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ON THE GALOIS GROUP OF GENERALIZED LAGUERRE

POLYNOMIALS

FARSHID HAJIR
FEBRUARY 1, 2008 – 18 : 00

Abstract. Using the theory of Newton Polygons, we formulate a simple criterion for the
Galois group of a polynomial to be “large.” For a fixed α ∈ Q−Z<0, Filaseta and Lam have

shown that the nth degree Generalized Laguerre Polynomial L
(α)
n (x) =

∑n

j=0

(

n+α

n−j

)

(−x)j/j!

is irreducible for all large enough n. We use our criterion to show that, under these condi-

tions, the Galois group of L
(α)
n (x) is either the alternating or symmetric group on n letters,

generalizing results of Schur for α = 0, 1.

1. Introduction

It is a basic problem of algebra to compute the Galois group of a given irreducible polyno-
mial over a field K. If we order the monic degree n polynomials over Z by increasing height,
then the proportion which consists of irreducible polynomials with Galois group Sn tends to
1; for a more precise statement, see for example Gallagher [G]. Nevertheless, to prove that
the Galois group of a given polynomial is Sn can be difficult if n is large. The algorithmic
aspects of Galois group computations have witnessed a number of recent advances, for which
an excellent reference is the special issue [MMY] of the Journal of Symbolic Computation,
especially the foreward by Matzat, McKay, and Yokoyama. Currently, for rational poly-
nomials of degree up to 15, efficient algorithms are implemented, for instance, in gp-pari

and magma. An important piece of any such algorithm is the collection of data regarding
individual elements of the Galois group, for which the standard method is to factor the poly-
nomial modulo various “good” primes (i.e. those not dividing its discriminant), obtaining
the cycle-type of the corresponding Frobenius conjugacy classes in the Galois group.

Our first goal in this paper is to formulate a criterion which exploits the properties of
“bad” primes for proving that the Galois group of a given polynomial is large. The criterion
is especially efficacious if one suspects that a “medium size” prime (roughly between n/2 and
n) is wildly ramified in the splitting field of the polynomial. The criterion we give (Theorem
2.3) follows quite simply from the theory of p-adic Newton Polygons; it is used in slightly
less general form in Coleman [C] and is reminiscent of, but distinct from, a criterion of Schur
[Sc1, §1].

Our second goal is to illustrate the utility of the criterion by using it to calculate the Galois
group for a certain family of polynomials, which we now introduce. In the second volume
of their influential and classic work [PS], Pólya and Szegő define the Generalized Laguerre
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Polynomial (GLP)

L(α)
n (x) =

n
∑

j=0

(

n + α

n − j

)

(−x)j

j!
.

The special case α = 0 had appeared much earlier in the work of Abel [A, p. 284] and
Laguerre [L], and the general case can in fact be found in Sonin [So, p. 41]. Shortly after
the publication of [PS], the study of the algebraic properties of this family of orthogonal
polynomials was initiated by Schur [Sc1], [Sc2].

For instance, for the discriminant of the monic integral polynomial (−1)nn!L
(α)
n (x), we

have the following formula of Schur [Sc2]:

(1) ∆(α)
n =

n
∏

j=2

jj(α + j)j−1.

In particular, if α is not in [−n,−2] ∩ Z, L
(α)
n (x) has no repeated roots. For α = 0, 1,

Schur [Sc1], [Sc2] established the irreducibility of all L
(α)
n (x) over Q, and also showed that

their Galois groups are as large as possible, namely An if ∆
(α)
n is a rational square, and Sn

otherwise.
A number of recent articles on the algebraic properties of GLP have appeared, including

Feit [F], Coleman [C], Gow [Go], Filaseta-Williams [FW], Filaseta-Lam [FL], Sell [S], Hajir
[H1], [H2], and Hajir-Wong [HW]. In particular, we have the following theorem of Filaseta
and Lam [FL] on the irreducibility of GLP.

Theorem. (Filaseta-Lam) If α is a fixed rational number which is not a negative integer,

then for all but finitely many integers n, L
(α)
n (x) is irreducible over Q.

In this paper, we provide a complement to the theorem of Filaseta and Lam by computing

the Galois group of L
(α)
n (x) when n is large with respect to α ∈ Q − Z<0. Namely, we prove

the following result.

Theorem 1.1. Suppose α is a fixed rational number which is not a negative integer. Then

for all but finitely many integers n, the Galois group of L
(α)
n (x) is An if ∆

(α)
n is a square and

Sn otherwise.

Remarks. 1. The hypothesis that α not be a negative integer is necessary, as in that case,

L
(α)
n (x) is divisible by x for n ≥ |α|. For a study of the algebraic properties of L

(α)
n (x) for

α ∈ Z<0, n < |α|, see [H1], [S] and [H2].
2. Using a different set of techniques, the following companion to Theorem 1.1 is proved
in [HW]: If we fix n ≥ 5 and a number field K, then for all but finitely many α ∈ K,

L
(α)
n (x) is irreducible and has Galois group An or Sn over K. For each n ≤ 4, infinitely many

reducible specializations exist, and for n = 4, there are infinitely many specializations which
are irreducible but have D4-Galois group, cf. [H2, Section 6].

3. For integral α, some cases where ∆
(α)
n is a square (giving Galois group An) are

• α = 1 and n ≡ 1 (mod 2) or n + 1 is an odd square ([Sc2]),
• α = n, and n ≡ 2 (mod 4) ([Go], it is not yet known if all of these polynomials are

irreducible [FW]),
2



• α = −1 − n, and n ≡ 0 (mod 4) ([Sc1], [C]),
• α = −2 − n, and n ≡ 1 (mod 4) ([H1]).

See [H2, §5] as well as the above-cited papers for more details.
4. The proofs of the Filaseta-Lam Theorem in [FL] and of Theorem 1.1 are both effective.

2. A criterion for having large Galois group

2.1. Newton Polygons. Let K be a field equipped with a discrete valuation v and a
corresponding completion Kv. We assume v is normalized, i.e. v(K∗) = Z, and employ the
same letter v to denote an extension of this valuation to an algbraic closure Kv of Kv.

For a polynomial f(x) = anx
n + an−1x

n−1 + · · · + a0 ∈ K[x] with a0an 6= 0, the v-adic
Newton Polygon of f(x), denoted NPv(f(x)), is defined to be the lower convex hull of the
set of points

Sv(f) = {(0, v(a0)), (1, v(a1)), · · · , (n, v(an))}.

It is the highest polygonal line passing on or below the points in Sv(f). The points where
the slope of the Newton polygon changes (including the rightmost and leftmost points) are
called the corners of NPv(f); their x-coordinates are the breaks of NPv(f).

For the convenience of the reader, we recall the main theorem about v-adic Newton Poly-
gons as well as a useful corollary due to Coleman [C]. See, for instance, Gouvêa [Gou]. A
very nice survey of the uses of the Newton Polygon for proving irreducibility is Mott [Mo].
For generalizations to several variables, see Gao [Ga] and references therein.

Theorem 2.1 (Main Theorem of Newton Polygons). Let (x0, y0), (x1, y1), . . . , (xr, yr) denote
the successive vertices of NPv(f(x)). Then there exist polynomials f1, . . . , fr in Qp[x] such
that

i) f(x) = f1(x)f2(x) · · · fr(x),
ii) the degree of fi is xi − xi−1,
iii) all the roots of fi in Kv have v-adic valuation −(yi − yi−1)/(xi − xi−1).

2.2. Newton Index. We now suppose that K is a global field, i.e. K is a finite extension
of Q (number field case) or of F(T ), where F is a finite field (function field case). A global
field K enjoys the property that for a given element α ∈ K, v(α) = 0 for all but finitely
many valuations v of K.

Definition 2.2. Given f ∈ K[x], the Newton Index of f Nf is defined to be the least
common multiple of the denominators (in lowest terms) of all slopes of NPv(f) as v ranges
over all normalized discrete valuations of K.

Note that 0 is defined to have denominator 1, so slope 0 segments of NPv(f) do not
contribute to Nf . On the other hand, for all but finitely many v, the coefficients of f all
have v-adic valuation 0 so NPv(f) consists of a single slope 0 segment. Hence, Nf is well-
defined and effectively computable (for monic v-integral polynomials, we need only compute
the Newton Polygon for those valuations that do not vanish on the constant coefficient).
It is clear that Nf is a divisor of lcm(1, 2, . . . , n)|n! where n is the degree of f ; the latter
property in fact holds for an arbitrary field K, so the Newton index is well-defined for any
field K, though possibly not in the sense that it is necessarily effectively computable.
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We now formulate a criterion for an irreducible polynomial to have “large” Galois group.
The key idea appears in Coleman’s computation [C] of the Galois group of the nth Taylor

polynomial of the exponential function, which incidentally is the GLP (−1)nL
(−1−n)
n (x).

Theorem 2.3. Suppose K is a global field and f(x) is an irreducible polynomial in K[x].
Suppose g(x) = f(x− µ) for some µ ∈ K. Then Ng divides the order of the Galois group of
f over K. Moreover, if Ng has a prime divisor q in the range n/2 < q < n − 2, where n is
the degree of f , then the Galois group of f contains An.

Proof. Suppose v is a valuation of K and q is an arbitrary divisor of the denominator of
some slope s of the v-adic Newton polygon of g. Clearly, f and g have the same splitting
field and the same Galois group. It suffices to show that q divides the order of the Galois
group of g over Q. By the main theorem of Newton polygons 2.1, there exists a root α ∈ Kv

of g with valuation −s. Since q divides the denominator of s, q divides the ramification index
e of Kv(α)/Kv. But e divides the degree [Kv(α) : Kv], which in turn divides the order of
the Galois group of g over Kv, hence also over K. If q is a prime in the interval (n/2, n− 2),
then the Galois group of g contains a q-cycle, so it must contain An by a theorem of Jordan
[J] (or see, for instance, Hall’s book [Ha, Thm 5.6.2 and 5.7.2]). �

Remark. Schur proved a similar result ([Sc1, §1, III]), namely, if the discriminant of a
number field K of degree n is divisible by pn, then the Galois closure L of K has degree
[L : Q] divisible by p. In general, if p divides the discriminant of an irreducible polynomial
f , it is not easy to determine the p-valuation of the discriminant of the stem field Q[x]/(f);
thus, each of Theorem 2.3 and Schur’s criterion can be useful depending on whether we have
information about the discriminant of the field or that of the defining polynomial. Neither
criterion is useful when the discriminant of f is square-free, for example, since in that case,
all the non-trivial ramification indices are 2. On the other hand, over base field Q, irreducible
polynomials with square-free discriminant also have Galois group Sn see e.g. Kondo [K]; the
proof of this fact uses the triviality of the fundamental group of Q.

3. Proof of Theorem 1.1

We now let K = Q. For a prime p, we write NPp in place of NPv where v = ordp is the
p-adic valuation of Q.

Lemma 3.1. Let f(x) =
∑n

j=0

(

n
j

)

cjx
j ∈ Q[x] be an irreducible polynomial of degree n over

Q. Suppose there exists a prime p satisfying

i) n/2 < p < n − 2,
ii) ordp(cj) ≥ 0 for 0 ≤ j ≤ n,
iii) ordp(cj) = 1 for 1 ≤ j ≤ n − p,
iv) ordp(cp) = 0.

Then the Galois group of f over Q contains An.

Proof. It is easy to check that
(

n
j

)

is divisible by p if and only if n− p + 1 ≤ j ≤ p− 1. The

given assumptions then guarantee that (0, 1) and (p, 0) are the first two corners of NPp(f).
Therefore, −1/p is a slope of NPp(f), hence p|Nf and we are done by Theorem 2.3. �

We are now ready to prove the Main Theorem.
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Proof of Theorem 1.1. We write α = λ/µ in lowest terms, i.e. with gcd(λ, µ) = 1 and µ ≥ 1.
By assumption, α is not a negative integer. We will work with the normalized (monic,
integral) polynomial

f(x) := µnn!L(λ/µ)
n (−x/µ) =

n
∑

j=0

(

n

j

)

(nµ + λ)((n − 1)µ + λ) · · · ((j + 1)µ + λ)xj .

We wish to apply Lemma 3.1 to it, so we let

(2) cj =

n
∏

k=j+1

(kµ + λ), 0 ≤ j ≤ n,

and seek a suitable prime p satisfying the conditions of the Lemma.
By a suitably strong form of Dirichlet’s theorem on primes in arithmetic progressions,

there exists an effective constant D(µ) such that if x ≥ D(µ) and h ≥ x/(2 log2 x), the
interval [x − h, x] contains a prime in the congruence class λ mod µ (see Filaseta-Lam [FL,
p. 179]). Taking x = n − 3 ≥ D(µ), we find that for some integer ℓ ∈ [1, n], p = µℓ + λ is a
prime satisfying

(3)
nµ + µ + λ

µ + 1
≤ p ≤ n − 3,

as long as
1 − 3/n

2 log2(n − 3)
+

3 + λ/(µ + 1)

n
≤

1

µ + 1
,

which clearly holds for all n large enough with respect to λ, µ.
We now fix a prime p = µℓ + λ satisfying (3). For such a prime p, let us check the

hypotheses of Lemma 3.1. We have (nµ + µ + λ)/(µ + 1) > n/2 if and only if

(4) n(µ − 1) > −2µ − 2λ.

Since α is not a negative integer, if µ = 1, then λ ≥ 0, so (4) holds for all n. If µ > 1, we
simply need to take n > −2(µ + λ)/(µ − 1) in order to achieve n/2 < p < n − 2, giving us
i). Our cj are integral so ii) holds trivially. Before we discuss iii), let us note that in the
congruence class λ mod µ, the smallest multiple of p larger than p is (µ+1)p, and, similarly,
the largest multiple of p in this congruence class which is less than p is (−µ + 1)p. Now we
claim that, for n large enough, we have

(−µ + 1)p < λ + µ(5)

as well as

λ + µn < (µ + 1)p.(6)

Indeed, if µ = 1, then (5) holds for all n, while for µ ≥ 2, n ≥ −2λ implies (5); moreover,
(6) is a direct consequence of (3). We conclude from (5) and (6) that ordp(c0) = 1. From
(2), we then read off that ordp(cj) = 1 for 0 ≤ j ≤ ℓ − 1, and ordp(cj) = 0 for ℓ ≤ j ≤ n.
One easily checks that (5) and (6) give exactly p > ℓ − 1 and n − p < ℓ, i.e. iii) and iv).
By Filaseta-Lam [FL], there is an effectively computable constant N(α) such that f(x) is
irreducible for n ≥ N(α). Thus, all the conditions of Lemma 3.1 hold, and the proof of the
theorem is complete. �
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Remark. Note that the proof simplifies in the case where α is a non-negative integer, giving:

If L
(α)
n (x) is irreducible and if there is a prime p in the interval ((n + α)/2, n − 2), then the

Galois group of L
(α)
n (x) contains An. By [H2, Corollary 3.2], the specified interval contains

a prime as long as n ≥ max(48 − α, 8 + 5α/3).
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[H1] F. Hajir, Some Ãn-extensions obtained from Generalized Laguerre polynomials, J. Number Theory 50

(1995), no. 2, 206–212
[H2] F. Hajir, Algebraic properties of a family of Generalized Laguerre Polynomials, preprint, 2004, 19pp.
[HW] F. Hajir and S. Wong, Specializations of one-parameter families of polynomials, preprint, 2004, 26pp.
[Ha] M. Hall, The theory of groups. Macmillan, 1959.
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