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LINEAR KOSZUL DUALITY

IVAN MIRKOVIĆ AND SIMON RICHE

Abstract. In this paper we construct, for F1 and F2 subbundles of a vector bundle E, a “Koszul
duality” equivalence between derived categories of Gm-equivariant coherent (dg-)sheaves on the

derived intersection F1
R

∩EF2, and the corresponding derived intersection F⊥
1

R

∩E∗F⊥
2 . We also

propose applications to Hecke algebras.

Introduction

0.1. Koszul duality is an algebraic formalism of Fourier transform which is often deep and mys-
terious in applications. For instance, Bezrukavnikov has noticed that it exchanges monodromy
and the Chern class – the same as mirror duality, while the work of Beilinson, Ginzburg and
Soergel ([BGS96]) has made Koszul duality an essential ingredient of Representation Theory.

The case of linear Koszul duality studied here has a simple geometric content which appears in a
number of applications. For two vector subbundles F1, F2 of a vector bundle E (over a noether-
ian, integral, separated, regular base scheme), linear Koszul duality provides a (contravariant)
equivalence of derived categories of Gm-equivariant coherent sheaves on the differential graded
scheme

F1
R
∩E F2

obtained as derived intersection of subbundles inside a vector bundle, and the corresponding
object

F⊥
1

R
∩E∗ F⊥

2

inside the dual vector bundle.

The origin of the linear duality observation is Kashiwara’s isomorphism of Borel-Moore homology
groups

H∗(F1 ∩E F2) ∼= H∗(F
⊥
1 ∩E∗ F⊥

2 )

given by a Fourier transform for constructible sheaves. The Iwahori-Matsumoto involution for
graded affine Hecke algebras has been realized as Kashiwara’s Fourier isomorphism in equivariant
Borel-Moore homology ([EM97]). The standard affine Hecke algebras have analogous realization
in K-theory (the K-homology) and this suggested that Kashiwara’s isomorphism lifts to K-
homology, but natural isomorphisms of K-homology groups should come from equivalences of
triangulated categories of coherent sheaves.

0.2. Let us describe the content of this paper. We start in section 1 with generalities on sheaves
on dg-schemes. In section 2 we construct the relevant Koszul type complexes, in section 3 we
prove the equivalence of categories, and in section 4 we give the geometric interpretation of this
duality.

1
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2 IVAN MIRKOVIĆ AND SIMON RICHE

The idea is that the statement is a particular case of the standard Koszul duality in the generality
of dg-vector bundles. However, because of convergence problems for spectral sequences, we are
able to make sense of this duality only for the dg-vector bundles with at most 2 non-zero terms.
More precisely, our Koszul duality functors are defined in a way similar to those of [GKM93],
except for two important differences. First, as explained above, we replace the vector space
by a complex of vector bundles. We obtain two “Koszul dual” (Gm-equivariant) sheaves of
dg-algebras S and T (which are essentially symmetric algebras of dual complexes of vector
bundles.) Then, we modify the functors so that they become contravariant and symmetric.
Indeed, the direct generalization of the constructions of [GKM93] would lead us to consider
covariant functors of the form

{

S-dg-modules → T -dg-modules
M 7→ T ∨ ⊗OX

M
and

{

T -dg-modules → S-dg-modules
N 7→ S ⊗OX

N .

(Here there are some differentials involved, and we have to work with derived functors and
derived categories; we do not consider these details in this introduction.) These functors are not
well-behaved in general, however, and they are obviously not symmetric for the exchange of S
and T . Instead, we consider contravariant functors of the form

{

S-dg-modules → T -dg-modules
M 7→ T ⊗OX

M∨ and

{

T -dg-modules → S-dg-modules
N 7→ S ⊗OX

N∨.

The precise definition of these functors is given in subsection 2.4. We use them in subsections
2.5 and 2.6 to construct some “generalized Koszul complexes”.

In section 3, we prove that these functors descend to some derived categories, and that they
induce equivalences (see subsection 3.4). Although the proof is a little technical, its basic
idea is very simple: we check (using several spectral sequences) that the composition of these
two functors (in any order) is the tensor product with a (generalized) Koszul complex, whose
cohomology is trivial. In subsection 3.7 we check that these equivalences respect some finiteness
conditions.

Finally, in section 4 we explain the geometric content of these equivalences, i.e. we prove that
they induce equivalences of categories between Gm-equivariant coherent dg-sheaves on the dg-

schemes F1
R
∩EF2 and F⊥

1

R
∩E∗F⊥

2 , for subbundles F1 and F2 of a vector bundle E.

0.3. If we were only interested in characteristic zero, we could have identified the dual of the
exterior algebra of a vector bundle with the exterior algebra of the dual vector bundle. Then,
for example, the Koszul resolution of the trivial module of the symmetric algebra of a vector

space V becomes the symmetric algebra of the acyclic complex V
Id
−→ V (where the first term

is in degree −1, and the second one in degree 0). This could have simplified some parts of our
constructions. However, in positive characteristic, such an identification is not obvious. Hence
we have to pay attention to duals of exterior algebras. In particular, following [BGS96], we
rather consider the Koszul resolution above as the tensor product (Λ(V ∗))∗ ⊗ S(V ), endowed
with a certain differential induced by the natural element in V ∗ ⊗ V ∼= End(V ) (see subsection
2.3 for details).

0.4. As explained above, our study involves some derived algebraic geometry. There is a well-
developed theory of derived schemes, due to Lurie and Toen, in which derived intersections
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(and, more generally, derived fibered products) are defined. We have chosen, however, to use
the theory of dg-schemes due to Ciocan-Fontanine and Kapranov (see [CK01]), which is much
more elementary and concrete, and sufficient for our purposes (see also [Ri08] and [MR09] for
other applications of this theory, in representation theoretic contexts). For this purpose, we
generalize in section 1 a few well-known facts from the theory of dg-algebras and dg-modules
(see [BL94]).

0.5. A similar geometric interpretation of Koszul duality has been applied by the second author
in [Ri08], in a particular case, to study representations of the Lie algebra of a connected, simply-
connected, semi-simple algebraic group in positive characteristic. Let us mention however that
the categories and functors considered here are different from the ones considered in [Ri08]. In
particular, the equivalence of [Ri08] is covariant, whereas the equivalence constructed here is
contravariant.

0.6. In a sequel we will show that the linear Koszul duality in K-homology is indeed a quantiza-
tion of Kashiwara’s Fourier isomorphism – the two are related by the Chern character. We will
also verify that the linear Koszul duality in equivariant K-homology gives a geometric realization
of the Iwahori-Matsumoto involution on (extended) affine Hecke algebras (see [MR09]). This
concerns one typical use of linear Koszul duality. Consider a partial flag variety P of a group G
(either a reductive algebraic group in very good characteristic or a loop group1), and a subgroup
K that acts on P with countably many orbits. Let g, k be the Lie algebras, choose E to be the

trivial bundle P × g∗, F1 the cotangent subbundle T ∗P and F2 = P × k⊥. Now F1
R
∩E F2 is a

differential graded version of the Lagrangian ΛK ⊂ T
∗P, the union of all conormals to K-orbits

in P, and F⊥
1

R
∩E∗ F⊥

2 is the stabilizer dg-scheme for the action of the Lie algebra k on P. If

K is the Borel subgroup then F⊥
1

R
∩E∗ F⊥

2 is homotopic to F1
R
∩E F2 and linear Koszul duality

provides an involution on the K-group of equivariant coherent sheaves on ΛK .

Let us conclude by proposing some further applications of linear Koszul duality. The above
application to Iwahori-Matsumoto involutions should extend to its generalization, the Aubert
involution on irreducible representations of p-adic groups ([Au95]). Linear duality should be an
ingredient in a geometric realization (proposed in [BFM05]) of the Cherednik Fourier transform
(essentially an involution on the Cherednik Hecke algebra), in the Grojnowski-Garland realiza-
tion of Cherednik Hecke algebras as equivariant K-groups of Steinberg varieties for affine flag
varieties (see [GG95], [Va05]). The appearence of linear Koszul duality for conormals to Bruhat
cells should also be a classical limit of the Beilinson-Ginzburg-Soergel Koszul duality for the
mixed category O ([BGS96]), as mixed Hodge modules come with a deformation (by Hodge
filtration), to a coherent sheaf on the characteristic variety.

0.7. Acknowledgements. We are very grateful to Leonid Positselskii, in particular the essen-
tial idea to use contravariant Koszul duality is from his unpublished lectures at IAS. We are
also grateful to Roman Bezrukavnikov for his enthusiasm for linear Koszul duality (which he
also named), and to the Institute for Advanced Study in Princeton for hospitality and excellent
working environment. Finally the second author thanks Patrick Polo for his helpful remarks.

1Let us point out that the application to loop groups would require an extension of our constructions to the
case of infinite dimensional varieties, or ind-schemes, which is not proved here.
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1. Generalities on sheaves of dg-algebras and dg-schemes

In this section X is any noetherian scheme satisfying the following assumption2:

(∗)
for any coherent sheaf F on X, there exists a locally free

sheaf of finite rank E and a surjection E ։ F .

We introduce basic definitions concerning dg-schemes and quasi-coherent dg-sheaves, mainly
following [CK01] and [Ri08].

1.1. Definitions. Recall the definitions of sheaves of OX -dg-algebras and dg-modules given in
[Ri08, 1.1].

Definition 1.1.1. A dg-scheme is a pair X = (X,A) where X is a noetherian scheme satisfying
(∗), and A is a non-positively graded, graded-commutative OX -dg-algebra such that Ai is a
quasi-coherent OX -module for any i ∈ Z≤0.

Definition 1.1.2. Let X = (X,A) be a dg-scheme.

(i) A quasi-coherent dg-sheaf F on X is an A-dg-module such that F i is a quasi-coherent OX -
module for any i ∈ Z.

(ii) A coherent dg-sheaf F on X is a quasi-coherent dg-sheaf whose cohomology H(F) is a locally
finitely generated sheaf of H(A)-modules.

We denote by C(X), or C(X,A), the category of quasi-coherent dg-sheaves on the dg-scheme X,
and by D(X), or D(X,A), the associated derived category (i.e. the localization of the homotopy
category of C(X) with respect to quasi-isomorphisms).

Similarly, we denote by Cc(X) or Cc(X,A), Dc(X) or Dc(X,A), the full subcategories whose
objects are the coherent dg-sheaves.

If X is an ordinary scheme, i.e. if A = OX , then we have equivalences

D(X) ∼= DQCoh(X), Dc(X) ∼= DbCoh(X).

Let us stress that these definitions and notation are different from the ones used in [Ri08] (in
loc. cit ., we only require the cohomology of F to be quasi-coherent). This definition will be
more suited to our purposes here. Moreover, these two definitions coincide under reasonable
assumptions. For the categories of coherent dg-sheaves in all the cases we consider here, this
can be deduced from [Ri08, 3.3.4].

1.2. K-flat resolutions. Let us fix a dg-scheme X = (X,A). If F and G are A-dg-modules,
we define as usual the tensor product F ⊗A G (see [Ri08, 1.2]). It has a natural structure of an
A-dg-module (here A is graded-commutative, hence we do not have to distinguish between left
and right dg-modules).

Recall the definition of a K-flat dg-module (see [Sp88]):

Definition 1.2.1. An A-dg-module F is said to be K-flat if for every A-dg-module G such that
H(G) = 0, we have H(G ⊗A F) = 0.

2See e.g. the remarks before [CK01, Lemma 2.3.4] for comments on this assumption.
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Using [Sp88, 3.4, 5.4.(c)] and assumption (∗), one easily proves the following lemma.

Lemma 1.2.2. Let F be a quasi-coherent OX -dg-module. There exist a quasi-coherent, K-flat

OX -dg-module P and a surjective quasi-isomorphism P
qis
−→ F .

Then, using the induction functor F 7→ A ⊗OX
F , the following proposition can be proved

exactly as in [Ri08, 1.3.5].

Proposition 1.2.3. Let F be a quasi-coherent dg-sheaf on X. There exist a quasi-coherent

dg-sheaf P on X, K-flat as an A-dg-module, and a quasi-isomorphism P
qis
−→ F .

1.3. Invariance under quasi-isomorphisms. In this subsection we prove that the categories
D(X), Dc(X) depend on A only up to quasi-isomorphism.

Let X be a noetherian scheme satisfying (∗), and let X = (X,A) and X′ = (X,B) be two
dg-schemes with base scheme X. Let φ : A → B be a morphism of sheaves of OX -dg-algebras.
There is a natural functor

φ∗ : C(X′)→ C(X)

(restriction of scalars), which induces a functor

Rφ∗ : D(X′)→ D(X).

Similarly, there is a natural functor

φ∗ :

{

C(X) → C(X′)
F 7→ B ⊗A F

.

We refer to [De73] or [Ke96] for generalities on localization of triangulated categories and derived
functors (in the sense of Deligne). The following lemma is borrowed from [Sp88, 5.7] (see also
[Ri08, 1.3.6]), and implies that K-flat A-dg-modules are split on the left for the functor φ∗.
Using Proposition 1.2.3, it follows that φ∗ admits a left derived functor

Lφ∗ : D(X)→ D(X′).

Lemma 1.3.1. Let F be an object of C(X,A) which is acyclic ( i.e. H(F) = 0) and K-flat as
an A-dg-module. Then B ⊗A F is acyclic.

The following result is an immediate extension of [BL94, 10.12.5.1].

Proposition 1.3.2. (i) Assume φ : A → B is a quasi-isomorphism. Then the functors Lφ∗,
Rφ∗ are quasi-inverse equivalences of categories

D(X) ∼= D(X′).

(ii) These equivalences restrict to equivalences

Dc(X) ∼= Dc(X′).

Proof : Statement (i) can be proved as in [BL94, 10.12.5.1] or [Ri08, 1.5.6]. Then, clearly, for G
in D(X′) we have G ∈ Dc(X′) iff Rφ∗G ∈ Dc(X). Point (ii) follows. �
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1.4. Derived intersection. Using Proposition 1.3.2, one can consider dg-schemes “up to quasi-
isomorphism”, i.e. identify the dg-schemes (X,A) and (X,B) whenever A and B are quasi-
isomorphic.

As a typical example, we define the derived intersection of two closed subschemes. Consider a
scheme X, and two closed subschemes Y and Z. Let us denote by i : Y →֒ X and j : Z →֒ X the

closed embeddings. Consider the sheaf of dg-algebras i∗OY

L

⊗OX
j∗OZ on X. It is well defined

up to quasi-isomorphism: if AY → i∗OY , respectively AZ → j∗OZ are quasi-isomorphisms of
non-positively graded, graded-commutative sheaves of OX -dg-algebras3, with AY and AZ quasi-

coherent and K-flat over OX , then i∗OY

L

⊗OX
j∗OZ is quasi-isomorphic to AY ⊗OX

j∗OZ , or to
i∗OY ⊗OX

AZ , or to AY ⊗OX
AZ .

Definition 1.4.1. The right derived intersection of Y and Z in X is the dg-scheme

Y
R
∩X Z := (X, i∗OY

L

⊗OX
j∗OZ),

defined up to quasi-isomorphism.

To be really precise, only the derived categories D(Y
R
∩X Z), Dc(Y

R
∩X Z) are well defined (up

to equivalence). This is all we will use here.

2. Generalized Koszul complexes

In this section we introduce the dg-algebras we are interested in, and define our Koszul com-
plexes.

2.1. Notation and definitions. From now on X is a noetherian, integral, separated, regular
scheme of dimension d. Observe that X satisfies condition (∗) by [Ha77, III.Ex.6.8]. We will
consider Gm-equivariant dg-algebras on X, i.e. sheaves of OX -algebras A, endowed with a
Z

2-grading

A =
⊕

i,j∈Z

Ai
j

and an OX -linear differential dA : A → A, of bidegree (1, 0), i.e. such that dA(Ai
j) ⊆ A

i+1
j , and

satisfying

dA(a · b) = dA(a) · b+ (−1)ia · dA(b)

for a ∈ Ai
j, b ∈ A. The basic example is OX , endowed with the trivial grading (i.e. it is

concentrated in bidegree (0, 0)) and the trivial differential.

A Gm-equivariant dg-module over A is a sheaf M of Z2-graded A-modules endowed with a
differential dM of bidegree (1, 0) satisfying

dM(a ·m) = dA(a) ·m+ (−1)ia · dM(m)

for a ∈ Ai
j, m ∈M.

3See e.g. [CK01, 2.6.1] for a proof of the existence of such resolutions.
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We will only consider quasi-coherent (Gm-equivariant) OX -dg-algebras. If A is such a dg-
algebra, we denote by Cgr(A) the category of quasi-coherent Gm-equivariant A-dg-modules, i.e.
Gm-equivariant A-dg-modulesM such that Mi

j is OX -quasi-coherent for any indices i, j.

IfM is a Gm-equivariant A-dg-module, and m is a local section ofMi
j, we write |m| = i. This

integer is called the cohomological degree of m, while j is called its internal degree. We can
define two shifts in Cgr(A): [n], shifting the cohomological degree, and 〈m〉, shifting the internal
degree. More precisely we set

(M[n]〈m〉)ij =Mi+n
j−m.

Beware that in our conventions 〈1〉 is a “homological” shift, i.e. it shifts the internal degrees
to the right. Also, we use the same conventions as in [BL94, §10] or [Ri08, 1.1] concerning the
shift [1], i.e. the differential ofM[1] is opposite to the differential of M.

If M and N are two Gm-equivariant OX-dg-modules, there is a natural structure of Gm-
equivariant OX -dg-module on the tensor productM⊗OX

N , with differential defined on homo-
geneous local sections by

dM⊗N (m⊗ n) = dM(m)⊗ n+ (−1)|m|m⊗ dN (n).

IfM is a Gm-equivariant OX -dg-module, we define the Gm-equivariant OX -dg-module M∨ as
the graded dual ofM, i.e. the dg-module with (i, j)-component

(M∨)ij := HomOX
(M−i

−j ,OX),

and with differential defined by dM∨(f) = −(−1)|f |f ◦ dM for f ∈ M∨ homogeneous. If
M and N are two Gm-equivariant OX -dg-modules, there is a natural morphism defined (on
homogeneous local sections) by

(2.1.1)

{

M∨ ⊗OX
N∨ → (M⊗OX

N )∨

f ⊗ g 7→
(

m⊗ n 7→ (−1)|m|·|g|f(m) · g(n)
) ,

which is an isomorphism e.g. if the homogeneous components of M, N and M⊗OX
N are

locally free of finite rank. IfM is a Gm-equivariant OX -dg-module such thatMi
j is locally-free

of finite rank for any i, j, then there is an isomorphism

(2.1.2)

{

M
∼
−→ (M∨)∨

m 7→
(

f 7→ (−1)|f |·|m|f(m)
) .

Let us recall the definition of the truncation functors. IfM is a Gm-equivariant OX -dg-module
and if n ∈ Z, we define the Gm-equivariant OX -dg-module τ≥n(M) by

τ≥n(M)ij :=







0 if i < n
Mn

j /dM(Mn−1
j ) if i = n

Mi
j if i > n

,

with the differential induced by dM. There is a natural morphismM→ τ≥n(M). Similarly, we
define the Gm-equivariant OX-dg-module τ≤n(M) by

τ≤n(M) := Ker
(

M→ τ≥n+1(M)
)

.

Observe that if A is a Gm-equivariant dg-algebra with Ai
j = 0 for i > 0, and if M is a Gm-

equivariant A-dg-module, then τ≥n(M) and τ≤n(M) are again Gm-equivariant A-dg-modules.
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If M is a Gm-equivariant OX-dg-module, we denote by Sym(M) the graded-symmetric alge-
bra of M over OX (i.e. the quotient of the tensor algebra of M by the relations m ⊗ n =

(−1)|m|·|n|n ⊗m), considered as a Gm-equivariant dg-algebra with differential induced by dM.
Similarly, if F is any OX -module, we denote by SOX

(F), respectively ΛOX
(F), the symmetric

algebra of F , respectively the exterior algebra of F , i.e. the quotient of the tensor algebra of
F by the relations m ⊗ n = n ⊗ m, respectively m ⊗ n = −n ⊗ m. Neglecting the gradings,
SOX

(F), respectively ΛOX
(F), is the algebra Sym(F), where F is concentrated in even coho-

mological degrees, respectively in odd cohomological degrees. For simplicity, sometimes we drop
the subscript “OX”. If i ≥ 0, we denote by Si(F), respectively Λi(F), the image of F⊗i in S(F),
respectively Λ(F).

Let us consider two locally free sheaves of finite rank V andW on X, and a morphism of sheaves
f : V → W. Let V∨ := HomOX

(V,OX ) and W∨ := HomOX
(W,OX ) be the dual locally free

sheaves, and f∨ :W∨ → V∨ be the morphism induced by f . Let us consider the Gm-equivariant
OX -dg-modules (or complexes of graded OX-modules)

X :=
(

· · · → 0→ V
f
−→W → 0→ · · ·

)

,

where V is in bidegree (−1, 2) and W is in bidegree (0, 2), and

Y :=
(

· · · → 0→W∨ −f∨

−−−→ V∨ → 0→ · · ·
)

,

where W∨ is in bidegree (−1,−2) and V∨ is in bidegree (0,−2).

In sections 2 and 3 we will consider the following Gm-equivariant dg-algebras:

T := Sym(X ),

R := Sym(Y),

S := Sym(Y[−2]).

For example, the generators of T are in bidegrees (−1, 2) and (0, 2), and the generators of S are
in bidegrees (1,−2) and (2,−2).

IfM is a Gm-equivariant S-dg-module, the dualM∨ has a natural structure of a S-dg-module,
constructed as follows. The grading and the differential are defined as above, and the S-action
is defined by

(s · f)(m) = (−1)|s|·|f |f(s ·m),

for homogeneous local sections s of S and f of M∨.

If N is a T -dg-module, respectively a R-dg-module, the same formulas define on N∨ a structure
of a T -dg-module, respectively a R-dg-module.

2.2. Reminder on the spectral sequence of a double complex. Let us recall a few facts on
the spectral sequence of a double complex. Let (Cp,q)p,q∈Z be a double complex (in any abelian
category), with differentials d′ (of bidegree (1, 0)) and d′′ (of bidegree (0, 1)). Let Tot(C) be the
total complex of C, i.e. the complex with n-term

Tot(C)n =
⊕

p+q=n

Cp,q,

and with differential d′ + d′′. The following result is proved e.g. in [Go64, I.4].
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Proposition 2.2.1. Assume one of the following conditions is satisfied:

(1) There exists N ∈ Z such that Cp,q = 0 for p > N .
(2) There exists N ∈ Z such that Cp,q = 0 for q < N .

Then there is a converging spectral sequence

Ep,q
1 = Hq(Cp,∗, d′′)⇒ Hp+q(Tot(C)).

2.3. Reminder on Koszul complexes. Let A be a commutative ring, and V be a free A-
module of finite rank. Let V ∨ = HomA(V,A) be the dual A-module, and consider the natural
morphism

i : A→ HomA(V, V ) ∼= V ∨ ⊗A V,

sending 1A to IdV . Let us first consider the bigraded algebras Λ(V [−1]〈−2〉), the exterior algebra
of V placed in bidegree (1,−2), and S(V ∨〈2〉), the symmetric algebra of V ∨ placed in bidegree
(0, 2). The algebra Λ(V [−1]〈−2〉) acts on the dual (Λ(V [−1]〈−2〉))∨ via

(t · f)(s) = (−1)|t|·|f |f(ts),

where t, s are homogeneous elements of Λ(V [−1]〈−2〉), and f is an homogeneous element of the
dual (Λ(V [−1]〈−2〉))∨.

Consider the usual Koszul complex

(2.3.1) Koszul1(V ) := S(V ∨〈2〉) ⊗A (Λ(V [−1]〈−2〉))∨,

where the differential is the composition of the morphism
{

S(V ∨)⊗A (Λ(V ))∨ → S(V ∨)⊗A (Λ(V ))∨

s⊗ t 7→ (−1)|s|s⊗ t

followed by the morphism induced by i

S(V ∨)⊗A (Λ(V ))∨ → S(V ∨)⊗A V
∨ ⊗A V ⊗A (Λ(V ))∨

and finally followed by the morphism

S(V ∨)⊗A V
∨ ⊗A V ⊗A (Λ(V ))∨ → S(V ∨)⊗A (Λ(V ))∨

induced by the action of V ∨ ⊂ S(V ∨) on S(V ∨) by right multiplication and the action of
V ⊂ Λ(V ) on (Λ(V ))∨ described above. It is well-known (see e.g. [BGG78], [BGS96]) that this
complex has cohomology only in degree 0, and more precisely that

H(Koszul1(V )) = A.

The complex Koszul1(V ) is a bounded complex of projective graded A-modules (here we consider
A as a graded ring concentrated in degree 0). We can take its dual

(2.3.2) Koszul2(V ) := (Koszul1(V ))∨ ∼= Λ(V [−1]〈−2〉) ⊗A (S(V ∨〈2〉))∨.

Again we have
H(Koszul2(V )) = A.

Now, let us consider the bigraded algebras Λ(V [1]〈−2〉), with generators in bidegree (−1,−2),
and S(V [−2]〈2〉), with generators in bidegree (2, 2). We have a third Koszul complex

(2.3.3) Koszul3(V ) := S(V ∨[−2]〈2〉) ⊗A (Λ(V [1]〈−2〉))∨,
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which may be defined as the bigraded module whose component of bidegree (i, j) satisfies

(Koszul3(V ))ij := (Koszul1(V ))i−j
j , and with differential induced by that of Koszul1(V ). As

above we have

H(Koszul3(V )) = A.

We can finally play the same game with the complex Koszul2(V ) and obtain the complex

(2.3.4) Koszul4(V ) ∼= Λ(V [1]〈−2〉) ⊗A (S(V ∨[−2]〈2〉))∨

defined by (Koszul4(V ))ij = (Koszul2(V ))i−j
j . Again we have

H(Koszul4(V )) = A.

2.4. Two functors. For any quasi-coherent Gm-equivariant dg-algebra A we define the cate-

gory Cցgr (A) of Gm-equivariant A-dg-modules M such that Mi
j is a coherent OX -module for

any indices i, j, and such that there exist integers N1, N2 such that Mi
j = 0 for i ≤ N1 or

i + j ≥ N2. Here the symbol “ ց ” indicates the region in the plane with coordinates (i, j)
where the components Mi

j can be non-zero, as shown in the figure below.

CրgrCտgr

CցgrCւgr

i

j

Similarly, we define the categories Cւgr (A), Cրgr (A), Cտgr (A) of Gm-equivariant A-dg-modulesM
such that the Mi

j’s are coherent and satisfy the following conditions:

Cւgr (A) : Mi
j = 0 if i≫ 0 or i− j ≪ 0,

Cրgr (A) : Mi
j = 0 if i≪ 0 or i− j ≫ 0,

Cտgr (A) : Mi
j = 0 if i≫ 0 or i+ j ≪ 0.

In this subsection we define two contravariant functors

A : Cցgr (S)→ Cտgr (T ), B : Cտgr (T )→ Cցgr (S).
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First, let us construct A . IfM is a S-dg-module, we have defined in 2.1 the S-dg-moduleM∨.

Let M∈ Cցgr (S). As a bigraded OX -module we set

A (M) = T ⊗OX
M∨,

endowed with a T -action by left multiplication on the first factor. The differential on A (M) is
the sum of four terms. The first one is d1 := dT ⊗ IdM∨ , and the second one is d2 := IdT ⊗dM∨ .
Here the tensor product is taken in the graded sense, i.e. for homogeneous local sections t and
f of T andM∨ respectively we have d2(t⊗ f) = (−1)|t|t⊗ dM∨(f). The third and fourth terms
are “Koszul-type” differentials. Consider first the natural morphism i : OX → EndOX

(V) ∼=
V ⊗OX

V∨. Then d3 is the composition of
{

T ⊗OX
M∨ → T ⊗OX

M∨

t⊗ f 7→ (−1)|t|t⊗ f

followed by the morphism induced by i

T ⊗OX
M∨ → T ⊗OX

V ⊗OX
V∨ ⊗OX

M∨

and finally followed by the morphism

T ⊗OX
V ⊗OX

V∨ ⊗OX
M∨ → T ⊗OX

M∨

induced by the right multiplication of V ⊂ T on T , and the left action of V∨ ⊂ S on M∨. The
differential d4 is defined entirely similarly, replacing V by W.

Let us choose a point x ∈ X. Then Vx, Wx are free OX,x-modules of finite rank. Let {vα} be a
basis of Vx, and {wβ} be a basis of Wx. Let {v∗α}, {w

∗
β} be the dual bases of (V∨)x and (W∨)x,

respectively. Then the morphism induced by d3 + d4 on Tx ⊗OX,x
(M∨)x can be written

(2.4.1) (d3 + d4)(t⊗ f) = (−1)|t|
(

∑

α

tvα ⊗ v
∗
α · f +

∑

β

twβ ⊗ w
∗
β · f

)

for homogeneous local sections t of T and f of M∨.

Using formula (2.4.1), one easily checks the relations

(2.4.2) (d1 + d2)
2 = 0, (d3 + d4)

2 = 0.

Further calculations prove the following formula:

(2.4.3) (d1 + d2) ◦ (d3 + d4) + (d3 + d4) ◦ (d1 + d2) = 0.

It follows from formulas (2.4.2) and (2.4.3) that dA (M) := d1+d2+d3+d4 is indeed a differential.
Finally, one easily checks that A (M) is a T -dg-module, and that it is an object of the category

Cտgr (T ). Hence the (contravariant) functor

A : Cցgr (S)→ Cտgr (T )

is well defined.

Now we define a functor B in the reverse direction, using similar formulas. Namely if N is

a T -dg-module, we have defined above the T -dg-module N∨. If N ∈ Cտgr (T ), as a bigraded
OX -module, we set

B(N ) = S ⊗OX
N∨,
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and we endow it with the S-action by left multiplication on the first factor. The differential is
again a sum of four terms. The first two are d1 := dS ⊗ IdN∨ and d2 := IdS ⊗ dN∨. The third
one, denoted d3, is defined as above as the composition of

{

S ⊗OX
N∨ → S ⊗OX

N∨

s⊗ g 7→ (−1)|s|s⊗ g

followed by the morphism induced by i′ : OX → V
∨ ⊗OX

V

S ⊗OX
N∨ → S ⊗OX

V∨ ⊗OX
V ⊗OX

N∨

and finally followed by the morphism

S ⊗OX
V∨ ⊗OX

V ⊗OX
N∨ → S ⊗OX

N∨

induced by the right multiplication of V∨ ⊂ S on S, and the left action of V ⊂ T on N∨.
The differential d4 is defined similarly, replacing V by W. As above, one checks that dB(N ) :=
d1 + d2 + d3 + d4 is a differential, which turns B(N ) into a S-dg-module, and even an object of

Cցgr (S). For this final claim we use the fact that if Sk
l 6= 0, then k+ l ≤ 0. As above, this proves

that the (contravariant) functor

B : Cտgr (T )→ Cցgr (S)

is well defined.

2.5. First generalized Koszul complex. Consider the object

K(1) := B(T ) ∈ Cցgr (S).

It is concentrated in non-negative cohomological degrees, and in non-positive internal degrees.

Lemma 2.5.1. The natural morphism K(1) → OX (projection on the (0, 0)-component) is a
quasi-isomorphism of Gm-equivariant S-dg-modules.

Proof. It is sufficient to prove that the localization of this morphism at any x ∈ X is a quasi-
isomorphism. We have isomorphisms

(K(1))x ∼= (Sx)⊗OX,x
T ∨

x

∼=
⊕

i,j,k,l

Λi(W∨
x )⊗OX,x

Sj(V∨x )⊗OX,x
(Λk(Vx))∨ ⊗OX,x

(Sl(Wx))∨,

where the symbol “∨” denotes the dual OX,x-module, and the term Λi(W∨
x )⊗OX,x

Sj(V∨x )⊗OX,x

(Λk(Vx))∨ ⊗OX,x
(Sl(Wx))∨ is in cohomological degree i+ 2j + k. The differential on (K(1))x is

the sum of four terms: d1, induced by the differential of Sx; d2, induced by the differential of
T ∨

x ; and d3 and d4, the Koszul differentials. The effect of these terms on the indices i, j, k, l may
be described as follows:

d1 :

{

i 7→ i− 1
j 7→ j + 1

, d2 :

{

k 7→ k + 1
l 7→ l − 1

, d3 :

{

j 7→ j + 1
k 7→ k − 1

, d4

{

i 7→ i+ 1
l 7→ l − 1

.

Disregarding the internal grading, (K(1))x is the total complex of the double complex (Cp,q)p,q∈Z

whose (p, q)-term is

Cp,q :=
⊕

p=j+k,
q=i+j

Λi(W∨
x )⊗OX,x

Sj(V∨x )⊗OX,x
(Λk(Vx))∨ ⊗OX,x

(Sl(Wx))∨,
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and whose differentials are d′ = d1 + d2, d
′′ = d3 + d4. We have Cp,q = 0 if q < 0, hence by

Proposition 2.2.1 there is a converging spectral sequence

Ep,q
1 = Hq(Cp,∗, d′′)⇒ Hp+q((K(1))x).

It follows that, to prove the lemma, we only have to prove that the cohomology of Sx ⊗OX,x
T ∨

x

with respect to the differential d3 + d4 is OX,x in degree 0, and 0 in other degrees. But this
complex is the tensor product of the Koszul complexes Koszul3(Vx) (with the internal grading
opposite to that in (2.3.3)) and Koszul2(W

∨
x ) of (2.3.2), both living in non-negative degrees. We

have seen that these complexes have cohomology OX,x, and their components are free (hence
flat). The result follows, using Künneth formula. �

2.6. Second generalized Koszul complex. Consider now the object

K(2) := A (S) ∈ Cտgr (T ).

It is concentrated in non-positive cohomological degrees, and in non-negative internal degrees.
As in 2.5, we are going to prove:

Lemma 2.6.1. The natural morphism K(2) → OX (projection on the (0, 0)-component) is a
quasi-isomorphism of Gm-equivariant T -dg-modules.

Proof. The arguments for this proof are completely similar to those of Lemma 2.5.1. Here the
double complex to consider has (p, q)-term

Cp,q :=
⊕

p=−i−l,
q=−k−l

Λi(Vx)⊗OX,x
Sj(Wx)⊗OX,x

(Λk(W∨
x ))∨ ⊗OX,x

(Sl(V∨x ))∨

and differentials d′ = d1 + d2, d
′′ = d3 + d4. We have Cp,q = 0 for p > 0. �

3. Algebraic duality

In this section we prove our Koszul duality between S- and T -dg-modules.

3.1. Resolutions. First we need to prove the existence of some resolutions.

Proposition 3.1.1. (i) Let M be an object of Cցgr (S). There exist an object P of Cցgr (S) such
that, for all indices i and j, Pi

j is OX-locally free of finite rank, and a quasi-isomorphism of

S-dg-modules P
qis
−→M.

(ii) Let N be an object of Cտgr (T ). There exist an object Q of Cտgr (T ) such that, for all indices i

and j, Qi
j is OX -locally free of finite rank, and a quasi-isomorphism of T -dg-modules Q

qis
−→ N .

Proof. We give a proof only for point (i). The proof of (ii) is similar4. Let M be an object

of Cցgr (S). Let N1 and N2 be integers such that Mi
j = 0 for i < N1 or i + j > N2. First we

considerM as a Gm-equivariant OX -dg-module. Then, for each j ≤ N2−N1,Mj is a complex
of coherent OX -modules, with non-zero terms only in the interval [N1, N2 − j] (and Mj = 0
otherwise). Using a standard procedure (see e.g. [Ha66, I.4.6] and [Ha77, III.Ex.6.9]), there

4One could also use the “regrading trick” of 3.5 below to show that these two statements are equivalent.
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exists a complex Lj of locally free OX-modules of finite rank, with non-zero terms only in the
interval [N1, N2−j], and a surjective morphism of OX -dg-modules Lj ։Mj. Then L :=

⊕

j Lj

is an object of Cցgr (OX), and there is a surjective morphism of Gm-equivariant OX -dg-modules

L։M. Then P(1) := S ⊗OX
L, endowed with the natural differential and the natural action of

S, is an object of Cցgr (S), and there is a surjective morphism of Gm-equivariant S-dg-modules

P(1)
։M.

Taking the kernel of this morphism, and repeating the procedure, we obtain objects P(i) (i =

1, · · · , d) of Cցgr (S), (recall that d = dim(X)) whose homogeneous components are locally free
of finite rank over OX , and an exact sequence of S-dg-modules

P(d) → P(d−1) → · · · → P(1) →M→ 0.

We define P(d+1) := ker(P(d) → P(d−1)). Then, for any indices i, j, the exact sequence

0→ (P(d+1))ij → · · · → (P(1))ij →M
i
j → 0

is a resolution of the OX -coherent sheaf Mi
j , the terms (P(k))ij being locally free of finite rank

for k = 1, · · · , d. It follows that (P(d+1))ij is also locally free of finite rank over OX (see again

[Ha77, III.Ex.6.9]).

Finally we take

P := Tot
(

0→ P(d+1) → P(d) → · · · → P(1) → 0
)

.

It is naturally an object of Cցgr (S), and an easy spectral sequence argument shows that the
natural morphism P →M is a quasi-isomorphism of S-dg-modules. �

3.2. Derived functors. Let us introduce some notation. If A is any quasi-coherent Gm-
equivariant dg-algebra, we denote by H∗

gr(A) the homotopy category of the category C∗gr(A),
where ∗ =ր,տ,ւ,ց. The objects of H∗

gr(A) are the same as those of C∗gr(A), and the mor-
phisms in H∗

gr(A) are the quotient of the morphisms in C∗gr(A) by the homotopy relation. These
categories are naturally triangulated. We denote by D∗

gr(A), the localization of H∗
gr(A) with

respect to quasi-isomorphisms.

As a corollary of Proposition 3.1.1, we obtain the following result.

Corollary 3.2.1. The functors A and B admit derived functors (in the sense of Deligne)

A : Dց
gr (S)→ Dտ

gr (T ), B : Dտ
gr (T )→ Dց

gr (S).

Remark 3.2.2. The functor A is the left derived functor of A if we consider it as a covariant
functor Cցgr (S) → Cտgr (T )opp, or the right derived functor of A if we consider it as a covariant

functor Cցgr (S)opp → Cտgr (T ).

Proof. Case of the functor A . To fix notations, in this proof we consider A as a covariant

functor Cցgr (S) → Cտgr (T )opp. To prove that A admits a left derived functor, it is enough
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to prove that there are enough objects split on the left5 for A in the category Cցgr (S) (see
[De73] or [Ke96]). To prove the latter fact, using Proposition 3.1.1(i), it is enough to prove

that if f : P → Q is a quasi-isomorphism between two objects of Cցgr (S) whose homogeneous
components are OX -locally free of finite rank, then the induced morphism

A (f) : A (P)→ A (Q)

is again a quasi-isomorphism. Taking cones, this amounts to proving that if P is an acyclic

object of Cցgr (S) whose homogeneous components are OX -locally free of finite rank, then A (P)
is again acyclic.

So, let P be such a Gm-equivariant S-dg-module. For each index j, the complex of OX -modules
Pj is acyclic, bounded, and all its components are locally free of finite rank. It follows that P∨

is also acyclic. Let x be a point of X, and let us prove that A (P)x is acyclic. We use the same
notations as in 2.4. In particular, dA (P) is the sum of four terms d1, d2, d3 and d4. We have an
isomorphism

A (P)x ∼=
⊕

i,j,k,l

Λi(Vx)⊗OX,x
Sj(Wx)⊗OX,x

(P∨
x )kl ,

where the term Λi(Vx) ⊗OX,x
Sj(Wx) ⊗OX,x

(P∨
x )kl is in cohomological degree k − i. The effect

of the differentials on the indices i, j, k, l may be described as

d1 :

{

i 7→ i− 1
j 7→ j + 1

, d2 : k 7→ k + 1, d3 :







i 7→ i+ 1
k 7→ k + 2
l 7→ l − 2

, d4 :







j 7→ j + 1
k 7→ k + 1
l 7→ l − 2

.

Hence, disregarding the internal grading, A (P)x is the total complex of the double complex
with (p, q)-term

Cp,q :=
⊕

p=−i−j−l,
q=k+l+j

Λi(Vx)⊗OX,x
Sj(Wx)⊗OX,x

(P∨
x )kl ,

with differentials d′ = d3 + d4 and d′′ = d1 + d2. By definition, P is in Cցgr (S), hence (P∨)kl = 0
for k + l ≪ 0. Hence Cp,q = 0 for q ≪ 0. By Proposition 2.2.1, it follows that there is a
converging spectral sequence

Ep,q
1 = Hq(Cp,∗, d′′)⇒ Hp+q(A (P)x).

Hence we can forget about the differentials d3 and d4, i.e. it is sufficient to prove that the tensor
product of OX,x-dg-modules

Tx ⊗OX,x
P∨

x

is acyclic. We have seen above that P∨
x is acyclic, and Tx is a bounded complex of flat OX,x-

modules. Hence Tx ⊗OX,x
P∨

x is indeed acyclic, which finishes the proof of the existence of the
derived functor

A : Dց
gr (S)→ Dտ

gr (T ).

5Recall that an object M of Cց
gr (S) is said to be split on the left for A if for any quasi-isomorphism M

′ qis
−−→ M,

there exists an object M
′′ of C

ց
gr (S) and a quasi-isomorphism M

′′ qis
−−→ M

′ such that the induced morphism

A (M′′) → A (M) is again a quasi-isomorphism.
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Case of the functor B. The proof for the functor B is very similar. If Q is a Gm-equivariant
T -dg-module as in Proposition 3.1.1(ii) which is acyclic, and x ∈ X, then we have

B(Q)x =
⊕

i,j,k,l

Λi(W∨
x )⊗OX,x

Sj(V∨x )⊗OX,x
(Q∨

x )kl ,

where the term Λi(W∨
x )⊗OX,x

Sj(V∨x )⊗OX,x
(Q∨

x )kl is in cohomological degree i+ 2j + k. Again
Q∨ is acyclic, and dB(N ) is the sum of four terms d1, d2, d3 and d4, whose effect on the indices
i, j, k, l may be described as

d1 :

{

i 7→ i− 1
j 7→ j + 1

, d2 : k 7→ k + 1, d3 :







j 7→ j + 1
k 7→ k − 1
l 7→ l + 2

, d4 :

{

i 7→ i+ 1
l 7→ l + 2

.

Hence, disregarding the internal grading, B(Q)x is the total complex of the double complex
with (p, q)-term

Dp,q :=
⊕

p=i+j,
q=k+j

Λi(W∨
x )⊗OX,x

Sj(V∨x )⊗OX,x
(Q∨

x )kl ,

and with differentials d′ = d3 + d4, d
′′ = d1 + d2. We know that (Q∨

x )kl = 0 if k ≪ 0, hence
Dp,q = 0 for p≪ 0. By Proposition 2.2.1, it follows that there is a converging spectral sequence

Ep,q
1 = Hq(Dp,∗, d′′)⇒ Hp+q(B(Q)x).

Hence it is sufficient to prove that the tensor product of OX,x-dg-modules

Sx ⊗OX,x
Q∨

x

is acyclic.

The (Gm-equivariant) OX,x-dg-module Sx has a finite filtration with subquotients finite numbers
of copies of S(V∨x ). Hence it is enough to prove that S(V∨x )⊗OX,x

Q∨
x is acyclic. But S(V∨x ), as

a (Gm-equivariant) OX,x-dg-module, is a direct sum of flat OX,x-modules (placed in different
degrees), hence the latter fact is clear. �

3.3. Morphisms of functors. In this subsection we construct some morphisms of functors.
We will prove in the next subsection that they are isomorphisms, which implies that A and B

are equivalences of categories.

Proposition 3.3.1. There exist natural morphisms of functors

B ◦A → Id
Dց

gr (S)
, A ◦B → Id

Dտ
gr (T )

.

Proof. Let us give the details for the first morphism. The construction of the second one is
similar. It is sufficient to construct this morphism for any A-dg-module P as in Proposition
3.1.1(i). In this case A (P) is isomorphic to the image of A (P) in the derived category. As
A (P) has also OX -locally free homogeneous components, B ◦A (P) is isomorphic to the image

of B ◦A (P) in the derived category. We will define a morphism in Cցgr (S)

(3.3.2) B ◦A (P)→ P.

First we begin with the following lemma, which can be checked by direct computation, using
the isomorphisms (2.1.1) and (2.1.2).
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Lemma 3.3.3. As a bigraded OX -module, (A (P))∨ is naturally isomorphic to T ∨⊗OX
P. Under

this isomorphism, locally around a point x ∈ X, with the notation of (2.4.1), the differential
becomes

d(A (P))∨(f ⊗ p) = d(f)⊗ p+ (−1)|f |f ⊗ d(p) − (−1)|f |
(

∑

α

f · vα⊗ v
∗
α · p+

∑

β

f ·wβ ⊗w
∗
β · p

)

,

where we set (f · t)(t′) = f(t · t′) for f ∈ T ∨ and t, t′ ∈ T .

Under the isomorphism of Lemma 3.3.3, we have as bigraded OX -modules

B ◦A (P) ∼= S ⊗OX
T ∨ ⊗OX

P.

We define the morphism of bigraded OX -modules
{

S ⊗OX
T ∨ ⊗OX

P → P
s⊗ f ⊗ p 7→ f(1T ) · s · p

.

This morphism clearly commutes with the S-actions. Moreover, using Lemma 3.3.3, one easily
checks that it also commutes with the differentials, hence defines the desired morphism (3.3.2).

�

3.4. Equivalences.

Theorem 3.4.1. The functors A , B are equivalences of categories, quasi-inverse to each other.

Proof. First step: isomorphism B ◦ A
∼
−→ Id. In Proposition 3.3.1, we have constructed a

morphism of functors B ◦ A → Id. In this first step we prove that it is an isomorphism. Let

P be an object of Cցgr (S) as in Proposition 3.1.1(i). We have seen in 3.3 that B ◦ A (P) is
isomorphic to the image of B ◦A (P) in the derived category. By Proposition 3.1.1(i), it is thus
enough to prove that the induced morphism

φ : B ◦A (P)→ P

is a quasi-isomorphism. Let us construct a section (over OX) for this morphism. As a bigraded
OX -module we have B ◦ A (P) ∼= S ⊗OX

T ∨ ⊗OX
P. Let ǫT ∈ T ∨ be the unit section in

(T ∨)00 = OX . Now consider the morphism

ψ :

{

P → B ◦A (P)
p 7→ 1S ⊗ ǫT ⊗ p

.

One easily checks that it is a morphism of Gm-equivariant OX -dg-modules (but of course not
of S-dg-modules), and that

φ ◦ ψ = IdP .

Hence it is enough to prove that ψ is a quasi-isomorphism.

As a bigraded OX -module, we have, with the notation of 2.5,

B ◦A (P) ∼= K(1) ⊗OX
P ∼=

⊕

i,j,k,l

(K(1))ik ⊗OX
Pj

l ,

where the term (K(1))ik ⊗OX
Pj

l is in cohomological degree i+ j. Remark that here the non-zero
terms occur only when k is even. By Lemma 3.3.3, the differential on B ◦A (P) is the sum of
four terms. The first one is d1 := dK(1) ⊗ IdP . The second one is d2 := IdK(1) ⊗ dP . The third
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one is the “Koszul type” differential coming from the left action of V∨ ⊂ S on P and the right
action of V ⊂ T on K(1). Finally d4 is the similar “Koszul-type” differential coming from the
actions of W∨ and W. The effect of these differentials on the indices i, j, k, l can be described
as follows:

d1 : i→ i+ 1, d2 : j 7→ j + 1, d3 :















i 7→ i− 1
j 7→ j + 2
k 7→ k + 2
l 7→ l − 2

, d4 :







j 7→ j + 1
k 7→ k + 2
l 7→ l − 2

.

Moreover, one easily checks the following relations:

(d1 + d4)
2 = 0, (d2 + d3)

2 = 0.

Hence, disregarding the internal grading, B ◦A (P) is the total complex of the double complex
with (p, q)-term

Cp,q :=
⊕

p=j+l+k/2,
q=i−l−k/2

(K(1))ik ⊗OX
Pj

l ,

and with differentials d′ = d2 + d3 and d′′ = d1 + d4. We know that Pj
l = 0 for j + l ≫ 0, and

that (K(1))ik = 0 if k > 0. Hence Cp,q = 0 for p≫ 0. It follows, by Proposition 2.2.1, that there
is a converging spectral sequence

Ep,q
1 = Hq(Cp,∗, d′′)⇒ Hp+q(B ◦A (P)).

Disregarding the internal grading, P is also the total complex of a double complex, defined by

(C ′)p,q := Pp+q
−q

and the differentials d′ = dP , d′′ = 0. Here also (C ′)p,q = 0 for p ≫ 0, hence the corresponding
spectral sequence converges. Moreover, ψ is induced by a morphism of double complexes C ′ → C.
It follows that it is enough to prove that the morphism induced by ψ from P, endowed with the
zero differential, to K(1) ⊗OX

P, endowed with the differential d1 + d4, is a quasi-isomorphism.

The latter dg-module is again the total complex of the double complex with (p, q)-term

Dp,q :=
⊕

k,l

(K(1))qk ⊗OX
Pp

l ,

and differentials d′ = d4, d
′′ = d1. And P (with the trivial differential) is also the total complex

of the double complex defined by

(D′)p,q =

{ ⊕

l P
p
l if q = 0,

0 otherwise,

and with two trivial differentials. Again ψ is induced by a morphism of double complexes, and we
have Dp,q = (D′)p,q = 0 for q < 0. We conclude that the associated spectral sequences converge.
As H(K1) = OX (see Lemma 2.5.1) and P is a bounded above complex of flat OX -modules, we
finally conclude that ψ is a quasi-isomorphism.

Second step: isomorphism A ◦B
∼
−→ Id. The proofs in this second step are very similar to those

of the first step. By Proposition 3.3.1 there is a natural morphism A ◦B → Id, and we prove
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that it is an isomorphism. As above, it is enough to prove that, for Q an object of Cտgr (T ) as in
Proposition 3.1.1(ii), the induced morphism of T -dg-modules

φ : A ◦B(Q)→ Q

is a quasi-isomorphism. Also as above one can construct a section

ψ : Q→ A ◦B(Q)

of φ as a morphism of Gm-equivariant OX-dg-modules, and it is enough to prove that ψ is a
quasi-isomorphism.

Here we have as bigraded OX -modules, with the notation of 2.6,

A ◦B(Q) ∼= K(2) ⊗OX
Q ∼=

⊕

i,j,k,l

(K(2))ik ⊗OX
Qj

l ,

where (K(2))ik ⊗OX
Qj

l is in cohomological degree i + j (and k is even if the term is non-zero).
Again the differential is the sum of four terms d1 := dK(2) ⊗ IdQ, d2 = IdK(2) ⊗ dQ, d3 the Koszul
differential induced by the action of V and V∨, and d4 the Koszul differential induced by the
action of W and W∨. The effect of these differentials on the indices i, j, k, l can be described as
follows:

d1 : i→ i+ 1, d2 : j 7→ j + 1, d3 :















i 7→ i+ 2
j 7→ j − 1
k 7→ k − 2
l 7→ l + 2

, d4 :







i 7→ i+ 1
k 7→ k − 2
l 7→ l + 2

.

One has

(d1 + d2)
2 = 0, (d3 + d4)

2 = 0.

Hence, disregarding the internal grading, A ◦B(Q) is the total complex of the double complex
with (p, q)-term

Cp,q :=
⊕

p=−l−3k/2,
q=i+j+l+3k/2

(K(2))ik ⊗OX
Qj

l ,

and with differentials d′ = d3 + d4, d
′′ = d1 + d2. We know that Qj

l = 0 if j + l≪ 0. Moreover,

one checks easily that (K(2))ik = 0 if i + 3k/2 ≪ 0. Hence Cp,q = 0 if q ≪ 0. It follows, by
Proposition 2.2.1, that there is a converging spectral sequence

Ep,q
1 = Hq(Cp,∗, d′′)⇒ Hp+q(A ◦B(Q)).

Similarly, disregarding the internal grading, Q is the total complex of a double complex C ′, and
ψ is induced by a morphism of double complexes C ′ → C. Hence it is enough to prove that
the morphism induced by ψ from Q to K(2) ⊗OX

Q, endowed with the differential d1 + d2, is a
quasi-isomorphism.

Once more, this follows from a spectral sequence argument, using the property that H(K(2)) =
OX (see Lemma 2.6.1). �



20 IVAN MIRKOVIĆ AND SIMON RICHE

3.5. Regrading. In this subsection we introduce a “regrading” functor. This functor will play
a technical role in 3.6, and a more crucial role later in the geometric interpretation of the
equivalence.

Consider the functor
ξ : Cgr(S)→ Cgr(R)

which sends the S-dg-module M to the R-dg-module with (i, j)-component ξ(M)ij := Mi−j
j ,

the differential and the R-action on ξ(M) being induced by the differential and the S-action
on M. This functor is clearly an equivalence of categories, and it induces equivalences, still
denoted ξ,

Cցgr (S)
∼
−→ Cւgr (R), Dց

gr (S)
∼
−→ Dւ

gr (R).

3.6. Categories with finiteness conditions. In the rest of this section we prove that the
equivalences A and B restrict to equivalences between subcategories of dg-modules whose co-
homology is locally finitely generated. This will eventually allow us to get rid of the technical
conditions “տ” and “ց”.

Let us introduce some more notation. If A is a quasi-coherent Gm-equivariant dg-algebra, and

if ∗ =տ,ւ,ց,ր, we denote by C∗,fggr (A), respectively D∗,fg
gr (A), the full subcategory of C∗gr(A),

respectively D∗
gr(A), whose objects are the dg-modulesM such that H(M) is a locally finitely

generated H(A)-module.

We also denote by CFGgr(A) the full subcategory of Cgr(A) whose objects are the locally finitely
generated Gm-equivariant A-dg-modules, and by DFGgr(A) the localization of the homotopy

category of CFGgr(A) with respect to quasi-isomorphisms. Finally we denote by Dfg
gr(A) the full

subcategory of Dgr(A) whose objects are the Gm-equivariant dg-modules M such that H(M)
is locally finitely generated over H(A).

We are going to prove that, in the cases we are interested in, several of these categories coincide.
Observe in particular that there are inclusions

CFGgr(R) →֒ Cւ,fg
gr (R), CFGgr(S) →֒ Cց,fg

gr (S), CFGgr(T ) →֒ Cտ,fg
gr (T ),

which induce functors between the corresponding derived categories.

Lemma 3.6.1. (i) The induced functors

DFGgr(R)→ Dւ,fg
gr (R), DFGgr(S)→ Dց,fg

gr (S), DFGgr(T )→ Dտ,fg
gr (T )

are equivalences of categories.

(ii) Similarly, the natural functors

DFGgr(R)→ Dfg
gr(R), DFGgr(S)→ Dfg

gr(S), DFGgr(T )→ Dfg
gr(T )

are equivalences of categories.

Proof. Our proof of this lemma is very similar to that of [Bo87, VI.2.11] (see also [Ri08, 3.3.4]).
We give the details of the proof of (ii). Statement (i) can be treated similarly.

Using the “regrading trick” of 3.5, the cases of S and R are equivalent. Similarly, using the
change of the internal grading to the opposite one, we see that the cases of R and T are
equivalent. Hence it is sufficient to consider the Gm-equivariant dg-algebra T .
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Remark that the algebra T , as well as its cohomology H(T ), is finitely generated as a S(W)-
module. Hence a T -dg-module N is locally finitely generated, respectively has locally finitely
generated cohomology, iff N , respectively H(N ), is locally finitely generated over S(W).

Lemma 3.6.2. Let N be an object of Cgr(T ), with locally finitely generated cohomology, whose
cohomological grading is bounded. Then N is the inductive limit of quasi-coherent sub-T -dg-
modules which are locally finitely generated, and which are quasi-isomorphic to N under inclu-
sion.

Proof of Lemma 3.6.2. The internal grading has no importance in this statement, hence we
will forget about it in the proof. The dg-module N is clearly an inductive limit of locally
finitely generated quasi-coherent sub-T -dg-modules. Hence it is sufficient to show that given a
locally finitely generated quasi-coherent sub-dg-module F of N , there exists a locally finitely
generated quasi-coherent sub-dg-module G of N , containing F and quasi-isomorphic to N under
the inclusion map.

This is proved by a simple (descending) induction. Let j ∈ Z. Assume that we have found
a subcomplex G(j) of

⊕

i≥j N
i, quasi-coherent over OX , locally finitely generated over S(W),

containing
⊕

i≥j F
i, stable under T (i.e. if g ∈ Gi

(j) and t ∈ T k, and if i + k ≥ j, then

t · g ∈ Gi+k
(j) ), such that G(j) →֒ N is a quasi-isomorphism in cohomological degrees greater than

j and that Gj

(j) ∩ ker(dj
N ) → Hj(N ) is surjective. Then we choose a locally finitely generated

sub-S(W)-module Hj−1 of N j−1 containing F j−1, quasi-coherent over OX , whose image under

dj−1
N is Gj

(j) ∩ Im(dj−1
N ). Without altering these conditions, we can add a sub-module of cocycles

so that the new sub-module Hj−1 contains representatives of all the elements of Hj−1(N ). We
can also assume that N j−1 contains all the sections of the form t · g for t ∈ T i and g ∈ Gk

(j) with

i+ k = j − 1. Then we define G(j−1) by

Gk
(j−1) =

{

Gk
(j) if k ≥ j,

Hj−1 if k = j − 1.

For j small enough, G(j) is the sought-for sub-dg-module. �

Let us denote by

ι : DFGgr(T )→ Dfg
gr(T )

the functor under consideration. Let N be an object of Dfg
gr(T ). Then the cohomology H(N )

is bounded for the cohomological grading (because it is locally finitely generated over H(T ),
which is bounded). Hence, using truncation functors (see 2.1), N is isomorphic to a T -dg-
module whose cohomological grading is bounded. Using Lemma 3.6.2, it follows that N is in
the essential image of ι. Hence ι is essentially surjective.

Now, let us prove that it is full. Let N1 and N2 be objects of CFGgr(T ). In particular, N1

and N2 have bounded cohomological grading. A morphism φ : ι(N1) → ι(N2) in Dfg
gr(T ) is

represented by a diagram

ι(N1)
α
−→ F

β
←− ι(N2)
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where β is a quasi-isomorphism. Using truncation functors, one can assume that F has bounded
cohomological grading. By Lemma 3.6.2, there exists a locally finitely generated sub-T -dg-
module F ′ of F , containing α(N1) and β(N2), and quasi-isomorphic to F under the inclusion
map. Then φ is also represented by

ι(N1)
α
−→ F ′ β

←− ι(N2),

which is the image of a morphism in DFGgr(T ). Hence ι is full.

Finally we prove that ι is faithful. If a morphism f : N1 → N2 in CFGgr(T ) is such that ι(f) = 0,

then there exist an object F of Dfg
gr(T ), which can again be assumed to be bounded, and a quasi-

isomorphism of T -dg-modules g : N2 → F such that g ◦ f is homotopic to zero. This homotopy
is given by a morphism h : N1 → F [−1]. Again by Lemma 3.6.2, there exists a locally finitely
generated sub-T -dg-module F ′ of F containing g(N2) and h(N1)[1], and quasi-isomorphic to F
under inclusion. Replacing F by F ′, this proves that f = 0 in DFGgr(T ). The proof of Lemma
3.6.1 is complete. �

3.7. Restriction of the equivalences to locally finitely generated dg-modules.

Proposition 3.7.1. The functors A , B restrict to equivalences of categories

Dց,fg
gr (S) ∼= Dտ,fg

gr (T ).

Proof. It is sufficient to prove that the functors A , B send dg-modules with locally finitely
generated cohomology to dg-modules with locally finitely generated cohomology.

First step: functor B. First, let us consider B. By Lemma 3.6.1, it suffices to prove that if N
is a locally finitely generated T -module, then B(N ) has locally finitely generated cohomology.
We begin with the following lemma.

Lemma 3.7.2. Let N be a locally finitely generated Gm-equivariant T -dg-module. There exist
an object Q of CFGgr(T ), which is locally free of finite rank over S(W) ⊂ T , and a quasi-

isomorphism Q
qis
−→ N .

Proof of Lemma 3.7.2. The arguments in this proof are very close to those in the proof of Propo-
sition 3.1.1. There exists a Gm-equivariant sub-OX-dg-module G ⊂ N , which is coherent as an
OX -module, and which generates N as a S-dg-module. There exists also a Gm-equivariant
OX -dg-module F , which is locally free of finite rank as an OX -module, and a surjection F ։ G.
We set

Q(1) := T ⊗OX
F ,

endowed with its natural structure of Gm-equivariant T -dg-module. Then we have a surjection
of T -dg-modules

Q(1)
։ N ,

and Q(1) is locally free over S(W).

Let n be the rank of W over OX . Taking the kernel of our morphism Q(1) → N , and repeating
the argument, we obtain locally finitely generated T -dg-modules Q(j), j = 1, · · · , n + d, which
are locally free of finite rank over S(W), and an exact sequence of T -dg-modules

Q(n+d) → Q(d+n−1) → · · · → Q(1) → N → 0.
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All these objects are complexes of coherent S(W)-modules, hence we can consider them as
complexes of coherent sheaves on W ∗, the vector bundle on X with sheaf of sections W∨. The
scheme W ∗ is noetherian, integral, separated and regular of dimension d+n. Hence Q(n+d+1) :=
Ker(Q(n+d) → Q(n+d−1)) is also locally free over S(W). Then

Q := Tot(0→ Q(n+d+1) → · · · → Q(1) → 0)

is a resolution of N as in the lemma. �

Now letQ
qis
−→ N be a resolution as in Lemma 3.7.2. In particularQ is locally free over OX , hence

B(N ) is isomorphic to the image of B(Q) in the derived category. Hence it is enough to prove
that B(Q) has locally finitely generated cohomology, and even to prove that this cohomology is
locally finitely generated over S(V∨). Let x ∈ X. The object B(Q)x was described in 3.2. We
use the same notations as in this subsection. Disregarding the internal grading, B(Q)x is also
the total complex of the double complex with (p, q)-term

Cp,q :=
⊕

p=j,
q=i+k+j

Λi(W∨
x )⊗OX,x

Sj(V∨x )⊗OX,x
(Q∨

x )kl ,

and with differentials d′ = d1 + d3, d
′′ = d2 + d4. By hypothesis, (Q∨)kl = 0 for k ≪ 0, hence

Cp,q = 0 for q ≪ 0. Hence by Proposition 2.2.1 there is a converging spectral sequence

Ep,q
1 = H(Cp,∗, d′′)⇒ Hp+q(B(Q)x).

It follows that it is sufficient to prove that the cohomology of S ⊗OX
Q∨, endowed with the

differential d2 + d4, is locally finitely generated over S(V∨). This complex is again the total
complex of the double complex with (p, q)-term

Dp,q :=
⊕

p=2j+k,
q=i

Λi(W∨
x )⊗OX,x

Sj(V∨x )⊗OX,x
(Q∨

x )kl ,

and with differentials d′ = d2, d
′′ = d3. The spectral sequence of this double complex again

converges, hence we can forget about d2. Then S ⊗OX
Q∨, endowed with the differential d3, is

locally the tensor product of S(V∨) with a finite number of Koszul complexes Koszul2(W
∨
x ) of

(2.3.2). The result follows.

Second step: functor A . The proof for the functor A is entirely similar. In this case, with the
notation of 3.2, we can consider the double complex with (p, q)-term

Cp,q :=
⊕

p=k−2i−j,
q=i+j

Λi(W∨
x )⊗OX,x

Sj(V∨x )⊗OX,x
(P∨

x )kl ,

and differentials d′ = d1 + d2, d
′′ = d3 + d4. Here Cp,q = 0 for q < 0, hence the corresponding

spectral sequence converges, and we can forget about d1 and d2. Then we can consider the
double complex

Dp,q :=
⊕

p=k−2i,
q=i

Λi(W∨
x )⊗OX,x

Sj(V∨x )⊗OX,x
(P∨

x )kl ,

with differentials d′ = d4 and d′′ = d3. And we finish the proof as above. �
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Finally, combining Proposition 3.7.1, Lemma 3.6.1 and the “regrading trick” of 3.5 we obtain
the following theorem, which is the main result of this section.

Theorem 3.7.3. There exists a contravariant equivalence of triangulated categories

κ : Dfg
gr(T )

∼
−→ Dfg

gr(R)

satisfying κ(M[n]〈m〉) = κ(M)[−n +m]〈m〉.

4. Linear Koszul duality

In this section we give a geometric interpretation of Theorem 3.7.3.

4.1. Intersections of vector bundles. Let us consider as above a noetherian, integral, sepa-
rated, regular scheme X, and a vector bundle E over X. Let F1, F2 ⊂ E be sub-vector bundles.
Let E∗ be the vector bundle dual to E, and let F⊥

1 , F
⊥
2 ⊂ E∗ be the orthogonal to F1, respec-

tively F2. We will be interested in the dg-schemes

F1
R
∩E F2 and F⊥

1
R
∩E∗ F⊥

2 .

Let E ,F1,F2 be the sheaves of local sections of E,F1, F2. Then the sheaves of local sections of
E∗, F⊥

1 , F
⊥
2 are, respectively, E∨, F⊥

1 and F⊥
2 (here we consider the orthogonals inside E∨). Let

us denote by X the OX -dg-module

X :=
(

0→ F⊥
1 → F

∨
2 → 0

)

,

where F⊥
1 is in degree −1, F∨

2 is in degree 0, and the non-trivial differential is the composition
of the natural morphisms F⊥

1 →֒ E
∨

։ F∨
2 , and by Y the OX -dg-module

Y :=
(

0→ F2 → E/F1 → 0
)

,

where F2 is in degree −1, E/F1 is in degree 0, and the non-trivial differential is the opposite of
the composition of the natural morphisms F2 →֒ E ։ E/F1.

Lemma 4.1.1. There exist equivalences of categories

D(F1
R
∩E F2) ∼= D(X,Sym(X )), D(F⊥

1

R
∩E∗ F⊥

2 ) ∼= D(X,Sym(Y)).

Proof. We need only prove the first equivalence (the second one is similar: replace E by E∗, F1

by F⊥
2 , F2 by F⊥

1 ). Let A be any graded-commutative, non-positively graded, quasi-coherent

dg-algebra on E, quasi-isomorphic to OF1

L

⊗OE
OF2 (see 1.4). Let π : E → X be the natural pro-

jection. Then it is well-known (see e.g. [EGA II, 1.4.3]) that the functor π∗ induces equivalences
of categories

C(E,A) ∼= C(X,π∗A), D(E,A) ∼= D(X,π∗A).

Moreover, the data of A is equivalent to the data of the π∗OE-dg-algebra π∗A, which is quasi-

isomorphic to π∗OF1

L

⊗π∗OE
π∗OF2 .

Now there are natural isomorphisms π∗OE
∼= SOX

(E∨), π∗OFi
∼= SOX

(F∨
i ) (i = 1, 2). Consider

the Koszul resolution

Sym
(

0→ F⊥
1 → E

∨ → 0
) qis
−→ S(F∨

1 ) ∼= S(E∨)/(F⊥
1 · S(E∨)),
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where F⊥
1 is in degree −1, E∨ is in degree 0, and the differential is the natural inclusion. This

is a flat dg-algebra resolution of S(F∨
1 ) over S(E∨). If we tensor this resolution with S(F∨

2 )

(over S(E∨)) we obtain that the dg-algebra Sym(X ) is quasi-isomorphic to π∗OF1

L

⊗π∗OE
π∗OF2 .

Hence we can take π∗A = Sym(X ). This finishes the proof of the lemma. �

4.2. Linear Koszul duality. One can also consider X as a Gm-equivariant OX-dg-module,
where F⊥

1 and F∨
2 are in internal degree 2. Then, similarly, Y is Gm-equivariant (with generators

in internal degree −2). Geometrically, this corresponds to considering a Gm-action on E, where
t ∈ k

× acts by multiplication by t−2 along the fibers. We will use the notations

Dc
Gm

(F1
R
∩E F2) := Dfg

gr(X,Sym(X )),

Dc
Gm

(F⊥
1

R
∩E∗ F⊥

2 ) := Dfg
gr(X,Sym(Y)).

Then Theorem 3.7.3 gives, in this situation:

Theorem 4.2.1. There exists a contravariant equivalence of triangulated categories, called lin-
ear Koszul duality,

κ : Dc
Gm

(F1
R
∩E F2)

∼
−→ Dc

Gm

(F⊥
1

R
∩E∗ F⊥

2 )

satisfying κ(M[n]〈m〉) = κ(M)[−n +m]〈m〉.

4.3. Equivariant version of the duality. Finally, let us consider an algebraic group G acting
on X (algebraically). Assume that E is a G-equivariant vector bundle, and that F1 and F2 are
G-equivariant subbundles. Then, with the same notations as above, X is a complex of G-
equivariant coherent sheaves on X. Let us denote by

Dc
G×Gm

(F1
R
∩E F2)

the derived category of G×Gm-equivariant quasi-coherent Sym(X )-dg-modules on X (i.e. Gm-
equivariant dg-modules as above, endowed with a structure of G-equivariant quasi-coherent
OX -module compatible with all other structures) with locally finitely generated cohomology, and

similarly for Dc
G×Gm

(F⊥
1

R
∩E∗ F⊥

2 ). Then our constructions easily extend to give the following
result.

Theorem 4.3.1. There exists a contravariant equivalence of categories

κ : Dc
G×Gm

(F1
R
∩E F2)

∼
−→ Dc

G×Gm

(F⊥
1

R
∩E∗ F⊥

2 )

satisfying κ(M[n]〈m〉) = κ(M)[−n +m]〈m〉.
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