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GEOMETRIC REPRESENTATION THEORY OF

RESTRICTED LIE ALGEBRAS OF CLASSICAL TYPE

IVAN MIRKOVIĆ AND DMITRIY RUMYNIN

Abstract. We modify the Hochschild ϕ-map to construct central
extensions of a restricted Lie algebra. Such central extension gives
rise to a group scheme which leads to a geometric construction of
unrestricted representations. For a classical semisimple Lie alge-
bra, we construct equivariant line bundles whose global sections
afford representations with a nilpotent p-character.

Let G be a connected simply connected semisimple algebraic group
over an algebraically closed field K of characteristic p and g be its Lie
algebra. The representation theory of g is connected with the coad-
joint orbits through the notion of a p-character [27, 3, 14, 10]. An
irreducible representation ρ is finite-dimensional and determines a p-
character χ ∈ g∗ by χ(x)p Id = ρ(x)p−ρ(x[p]) for each x ∈ g [27]. There
are indications that a geometry stands behind this representation the-
ory, for instance, the Kac-Weisfeiler conjecture proved by Premet [21].
This work has been motivated by an idea of Humphreys that the repre-
sentations affording χ should be related to the Springer fiber Bχ. Some
of our intuition comes from algebraic calculations of Jantzen [12, 13].
The most interesting evidence for the relation between Springer fibers
and representations of g is now given by Lusztig [17].

The main goal of this paper is to introduce a method for construct-
ing unrestricted representations of g by taking global sections of line
bundles on infinitesimal neighborhoods of certain subvarieties of Bχ.
A more general approach implementing twisted sheaves of crystalline
differential operators will be explained elsewhere.

An attempt to study representations of g with a single p-character χ
has led to the notion of a reduced enveloping algebra. We modify this
approach by considering a set of p different p-characters {0, χ, 2χ, . . . ,
(p− 1)χ} together in Section 1. The category of such representations
is closed under tensor products. These are restricted representations of
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2 IVAN MIRKOVIĆ AND DMITRIY RUMYNIN

a central extension gχ of g by the multiplicative restricted Lie algebra
gm. One can think of this construction as a multiplicative version of
the Hochschild ϕ-map.

We discuss a geometric machinery necessary for the construction
of representations in Sections 2 and 3. In Section 4, we introduce
equivariant line bundles and construct representations. This section
contains the main result (Theorem 4.3.2) of this paper, which is a
geometric construction of unrestricted representations. Section 5 is
devoted to various comments on the representations constructed.

Let us briefly explain the construction. The central extension gχ

defines a central extension 0→ G1
m → Gχ → G1 → 0 of the Frobenius

kernels of G and the multiplicative group Gm. The group scheme Gχ

acts on the flag variety B and preserves the Frobenius neighborhood
Ẑ of any subscheme Z. For a G-equivariant line bundle Fλ on B, we
construct a Gχ-action on Fλ|Ẑ with a “central charge 1”. Then g will
act on the global sections of Fλ|Ẑ with a p-character χ.

It suffices to construct such an equivariant structure on a subscheme
X̂ that contains Z. We want to choose X so that we can put hands
on the Frobenius neighborhood X̂. We will assume that X is smooth
so that Gχ ×X → X̂ is the quotient map by the action groupoid Gχ

X

arising from the Gχ-action on X̂.
To construct an equivariant structure, it suffices to split the groupoid
Gχ

X as a product of the Frobenius kernel of the multiplicative group G1
m

and another groupoid G1
X . A necessary condition for this construction

is that X is a subvariety of Bχ.
The groupoid Gχ

X splits canonically over the diagonal. We linearize
the requirement that this splitting extends off the diagonal, and study
it in terms of Lie algebroids of the above mentioned groupoids.

The authors are greatly indebted to J. Humphreys whose inspiration
was crucial for writing this article. The authors would like to thank
T. Ekedahl, J. Jantzen, J. Paradowski, G. Seligman, and S. Siegel for
various information.

0.1. Notational conventions. Let F be the prime subfield of an al-
gebraically closed field K of characteristic p.

0.1.1. Restricted Lie algebras. The main object of our study is a finite
dimensional restricted Lie algebra l over K. If l is the Lie algebra of
a linear algebraic group, the group is denoted by L. While discussing
a semisimple algebraic group, we denote the group by G and its Lie
algebra by g. Let Rg be the set of roots of g, ∆g be a set of simple roots,
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W be the Weyl group, and Π be the weight lattice. The multiplicative
group and its Lie algebra are denoted Gm and gm.

0.1.2. Flag variety. Let B be the flag variety of G. We think of points
of B over K as Borel subalgebras b in g. Let Bw be a Schubert variety
for w ∈ W . If χ is nilpotent then the Springer fiber Bχ is a reduced
subscheme of B, whose points over K are those Borel subalgebras on
which χ vanishes.

0.1.3. Enveloping algebras. The universal enveloping algebra of l is
U(l). It contains a central Hopf subalgebra O generated by xp − x[p]

for all x ∈ l. For any χ ∈ l∗, the reduced enveloping algebra Uχ(l) is
a quotient of U(l) by the ideal generated by xp − x[p] − χ(x)p1U(l) for
all x ∈ l [25, 3]. The reduced enveloping algebra U0(l) is the restricted
enveloping algebra u(l). All Uχ(l) are twisted products of u(l) with the
field K [22].

0.1.4. p-character. A representation of l has a p-character χ ∈ l∗ if the
representation determines a Uχ(l)-module. While working with g, we
assume that χ is a nilpotent element of g∗. The case of a general χ ∈ g∗

can be reduced to the nilpotent case.

0.1.5. Induction. If m is a restricted Lie subalgebra of l such that χ|m =

0 then the induction functor Ind
Uχ(l)
Uχ(m) is defined on the category of left

u(m)-modules.
In particular, for a Borel subalgebra b to g, if χ|b = 0 then all sim-

ple modules over Uχ(b) = u(b) are one-dimensional and parametrized
by the reduced (modulo p) weight lattice Λ. The induced module
Zχ,b(λ) = Uχ(g) ⊗u(b) Kλ, λ ∈ Λ, called a baby Verma module, was
introduced in [8]. Any irreducible Uχ(g)-module is a quotient of at
least one Zχ,b(λ), though the module Zχ,b(λ) need not have a unique
simple quotient, which makes a classification of simple g-modules an
interesting problem [3].

1. Central extensions

1.1. Central extensions of Hopf algebras. Our approach will be
explained in this section. The ground field k is arbitrary for this section.

1.1.1. Let us consider a Hopf algebra U and its central Hopf subalge-
bra O. Given χ ∈ SpecO(k), representations in which O acts by χ are
those that can be reduced to the algebra Uχ = U⊗O k(χ). The algebra
Uχ is not necessarily a Hopf algebra. The basic idea of the present pa-
per is to replace the study of Uχ-modules for a single χ with the study
of Uχ-modules as χ runs over a closed subgroup of SpecO. One has
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more modules but we benefit from having a Hopf algebra rather than
a Hopf-Galois extension.

1.1.2. Proposition. Let O → R be the natural map where R is the
algebra of functions on the closed subgroup scheme of SpecO generated
by χ. Then U ⊗O R is a Hopf algebra.

1.1.3. Proof. A subgroup scheme X gives rise to a surjective Hopf al-
gebra map π : O → O(X). We need to check that A ⊗O O(X) is a
Hopf algebra.

The tensor product C = A ⊗k O(X) is obviously a Hopf algebra.
It suffices to check that the ideal I, generated by all x⊗ 1− 1⊗ π(x)
with x ∈ O, is a Hopf ideal. The latter means that the quotient
C/I = A ⊗O O(X) admits a Hopf algebra structure such that the
quotient map is a Hopf algebra homomorphism. Being a Hopf ideal
includes three axioms that we are checking now.

Axiom 1: ε(I) = 0. A typical element of I has a form
∑

i ai(xi⊗1−1⊗
π(xi))bi where ai, bi ∈ C, xi ∈ O. Now we compute ε(

∑
i ai(xi⊗1−1⊗

π(xi))bi) =
∑

i ε(ai)(ε(xi)⊗ 1− 1⊗ ε(π(xi)))ε(bi) =
∑

i ε(ai)(ε(xi)1C −
ε(xi)1C)ε(bi) = 0.

Axiom 2: S(I) ⊆ I. Let us compute S(
∑

i ai(xi⊗ 1− 1⊗π(xi))bi) =∑
i S(bi)(S(xi) ⊗ 1 − 1 ⊗ S(π(xi)))S(ai) =

∑
i S(bi)(S(xi) ⊗ 1 − 1 ⊗

π(S(xi)))S(ai) ∈ I.
Axiom 3: ∆(I) ⊆ C⊗I+I⊗C. Let us compute ∆(

∑
i ai(xi⊗1−1⊗

π(xi))bi) =
∑

i ∆(ai)(xi1⊗1
⊗
xi2⊗1−1⊗π(xi1)

⊗
1⊗π(xi2))∆(bi) =∑

i ∆(ai)[{xi1 ⊗ 1− 1⊗ π(xi1)}
⊗
xi2 ⊗ 1 + 1⊗ π(xi1)

⊗
{xi2 ⊗ 1− 1⊗

π(xi2)}]∆(bi) ∈ I ⊗ C + C ⊗ I. 2

1.1.4. In the present paper, we focus on the case of the universal
enveloping Hopf algebra of a restricted Lie algebra. The subgroup gen-
erated by χ is Fχ. A quantum linear group Oq(G) and the unrestricted
form of a quantum enveloping algebra Uq(g) at a root of unity are other
interesting options [22]. However, a closed subgroup of G or Cn−r×C∗r

generated by an element is more complicated.

1.2. Extensions of restricted Lie algebras.

1.2.1. An exact sequence of restricted Lie algebras 0→ a→ m→ l→
0 is called a central extension of l if a is a central ideal of m. This ter-
minology is not standard. An additional condition a[p] = 0 is required
in [6] for a central extension. The reason for this constraint is that such
central extensions can be parametrized by the second restricted coho-
mology group. The important choice of a for us is gm, which means
that we usually have a[p] = a.
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1.2.2. Multiplicative Hochschild ϕ-map. The Hochschild ϕ-map [5, 26]
provides a central extension of l by the additive Lie algebra for each
χ ∈ l∗. We modify this construction to obtain a central extension by
gm instead. Given χ ∈ l∗, we construct a central extension lχ. This
extension is trivial as an extension of Lie algebras, i.e. lχ = l⊕Kc; but
the p-structure is twisted by χ:

(a+ αc)[p] = a[p] + (χ(a)p + αp)c (1)

The original construction by Hochschild [5, 26] uses a p-structure
(a+ αc)[p] = a[p] + χ(a)pc.

1.2.3. Proposition. Formula (1) defines a restricted Lie algebra struc-
ture.

1.2.4. Proof. The operation that we define is obviously p-linear, i.e.
(βa+ βαc)[p] = βp(a+ αc)[p]. Let us denote adl by ad and adlχ by Ad.
Since c is central, Ad(a+ αc) = Ad a. Thus,

Ad(a+αc)[p] = Ad a[p] =

(
ad a[p] 0

0 0

)
=

(
(ad a)p 0

0 0

)
=

(
ad a 0
0 0

)p

=

= (Ad a)p = (Ad(a+ αc))p.

Introducing an independent variable T , we set nsn(a, b) to be a coeffi-
cient at T n−1 of (ad(aT + b))p−1(a). By Sn we denote the result of the
similar procedure performed in lχ. It is clear that Sn(a+αc, b+ βc) =
sn(a, b). Finally, ((a + αc) + (b + βc))[p] = (a + b)[p] + (χ(a)p + αp +
χ(b)p + βp)c = a[p] + b[p] +

∑p−1
i=1 si(a, b) + (χ(a)p + αp + χ(b)p + βp)c =

(a+ αc)[p] + (b+ βc)[p] +
∑p−1

i=1 Si(a+ αc, b+ βc). 2

1.2.5. When is lχ split? The extension lχ is split as an extension of Lie
algebras but not necessarily as an extension of restricted Lie algebras.

1.2.6. Lemma. The splittings of the extension lχ are in one-to-one cor-
respondence with β ∈ l∗ satisfying the equations

β([x, y]) = 0, (2)

β(y[p]) = χ(y)p + β(y)p (3)

for each x, y ∈ l.

1.2.7. Proof. Any splitting l→ lχ must be of the form y 7→ y+β(y)c for
some β ∈ l∗. It is a map of Lie algebras if and only if β([l, l]) = 0. The
splitting preserves the restricted structure if and only if equation (3)
holds. 2

1.2.8. Corollary. The canonical map l →֒ lχ is a restricted Lie algebra
splitting if and only if χ = 0.
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1.2.9. Corollary. If l is perfect (i.e. [l, l] = l) then lχ is split if and only
if χ = 0.

1.3. Connection with universal enveloping algebra. Our next
objective is to give another, more intrinsic, description of lχ. Let ψ :
l∗ → (SpecO)(K) be the natural map defined by (xp − x[p])(ψ(χ)) =
χ(x)p for all x ∈ l, χ ∈ l∗.

1.3.1. The restricted enveloping algebra of gm. The algebra u(gm) is
semisimple [5]. Let c be a basis element of gm such that c[p] = c. The
elements 1, c, . . . , cp−1 form a basis of u(gm). Let us define the Nielsen

polynomial Niη(c) for η ∈ F:

Niη(c) =

{
−
∑p−1

n=1
cn

ηn if η 6= 0

1− cp−1 if η = 0

The elements Niη(c) form a complete system of orthogonal idempo-
tents of u(gm). The idempotent Niη(c) corresponds to the character
ρη, defined by ρη(c) = η, of G1

m and ρη(Niη(c)) = 1.

1.3.2. Theorem. Let χ be a non-zero element of l∗ and ν = ψ(χ). Then
U(l)⊗O O(Fν) is isomorphic to u(lχ) as a Hopf algebra.

1.3.3. Proof. The map of Lie algebras l −→ lχ given by a 7→ a+0c can
be extended to a map of Hopf algebras ζ : U(l) −→ u(lχ). Since χ 6= 0
the algebra u(lχ) is generated by l and the map ζ is onto.

On the other hand, there is a natural surjective linear map

θ : U(l) −→ U(l)⊗O O(Fν)

given by y 7→ y ⊗ 1. It follows from Proposition 1.1.2 that θ is a Hopf
algebra map. The kernel of θ is generated by some elements of O. It
suffices to show that for each x ∈ O such that θ(x) = 0 it holds that
ζ(x) = 0. Indeed, this condition will imply that ker θ ⊆ ker ζ . Thus,
there exists a Hopf algebra map κ : U(l) ⊗O O(Fν) → u(lχ). It is
surjective since so is ζ . But both algebras have the same dimension
pN+1 where N is the dimension of l. Thus, κ is an isomorphism.

Let li be a basis of l. Then any x ∈ O has a unique representation

as a polynomial in lpi − l
[p]
i . We assume x =

∑
k ak(l

p − l[p])k ∈ ker θ in
multi-index notation. This means that

∑
kakη

|k|(χ(l)p)k = 0 for each
η ∈ F. We can notice that ζ(x) =

∑
k akc

|k|(χ(l)p)k ∈ u(lχ). Fi-
nally, u(gm) is a central semisimple subalgebra of u(lχ). The Pierce
decomposition of u(lχ) is u(lχ) = ⊕η∈Fu(lχ)Niη(c). Thus, ζ(x)Niη(c) =∑

k akη
|k|(χ(x)p)k = 0 for every η ∈ F and, therefore, ζ(x) = 0. 2
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1.3.4. The theorem clearly fails for χ = 0. However, if one thinks
that F · 0 is not just a point but some infinitesimal neighborhood then
the theorem is adjustable to the case of χ = 0. For instance, the next
corollary holds for every χ.

1.3.5. Corollary. u(lχ) is isomorphic to ⊕i∈FUiχ(l) as an algebra.

1.3.6. A representation of lχ has a central charge η ∈ F if c acts by η.
Representations of l affording χ are in one-to-one correspondence with
restricted representations of lχ with a central charge 1.

The next corollary provides an intrinsic construction of lχ. Recall
that the set of primitive elements of a Hopf algebra H is P (H) = {h ∈
H | ∆h = 1 ⊗ h + h ⊗ 1}. The corollary follows from the fact that
P (u(l)) = l.

1.3.7. Corollary. lχ ∼= P (U(l)⊗O O(Fν)).

1.3.8. One can describe properties of lχ starting from the construction
of lχ as the set of primitive elements of the Hopf algebra U(l) ⊗O

O(Fν). The natural map U(l) ⊗O O(Fν) → u(l), restricted to the set
of primitive elements, is the extension map lχ → l. This extension has
a canonical Lie algebra splitting that does not preserve the restricted
structure: l →֒ U(l) → U(l) ⊗O(l) O(Fν) has an image in lχ. The
element c is also canonical: it is easy to see that for each x ∈ l such

that χ(x) 6= 0, the element c = xp−x[p]

χ(x)p ∈ U(l)⊗O O(Fν) is central and

independent of x. It belongs to lχ but not to l.

1.4. Harish-Chandra pairs.

1.4.1. A natural question is to try to find a central extension of alge-
braic groups Gm → L̂χ → L affording lχ on the tangent level. There is
no such central extension for a non-zero χ and a semisimple group G
because all central extensions of G are finite.

1.4.2. For a nilpotent χ ∈ g∗, it is possible to add a piece of an
algebraic group obtaining a restricted Harish-Chandra pair. Let us
consider an algebraic group S = StG(χ), the stabilizer of χ in G. The
centralizer Cg(χ) of χ contains the Lie algebra s of S. We define an
embedding of Lie algebras θ : s →֒ gχ through the chain of embeddings

s →֒ Cg(χ) →֒ g →֒ gχ. (4)

Using the left adjoint action of G, we define an action of S on gχ by

g · (x⊕ αc) = (g · x)⊕ αc (5)

for any g ∈ S, x ∈ g, α ∈ K. We have to check the following three
items to prove that it is a restricted Harish-Chandra pair.
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1. The embedding θ is of restricted Lie algebras. We need the as-
sumption that χ is nilpotent, which means that Cg(χ) ⊆ ker(χ) by the
definition of a nilpotent element. Given a ∈ Cg(χ), we observe that
(a⊕ 0c)[p] = a[p] ⊕ χ(a)pc = a[p].

2. S acts on gχ by restricted Lie algebra automorphisms. Given
a ∈ Cg(χ), g ∈ S, and α ∈ K, we observe that (g · (a ⊕ αc))[p] =
(g ·a)[p]⊕(χ(g ·a)p+αp)c = g ·(a[p]⊕((g−1 ·χ)(a)+αp)c) = g ·(a+αc)[p].

3. The actions of s on gχ, induced by the action of S and the em-

bedding s →֒ gχ, are the same. It is true because the representation of
g on gχ is the sum of trivial and adjoint representations.

2. Frobenius morphism

The main object of study in this section is a Noetherian algebraic
scheme X over K. We view X from the two viewpoints. On the one
hand, X is a ringed topological space. On the other hand, X is a
functor mapping a commutative K-algebra R to the set X(R) of points
over R.

2.1. Properties of Frobenius morphisms.

2.1.1. Definition. Let X(n) be X as a scheme (i.e. X(n) = X as a topo-

logical space and O
(n)
X = OX as a sheaf of rings) with the new structure

over the field: X −→ Spec K
xp

−n

−→ Spec K. The Frobenius morphism FX ,
defined on the level of functions by f 7→ f p, is a morphism of K-schema:
FX : X −→ X(1).

2.1.2. Frobenius morphism for a smooth scheme. The Frobenius mor-
phism FX is never smooth. It is flat if and only if X is smooth by Kunz
theorem [16]. The following proposition is a technical fact about the
Frobenius morphism, crucial for further study. It would be interesting
to know whether Proposition 2.1.3 holds true for some singular variety.

Intuitively, the proposition says that the Frobenius map is locally
surjective on points over rings. It holds if one replaces the Frobenius
map by any faithfully flat finitely presented map.

2.1.3. Proposition. Let X be a smooth algebraic variety and R be a
commutative K-algebra. For each h ∈ X(1)(R) there exist a faithfully
flat finitely presented R-algebra R̃ and y ∈ X(R̃) such that FX(R̃)(y) =

X(1)(ϕ)(h) where ϕ : R→ R̃ is the natural map.
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2.1.4. Proof. The Frobenius morphism FX is flat by the Kunz theorem.
It is faithfully flat because it is surjective on the level of points over K.

We assume that X is affine without loss of generality since the ques-
tion is local. Denote A = O(X); the Frobenius morphism is given by
the p-th power map F : A(1) → A, where A(1) = O(X(1)) by defini-
tion. The point h is a map of K-algebras A(1) → R. The R-algebra
R̃ = R ⊗A(1) A is faithfully flat by [2, 1.2.2.5] and obviously finitely
presented (it has the same generators and relations over R as A over

A(1)). The natural map A→ R̃ is the point y we are looking for. 2

2.2. Frobenius neighborhoods. We define Frobenius neighborhoods
and consider Frobenius kernels as an example of this phenomenon.

2.2.1. Definition. Let Y be a closed subscheme of X; then Y (1) is nat-
urally a subscheme of X(1). Our main concern in this section is the
inverse image subscheme F−1

X (Y (1)), the Frobenius neighborhood of Y

in X. We denote it by Ŷ . This notation is ambiguous because it is
unclear in which X it is taken.

Assume Y is a closed subscheme of an affine scheme X, determined
by equations f1 = 0, . . . , fm = 0. The ideal of Ŷ is generated by f p

i .
Thus, Ŷ lies in the p-th infinitesimal neighborhood of Y and contains
the first infinitesimal neighborhood.

2.2.2. Frobenius kernels. An interesting choice of X and Y is X = L,
an algebraic group, and Y = {e}, the reduced identity element. The
functoriality of Frobenius morphism implies that L(1) is an algebraic
group and FL is a map of algebraic group schema. The neighborhood
Ŷ is the kernel of FL, which is an infinitesimal finite group scheme
(called the first Frobenius kernel). It will be denoted L1.

SinceO(L1) ∼= u(l)∗ [11, 1.9.6], the u(l)-modules coincide withO(L1)-
comodules, i.e. with L1-modules.

2.2.3. Frobenius neighborhoods in an L-variety. The Frobenius kernel
L1 acts on the Frobenius neighborhood Ŷ of any subvariety Y because
of the functoriality of the Frobenius morphism. To prove this, pick
g ∈ L1(R) and x ∈ Ŷ (R). We have to show that gx ∈ Ŷ (R). The
latter means that FZ(gx) ∈ Y (1)(R). But FZ(gx) = FL(g)FZ(x) be-
cause of the functoriality. Now we finish the computation FZ(gx) =
FL(g)FZ(x) = 1LFZ(x) = FZ(x) ∈ Y (1)(R).
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2.2.4. Central extensions Lχ of Frobenius kernels. It is interesting that
Uχ(l)-modules can be also understood in a similar spirit. They are rep-
resentations of a certain central extension of L1. The central extension

0→ gm → lχ → l→ O

gives rise to an exact sequence in the category of Hopf algebras

K→ u(gm)
α
−→ u(lχ)→ u(l)→ K.

It is central in a sense that u(gm) lies in the center of u(lχ). The kernel
of α is an ideal generated by gm inside u(lχ). We dualize the sequence:

K← u(gm)∗
β
←− u(lχ)∗ ← u(l)∗ ← K. (6)

The centrality of gm in lχ amounts to the fact that b1⊗β(b2) = β(b1)⊗b2
for each b ∈ u(lχ)∗. The algebra extension u(lχ)∗ ⊇ u(l)∗ is u(gm)∗-
Galois [19, 22]. Noticing that u(gm)∗ ∼= KZp, the Galois condition
means that u(lχ)∗ is a Zp-graded algebra such that u(lχ)∗s u(lχ)∗s−1 =
u(lχ)∗e = u(l)∗ for all s ∈ Zp where e ∈ Zp is the identity element
[19]. Applying the functor Spec to sequence (6), we arrive at a central
extension of finite infinitesimal group schema:

1→ G1
m → Lχ π

−→ L1 → 1

where Lχ is the spectrum of u(lχ)∗, by definition.

2.2.5. Lemma. For each η ∈ F, there exists an invertible element f ∈
u(lχ)∗ such that f(xa) = aηf(x) for all a ∈ G1

m(R), x ∈ Lχ(R), and
any commutative K-algebra R (note that aη is well-defined since a ∈
G1

m(R) = {r ∈ R | rp = 1}).

2.2.6. Proof. The element ρ = ρη ∈ u(gm)∗ is group-like (i.e. ∆(ρ) =
ρ ⊗ ρ) since it is a representation. Rewriting f(xa) = aηf(x) =
f(x)ρ(a), we realize that we are looking for an invertible element f
such that f1⊗β(f2) = f⊗ρ, i.e. f is homogeneous of degree ρ. The al-
gebra u(lχ)∗ is local. As a result, f is invertible if and only if ε(f) 6= 0.
The Galois condition [19, Theorem 8.1.7] implies that

1 ∈ u(lχ)∗ρ u(lχ)∗ρ−1 (7)

where u(lχ)∗ρ denotes the subspace of ρ-homogeneous elements. If no
such f exists then ε(u(lχ)∗ρ) = 0, which contradicts (7). 2

2.2.7. Harish-Chandra pairs. The Harish-Chandra pair (S, gχ), con-
structed in 1.4.2, is a central extension of another pair (S, g), which

can be interpreted as a Frobenius neighborhood Ŝ of S in G since
they have the same categories of representations. Similarly, one can
interpret the pair (S, gχ) as a central extension of Ŝ by G1

m.
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3. Groupoids

3.1. Basics. We discuss groupoids and their relevance to Frobenius
neighborhoods. We follow [18] for groupoid and Lie algebroid termi-
nology.

3.1.1. Groupoid scheme. A groupoid J over a scheme X is a scheme J
over X ×X, equipped with morphisms

m : J [2] = J ×X J → J, ι : X → J, −1 : J → J

of multiplication, identity that is a closed embedding, and inversion
such that for any commutative ring R the set J(R) is a groupoid
with the base X(R) under the structure maps m(R), ι(R), and −1(R).
Moreover, for any algebra homomorphism µ : R → R′, the map
J(µ) : J(R) → J(R′) must be a map of groupoids. If the X × X-
structure on J is given by (A,P) : J −→ X×X then the fiber product
J [2] = J×X J is taken using P in the first position and A in the second
position.

3.1.2. Quotients. A groupoid J over X acts on an X-scheme Y if a
morphism

⋆ : (J
P
−→ X)×X Y → Y

is given satisfying associativity and unitarity conditions. For any K-
algebra R, an equivalence relation ∼ on Y (R) is

x ∼ y ⇐⇒ ∃g ∈ J(R) | g ⋆ x = y.

Then Y/J is a sheaf in the flat topology on the category of K-algebras
associated to the presheaf R 7→ Y (R)/ ∼ .

If Y = X and ⋆ = A then X/J is a quotient by a groupoid as defined
in [2].

3.1.3. Action groupoid. A group scheme L action on a scheme Y gives
rise to the action groupoid JX for each closed subscheme X of Y . Note
thatX need not be invariant under the L-action. If a : L×Y → Y is the
action map then JX is the inverse image scheme: JX = (a|L×X)−1(X).
In other words, JX(R) = {(g, x) ∈ L(R)×X(R) | g · x ∈ X(R)}. The
product m((g, x), (h, y)) = (gh, y) is defined whenever x = h · y.

3.1.4. Product groupoid. Given a groupoid J over a scheme Y and a
group scheme L, one can form a product groupoid J × L over Y . It is
the product scheme with the structure maps

A′(g, l) = A(g), P′(g, l) = P(g), m′((g, l), (g′, l′)) = (m(g, g′), ll′),

ι′(x) = (ι(x), 1L), (x, l)−1 = (x−1, l−1)

for all g, g′ ∈ J(R), l, l′ ∈ L(R), and x ∈ Y (R).
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3.1.5. Central extension of a groupoid. A central extension by an Abelian

group scheme A of groupoid J over X is a quotient map π : J ′ → J that
is a morphism of groupoids over IdX . Moreover, an isomorphism must
be given between the kernel π−1(ι(X)) and the group scheme A × X,
and the following centrality condition holds. The equality

m(g, (a,P(g))) = m((a,A(g)), g) (8)

must hold for each g ∈ Lχ(R), a ∈ A(R).

3.1.6. Example. Let an algebraic group L act on an algebraic variety
Y . The central extension Lχ acts on Y through Lχ → L1 →֒ L. For
each X, a subscheme of Y , the action groupoid Lχ

X of Lχ is a central
extension of the action groupoid L1

X of L1:

G1
m ×X → L

χ
X → L1

X . (9)

3.1.7. Proposition. If Y is a homogeneous L-variety and X is a smooth
subvariety then X̂ is isomorphic to both the quotient of L1×X by the
groupoid LX and the quotient of Lχ ×X by the groupoid Lχ

X for each
χ ∈ l∗.

3.1.8. Proof. There is at least one point in Y (K) since K is algebraically
closed. Thus, we can assume that Y = L/H for some closed subgroup
H . To treat Lχ and L1 together, we speak about an infinitesimal
group scheme L? and a groupoid L?

X . First we show that the action is
a quotient map and then we write down an action of the groupoid L?

X .
Thinking of schemes as functors from the category of K-algebras to

the category of sets, we notice that the image of the action L? · X is
a subfunctor of X̂. We need to show that it is a “plump” subfunctor
[2, 3.1.1.4 ], which means that X̂ is a sheaf associated to L?X. Reiter-
ating the argument before Proposition 3.1.7, we notice that FY (gx) =
FL(g)FY (x) for each g ∈ L?(R) (where g is the image of g in L1(R)),

x ∈ X(R) and every K-algebra R. Thus, X̂(R) ⊇ L?(R) · X(R). If

L̃?X is a sheaf associated to L?X then X̂(R) ⊇ L̃?X(R) ⊇ L?(R)X(R)
for any ring R since L? ·X is a subfunctor of a sheaf.

Let us pick y ∈ X̂(R). We will construct a chain of faithfully flat
finitely presented algebras R → R1 → R2 → R3 → R4 and elements
g4 ∈ L

?(R4) and x4 ∈ X(R4) such that y4 = g4x4 where yi = X̂(πi)(y)

for πi : R→ Ri. This proves that the action L?×X → X̂ is a quotient
map.

By Proposition 2.1.3, there exist R1 and x1 ∈ X(R1) such that
F (x1) = F (y1). We should notice that this is the place that we use the
assumption of X being smooth. By the definition of L/H , there exist
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R2 and a2, b2 ∈ L(R2) such that y2 = a2H(R2) and x2 = b2H(R2). The
elements FL(a2) and FL(b2) lie in the same coset. Thus, there exists
z2 ∈ H

(1)(R2) such that FL(a2) = FL(b2)z2. By Proposition 2.1.3 used
for H (any algebraic group is smooth!), there exist R3 and h3 ∈ H(R3)
such that z3 = FH(h3) = FL(h3). Thus, F (a3) = F (b3)F (h3) =
F (b3h3). Let f3 = a3h

−1
3 b−1

3 . It is clear that f3 ∈ L
1(R3) and f3x3 = y3.

If ? = 1 then we set R4 = R3 and g4 = f3. If, on the other hand,
? = χ then there exists g4 ∈ G

χ(R4) such that g4 = f4 since Gχ → G1

is a quotient map. This proves that X̂ = L̃? ·X.
We define an L?

X -action on L? ×X by

(g, x) ⋆ (h, x) = (hg−1, gx).

L?X is a quotient functor of L? ×X by the relation

(g, x) ∼ (h, y) ⇐⇒ gx = hy.

But it is equivalent to the condition (h, y) = t ⋆ (g, x) where t =
(h−1g, x) ∈ L?

X(R).
Thus, L? ·X is a quotient functor of L? ×X by the groupoid LX or

Lχ
X correspondently. This implies that X̂ = L̃? ·X is a quotient sheaf

L? ×X/L?
X on the category of K-algebras. 2

3.2. Lie Algebroids. We discuss Lie theory of groupoids.

3.2.1. Definition. Intuitively, a Lie algebroid is a tangent structure to
a groupoid [18]. In positive characteristic, such structure is equipped
with a p-th power map that was axiomatized by Hochschild [7].

A restricted Lie algebroid L on a scheme X is a quasicoherent OX -
module that carries a structure of a sheaf of restricted Lie algebras over
K. It must be equipped with an anchor map A : L → TX that is a
morphism of both OX-modules and sheaves of restricted Lie algebras.
Furthermore, it must satisfy the following identities for sections u ∈
OX(V ), x, y ∈ L(V ) on an open subset V of X:

[x, uy] = u[x, y] +A(x)(u)y,

(ux)[p] = upx[p] +A(ux)p−1(u)x. (10)

For instance, a restricted Lie algebra is a Lie algebroid over a point.
Another example of a Lie algebroid is the tangent bundle TX. The
first relation of (10) is obvious in this case. The second one follows
from Hochschild’s lemma [7, Lemma 1].
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3.2.2. Lie algebroid of a groupoid. The Lie algebroid of a groupoid
scheme J over X is the normal sheaf NJ |X to the identity morphism
ι : X → J . Quoting [1], “one defines the Lie bracket and projection by
usual formulas”, which one can find in [23].

3.2.3. Lie algebroid of an action groupoid. We consider a group scheme
L acting on a scheme Y . We would like to understand the Lie algebroid
LX of the action groupoid of L on X for a closed subscheme X ⊆ Y
(see 3.1.3). It is easy to see that LY = OY ⊗l as a sheaf with operations
easily computable by formulas (10).

In general, for on an open affine V ⊆ X, pick an affine open subset
V ′ ⊆ Y such that V = X ∩ V ′, then

LX(V ) = {v|V | v ∈ (OY ⊗ l)(V ′) &A(v) is tangent to X}.
(11)

3.2.4. Central extensions of Lie algebroids. Let L be an algebraic group
acting on a variety Y . Assume X is a subscheme of Y . We have a
central extension (9) of action groupoids π : Lχ

X → LX . Their tangent
Lie algebroids Lχ,X and LX form a central extension of restricted Lie
algebroids on X:

0→ gm ⊗OX → Lχ,X
dπ
−→ LX → 0. (12)

3.2.5. Proposition. Let L be a linear algebraic group and Y be a homo-
geneous L-variety. For any smooth subvariety X, the Lie algebroid LX

is a vector subbundle of OX ⊗ l. Similarly, Lχ,X is a vector subbundle
of OX ⊗ lχ for each χ ∈ l∗.

3.2.6. Proof. To prove the first statement, we show that the quotient
sheaf OX ⊗ l/LX is locally free. Then OX ⊗ l is locally a direct sum of
LX and the quotient sheaf since vector bundles are projective objects
in the category of O-modules on an affine variety by the Serre theorem.

Let J be the action groupoid of L on X. The groupoid LX is the
Frobenius neighborhood of ι(X) in the groupoid J . This can be easily
seen because of the functoriality of Frobenius morphism: points of both

LX and ι̂(X) over R are such (g, x) ∈ L(R) × X(R) that FL(g) = 1.
Thus, the Lie algebroids of J and LX coincide, since a normal bundle
is determined by the first order neighborhood that is contained in the
Frobenius neighborhood. The quotient sheaf OX ⊗ l/LX is the normal
bundle NL×X|J restricted to X, which is a subvariety of J under ι. It
suffices to show that J is smooth, since a restriction of a locally free
sheaf is locally free and a normal sheaf of an embedding of smooth
varieties is locally free.
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Since Y is an L-homogeneous variety, the action morphism a : L ×
X → Y is a submersion and, therefore, smooth by [4, Proposition
3.10.4]. The morphism A : J = a−1(X) → X is smooth, being a base
change of a [4, Proposition 3.10.1]. Since X is smooth, then so is J .

Now we prove the second statement. The sheaf Lχ,X is a direct
sum of LX and the trivial sheaf OX ⊗ gm. Thus, the quotient sheaves
(OX ⊗ l)/LX and (OX ⊗ lχ)/Lχ,X are the same. 2

3.3. Split extensions.

3.3.1. Definition. A central extension of groupoids G′ → G by an
Abelian group scheme A is called split if it is isomorphic to the ex-
tension G × A→ G.

3.3.2. Lemma [23]. The following statements about a central extension
of groupoids G′

π
−→ G by A over a scheme Y are equivalent.

1. The extension is split.
2. There exists a groupoid map µ : G → G′ such that π ◦ µ = IdG.
3. There exists a groupoid map ν : G′ → A × X × X such that
ν(g, x) = (g, x, x) for each (g, x) ∈ ker π(R).

4. There exists a groupoid map ξ : G′ → A, lying over the morphism
Y → Spec K, such that ξ(g, x) = g for each (g, x) ∈ ker π(R).

3.3.3. Theorem. Let a linear algebraic group L act on a smooth al-
gebraic variety Y over K. Let X be a smooth subvariety of Y and
χ ∈ l∗ such that the canonical splitting of morphism dπX in (12) is a
map of restricted Lie algebras. Then the central extension (9) of action
groupoids πX : L

χ
X → LX is split.

3.3.4. Proof. A Hopf algebroid H(J) of a groupoid J over X is the
push-forward sheaf (A,P)◦(OJ ). It is a sheaf of commutative algebras
on X ×X, whose local structure is described in [24]. If the morphism
(A,P) is affine, which is the case with action groupoids of affine group
schema, then the groupoid can be recovered from its Hopf algebroid
as a relative spectrum. The morphism πX determines a morphism of
Hopf algebroids π#

X : H(LX) → H(Lχ
X). Thus, to split πX , it suffices

to construct a morphism of Hopf algebroids splitting π#
X .

The splitting of restricted Lie algebroids determines a morphism of
restricted enveloping OX -algebras ζ : u(LX)→ u(Lχ,X). The left dual

morphism ∗ζ is the splitting of π#
X [24, Corollary 12] because of canon-

ical isomorphisms H(LX) ∼= ∗u(LX) and H(Lχ
X) ∼= ∗u(Lχ,X).

The argument in [24] is local but the canonical isomorphisms are
defined globally since the construction behaves well under localizations.
The “O-good” condition, used in [24], is that the quotient sheaves
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(OX ⊗ l)/LX and (OX ⊗ lχ)/Lχ,X are locally free. It is shown in the
proof of Proposition 3.2.5. 2

3.3.5. Now we choose a connected simply-connected semisimple alge-
braic group G as the algebraic group L. The functional χ is nilpotent.
The G-homogeneous variety is the flag variety B. X is a subscheme
of B. We use notation πX : Gχ

X → GX for the central extension (9) of
action groupoids and dπX : Gχ,X → GX for the central extension (12)
of Lie algebroids.

3.3.6. Infinitesimal splitting condition. The Lie algebroid Gχ,X is equal
to GX ⊕ (gm ⊗ OX). The inclusion γX of GX into Gχ,X is a splitting
on the level of Lie algebroids. We say that the infinitesimal splitting

condition holds for a subvariety X if γX is a morphism of restricted
Lie algebroids. The infinitesimal splitting condition implies that X
is a subscheme of Bχ, which is equivalent to γX being a splitting on
the diagonal by Corollary 1.2.8. We are going to use the action map
µ : g→ TB in the next proposition.

3.3.7. Proposition. Let X be a subscheme of Bχ such that the following
condition holds for each Borel subalgebra b ∈ X(K): if y is an element
of g such that the tangent vector µ(y)b defined by y at the point b is
tangent to X then χ(y) = 0. Under this condition the map γX : GX →
Gχ,X is a morphism of restricted Lie algebroids.

3.3.8. Proof. Let V be an open subset of X. Pick
∑

i Fi ⊗ xi with
Fi ∈ OX(V ), xi ∈ g such that A(

∑
i Fi⊗xi) is tangent to X. Denoting

the p-th power in Gχ,X by (p), we compute by formulas (10).

(
∑

i

Fi ⊗ xi)
(p) =

∑

i

(Fi ⊗ xi)
(p) + . . . =

∑

i

(F p
i ⊗ x

(p)
i +A(Fixi)

p−1(Fi)xi) + . . . =

∑

i

(F p
i ⊗ χ(xi)

pc + F p
i ⊗ x

[p]
i +A(Fixi)

p−1(Fi)xi) + . . . =

(
∑

i

Fi ⊗ xi)
[p] + (

∑

i

Fiχ(xi))
p ⊗ c

where . . . denote the terms coming from the formula for p-th degree
of a sum in an associative algebra. These terms depend on the adjoint
representation only and, therefore, are the same for (p) and [p].

This argument shows that we have to check that
∑

i Fiχ(xi) = 0. We
check this condition pointwise. Pick b ∈ X(K). Let y =

∑
i Fi(b)xi ∈ g.

It suffices to deduce χ(y) = 0 from A(y) being tangent to X, which is
the assumption of the proposition. 2



REPRESENTATION THEORY OF LIE ALGEBRAS 17

3.3.9. Lemma. Any partial flag variety lying in Bχ satisfies the infini-
tesimal splitting condition.

3.3.10. Proof. Pick a parabolic subalgebra and a Borel subalgebra p =
LieP ⊇ b. Assume that the partial flag variety X = P · b lies in Bχ.
This implies that χ vanishes on p. But the vector field µ(y) is tangent
to X if and only if y ∈ p. We are done by Proposition 3.3.7. 2

3.3.11. If X is not a partial flag variety then the tangency to X con-
dition is difficult to put hands on. But if µ(y) is tangent to X ⊆ Bχ

then it is also tangent to Bχ, which implies that χ([y, b]) = 0 for each
b ∈ X(K). We investigate when the latter condition implies χ(y) = 0.

3.3.12. Lemma. If every b ∈ X(K) contains an element h such that
ad∗(h)χ = χ then X satisfies the infinitesimal splitting condition.

3.3.13. Proof. We just need to note that the pairing g∗ × g → K is
g-invariant. Since χ([y, b]) = 0, for the choice of h as explained, 0 =
χ([y, h]) = ad∗h(χ)(y) = χ(y). 2

4. Equivariant sheaves and representations

We introduce the geometric construction of Uχ(g)-modules in this
section.

4.1. Equivariant sheaves. Sheaves equivariant for groupoids provide
a proper framework for constructing Uχ(g)-modules.

4.1.1. Definition. We consider a groupoid J over an algebraic scheme
Y . We notice that a groupoid structure gives rise to three maps
t1, t2, m : J [2] → J . The maps t1 and t2 are the projections to the first
and second component. A J-equivariant sheaf is an O-module F on
Y with an additional structure, namely, an isomorphism I : P◦(F)→
A◦(F) of O-modules on J such that

I|i(Y ) : F = P◦(F)|i(Y ) → A◦(F)|i(Y ) = F

is the identity map and t◦1I ◦ t
◦
2I = m◦I. The inverse images are taken

in the category of O-modules.

4.1.2. Action on fibers. A J-equivariant structure gives rise to the ac-
tion of J on the fibers. Indeed, for each g ∈ J one obtains an isomor-
phism Ig : FP(g) = (P◦F)g → FA(g) = (A◦F)g.

4.1.3. An L-equivariant bundle F may be utilized to construct a large
family of L1-modules. Let X be a subscheme of Y . Then Γ(X̂,F|

X̂
)

carries a structure of an L1-module (and, therefore, a u(l)-module).
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4.2. Central charge of an equivariant vector bundle.

4.2.1. Definition. Let J ′ π
−→ J be a central extension byG1

m of groupoids
over a scheme X. We say that a J ′-equivariant vector bundle F has a

central charge η ∈ F if G1
m acts on F by the character ρη.

4.2.2. If the extension of groupoids π : J ′ → J is split, we can modify
a J-equivariant structure on a bundle F into a J ′-equivariant structure
with any central charge η ∈ F. Let Oη

X be the trivial line bundle with a
G1

m-equivariant structure given by ρη. Thus, the tensor productOη
X⊗F

carries a canonical J ′-equivariant structure with central charge η.

4.2.3. Theorem. Let Y be a homogeneous L-variety and F be an L1-
equivariant vector bundle on Y . We consider χ ∈ l∗ and a smooth sub-
variety X of Y such that the central extension (9) of action groupoids
πX : Lχ

X −→ LX is split. Then F|
X̂

admits an Lχ-equivariant structure
with any central charge µ ∈ F.

4.2.4. Proof. It suffices to exhibit an Lχ-equivariant structure with a
central charge µ on O

X̂
since a tensor product of two equivariant vector

bundles has a natural equivariant structure so that central charges add.
Thus, F|

X̂
⊗ O

X̂
∼= F|

X̂
admits an Lχ-equivariant structure with a

central charge µ+ 0.
By Proposition 3.1.7, X̂ is isomorphic to the quotient (Lχ×X)/Lχ

X .
The bundle OLχ×X admits an Lχ

X-equivariant structure, called I, with
a central charge µ ∈ F by the argument in 4.2.2 because the extension
πX is split.

The non-trivial part of the proof is to comprehend the quotient (Lχ×
X ×K)/Lχ

X . The quotient (Lχ ×X ×K)/G1
m is the trivial line bundle

on L1 × X because there exists a G1
m-equivariant global section s :

Lχ ×X → K, defined by s(g, x) = f(g) where a function f is given by
Lemma 2.2.5 with η = −µ. Finally, we observe that (Lχ×X×K)/Lχ

X =

((Lχ×X×K)/G1
m)/LX

∼= (L1×X×K)/LX
∼= X̂×K is the trivial line

bundle on X̂, which inherits a Lχ-equivariant structure with a central
charge µ from a OLχ×X . 2

4.3. Construction of representations.

4.3.1. We consider a nilpotent functional χ ∈ g∗. We say that a
subscheme X of B is χ-nice if it is a smooth subvariety and satisfies
the infinitesimal splitting condition for χ. Every χ-nice subvariety is a
subvariety of the Springer fiber Bχ by Corollary 1.2.8.
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4.3.2. Theorem. Let us consider subschema Z ⊆ X ⊆ B such that X
is χ-nice. If Fλ is a G-equivariant line bundle on B then the space
of sections Γ(Ẑ,Fλ) has a canonical structure of a Uχ(g)-module (the
Frobenius neighborhood of Z is taken inside B).

4.3.3. Proof. Theorem 3.3.3 and Theorem 4.2.3 imply that the line
bundle Fλ|Ẑ has a Gχ-equivariant structure with central charge 1.

Therefore, Γ(Ẑ,Fλ) is a u(gχ)-module with central charge 1, which
is canonically a Uχ(g)-module. 2

4.3.4. Examples. We would like to compile a list of known χ-nice sub-
schema. Any partial flag subvariety in Bχ is χ-nice by Lemma 3.3.9.
One can check by a straightforward calculation that any nilpotent ele-
ment of sl5 satisfies the condition of Lemma 3.3.12. Thus, this lemma
guarantees that all smooth subvarieties of Bχ are χ-nice for each nilpo-
tent χ if g is of type A1, A2, A3, A4, or B2.

4.3.5. Stabilizer action. If S1 is a subgroup of the stabilizer of χ in
G such that Y is S1-invariant then S1 also acts on the vector space
Γ(Ŷ ,Fλ). It is plausible that one can combine the actions of S1 and gχ

to obtain a representation of the Harish-Chandra pair (S1, gχ), which
is a subpair of (S, gχ) constructed in 1.4.2.

5. Concluding remarks

5.1. Geometric modules.

5.1.1. The category of geometric modules. Though the components of
Bχ need not be χ-nice, we introduce a standard category of mod-
ules. Consider a category C whose objects are pairs (Z, λ) where
Z is a subscheme of B contained in a χ-nice subscheme and λ is a
weight. The morphism set HomC((Z, λ), (Z ′, λ′)) consists of one ele-
ment if Z ⊇ Z ′ and λ = λ′ and is empty otherwise. There is a functor
(Z, λ) 7→ Γ(Ẑ,Fλ) from C to Uχ(g)-Mod. A morphism in C goes to the
restriction morphism of the global sections. The Abelian subcategory
of Uχ(g)-Mod, generated by the image of C, will be called the category

of geometric modules and denoted Uχ(g)-Geom. A module M is called
geometric if it is isomorphic to an object in Uχ(g)-Geom. A filtration
(submodule, subquotient) of a geometric module M is called geometric

if it exists on an object of Uχ(g)-Geom isomorphic to M .

5.1.2. Question. Are simple Uχ(g)-modules geometric?
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5.1.3. Parabolic induction. We want to identify some of the geometric
modules with modules constructed by algebraic methods. Let P be
a parabolic subgroup containing a Borel subgroup B. Let U be the
unipotent radical of the opposite parabolic. PU is a dense open subset

ofG, isomorphic to P×U . It follows that P̂/B ∼= P×U1. The condition
P/B ⊆ Bχ is equivalent to χ|p = 0 where p is the Lie algebra of P .
The following proposition makes sense since u(p) = Uχ(p) ⊆ Uχ(g).

5.1.4. Proposition. The Uχ(g)-module Γ(P̂/B,Fλ) is isomorphic to

Ind
Uχ(g)
Uχ(p)(IndP

B(K−w0•λ))
∗ where w0 is the longest element of the Weyl

group of the Levi factor of P and • is the dot action.

5.1.5. Proof. The Frobenius neighborhood Σ of the point P in G/P is

isomorphic to Gχ/P χ. The P/B-bundle P̂/B
π
→ Σ is the restriction of

the natural one to Σ. Thus,

Γ(P̂/B,Fλ) = Γ(Σ, π◦Fλ) = Γ(Σ, Gχ ×P χ IndP
BKλ) =

Ind
Uχ(g)
Uχ(p)((IndP

BKλ)
∗)∗ ∼= Ind

Uχ(g)
Uχ(p)(IndP

B(K−w0•λ))
∗. 2

5.1.6. The subregular orbit of sl3. We explicate a geometric reason for
a baby Verma module to have more than one simple quotient.

Let us look at the subregular nilpotent orbit of sl3. Let us assume
that p 6= 3 to identify g and g∗. Choosing a matrix A with Aij = 0
except A13 = 1 as χ, we take the standard Borel subalgebra b to be
the intersection of the two components Y1, Y2 of Bχ, which is a Dynkin
curve in this case [9]. Now there are non-zero restriction morphisms

Γ(B̂χ,Fλ)
i
→֒ Γ(Ŷ1,Fλ)⊕ Γ(Ŷ2,Fλ)→ Γ(b̂,Fλ)

for a weight λ inside the lowest dominant alcove. The direct summands
in the middle are distinct irreducible Uχ(g)-modules by Proposition

5.1.4 and [15, 12]. Therefore, the socle of Γ(b̂,Fλ) is not simple. Thus,
baby Verma Uχ(g)-modules Zχ,b(λ) with this b, which are isomorphic

to Γ(b̂,F−w0·λ), do not have a unique simple quotient.

Another interesting observation is that Γ(B̂χ,Fλ) has no natural
Uχ(g)-module structure since the embedding i is not an isomorphism.

5.2. Deformations of modules.

5.2.1. If Bχ ⊆ Bη then a geometric Uχ(g)-module can have a struc-
ture of Uη(g)-module. By Theorem 4.3.2, it suffices to ensure that
a χ-nice subscheme Z is η-nice. Similarly, a geometric filtration of
a Uχ(g)-module turns out to be a filtration by Uη(g)-modules of the
corresponding Uη(g)-module.
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In the particular case of η = 0, every geometric Uχ(g)-module admits
a structure of a restricted g-module since any smooth subscheme is 0-
nice. If Question 5.1.2 has an affirmative answer then any simple Uχ(g)-
module has a structure of u(g)-module and the dimension of a simple
Uχ(g)-module is a sum of dimensions of some simple u(g)-modules.
The case of so5 has been worked out in [23].

5.2.2. Let us consider a family of nilpotent elements χ(t) and a smooth
subvariety Z ⊆ B such that Bχ(t) contains Z for each value of the
parameter t. If one can further ensure that Z is χ(t)-nice for each t,
then we obtain a family of g-module structures on the vector space
Γ(Ẑ,Fλ) for each λ ∈ Π. The p-character of the action at t is χ(t).

5.3. Kac-Weisfeiler Conjecture.

5.3.1. Question. LetX be a closed subvariety of a projective algebraic
variety Y and F be a line bundle on Y . When is it true that the
dimension of Γ(X̂,F) is divisible by pcodim X?

5.3.2. Affirmative answers to Questions 5.3.1 and 5.1.2 would prove
the Kac-Weisfeiler Conjecture because the dimension formula [9, 6.7]
implies that the codimension of Bχ in B is equal to 1

2
dimG · χ.

Conversely, if a component of Bχ is χ-nice then the Kac-Weisfeiler
conjecture, being the Premet theorem now [21], implies an affirmative
answer to Question 5.3.1 for a component of Bχ as X and Y = B.
Thus, Question 5.3.1 may be regarded as a geometric version of the
Kac-Weisfeiler conjecture.
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