi,λ] is

invariant under both Υ and D.

(ℵ.ii) Invariance under Υ. By (15), it suffices to show that for any finite order element

g in A(C̃, k·e), the pull back g∗ permutes [ẼSi,λ]’s. Since g is an automorphism commuting

with the multiplicative groupGm and fixing the line of e, we see that {g∗(Ẽi)} is a set ofGm-

equivariant vector bundles on B̂k,e satisfying the properties of Ẽi from (⋆), thus uniqueness

part of (⋆) implies that for each i there exists some ig such that g∗(Ẽi) ∼= Ẽig(dg), where

integer dg does not depend on i. Obviously dgn = ndg, and therefore dg = 0 since g

is assumed to have finite order. The isomorphism g∗(Ẽi) ∼= Ẽig implies g∗(ẼSi )
∼= ẼSig

for the corresponding Gm-equivariant bundles on S̃k,e
′
. Since g fixes Sk,e, g

∗ fixes Gm-

equivariant vector bundle Ẽi0 = O
S̃k,e

′(2 dimBe) and by uniqueness in 5.3.3 this implies

that g∗ permutes the collection of ẼSi ’s and then also the collection of all ẼSi,λ’s.

Also note that Υ fixes the K-class of Ẽi0,0 = O
S̃k,e

′(2 dimBe) since this is true for all

relevant g∗ and in (15) we have
∑

s as = 1.

(ℵ.iii) D permutes [ẼSi,λ]’s. D factors to Db[Coh(B̂k,e
′
)] as D = w̃0RHom(−,O).

Part (e) of the Theorem 1.8.2 shows that the dual vector bundles E∗i are exactly all

indecomposable projectives in the heart of the t-structure T
B̂k,e

′
,Ñk

−A0
on Db(Coh(B̂k,e

′
)),

Since, b−A0,A0 = w̃0 by example 1.8.1, part (a.2) of the Theorem 1.8.2 now shows that the

sheaves DẼi = w̃0(E∗i ) are all indecomposable projectives in the heart of T
B̂k,e

′
,Ñk

A0
. Thus

we have DẼi = w̃0(E∗i )
∼= Eǐ for some permutation i 7→ ǐ of the indexing set.(20)

20This could also be deduced from [BMR2, Corollary 3.0.11].



66 ROMAN BEZRUKAVNIKOV AND IVAN MIRKOVIĆ

Let us now add Gm-equivariance. Since a Gm-equivariant structure on Ẽi is unique up

to a twist (Lemma 5.2.3.b), we have DẼi ∼= Ẽǐ(di) for some integers di. The uniqueness

statement in (⋆) implies that di = dj for all i, j. On the other hand, it follows from [Lu,

5.14] that βS sends the class of ẼSi0
∼= O

S̃k,e
′(2 dimBe) to itself. Since we have already

checked that Υ fixes O
S̃k,e

′(2 dimBe) (the last remark in (ℵ.ii)), we find the same is true

for D, therefore di = 0 for i = i0 and then the same holds for all i’s.

We can transport D[Ẽi] = [Ẽǐ] to S̃k,e
′
to get D[ẼSi ] = [ẼS

ǐ
]. Similarly, uniqueness of a

torus equivariant structure (up to a twist) gives D[ẼSi,λ]
∼= [ẼS

ǐ,ν(i,λ)
] for some ν(i, λ) ∈ Λ.

We will write this as D[ẼSi,λ]
∼= [ẼS(i,λ)v ]

(ℵℵ) Proof of (12). Recall from (ℵ.i) that βe = v−2 dimBeβS = Υv−2dimBeD. In

particular, βe acts on K
C(S̃k,e

′
) the same as βS, i.e., trivially. Therefore, as in the proof

of (13) we only need that ⊕i,λ v
−2dimBeQ[L̃i,λ] ⊆KC̃(B̂k,e) be invariant under βe, and this

will follow from more detailed information: v−2dimBe [L̃i,λ] are permuted by (i) finite order

elements of A(C̃, ke) and (ii) v−2 dimBeD = w̃0D.

Since we have checked that finite order elements of A(C̃, ke) permute Ẽi,λ’s it follows that

they also permute L̃i,λ’s, hence also v−2 dimBe [L̃i,λ]. On the other hand,

RHom(DL̃i,λ, Ẽj,µ) ∼= RHom(DẼj,µ, L̃i,λ) ∼= kδ
(i,λ)
(j,µ)v

gives

kδ
(i,λ)v

(j,µ) ∼= RHom(DL̃i,λ, Ẽj,µ)
∗ ∼= RHom(Ẽj,µ,DL̃i,λ ⊗ Ω

S̃k,e
′ [2 dimBe]),

hence D(L̃i,λ) = L̃(i,λ)v ⊗ Ω−1

S̃′
e

[−2 dimBe]. Thus

(v−2dimBeD)
(
v−2dimBe[L̃i,λ]) = D[L̃i,λ] = v−2 dimBe [L̃(i,λ)v ].

5.4.4. Proof of Proposition 5.3.6. (A)We know thatBS andBe are sets of representatives

– modulo Gm shifts – of isomorphism classes of respectively, indecomposable projective

objects in EcohC̃(S̃k,e
′
) and of irreducible objects in EcohC̃(B̂k,e

′
). Since the exotic t-

structure is bounded, they form bases in the respective Grothendieck groups KC̃(S̃k,e
′
)

and KC̃(B̂k,e
′
) over the ring RGm

. Pointwise invariance of BS and Be under the involutions

βS and βe has been proved in the previous subsection 5.4.3.

Lemma 5.3.8.b) implies that for bi ∈ BS one has (b1‖b2) = [RHom(b1, b2)]
v (because βS

fixes b2). Since bi are projective objects this is really [Hom(b1, b2)]
v, so it lies in R+

C [v
±1].
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Now, property (⋆) says that the algebra A = End
Coh(S̃k,e

′
)
(
⊕
i

ẼSi ) equipped with the

grading coming from the Gm equivariant structure on ẼSi has no components of negative

degree and the component of degree zero is spanned by identity endomorphisms of ẼSi ’s.

This is the same as saying that if X∗(C)b1 6= X∗(C)b2 then [RHom(b1, b2)] ∈ vR
+
C [[v]] and

if b1 = b2 then [RHom(b1, b2)] ∈ 1 +R+
C [[v]]. So, we have established for the basis BS the

asymptotic orthonormality property and also a positivity property (BS||BS)⊆R
+
C [[v

−1]].

Similarly, Lemma 5.3.8.a) implies that for bi ∈ Be one has (b1‖b2) = [RHom(b1, b2)],

because βe fixes b2. The properties of the Gm-grading of A imply that the Gm-grading

on Ext•A[
⊕
i

L̃S
i ,
⊕
i

L̃S
i )] has no positive Gm-degrees and the component of degree zero is

spanned by identity maps. This is the same as as saying that if X∗(C)b1 6= X∗(C)b2 then

[RHom(b1, b2)] ∈ v−1RC [[v
−1]] and if b1 = b2 then [RHom(b1, b2)] ∈ 1 + v−1RC [[v

−1]].

(B) Since βS fixes ẼSj,µ, Lemma 5.3.8.b) and Calabi-Yau property of g̃ give

(L̃i,λ‖Ẽ
S
j,µ) = [RHom(L̃i,λ, Ẽ

S
j,µ)] = [RHomk

(
RHom(ẼSj,µ, L̃i,λ⊗ΩS̃k,e

′[dim S̃k,e
′
]), k

)
]

=
(
v2 dimBe [RHom(ẼSj,µ, L̃i,λ)]

)v
= v−2 dimBe [kδijδ

λ
µ ] = δijδ

λ
µ v

−2dimBe.

(C) In (A) we have already checked that (BS‖BS) ⊆R
+
C [[v

−1]]. Recall that ẼSi,λ was

constructed so that on S̃k,e
′
∩ B̂k,e it coincides with a certain projective exotic object

Ẽi,λ ∈ Ecoh
C̃(B̂k,e) (see 5.3.3). So, because βS fixes ẼSj,µ, Lemma 5.3.8.c) gives

∇e(Ẽ
S
i,λ‖Ẽ

S
j,µ) = [RHom(Ẽi,λ, Ẽj,µ)

L
⊗O(ê)ke] = [RHom(Ẽi,λ, Ẽj,µ

L
⊗O(ê)ke)].

Here, Ẽj,µ
L
⊗O(ê)ke is exotic, i.e., under the equivalence Db(Coh(g̃)) ∼= Db(modfg(A))

(restricted to B̂k,e), the object Ẽj,µ
L
⊗O(ê) ke corresponds to a module rather than a

complex of modules. The reason is that the algebra A is flat over O(g) (see Lemma

1.5.3), hence the same is true for its projective modules. Therefore, the result is just

[Hom(Ẽi,λ, Ẽj,µ
L
⊗O(ê)ke)] which lies in R+

C [v
±1]. However, as ∇e ∈ 1 + v−1RC [v

−1] ([Lu,

Lemma 3.2]), from (BS‖BS) ⊆R
+
C [[v

−1]] we now get ∇e(BS‖BS) ⊆R
+
C [v

−1].

The second claim follows from asymptotic orthonormality from (A) and the fact

(KC̃(B′
k,e)‖K

C̃(B′
k,e)) ⊆RC̃ which is checked in [Lu].
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(D) Recall from 5.2.2 that for a certain z ∈ Z(G) the element m = (φ(−1)z,−1)

of C̃ acts trivially on g̃. This implies that it acts on any Ẽi,λ by a scalar εi,λ.
(21) For

ν ∈ X∗(C) and d ∈ Z the coefficient of vd in cνb1,b2 ∈ Z[v±1] is the dimension of

HomC̃ [Ẽi,λ, Ẽj,µ+ν(d)
L
⊗O(g)ke]. If this is not zero then (−1)d = εj,µ+νε

−1
i,λ since m ∈ C̃

acts on Hom[Ei,λ, Ẽj,µ+ν(d)
L
⊗O(g)ke] by (−1)dεj,µ+νε

−1
i,λ .

(E) The normalization property is a part of the definition of BS in 5.3.3, and we have

already checked that BS satisfies all other properties. Any RGm
-basis B of KC̃(S̃k,e

′
)

which is pointwise fixed by βS and satisfies asymptotic orthonormality is of the form

ǫbb, b ∈ BS, for some ǫ ∈ {±1}, this much was established immediately after the state-

ment of Proposition 5.3.6. If B satisfies normalization property then ǫi0 = 1. Now

either of positivity properties for the pairing ( ‖ ) implies ǫ = 1. The reason is that

the equivalence relation ∼ on BS generated by b1 ∼ b2 if (b1‖b2) 6= 0, is transitive

since (ẼSi,λ‖Ẽ
S
j,µ) 6= 0 is equivalent to Hom

Db[CohC̃(S̃k,e
′
)]
(ẼSi,λ‖Ẽ

S
j,µ) 6= 0 and the category

EcohC(S̃k,e
′
) is indecomposable (because DbCoh(X) is indecomposable for a connected

variety X and DbCoh(S̃k,e
′
) ∼= Db[modfg(AS)] ∼= Db[EcohC(S̃k,e

′
)]). Notice also that the

last claim is equivalent to indecomposability of EcohC(B̂k,e) and then the corresponding

statement in representation theory is well known (see [BG]).

(F) The equivalence EcohC(B̂k,e)
ιe−→ modfg(U 0̂

k,ê, C) from Theorem 1.6.7(c) provides com-

patible bijections (of isomorphism classes) of irreducibles and indecomposable projectives

and an isomorphism KC(B̂k,e)
ιe−→
∼=
K0[modfg(U 0̂

ê , C)] which we can view as KC(Bk,e)
ιe−→
∼=

K0[modfg(U 0̂
e , C)]. The list of irreducibles and their projective covers in EcohC(B̂k,e)

is given by images Li,λ, Ei,λ of the corresponding objects L̃i,λ, Ẽi,λ of EcohC̃(B̂k,e), and

we denote by Li,λ, Ei,λ their images in modfg(U 0̂
k,ê, C). The projective cover of Li,λ in

modfg(U 0̂
k,e, C) is the restriction Ei,λ

L
⊗O(ê)ke. So, it remains to notice that the K-class of

the restriction Ẽi,λ⊗O(ê)ke is ∇v

e[Ẽ
S
i,λ]. This calculation we repeat from part (c) of 5.4.2.

We use an intermediate object (Ẽi,λ)o ∈ Ecoh(S̃k,e), by its definition Ẽi,λ|Sk,e
= (Ẽi,λ)o|B̂k,e

,

21If G coincides with its adjoint quotient G then m
2 = 1, so since Ẽi,λ is indecomposable the claim is

true and εi,λ = ±1. By definitions in 5.3.1-5.3.3 if G is replaced by its adjoint quotient G the collections

Ei, Ẽi, i ∈ Ie, do not change, and if C is the image of C in G then BG def
= {Ẽi,λ; i ∈ Ie, λ ∈ X∗(C)} and

the corresponding object for G are related by BG ∼= BG×X∗(C)X
∗(C). This implies the general case. We

also see that εi,λ = εi,0 〈λ,m〉.
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so one gets Ẽi,λ|e = (Ẽi,λ)o|e, hence [Ẽi,λ|e ] = [(Ẽi,λ)o|e ] = Zg(f)
∗ [(Ẽi,λ)o]. Also, ẼSi,λ =

(Ẽi,λ)o⊗O(h)k0 gives [ẼSi,λ] = h∗ [(Ẽi,λ)o], hence [Ẽi,λ|e ] = Zg(f)
∗ h∗ −1[ẼSi,λ] = ∇

v

e[Ẽ
S
i,λ].

(G) In order to avoid the dg-setting,(22) we will pass here from exotic sheaves to A-modules

by means of the equivalence Db[CohT (B̂k,e)]
A
−→
∼=
Db[modT,fg(Ak,ê)], A

def
= RHom(E|

B̂k,e
,−),

where T could be {1}, C or C̃.

Let us start with the non-equivariant statement, i.e., Hom in U 0̂
k,ê-modules. We are really

interested in the composition of equivalences modfg(U 0̂
k,ê)
∼= Ecoh(B̂k,e)

F
−→
∼=
modfg(Ak,ê),

due to compatibility with the action of O(g×h/Wh) it restricts to an equivalence

modfg(U 0̂
k,e)
∼= modfg(Ak,e).

We will start as in (C), so Ẽj,µ
L
⊗O(g)ke is an exotic sheaf and

∇e(Ẽ
S
i,λ‖Ẽ

S
j,µ) = [RHom

B̂k,e
(Ẽi,λ, Ẽj,µ

L
⊗O(g)ke)] = [RHomAk,ê

(FẼi,λ,FẼj,µ
L
⊗O(g)ke)].

By adjunction in sheaves of A-modules,

∇e(Ẽ
S
i,λ‖Ẽ

S
j,µ) = RHomAk,e

(FẼi,λ
L
⊗O(g)ke,FẼj,µ

L
⊗O(g)ke)].

So, the evaluation∇e(ẼSi,λ‖Ẽ
S
j,µ)(1C , 1Gm

) is the image of HomAk,e
(FẼi,λ

L
⊗O(g)ke,FẼj,µ

L
⊗O(g)ke)

in K0(modfg(k)), i.e., the dimension of this vector space.

It remains to notice that FẼi,λ⊗O(g)ke is a projective cover of FL̃i,λ in modfg(Ak,e). Since

FẼi,λ is a projective cover of FL̃i,λ in modfgAk,ê, it is projective over k, hence

F(Ẽi,λ
L
⊗O(g)ke) ∼= FẼi,λ

L
⊗O(g)ke

∼= FẼi,λ⊗O(g)ke.

Since AL̃i,λ is irreducible in mod(A|ê), it is supported scheme theoretically on e, therefore

we find by adjunction that FẼi,λ⊗O(g)ke is a projective cover of FL̃i,λ in modfgAk,e.

If one is interested in maps in modfg(U 0̂
e , C) only, one uses equivariant equivalences

modfg(U 0̂
k,ê, C)

∼= EcohC(B̂k,e)
F
−→
∼=
modC,fg(Ak,ê) and one also needs to take C-invariants

in the above calculation. This has the effect of applying ∂ to ∇e(ẼSi,λ‖Ẽ
S
j,µ). �

22The above localization of A0
k,ê-modules to coherent sheaves on B̂k,e

′

specializes to a localization of

the category of A0
k,e-modules on the Springer fiber, however one is forced to use the dg-version of the

Springer fiber B′

k,e [Ri2].
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5.5. Koszul property. This subsection is not used in the rest of the text. Set Ae =

End(⊕ESi ) where the vector bundles ESi on S̃k,e
′
are as above. The Gm-equivariant struc-

ture ẼSi on ESi introduced in 5.3.3 equips Ae with a grading.

Proposition. Properties i⋆, ii⋆ of 5.3.2 imply that the graded algebra Ae is a Koszul

quadratic algebra.

Proof. (23) For two graded modules M , N over Ae let Ext
i
j(M,N) denote the component

of inner degree j in ExtiAe
(M,N). Then i⋆, ii⋆ imply that Extij(L̃1, L̃2) = 0 for j < i

where L̃1, L̃2 are irreducible graded Ae-modules concentrated in graded degree zero.

The canonical line bundle of S̃ ′
e admits a trivialization which transforms under the action

of Gm by the 2de-th power of the tautological character. So, Serre duality shows that for

finite dimensional graded Ae modules we have

Extij(M,N) = Ext2de−i
2de−j(N,M)∗.

Thus we see that Extij(L̃1, L̃2) = 0 for j 6= i, which is one of characterizations of Koszul

algebras.

5.5.1. Remark. For e = 0 the work of S. Riche [Ri2] provides a representation theoretic

interpretation of the algebra κ(Ae) which is Koszul dual to Ae. It would be interesting

to generalize this to nonzero nilpotents.

When e is of principal Levi type, the relation between the parabolic semi-infinite module

over the affine Hecke algebra and K(CohC̃(S̃ ′
e)) (see [Lu], sections 9, 10) suggests that the

category of κ(Ae)-modules can be identified with the category of perverse sheaves on the

parabolic semi-infinite flag variety of the Langlands dual group. For e = 0 this follows

from the result of [ABBGM] compared with [Ri2].

6. Grading that satisfies property (⋆)

In subsection 6.1 we reduce verification of property (⋆) (see 5.3.2), to the case of a

characteristic zero base field. From then on until the end of the section we work over the

field k = Q̄l of characteristic zero.

23The proof is due to Dmitry Kaledin.
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Our goal is to construct a Gm-equivariant structure on projective exotic sheaves that

satisfies property (⋆). For this we use a derived equivalence between the category of

G-equivariant coherent sheaves on Ñ and of certain perverse constructible sheaves on

the affine flag variety F l. In the new setting the Gm-structure is related to Frobenius

(Weil) structure on l-adic sheaves, which we choose to be pure of weight zero. In 6.2 we

compare the exotic t-structure on coherent sheaves to the standard t-structure on perverse

constructible sheaves on F l, this involves a new notion of perversely exotic G-equivariant

coherent sheaves. In 6.3 we reduce (⋆) to a property (⋆⋆⋆) which is stated in terms of

G-equivariant sheaves. Finally, in 6.4 we verify (⋆⋆⋆).

6.1. Lusztig’s conjectures for p≫ 0.

6.1.1. Proposition. If (⋆) holds in characteristic zero, it holds for almost all positive char-

acteristics.

Proof. By Proposition 5.2.3(c) the choice of a graded lift of indecomposable projectives

and irreducibles in characteristic zero defines such a choice in almost all prime charac-

teristics. We claim that the required properties are inherited from characteristic zero to

almost all prime characteristics. Indeed, the fact that the given choice of graded lifts

satisfies the positivity requirement amounts to vanishing of the components of negative

degree in the Hom space between indecomposable projective modules. Since the sum of

these components is easily seen to be a finite R′ module (here we use the fact that this

Hom space is a finite module over the center O(S̃e

′

R′)), it vanishes after a finite localiza-

tion provided that its base change to a characteristic zero field vanishes. Invariance of the

graded lifts under the action of the centralizer clearly holds in large positive characteristic

if it holds in characteristic zero (notice that the centralizer acts on the set of isomorphism

classes of (graded) modules through its group of components, which is the same in almost

all characteristics).

Uniqueness of the graded lifts with required properties amounts to non-vanishing of com-

ponents of degree minus one in Ext1 between certain pairs of irreducibles (see the proof of

6.2.1 below). After possibly replacing R′ with its localization we can assume that Ext1 be-

tween the ”extended irreducible” modules over R′ are flat over R′, thus dimensions of each

graded component in Ext1 between the corresponding irreducibles over every geometric

point of R′ is the same. �
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6.1.2. The final form of the results. Since (⋆) for k = C will be established in the remain-

der of this section, the proposition implies that there exists a quasifinite R-domain R′

such that for all geometric points k of R′ property (⋆) holds and therefore so do all claims

(A)-(G) from Proposition 5.3.6. In particular this establishes the following version of

Lusztig conjectures.

Theorem. (1) Conjectures 5.12, 5.16 of [Lu] (existence of certain signed bases of K-groups

of complex schemes BC,e and S̃C,e
′
) hold.

(2) The part of Conjecture 17.2 of loc. cit. concerning modular representations holds for

all finite characteristic geometric points k of R′.

6.2. Perverse t-structures on A0-modules. Recall that the triangulated category

Db[CohG(N )] carries a certain t-structure called perverse coherent t-structure of mid-

dle perversity [B6] (see also [ArinB] for the general theory of such t-structures). As

above let A0 be End(E|Ñ ) for the vector bundle E from Theorem 1.5.1. This is a O(N )-

algebra equipped with a G × Gm-action. This allows us to define a perverse coherent

t-structure T G

pc (A
0) of middle perversity on Db[modG,fg(A0)] where G is one of the groups

G,G×Gm or G. These are characterized by the requirement that the forgetful functor to

Db[CohG(N )] is t-exact when the target category is equipped with the perverse coherent

t-structure of middle perversity.

Recall the equivalence of derived categories of coherent and constructible sheaves

Φ : Db(CohG(Ñ ))−→
∼=
Db(PervF l), (17)

constructed in [ArkB], where Db(PervF l) is the derived category of anti-spherical perverse

sheaves on the affine flag variety of the dual group.

6.2.1. Theorem. The composed equivalence ΦA0

ΦA0
def
= [ Db(modG,fg(A0))−→

∼=
Db(CohG(Ñ ))

Φ
−→
∼=
Db(PervF l) ].

sends the perverse coherent t-structure of middle perversity T G
pc (A

0) to the tautological

t-structure on Db(PervF l).

Proof. In Lemma 6.2.4 below, we show that the t-structure on Db(CohG(Ñ )) that comes

from Db(PervF l) satisfies a certain property and in Lemma 6.2.3 we show that the only
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t-structure on Db(CohG(Ñ )) that could satisfy this property is the one coming from the

t-structure T G
pc (A

0) on Db[modG,g(A0)].

6.2.2. Perversely exotic t-structures. We will say that a t-structure on a triangulated

category C is compatible with a thick triangulated subcategory C′ if there exist t-structures

on C′, C/C′ such that the embedding and projection functors are t-exact (cf. [BBD]).

Inductively one extends this definition to the definition of a t-structure compatible with

a filtration by thick triangulated subcategories.

By a support filtration on Db(CohG(Ñ )) we will mean the filtration by full subcategories

of complexes supported (set theoretically) on the preimage of the closure of a given G

orbit in N (we fix a complete order on the set of orbits compatible with the adjunction

partial order).

Finally, we say that a t-structure on Db(CohG(Ñ )), is perversely exotic if it is

(1) compatible with the support filtration;

(2) braid positive (see 1.4.1);

(3) such that the functor π∗ is t-exact when the target category Db(CohG(N )) is

equipped with perverse coherent t-structure of middle perversity.

Uniqueness of such t-structure follows from:

6.2.3. Lemma. A perversely exotic t-structure T on Db(CohG(Ñ )) corresponds under

the equivalence Db(CohG(Ñ )) ∼= Db[modG,fg(A0)] to T G
pc (A

0), the perverse coherent t-

structure of middle perversity.

Proof. It is a standard fact that for a triangulated category C, a thick subcategory C′ and

t-structures T ′ on C′, T ′′ on C/C′ a t-structure T on C compatible with T ′, T ′′ is unique if

it exists. Thus uniqueness of an exotic t-structure implies uniqueness of perversely exotic

t-structure.

On the other hand, the t-structure corresponding to T G
pc (A

0) is perversely exotic as is clear

from the fact that the t-structure corresponding to the tautological one onDb(modG,fg(A))

is exotic (the last fact is the definition of A as endomorphism of the exotic tilting generator

E). �
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6.2.4. Lemma. The t-structure on Db(CohG(Ñ )) which under the equivalence [ArkB]

corresponds to the perverse t-structure on Db(PervF l), is perversely exotic.

Proof. Properties (1) and (3) are satisfied by [ArkB], Theorem 4(a) and Theorem 2

respectively. We now deduce property (2) from the results of [B4]. In loc. cit. it is shown

that the t-structure corresponding to the one of PervF l can be characterized as follows:

D≥0 = 〈∆λ[−d]〉d≥0, λ∈Λ and D≤0 = 〈∇λ[d]〉d≥0, λ∈Λ,

where 〈 , 〉 denotes the full subcategory generated under extensions and ∆λ, ∇λ, λ ∈ Λ,

are certain explicitly defined objects in Db(CohG(Ñ )).

Moreover, one can deduce from [B4, Proposition 7] that ∇λ = w̃λ(O), ∆λ = w̃−1
λ O

where wλ is any representative of the coset λW ⊂ Waff and w̃ denotes the canonical

representative in Baff of w ∈ Waff .

Now Proposition 2.1.2(a) yields exact triangles available for any F ∈ Db(CohG(Ñ )):

s̃α
−1F → s̃αF → F ⊕ F [1].

Thus if ℓ(sαwλ) < ℓ(wλ) (where ℓ is the length function on Waff ), then s̃α
−1∇λ = ∇sαλ.

so we have an exact triangle:

∇sαλ → s̃α(∇λ)→∇λ ⊕∇λ[1],

which shows that s̃α∇λ ∈ D≤0. Also, if ℓ(sαwλ) > ℓ(wλ), then s̃α∇λ
∼= ∇sα(λ). Thus

s̃α : D≤0 → D≤0 which implies braid positivity property (2). �

6.2.5. Remark. A more conceptual proof of braid positivity property (2) in the last lemma

follows from the paper [B5] (in preparation; see announcement in [B3]). It permits to

relate the Baff action described above to a standard action on the category of constructible

sheaves on the affine flag space F l. In the latter case the generator s̃α acts by convolution

with a constructible sheaf jsα∗ (in the notations of, say, [ArkB]), i.e. the ∗ extension of

the constant sheaf shifted by 1 on the Iwahori orbit corresponding to sα. It is well known

that convolution with such a sheaf is right exact with respect to the perverse t-structure

(see e.g. [BeBe2]).

In fact, these considerations have led us to the notion of a braid positive t-structure,

which was introduced as a way to relate modular representations to perverse sheaves on
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the affine flag space. We have chosen to present the above ad hoc argument to minimize

references to yet unpublished results.

6.3. Reduction to a Ge-equivariant setting. We consider the algebra A0
e

def
= A0⊗Og

ke.

It is graded by means of the action of Gm⊆C̃ as above.

6.3.1. Reduction to a property of A0
e-modules.

Lemma. Property (⋆) follows from:

(⋆⋆) there exists a Ge-invariant choice of a graded lifting L̃ for every irreducible repre-

sentation L of A0
e, such that:

(1) Components of nonnegative weight in Ext1mod(A0
e)
(L̃1, L̃2) vanish for Li ∈ Irr(A0

e).

(2) Consider the preorder on the quotient of the set of irreducible representations of

A0
e by the action of Ge, generated by: α1 ≤ α2 if for some representatives Li of αi

the component of degree –1 in Ext1mod(A0
e)
(L̃1, L̃2) does not vanish. This preorder

is actually a transitive equivalence relation, i.e. α1 ≤ α2 for all αi ∈ Irr(A0
e)/Ge.

Proof. (i) Existence. Set A0
S = A0 ⊗Og

O(Sk,e). Then we have Db[modfg(A0
S)]
∼=

Db(Coh(S̃k,e)) and the same holds with equivariance under Gm or C̃. Recall that (⋆) (see

5.3.2, involves a Ge,h-invariant choice of graded liftings ẼSi of exotic sheaves ESi , i.e., a

Ge,h-invariant choice of graded liftings of indecomposable projective A0
S-modules. This

is equivalent to a Ge,h-invariant choice of graded liftings L̃i of irreducible modules Li

supported at e.

Since (⋆⋆) provides a choice with stronger equivariance, it remains to check that the

choice of L̃i satisfying the vanishing property (1) of (⋆⋆) yields a choice of ẼSi satisfying

the vanishing requirements of (⋆), i.e., ⊕i,j Hom
Coh(S̃k,e

′
)
(ẼSi , Ẽ

S
j ) has no negative Gm

weights and zero weights are spanned by identity maps. By a standard argument this

property from (⋆) is equivalent to saying that

Ext1A0
Se
(L̃i, L̃j(d)) = 0 for d ≥ 0.

If Li 6∼= Lj then any A0
S-module which is an extension of Li by Lj is actually an A0

e module,

because the action of a regular function on Sk,e vanishing at e on such an extension factors

through a map Li → Lj , such map is necessarily zero. On the other hand, if Li
∼= Lj and
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an extension 0 → Lj → M → Li → 0 is such that M does not factor through A0
e, then

some function as above induces a nonzero map Li → Lj . Since Gm acts on the ideal in

O(Sk,e) by positive weights, we see that the class of the extension has negative weight.

(ii) Uniqueness. Finally, we will see that the uniqueness statement in (⋆) follows from

property (2). Any graded lifting of Li’s is of the form L̃i(di) for some integers di. If it

satisfies the requirements, then di is clearly monotone with respect to our preorder. Thus

property (2) implies that di = dj for all i, j. �

6.3.2. Category modGe,fg(A0
e) of Ge-equivariant A

0
e-modules. Notice that modGe,fg(A0

e)
∼=

modG,fg(A0|Oe), where Oe is the G-orbit of e and the category in the right hand side is

the category of equivariant quasicoherent sheaves of modules over the sheaf of algebras

A0|Oe. This category has a graded version modG,fg(A0|Oe), compatible with the graded

version modG,fg(A0) ∼= Db[CohG(Ñ )] considered above. In terms of the stabilizer Ge of e

in G this is modGe,fg(A0
e).

Tensor category Rep(Ge) clearly acts on the categorymodGe,fg(A0
e) where for V ∈ Rep(Ge)

and M ∈ modGe,fg(A0
e) one equips the tensor product V ⊗M with the diagonal action of

Ge. We will now see that a tensor subcategory Repss(Ge) of semisimple representations

of Ge acts on mod
Ge,fg(A0

e).

We use morphisms SL2
ϕ
−→G and Gm

i
−→G, i(t) = (φ(t), t−1), chosen in 5.2.2. Notice that

(g, t) ∈ G = G×Gm lies in Ge iff e = t2·ge = gφ(t)e, i.e., gφ(t) ∈ Ge. So, Ge contains

Ge·i(Gm) and this is equality since g̃ = gφ(t) ∈ Ge implies that (g, t) = (g̃, 1)·i(t−1). We

have exact sequence 0 → Gm⊆Ge
p
−→Ge → 0 for p(g, t) = gφ(t) and maximal reductive

subgroups of Ge and Ge can be chosen as the stabilizer Gϕ = ZG(Im(ϕ)) of ϕ in G and

Gϕ·i(Gm). Now Gϕ·i(Gm)
p
−→Gϕ gives a tensor functor

Repss(Ge) ∼= Rep(Gϕ)
p∗

−→ Rep[Gϕ·i(Gm)]
∼=
←−Repss(Ge).

Lemma. (a) For any M ∈ IrrGe(A0
e), restriction to A0

e is a multiple of a sum over some

Ge-orbit OM in Irr(A0
e).

(b) For M1,M2 ∈ IrrGe(A0
e), the space HomA0

e
(M1,M2) is a semi-simple Ge-module.

Proof. (a) For an irreducible A0
e-module L denote by Ge,L ⊂ Ge the stabilizer of the

isomorphism class of L. Then Ge,L is a finite index subgroup in Ge, and L can be
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equipped with a compatible projective action of Ge,L, i.e., an action of a central extension

0→ AL → Ge,L → Ge,L → 0 by a finite abelian group AL.
24

The subgroup AL acts on L by a character χL. For any irreducible representation ρ of

Ge,L, with AL acting by χ−1
L , we get an irreducible object ρ⊗ L in modGe,L(A0

e).

Then IndGe
Ge,L

(ρ⊗L) is an irreducible object of modGe(A0
e), and all irreducible objects M

arise this way.

Now for M = IndGe
Ge,L

(ρ⊗ L), we have

M |A0
e
=

⊕

g∈Ge/Ge,L

gρ⊗ gL|A0
e
∼= k⊕ dim(ρ)⊗

⊕

K∈Ge·L

K

To check (b) observe that HomA0
e
(M1,M2) = 0 if OM1 6= OM2 . Thus assume that OM1 =

OM2 is the orbit of L ∈ Irr(A0
e)), then we get:

⊕

g,h∈Ge/Ge,L

Homk[
gρ,h ρ]⊗HomA0

e
(gL,h L) =

⊕

g∈Ge/Ge,L

Homk[ρ, ρ] = IndGe
Ge,L

Endk[ρ].

Since ρ is a semisimple Ge,L-module, Endk(ρ) is a semisimple Ge,L module. As Ge,L has

finite index in Ge, it follows that Ind
Ge
Ge,L

Endk[ρ] is also semisimple.

6.3.3. Reduction to a property of Ge equivariant A0
e-modules.

Lemma. (⋆⋆) follows from the following.

(⋆⋆⋆) there exists a choice of a graded lifting L̃ ∈ modGe(A0
e) for every irreducible object

L of modGe(A0
e), such that:

• (0⋆⋆⋆) For L ∈ IrrGe(A0
e) and any irreducible representation V of Ge we have

V ⊗ L̃ ∼=
∑
L̃i for some Li ∈ Irr

Ge(A0
e).

• (1⋆⋆⋆) components of nonnegative weight in Ext1A0
e
(L̃1, L̃2) vanish for L1, L2 ∈

IrrGe(A0
e).

• (2⋆⋆⋆) Consider the preorder ≤ on the set of irreducible objects in modGe(A0
e)

generated by: L1 ≤ L2 if component of degree (−1) in Ext1A0
e
(L̃1, L̃2) does not

vanish. This partial preorder is actually a transitive equivalence relation, i.e.

L1 ≤ L2 for all (L1, L2).

24V. Ostrik has informed us that he can prove that in fact this extension can be assumed to be trivial
provided G is simply connected. (An equivalent statement is that the set of ”centrally extended points”
appearing in [BO] is actually a plain finite set with a Ge action.) We neither prove nor use this fact here.
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Proof. Property (0⋆⋆⋆) is equivalent to saying that for Li ∈ IrrGe(A0
e), the multiplica-

tive group Gm acts trivially on HomA0
e
(L̃1, L̃2). Indeed, if (0⋆⋆⋆) holds then Gm acts

trivially on HomA0
e
(L̃1, L̃2), because for any σ ∈ Irr(Ge), HomGe [σ,HomA0

e
(L1, L2)] =

HommodGe (A0
e)
(σ ⊗ L1, L2) and σ⊗L̃1 is a sum of L̃’s.

Consequently, a choice of graded lifts of Ge equivariant irreducibles defines uniquely a

choice of graded lifts of irreducible A0
e modules, such that the forgetful functor sends the

graded lift of an equivariant irreducible M̃ to a sum of graded lifts of non-equivariant

irreducibles L̃i.

It is clear that Ge permutes the isomorphism classes of those L̃i.

Suppose that Ext1(L̃1, L̃2(d)) 6= 0, for some L1, L2, d > 0. Fix M1,M2 such that L1, L2

are direct summands in M1, M2 considered as A0
e modules. Then Ext1A0

e
(M1,M2(d)) 6= 0.

The space Ext1A0
e
(M1,M2) carries a (not necessarily semi-simple) Ge action, and

for an irreducible representation ρ of Ge we have an embedding of graded spaces

Hom(ρ,Ext1A0
e
(M1,M2)) → Ext1modGe (A0

e)
(ρ ⊗ M1,M2). The latter embedding can be

obtained as follows: given an element in the source space we get an extension of A0
e

modules 0 → M2 → M → ρ ⊗M1 → 0. Twisting this module by z ∈ Ge we obtain an

isomorphic extension; since HomA0
e
(M1,M2) = 0 we actually get a unique isomorphism

Mz ∼= M compatible with the given equivariant structures on ρ ⊗M1, M2. Thus we get

a Ge equivariant structure on M .

Since Gm acts on the Lie algebra of the unipotent radical of Ge by positive weights, the

Ge submodules generated by the degree d components in Ext1A0
e
(M1,M2) is concentrated

in positive degrees. This subspace has an irreducible subrepresentation ρ, which pro-

duces a nonzero Ext1(ρ⊗M1,M2) of positive degree contradicting properties (0⋆⋆⋆),(1⋆⋆⋆).

To prove property (2⋆⋆⋆) it is enough to show that if M1, M2 are irreducible objects

in modGe(A0
e) such that HomA0

e
(M1,M2) = 0, and Ext1modG(A0

e)
(M̃1, M̃2(1)) 6= 0, then

Ext1modGm (A0
e)
(M̃1, M̃2(1)) 6= 0. It suffices to check that applying the forgetful functor

modGe(A0
e) → mod(A0

e) to a nontrivial extension 0 → M2 → M → M1 → 0 we get a

nontrivial extension. However, if there exists an A0
e invariant splitting M1 → M , then

its image has to be invariant under Ge, since HomA0
e
(M1,M2) = 0 and the isomorphism

class of the A0
e-module M1 is Ge invariant. Thus existence of a non-equivariant splitting

implies the existence of an equivariant splitting. �
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6.4. End of the proof. Here we prove (⋆⋆⋆), the proof is based on the equiv-

alence Φ : Db[CohG(Ñ )]−→
∼=
Db(PervF l)) from [ArkB], which we use in the form

ΦA0 : Db[modG,fg(A0)]−→
∼=
Db(PervF l) (see Theorem 6.2.1).

6.4.1. The choice of grading. Equivalence ΦA0 makes category modGe,fg(A0
e) =

CohG(A0|Oe) a full subcategory in a Serre quotient category of PervF l. We will now

show that property (⋆⋆⋆) holds when the graded lifting L̃ of irreducibles L in modGe(A0
e)

is chosen so that it corresponds to pure Weil structure of weight zero. What is meant by

this is the following.

First, it is shown in [ArkB] that the Frobenius functor corresponding to a finite field Fq on

the perverse sheaves category, corresponds to the functor G 7→ q∗(G) on coherent sheaves,

where q : Ñ −→Ñ by q(b, x) = (b, qx). The same then applies to F ∈ Db[modG,fg(A0)]

with q : N −→N by q(x) = q·x.

Thus, for a perverse coherent sheaf F of A0-modules, a Weil structure on the perverse

sheaf ΦA0F is the same as an isomorphism F−→
∼=
q∗(F). In particular this shows that

any Gm-equivariant structure on F defines a Weil structure on ΦA0F . Notice that the

resulting functor from Db(CohG×Gm(Ñ )) to Weil complexes on F l sends the twist by the

tautological Gm character M 7→ M(1) to the square root of Weil twist F 7→ F (1
2
) acting

on Weil sheaves.

M(1) here stands for the graded module M(1)i =M i+1. This functor is compatible with

the functor F 7→ F(1
2
) on Weil perverse sheaves under the equivalence (17).

It is shown in [B4] that when ΦA0F is an irreducible perverse sheaf, any Gm-equivariant

structure on F induces a pure Weil structure on ΦA0F and there is a unique Gm-

equivariant structure on F such that the corresponding Weil structure on ΦA0F is pure

of weight zero.25 It is also proven in loc. cit. that for F ,G ∈ Db(CohG×Gm(Ñ )) the

isomorphism

HomDb(CohG(Ñ ))(F ,G)
∼= HomDb(PervFl)(Φ(F),Φ(G))

takes the grading induced by the Gm-equivariant structure into the grading by Frobenius

weights.

25[B4] provides also a more direct way to describe the resulting G×Gm equivariant sheaves.
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6.4.2. Property (1⋆⋆⋆) and Purity Theorem. Purity Theorem of [BBD] implies that Ext1

between two pure weight zero Weil sheaves in PervF l has weights < 0. Thus for the above

graded lifts L̃ of irreducible equivariant perverse coherent sheaves of A0-modules, Ext1

between two such objects has weights < 0. It is not hard to check that this property is

inherited by a quotient category, thus property (1⋆⋆⋆) follows.

6.4.3. Property (2⋆⋆⋆) and definition of cells. Property (2⋆⋆⋆) says that for any L, L′ in

IrrGe(A0
e), there exists a sequence of irreducible objects L0 = L, L1, . . . , Ln = L′ such

that the component of degree −1 in Ext1modGe (A0
e)
(Li−1, Li) is nontrivial.

Recall that by [ArkB, Theorem 4(a)] the support filtration on Db(CohG(Ñ )) is identified

with the (left) cell filtration on Db(PervF l). In particular the irreducible objects in

the subquotient piece of the filtration corresponding to a given nilpotent orbit Oe are

in bijection with elements in a canonical left cell in the two-sided cell in Waff attached

to Oe. Furthermore, the definition of a left cell implies the following. For any two

irreducible objects L, L′ in the same left cell, there exists a sequence of irreducible objects

L0 = L, L1, . . . , Ln = L′ such that for any step M = Li−1 and N = Li in the chain, there

is a simple affine root α such that N is a direct summand in the perverse sheaf π∗π∗M [1],

where π stands for the projection F l→ F lα to the partial flag variety of the corresponding

type.

This implies that π∗M is a semisimple perverse sheaf on F lα and that the relation of α

to M is such that we have a canonical extension of Weil perverse sheaves

0→ π∗π∗M [1](
1

2
) → F → M → 0. (18)

Here F = J∗
sα ⋆ M where ⋆ denotes the convolution of constructible sheaves on F l and

J∗
sα is the ∗ extension of the (pure weight zero perverse) constant sheaf on the Schubert

cell corresponding to sα.

So, it suffices to see that in each of the above steps the component of degree −1 in

Ext1Perve
Fl
(M,N) is nontrivial, where PerveF l

def
= PervF l/Perv

<e
F l for the Serre subcategory

Perv<e
F l generated by irreducible objects belonging to smaller cells. Exact sequence (18)

gives

HomPerve
Fl
[F , N ] −→HomPerve

Fl
[π∗π∗M [1](

1

2
), N ] −→Ext1Perve

Fl
[M,N ].

The middle term is nonzero since N is a summand of π∗π∗M [1]. It has weight −1 because

M,N are pure of weight zero, hence π∗π∗M [1] and HomPerve
Fl
[π∗π∗M [1], N ] are also pure
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of weight zero. So it suffices to see that

HomPerve
Fl
(F , N) = 0. (19)

To check (19) notice that a nonzero element of the Hom space corresponds to a quotient

F ′ of F in PervF l, such that the only irreducible constituent of F ′ which does not belong

to Perv<e(F l) is N . Since M is not in Perv<e(F l), the exact sequence (18) shows that

such quotient F ′ is necessarily of the form π∗F ′′[1] for some semi-simple perverse sheaf

F ′′ on the partial affine flag variety F lα. We have:

Hom(F , π∗F ′′[1]) = Hom(F , π!F ′′[−1]) = Hom(π∗F ,F
′′[−1])

= Hom(π∗M [1],F ′′[−1]),

where we used the identity π∗(J
∗
sα ⋆ G) = π∗G[1] for G = M . Finally, since π∗M and F ′

are perverse sheaves Hom(π∗M [1],F ′′[−1]) = Ext−2(π∗M,F ′′) = 0.

6.4.4. Property (0⋆⋆⋆) and Gabber’s theorem. Property (0⋆⋆⋆) claims that the class of

semisimple objects ofmodGe,fg(A0
e) whose irreducible constituents are the particular lifts L̃

(chosen in 6.4.1) of irreducibles L inmodGe(A0
e), is invariant under the action ofRepss(Ge).

It is explained in [ArkB] that under the equivalence Φ : Db(CohG(Ñ ))−→
∼=
Db(PervF l),

the action G7→V⊗G of V ∈ Rep(G) on the source, corresponds on the target to the action

of a central functor ZV described in [Ga]. This is then also true for the equivalence

ΦA0 : Db(modG,fg(A0))−→
∼=
Db(PervF l). Since the central functors are defined by means of

a nearby cycles functor, thus they carry the canonical monodromy automorphism M.

To any M ∈ modGe,fg(A0
e) one associates a G-equivariant vector bundleM on the nilpo-

tent orbit Oe and its intersection cohomology extension IC(M) which lies in the heart

of the perverse t-structure of middle perversity on Db(modG,fg(A0)) and has support Oe

(see [ArinB]). We will denote IC(M) just by IC(M), then M 7→IC(M) is a bijection of

irreducibles in modGe,fg(A0
e) and those irreducibles in the heart of the perverse t-structure

that have support Oe (ibid).

For V ∈ Rep(G) we have V ⊗ IC(M) = IC(V |Ge⊗M). Moreover, for any semisimple

subquotient ρ of V |Ge, the tensor product ρ⊗M is semisimple, so IC(ρ⊗M) is semi-

simple. It is also a subquotient of V ⊗ IC(M) (ibid).
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The Ge-module V |Ge carries a nilpotent endomorphism given by the action of e and we

denote by F i(V ) the corresponding Jacobson-Morozov-Deligne filtration, and gri(V ) =

F i(V )/F i+1(V ). By definition of this filtration the graded pieces gri(V ) are semisimple

Ge-modules, thus IC(gri(V )⊗M) is a semisimple subquotient of V ⊗ IC(M).

Now we pass to Gm-equivariant objects. By the same formalism, if we start with M̃ ∈

modGe,fg(A0
e) with the underlying object M in modGe,fg(A0

e), we get a graded lift IC(M̃)

of IC(M) that lies in the perverse heart of Db(modG×Gm,fg(A0)). As was explained in

6.4.1, the Gm-equivariant structure M̃ induces a Weil structure on the perverse sheaf

ΦA0

(
IC(M)

)
; we will denote the corresponding Weil sheaf by ΦA0

(
IC(M̃)

)
. We will

combine this with the action of semisimple representations ρ of Ge on modGe,fg(A0
e) in

order to produce Weil sheaves ΦA0

(
IC(ρ ⊗ M̃)

)
. Now property (0⋆⋆⋆) is the part b) of

the following Lemma.

Lemma. Let M̃ ∈ modGe,fg(A0
e) be such that the Weil structure on ΦA0

(
IC(M̃)

)
is pure

of weight zero.

a) For any V ∈ Rep(G), the Weil structure on ΦA0

(
IC(gri(V )⊗ M̃)

)
is pure of weight i.

b) For any semisimple representation ρ of Ge the Weil structure on ΦA0

(
IC(ρ⊗ M̃)

)
is

pure of weight zero.

Proof. a) We consider the nilpotent endomorphism e of the Ge-module V |Ge⊗M given by

the action of e on V |Ge . It induces a nilpotent endomorphism of V⊗IC(M) = IC(V⊗M)

which can be used to define a Deligne-Jacobson-Morozov filtration on V⊗IC(M). The in-

duced filtration on the fiber V⊗IC(M)|e ∼= V |Ge⊗M is just the Deligne-Jacobson-Morozov

filtration for e because formation of Deligne-Jacobson-Morozov filtration commutes with

exact functors and restriction to e ∈ Oe is exact on perverse sheaves supported in Oe,

Thus the semi-simple subquotient IC(gri(V )⊗ M̃) of V⊗IC(M̃) is actually a subquotient

of gri(V⊗IC(M̃)).

According to [ArkB], e induces on

ΦA0

(
IC(V |Ge ⊗M)

)
= ΦA0

(
V⊗IC(M)

)
= ZV

(
ΦA0 IC(M)

)

the endomorphism given by the action of the logarithm of monodromy logM on the func-

tor ZV . Now the Lemma follows from Gabber’s Theorem asserting that the monodromy

filtration (i.e., the Deligne-Jacobson-Morozov filtration for the logarithm of monodromy)
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coincides with the weight filtration on the nearby cycles of a pure weight zero sheaf, cf.

[BeBe1].

b) Any irreducible representation ρ of Ge is a subquotient of V |Ge for some V ∈ Rep(G),

hence a subquotient of some gri(V |Ge). The definition of Deligne-Jacobson-Morozov fil-

tration implies that the natural Gm action on gri(V |Ge) is by the character t 7→ ti, so part

a) implies that the Weil sheaf IC(ρ⊗ M̃)(i) is a subquotient in gri(V⊗IC(M̃)). Thus

ΦA0

(
IC(ρ⊗ M̃)(i)

)
has weight i and then ΦA0

(
IC(ρ⊗ M̃)

)
has weight zero. �

Appendix A. Involutions on homology of Springer fibers

Our goal here is to prove equality (16) from 5.4.1. The result can be viewed as a gen-

eralization of the fact that a Chevalley involution (i.e. an involution which sends every

element of some Cartan subgroup to its inverse) sends every irreducible representation of

an algebraic group to its dual.

A.1. Cohomology of a Springer fiber as a module for the extended centralizer.

All cohomology spaces in this subsection are taken with coefficients in C in the classical

topology or coefficients in Q̄l in the l-adic setting.

Let ι be an involution of G which induces conjugation with w0 on the abstract Weyl group

(e.g. a Chevalley involution). Let
•

G denote the semi-direct product {1, ι}⋉G. It is well

known that ι as above is unique up to composition with an inner automorphism, thus the

group
•

G is defined uniquely (up to an isomorphism).

Fix a nilpotent e ∈ g and set de = dim(Be). Let Ge be the centralizer of e in G and
•

Ge be the stabilizer of e in
•

G. Set Γ = π0(Ge) and
•

Γ = π0(
•

Ge). It is easy to see that
•

Ge intersects the non-identity component of
•

G, thus
•

Γ/Γ ∼= Z2. Let ǫ be the nontrivial

character of
•

Γ/Γ.

The group
•

Ge acts on the Springer fiber Bk,e thus
•

Γ acts on its cohomology. We denote

this action by η. We consider also another action of
•

Γ on H∗(Bk,e): the two actions

coincide on the subgroup Γ⊆
•

Γ, while on elements of
•

Γ \ Γ they differ by the action of

w0 ∈ W (where W acts via the Springer representation). We denote this new action of
•

Γ

on H•(Bk,e) by ψ.
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Notice that unlike the original action, ψ commutes with the action of W in all cases.

Proposition. Let ρ be an irreducible constituent of the
•

Γ-module (H2i(Bk,e), ψ). Then

ρ⊗ ǫde−i is a constituent of (H2de(Bk,e), ψ).

Remark. Validity of the proposition for the groups such that w0 is central in W is equiv-

alent to the result of [Sp]. The method of [Sp] is based on Shoji’s orthogonality formula

for Green functions and is quite different from the present one.

Proof. It is well-known that any irreducible representation of Γ which occurs in H i(Bk,e)

for some i occurs also in Hde(Bk,e). Thus the Proposition follows from the following

Lemma. The extension
•

Γ acts on (H2i ⊗H2j)Γ by the character ǫ⊗ i+j .

Proof. We will deduce the lemma from some known properties of equivariant Borel-Moore

homology of the Steinberg variety of triples St
def
= Ñ ×g Ñ . Let H•

BM denote Borel-Moore

homology, i.e. derived global sections of the Verdier dualizing sheaf (for convenience we

use cohomological grading despite the term “homology”).(26)

It is well known (see e.g. [Lu1] Corollary 6.4 for a much stronger result) that

H2i,G
BM (St) ∼= C[W ]⊗ Symi+d(h∗),

where d = 2dimB and odd degree homology vanishes.

On the right hand side of the last isomorphism we have a natural action of W (by conju-

gation on the first factor and by the reflection representation on h∗) and of the group of

outer automorphisms of G. Standard considerations show that the automorphism ι ◦ w0

acts trivially on C[W ] and by (−1)i on Symi(h∗).

Let ̟ : St→ N be the projection. Let O be the G-orbit of e. We reduce the equivariance

of Borel-Moore homology from G to Ge

HG,i
BM(̟−1O) = H

Ge,i+2(d−2de)
BM (Bk,e

2),

and then to the maximal torus C in the identity component G0
e of Ge,

HGe,j
BM (Bk,e

2) = H
G0

e,j
BM (Bk,e

2)Γ and H
G0

e,j
BM (Bk,e

2) = HC,j
BM(Bk,e

2)W (G0
e).

26Since the Verdier dualizing sheaf admits a canonical lifting to the equivariant derived category,
equivariant Borel-Moore homology is also defined (cf. [Lu1, 1.1] for a slightly more elementary definition).
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Here W (G0
e) is the Weyl group of G0

e. Also, H
2k+1
BM (Bk,e

2) = 0 and

H∗(Bk,e
2) = H∗

C(Bk,e
2)⊗H•

C(pt) H
0(pt).

The last two isomorphisms follow from the existence of a C-invariant stratification of Bk,e

where each stratum Xi is a C equivariant vector bundle over a space Zi such that C acts

trivially on Zi and H
2k+1(Zi) = 0 [DLP].

In particular, odd degree components in HG
BM (̟−1O) vanish. This argument applies to

other orbits, thus we see that the Cousin spectral sequence for HG
BM(St) corresponding

to the stratification by the preimages of G-orbits under ̟ degenerates, thus we get a

canonical filtration on HG
BM (St) whose associated graded pieces are equivariant Borel-

Moore homology spaces of the preimages of G-orbits under ̟.

In particular, one of the pieces is HG
BM(̟−1O). The above isomorphisms show

that HBM(Bk,e
2)Γ = [HBM(Bk,e)⊗2]Γ is naturally a quotient of HG

BM (̟−1O). Thus

[HBM(Bk,e)⊗2]Γ is a subquotient of HG
BM(St).

For s ∈
•

Ge \ Ge the action of ψ(s) on HBM (Bk,e
2)Γ is clearly compatible with the action

of w0 ◦ ι on HG
BM (St). Thus the restriction of this action to [H2i

BM(Bk,e) ⊗ H
2j
BM (Bk,e)]Γ

equals (−1)i+j+d−2de+d = (−1)i+j .

However, since Bk,e is compact, Borel-Moore homology coincides with homology

H−k
BM(Bk,e) = Hk(Bk,e) = Hk(Bk,e)

∗,

which yields

ψ(γ)|[H2i(Bk,e)⊗H2j(Bk,e)]Γ = ǫ⊗i+j(γ) · Id for γ ∈
•

Γ. (20)

and thereby finishes the proof. �

A.2. The proof of (16) for distinguished nilpotents. In this subsection we assume

that e is distinguished. In this case the torus C is trivial; thus we are dealing with the

group K0(Coh(Bk,e)). The result of [DLP] implies that it is a free abelian group and the

Chern character map induces an isomorphism ch : K0(Coh(Bk,e))⊗ C−→
∼=
H•

BM(Bk,e).

A.2.1. Lemma. a) The Chern character map intertwines Grothendieck-Serre duality D on

K0(Coh(Bk,e)) and the involution σ on H•
BM (Bk,e) such that σ = (−1)i on H2i

BM ,

ch ◦ D = σ ◦ ch.
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b) The action of B ⊂ Baff on K0(Coh(Bk,e)) = K0(CohBk,e
(Ñ )) induced by the action of

Baff on the category Db[CohBk,e
(Ñ )] factors through W and corresponds under ch to the

Springer action.

Proof. (a) follows from triviality of the canonical class. (b) is clear from Theorem 1.3.2(b)

above. �

A.2.2. Recall that Υ =
∑l

s=1 asg
∗
s with gs ∈ A(C̃, k·e), ord(gs) < ∞ and as ∈ Q (15).

It is immediate from the definition of Υ in [Lu] that the automorphisms gs of G lie in

the outer class of the Chevalley involution. Thus gs can be considered as an element in
•

Ge \Ge.

Let gs ∈
•

Γ\Γ denote the image of gs in
•

Γ, and set υ =
∑
asgs ∈ Q[

•

Γ]. It is clear from the

definitions that the Chern character map ch intertwines Υ with η(υ), the natural action

of υ on H∗(Bk,e).

The definition of the modified action ψ and the fact that gs ∈
•

Γ \ Γ show that ψ(υ) =

w0 · η(υ), where w0 acts via the Springer action. By Lemma A.2.1(b) the endomorphism

ψ(υ) is compatible with T−1
w0
·Υ under the Chern character map. Thus, in view of Lemma

A.2.1(a), we will be done if we check that

ψ(υ) = (−1)i on H2i(Bk,e). (21)

Notice that Proposition A.1 shows that (21) holds for all i provided that it holds for

i = de.

This latter fact has almost been checked by Lusztig. More precisely, [Lu] implies that

ψ(υ)|H2de(Bk,e) = ±1.

When e is not of type E8(b6), then this is clear from Proposition 5.2 and definition of Υ

in 5.7. If e is of type E8(b6), then this follows from part IV of the proof of Proposition 5.2

and definition in 5.7 (all references are to [Lu]). Thus it remains to show that the sign in

the last displayed equality equals (−1)de .

To see this observe that the homomorphism (Bk,e
i
→ B)∗ : H2de(B) → H2de(Bk,e) is

nonzero because the cohomology class of an algebraic cycle is nonzero. The map i∗ is
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obviously equivariant with respect to the action of automorphisms preserving e, and it is

well known that this map is W -equivariant.

Thus it intertwines ψ(υ) with w0 ·
∑
asgs, where w0 acts via the canonical (Springer)

action of W on H∗(B) and the action of gs comes from its action of B. So we will be done

if we show that this endomorphism coincides with (−1)i on H2i(B).

Since G is connected, each gs acts in fact by the identity map. Also it is well known that

w0 acts by (−1)i on H2i. So, we are done because we find in (15) that
∑
s

as = 1.

A.3. The general case. Let now e ∈ g be an arbitrary nilpotent. We fix an sl(2) triple

(e, h, f) containing e and let ϕ : SL(2)→ G be a homomorphism such that the image of

dϕ is spanned by (e, h, f). We can and will assume that Im(ϕ) commutes with C. There

exists an element σ in the image of ϕ such that Ad(σ) : e 7→ −e.

Recall that KC(Bk,e) is a free module over K0(Rep(C)) = Z[X∗(C)] and K(Bk,e) ∼=

KC(Bk,e) ⊗K0(Rep(C)) K
0(V ect). So, an involution of a free Z[X∗(C)]-module M which

induces identity on the quotient M⊗Z[X∗(C)]Z is itself equal to identity. Thus it is enough

to check that an analogue of (16) holds in the non-equivariant K-group.

Furthermore, it suffices to check that this identity holds when the base field k is of positive

characteristic p > h. In this case the equivalence of [BMR1] provides an isomorphism

K(Bk,e) ∼= K0(mod0,fge (U)).

We will identify the two groups by means of this isomorphism. By the result of [BMR2,

S3], the involution Tw0 ◦ D on the left hand side corresponds to the map [M ] 7→ σ∗[M∗]

on the right hand side, where for M ∈ mod0,fge (U) we let M∗ denote the dual g module

(which happens to lie in mod0,fg−e (U)). Thus we are reduced to showing the equality in

K0(mod0,fge (U)):

[σ∗(M∗)] = Υ[M ], (22)

where we set Υ[M ] =
∑
as[g

∗
s(M)], with as, gs being as in (15).

We will actually show an equality stronger than (22). Namely, consider the category

modC,0,fg
e (U) of modules equipped with a compatible grading by the weights of C. We

will show that for M in this category equality (22) holds in K0(modC,0,fg
e (U)).
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We have the Levi subalgebra l = z(C) ⊂ g such that e ∈ l is distinguished. By the previous

subsection we can assume that the equality is known for (e, l). We claim that the restric-

tion functor from modC,0,fg
e (U) to modC.0,fg

e (U(l)) induces an injective map on K-groups.

This follows from the well-known fact that an irreducible module in modC,0,fg
e (U(g)) is

uniquely determined by its highest weight component which is an irreducible object in

modC,0
e (U(l)). [We use an ordering on weights corresponding to a choice of a parabolic

with Levi L].

It is clear that this restriction functor is compatible with the duality functor. It is also

immediate from the definition in [Lu, 5.7] that it is compatible with the involution Υ.

Thus (16) for e ∈ g follows from (16) for e ∈ l. �
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Appendix B. A result on component groups, by Eric Sommers

Here, G is a reductive algebraic group over the algebraically closed field k and g its Lie

algebra. As in Section 5.2.2, we are given a homomorphism

ϕ : SL2(k)→ G

and the characteristic of k is at least 3h− 3.

Let

s = ϕ
(
−1 0
0 −1

)

and

e = dϕ ( 0 1
0 0 ) .

It is clear that s ∈ Ge and e ∈ gs.

Recall that φ : Gm → G is defined as φ(t) = ϕ
(

t 0
0 t−1

)
.

B.0.1. Proposition. If G is semisimple and adjoint, then s belongs to the identity compo-

nent of Ge.

B.0.2. Remark. After this appendix was written and made available in a preprint form,

we learned that the result was also proved by A. Premet [Pr1, Lemma 2.1]

Proof. Let x ∈ G be an arbitrary semisimple element commuting with e. The conjugacy

class of the image of x in Ge/(Ge)
0 is determined by the G-orbit of the pair (e, l′′) where

l′′ is any Levi subalgebra of gx such that e ∈ l′′ is distinguished. More precisely, two

semisimple elements commuting with e have conjugate image in Ge/(Ge)
0 if and only

if the corresponding pairs as above are G-conjugate. This result is true in any good

characteristic by [MS], [Pr]. In the case where x = 1, the G-orbit of such pairs includes
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(e, l) where l is a Levi subalgebra of g such that e ∈ l is distinguished. Hence, an arbitrary

x as above lies in the identity component of Ge if and only if e is distinguished in l′′ ⊂ gx

where l′′ is a Levi subalgebra of g (and not only of gx).

Now as in Section 5.2.2, let C be a maximal torus in the centralizer of the image of ϕ

in G. Then with the assumption on the characteristic of k, C is a maximal torus of Ge

and thus e is distinguished in the Levi subalgebra l = Zg(C) of g (see [Ca]). We then

also have that the orbit of e in l is an even nilpotent orbit. In other words, if we pick

a maximal torus of L = ZG(C) containing the image of φ, then each root of L paired

with the co-character φ is an even integer. Thus s = φ(−1) acts trivially on l, and hence

l ⊂ l′ := gs.

On the other hand, since C ⊂ Gs we have that Zl′(C) is a Levi subalgebra of l′. But by

the previous paragraph, l = Zg(C) ⊂ l′, so l = Zl′(C). Therefore l is a Levi subalgebra

of both gs and g, and we can conclude by the first paragraph that s lies in the identity

component of Ge.

�

B.0.3. Remark. A similar result holds in all good characteristics for s = φ(−1), where φ

is an associated co-character of a nilpotent element e. In this case, C is defined to be the

maximal torus in the simultaneous centralizer in G of e and the image of φ. Then e is

distinguished in Zg(C) as before and by [Pr] or [Ja] φ corresponds to a weighted Dynkin

diagram arising in characteristic zero for a distinguished element for the corresponding

Levi subalgebra. Therefore, it remains true that s acts trivially on Zg(C) and the proof

goes through.

B.0.4. Corollary. For reductive G, sz ∈ C for some z ∈ Z(G), where C is as above.

Proof. As G/Z(G) is semisimple and adjoint, it amounts to showing that s ∈ C when G

is semisimple and adjoint. Assume the latter. We know that s centralizes C by definition.

Then since s is in the identity component of Ge by the proposition, we know that s belongs

to the centralizer of C in the identity component of Ge. That centralizer is equal to C

itself, being the centralizer of a maximal torus in a connected group. Hence s ∈ C.
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