Restriction of A-discriminants and dual defect toric varieties

R Curran
E Cattani
University of Massachusetts - Amherst, cattani@math.umass.edu

Follow this and additional works at: https://scholarworks.umass.edu/math_faculty_pubs

Recommended Citation

Curran, R and Cattani, E, "Restriction of A-discriminants and dual defect toric varieties" (2007). JOURNAL OF SYMBOLIC COMPUTATION. 237.
Retrieved from https://scholarworks.umass.edu/math_faculty_pubs/237

This Article is brought to you for free and open access by the Mathematics and Statistics at ScholarWorks@UMass Amherst. It has been accepted for inclusion in Mathematics and Statistics Department Faculty Publication Series by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please contact scholarworks@library.umass.edu.

Restriction of A-Discriminants and Dual Defect Toric Varieties

Raymond Curran ${ }^{1}$
Department of Mathematical and Computer Sciences. Metropolitan State College of Denver. Denver, CO 80202, USA. Eduardo Cattani ${ }^{2}$
Department of Mathematics and Statistics. University of Massachusetts. Amherst, MA 01003, USA

Abstract

We study the A-discriminant of toric varieties. We reduce its computation to the case of irreducible configurations and describe its behavior under specialization of some of the variables to zero. We give characterizations of dual defect toric varieties in terms of their Gale dual and classify dual defect toric varieties of codimension less than or equal to four.

Key words: Sparse discriminant, dual defect varieties.
AMS Subject Classification: Primary 14M25, Secondary 13P05.

1. Introduction

In this paper we will study properties of the sparse or A-discriminant. Given a configuration $A=\left\{a_{1}, \ldots, a_{n}\right\}$ of n points in \mathbb{Z}^{d} we may construct an ideal $I_{A} \subset \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$ and, if I_{A} is homogeneous, a projective toric variety $X_{A} \subset \mathbb{P}^{n-1}$. The dual variety X_{A}^{*} is, by definition, the Zariski closure of the locus of hyperplanes in $\left(\mathbb{P}^{n-1}\right)^{*}$ which are tangent

Email addresses: rcurran@mscd.edu (Raymond Curran), cattani@math.umass.edu (Eduardo Cattani).
1 Some of the results in this paper are contained in the first author's PhD Dissertation submitted to the University of Massachusetts, Amherst.
2 Partially supported by NSF Grant DMS-0099707. Some of the work on this paper was done while visiting the University of Buenos Aires supported by a Fulbright Fellowship for Research and Lecturing. The hospitality of the Departamento de Matemática, Facultad de Ciencias Exactas y Naturales, is gratefully acknowledged.
to X_{A} at a smooth point. Generically, X_{A}^{*} is a hypersurface and its defining equation $D_{A}(x)$, suitably normalized, is called the A-discriminant. If X_{A}^{*} has codimension greater than one then X_{A} is called a dual defect variety and we define $D_{A}=1$.

The A-discriminant generalizes the classical notion of the discriminant of univariate polynomials. It was introduced by Gel'fand, Kapranov, and Zelevinsky (their book (Gel'fand et al., 1994) serves as the basic reference of our work) and it arises naturally in a variety of contexts including the study of hypergeometric functions Gel'fand et al., 1989; Cattani et al., 2001; Cattani and Dickenstein, 2004) and in some recent formulations of mirror duality (Batvrev and Materov, 2002).

When studying the A-discriminant it is often convenient to consider a Gale dual of A. This is a configuration $B=\left\{b_{1}, \ldots, b_{n}\right\} \subset \mathbb{Z}^{m}$, where m is the codimension of X_{A} in \mathbb{P}^{n-1}. The configuration B, and by extension A, is said to be irreducible if no two vectors in B lie on the same line. Equivalently, if the matroid $\mathcal{M}_{B}=(B, \mathcal{I})$ defined by the family, \mathcal{I}, of linearly independent subsets of B is simple. In Theorem 11, we prove a univariate resultant formula which reduces the computation of the A-discriminant to the case of irreducible configurations. This implies, in particular, that the Newton polytope of the discriminant is unchanged, up to affine isomorphism, if we replace B by the configuration obtained by adding up all subsets of collinear vectors. This generalizes a result of Dickenstein and Sturmfels (2002) for codimension-two configurations. We point out that, in their case, this is a consequence of a complete description of the Newton polytope of the discriminant.

In the study of rational hypergeometric functions, one is interested in understanding the behavior of the A-discriminant when specializing a variable x_{j} to zero and its relation to the discriminant of the configuration obtained by removing the corresponding point a_{j} from A. Theorem 15 generalizes the known results in this direction (Cattani et al. (2001, Lemma 3.2); Cattani and Dickenstein (2004, Lemma 3.2)). This specialization result was first proved by the first author in his PhD dissertation (Curran, 2005), using the theory of coherent polyhedral subdivisions. We give a greatly simplified proof in $\S 4$, where we derive the specialization theorem as a corollary of our resultant formula.

Using tropical geometry methods, Dickenstein, Feitchner, and Sturmfels have been able to compute the dimension of the dual of a projective toric variety X_{A} and this, in particular, makes it possible to decide if a given toric variety is dual defect, i.e. if the dual variety has codimension greater than one. Their formula Dickenstein et al, 2005, Corollary 4.5) involves the configuration A and the geometric lattice, $\mathcal{S}(A)$, whose elements are the supports, ordered by inclusion, of the vectors in $\operatorname{ker}(A)$. The information contained in $\mathcal{S}(A)$ is essentially the same as that contained in a family of flats in \mathcal{M}_{B}, for a Gale dual configuration B of A. Thus, one could say that the formula by Dickenstein, Feitchner, and Sturmfels involves both A and B information. In Theorem 18, we use Theorem 15 to show that we can decide whether a configuration is dual defect purely in terms of certain non-splitting flags of flats in the matroid \mathcal{M}_{B}. In Theorem 25 we obtain a decomposition of the Gale dual configuration of a toric variety and give, in terms of this decomposition, a sufficient condition for the variety to be dual defect. Although we believe this condition to also be necessary, we are not able to prove it at this point.

Dual defect varieties have been extensively studied: Beltrametti et al. (1992); Di Rocco (2004); Ein (1985, 1986); Lanteri and Struppa (1987). In particular, Dickenstein and Sturmfels have classified codimension-two dual defect varieties (Dickenstein and Sturmfels, 2002) and, by completely different methods, Di Rocco (2004) has classified dual defect
projective embeddings of smooth toric varieties in terms of their associated polytopes. We give a complete classification of of dual defect toric varieties of codimension less than or equal to four in terms of the Gale duals. This implies, in particular, that in these cases the condition in Theorem 25 is necessary and sufficient. We conclude $\S 5$ by comparing Di Rocco's list, for codimension less than or equal to four, with our classification.

2. Preliminaries

We begin by setting up the notation to be used throughout. We will denote by A a $d \times n$ integer matrix or, equivalently, the configuration $A=\left\{a_{1}, \ldots, a_{n}\right\}$ of n points in \mathbb{Z}^{d} defined by the columns of A. We will always assume that A has rank d and set $m:=n-d$, the codimension of A. Viewing A as a map $\mathbb{Z}^{n} \rightarrow \mathbb{Z}^{d}$ we denote by $\mathcal{L}_{A} \subset \mathbb{Z}^{n}$ the kernel of $A . \mathcal{L}_{A}$ is a lattice of rank m. For any $u \in \mathbb{Z}^{n}$ we write $u=u_{+}-u_{-}$, where $u_{+}, u_{-} \in \mathbb{N}^{n}$ have disjoint support. Let $I_{A} \subset \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$ be the lattice ideal defined by \mathcal{L}_{A}, that is the ideal in $\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$ generated by all binomials of the form: $x^{u_{+}}-x^{u_{-}}$, where $u \in \mathcal{L}_{A}$. Note that for any vector $w \in \mathbb{Q}^{d}$ in the \mathbb{Q}-rowspan of A we have

$$
\left\langle w, u_{+}\right\rangle=\left\langle w, u_{-}\right\rangle
$$

for all $u \in \mathcal{L}_{A}$ and, hence, I_{A} is w-weighted homogeneous.
Definition 1 We will say that A is homogeneous or nonconfluent if the vector $(1, \ldots, 1)$ is in the \mathbb{Q}-rowspan of A.

Note that in terms of the configuration in \mathbb{Z}^{d}, A is homogeneous if and only if all the points lie in a rational hyperplane not containing the origin. Throughout this paper we will be interested in properties of homogeneous configurations A which depend only on the \mathbb{Q}-rowspan of A. Thus, in those cases we may assume without loss of generality that the first row of A is $(1, \ldots, 1)$. We shall then say that A is in standard form.

Given a homogeneous configuration A, let $X_{A}:=\mathbb{V}\left(I_{A}\right) \subset \mathbb{P}^{n-1}$ be the projective (though not necessarily normal) variety defined by the homogeneous ideal I_{A}. The map

$$
t \in\left(\mathbb{C}^{*}\right)^{d} \mapsto\left(t^{a_{1}}: \cdots: t^{a_{d}}\right) \in X_{A} \subset \mathbb{P}^{n-1}
$$

defines a torus embedding which makes X_{A} into a toric variety of dimension $d-1$. Generically, its dual variety X_{A}^{*} is an irreducible hypersurface defined over \mathbb{Z}. Its normalized defining polynomial $D_{A}\left(x_{1}, \ldots, x_{n}\right)$ is called the sparse or A-discriminant. It is well-defined up to sign. If the dual variety X_{A}^{*} has codimension greater than one, then we define $D_{A}=1$ and refer to X_{A} as a dual defect variety and to A as a dual defect configuration. Note that X_{A}, and consequently X_{A}^{*}, depend only on the rowspan of A. Indeed, it is shown in (Gel'fand et al., 1994, Proposition 1.2, Chapter 5) that X_{A} depends only on the affine geometry of the set $A \subset \mathbb{Z}^{d}$.

Alternatively, given a configuration $A=\left\{a_{1}, \ldots, a_{n}\right\}$ we consider the generic Laurent polynomial supported on A :

$$
\begin{equation*}
f_{A}(x ; t):=\sum_{i=1}^{n} x_{i} t^{a_{i}} \tag{1}
\end{equation*}
$$

which, for a choice of coefficients $x_{i} \in \mathbb{C}$, we view as a regular funcion on the torus $\left(\mathbb{C}^{*}\right)^{d}$. Then, the discriminant is an irreducible polynomial in $\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$ which vanishes
whenever the specialization of f_{A} has a multiple root in the torus; i.e. f_{A} and all its derivatives $\partial f_{A} / \partial t_{i}$ vanishing simultaneously at some point in $t \in\left(\mathbb{C}^{*}\right)^{d}$. Note that when A is in standard form:

$$
\begin{equation*}
t_{1} \frac{\partial f_{A}}{\partial t_{1}}=f_{A} \tag{2}
\end{equation*}
$$

and, consequently, f_{A} and $\partial f_{A} / \partial t_{1}$ have the same zeroes on $\left(\mathbb{C}^{*}\right)^{d}$. Let $R:=\mathbb{C}[x]\left[t^{ \pm 1}\right]$ be the ring of Laurent polynomials in t whose coefficients are polynomials in x, and denote by $J\left(f_{A}\right)$ the ideal in R generated by f_{A} and its partial derivatives with respect to the t variables. Set $\mathbb{V}_{A}:=\mathbb{V}\left(J\left(f_{A}\right)\right) \subset \mathbb{C}_{x}^{n} \times\left(\mathbb{C}^{*}\right)_{t}^{d}$. Let ∇_{A} be the Zariski closure of the projection of $\mathbb{V}\left(J\left(f_{A}\right)\right)$ in \mathbb{C}_{x}^{n}, then if ∇_{A} is a hypersurface, $\nabla_{A}=\left\{x: D_{A}(x)=0\right\}$. If A is homogeneous and X_{A} is not dual defect then ∇_{A} is the cone over X_{A}^{*}.

We recall that if $\nu_{1}, \ldots, \nu_{m} \in \mathbb{Z}^{n}$ are a \mathbb{Z}-basis of \mathcal{L}_{A}, then the $n \times m$ matrix B, whose columns are ν_{1}, \ldots, ν_{m} is called a Gale dual of A. The same name is used to denote the configuration $\left\{b_{1}, \ldots, b_{n}\right\} \subset \mathbb{Z}^{m}$ of row vectors of B. Gale duals are defined up to $G L(m, \mathbb{Z})$-action. We will also consider $n \times m$ integer matrices C, whose columns $\xi_{1}, \ldots, \xi_{m} \in \mathbb{Z}^{n}$ are a \mathbb{Q}-basis of $\mathcal{L}_{A} \otimes_{\mathbb{Z}} \mathbb{Q}$. In that case we will say that C is a \mathbb{Q}-dual of A. For any $n \times m$ integer matrix C of rank m we will denote by q the greatest common divisor of all maximal minors of C and call it the index of C. Indeed, q is the index of the lattice generated by the row vectors of C, c_{1}, \ldots, c_{n}, in \mathbb{Z}^{m}. An $n \times d$ integer matrix A of rank d is said to be a dual configuration of C if $A \cdot C=0$. Note that C is a Gale dual of A if and only if it has index 1 and that, if A is dual to C, then A is homogeneous if and only if the row vectors of C add up to zero. Such a configuration C will also be called homogeneous. If $c_{j}=0$ for some j, then any dual configuration A is a pyramid, i.e. all the vectors $a_{i}, i \neq j$ are contained in a hyperplane. It is easy to check that in that case X_{A} is dual defect.

Given an $n \times m$ integer matrix C of rank m we will denote by \mathcal{L}_{C} the sublattice of \mathbb{Z}^{n} generated by the columns of C and by $J_{C} \subset \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$ the lattice ideal defined by \mathcal{L}_{C}. If C is a Gale dual of A, then $\mathcal{L}_{C}=\mathcal{L}_{A}$ and $I_{A}=J_{C}$ is a prime ideal. In any case, if ξ_{1}, \ldots, ξ_{m} are the columns of C and we denote by J_{ξ} the ideal

$$
J_{\xi}=\left\langle x^{\xi_{1}^{+}}-x^{\xi_{1}^{-}}, \ldots, x^{\xi_{m}^{+}}-x^{\xi_{m}^{-}}\right\rangle
$$

then the lattice ideal J_{C} is the saturation $J_{C}=J_{\xi}:\left(x_{1} \cdots x_{m}\right)^{\infty}$.
If C is homogeneous of index q then the variety $X_{C}:=\mathbb{V}\left(I_{C}\right) \subset \mathbb{P}^{n-1}$ has q irreducible components and they are all torus translates of $X_{A}=\mathbb{V}\left(I_{A}\right)$, where A is a dual of C. Similarly, the dual variety X_{C}^{*} is a union of finitely many torus translates of X_{A}^{*}. In particular if one of them is a hypersurface so is the other. In that case, we denote by $D_{C} \in \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$ the defining equation suitably normalized. Moreover, there exist $\theta^{1}, \ldots \theta^{q} \in\left(\mathbb{C}^{*}\right)^{n}$ such that

$$
\begin{equation*}
D_{C}(x)=\prod_{j=1}^{q} D_{A}\left(\theta^{j} * x\right) \tag{3}
\end{equation*}
$$

where $*$ denotes component-wise multiplication. We will say that C is dual defect if and only if A is dual defect.

The computation of the A-discriminant is well-known in the case of codimensionone homogeneous configurations. Let $B=\left(b_{1}, \ldots, b_{n}\right)^{T}, b_{i} \in \mathbb{Z}$, be a Gale dual of A. Reordering the columns of A, if necessary, we may assume without loss of generality that $b_{i}>0$ for $i=1, \ldots, r$ and $b_{j}<0$ for $r+1 \leq j \leq n$. Set

$$
p=b_{1}+\cdots+b_{r}=-\left(b_{r+1}+\cdots+b_{n}\right)
$$

Then, up to an integer factor

$$
\begin{equation*}
D_{A}=\prod_{j=r+1}^{n}\left|b_{j}\right|^{\left|b_{j}\right|} \prod_{i=1}^{r} x_{i}^{b_{i}}-(-1)^{p} \prod_{i=1}^{r} b_{i}^{b_{i}} \prod_{j=r+1}^{n} x_{j}^{\left|b_{j}\right|} \tag{4}
\end{equation*}
$$

We recall the notion of Horn uniformization from (Gel'fand et al., 1994, Chapter 9). Although in Gel'fand et al. (1994) this is done only in the case of saturated lattice ideals, the generalization to arbitrary lattice ideals is straightforward. Let $C=\left(c_{i j}\right)$ be an integer matrix whose rows add up to zero, the Horn map $h_{C}: \mathbb{P}^{m-1} \rightarrow\left(\mathbb{C}^{*}\right)^{m}$ is defined by the formula $h_{C}\left(\zeta_{1}: \cdots: \zeta_{m}\right)=\left(\Psi_{1}(\zeta), \ldots, \Psi_{m}(\zeta)\right)$, where

$$
\begin{equation*}
\Psi_{k}\left(\zeta_{1}: \cdots: \zeta_{m}\right)=\prod_{i=1}^{n}\left(c_{i 1} \zeta_{1}+\cdots+c_{i m} \zeta_{m}\right)^{c_{i k}} \tag{5}
\end{equation*}
$$

We also define $T_{C}:\left(\mathbb{C}^{*}\right)^{n} \rightarrow\left(\mathbb{C}^{*}\right)^{m}$ by $T_{C}(x):=\left(x^{\xi_{1}}, \ldots, x^{\xi_{m}}\right)$, where ξ_{1}, \ldots, ξ_{m} are the column vectors of C, and set $\widetilde{\nabla}_{C}:=h_{C}\left(\mathbb{P}^{m-1}\right) \subset\left(\mathbb{C}^{*}\right)^{m}$.

The following result is proved in (Gel'fand et al., 1994, Chapter 9, Theorem 3.3a) for the case of Gale duals. Its extension to \mathbb{Q}-duals is straightforward.
Theorem 2 Let $A \subset \mathbb{Z}^{n}$ be a homogeneous configuration and $C \in \mathbb{Z}^{n \times m} a \mathbb{Q}$-dual of A. Then if X_{A}^{*} is a hypersurface, so is $\widetilde{\nabla}_{C}$. Moreover,

$$
\begin{equation*}
T_{C}^{-1}\left(\widetilde{\nabla}_{C}\right)=\nabla_{C} \cap\left(\mathbb{C}^{*}\right)^{n} \tag{6}
\end{equation*}
$$

3. Discriminants and Splitting Lines

In this section we will study the effect on the A-discriminant of removing from the Gale dual configuration B a set of collinear vectors which add up to zero. We will show that this operation preserves the dual defect property and the Newton polytope of the discriminant. Moreover, there is a resultant formula relating the two discriminants. We shall assume throughout this section that our configurations are homogeneous.
Theorem 3 Let A be a configuration in \mathbb{Z}^{n} which is not a pyramid, and $B \subset \mathbb{Z}^{m}$ a Gale dual. Suppose we can decompose B as

$$
B=C_{1} \cup C_{2},
$$

where C_{1} and C_{2} are homogeneous configurations, C_{1} is of rank m, and C_{2} is of rank 1. Let A_{1} be a dual of C_{1}. Then $\operatorname{codim}\left(\nabla_{A}\right)=\operatorname{codim}\left(\nabla_{A_{1}}\right)$. In particular, A is dual defect if and only if A_{1} is dual defect.

Proof. Let A_{2} be a dual of C_{2}. We may assume without loss of generality that A_{1} and A_{2} are in standard form. We may also assume that $C_{1}=\left\{b_{1}, \ldots, b_{r}\right\}$ and $C_{2}=$ $\left\{b_{r+1}, \ldots, b_{n}\right\}$. Since the vectors in C_{1} span \mathbb{Z}^{m} over \mathbb{Q}, there is a \mathbb{Z}-relation

$$
\begin{equation*}
\sum_{i=1}^{r} \gamma_{i} b_{i}+\sum_{j=r+1}^{n} \mu_{j} b_{j}=0 \quad \text { with } \quad \sum_{j=r+1}^{n} \mu_{j} b_{j} \neq 0 \tag{7}
\end{equation*}
$$

It is then easy to check that the matrix

$$
A=\left(\begin{array}{c|c}
A_{1} & 0 \tag{8}\\
\hline 0 & A_{2} \\
\hline \gamma_{1} \cdots \gamma_{r} & \mu_{r+1} \cdots \mu_{n}
\end{array}\right)
$$

is dual to B and, consequently, we may assume that A agrees with the matrix (8). We can write $d=d_{1}+d_{2}+1$, where: $d_{1}=r-m$ and $d_{2}=n-r-1$ and view A_{1}, A_{2} as configurations in $\mathbb{Z}^{d_{1}}, \mathbb{Z}^{d_{2}}$, respectively. We let $t=\left(t_{1}, \ldots, t_{d_{1}}\right), s=\left(s_{1}, \ldots, s_{d_{2}}\right), x=\left(x_{1}, \ldots, x_{r}\right)$, and $y=\left(y_{r+1}, \ldots, y_{n}\right)$. Given $u \in \mathbb{C}^{*}$, we let $u^{\gamma} * x=\left(u^{\gamma_{1}} x_{1}, \ldots, u^{\gamma_{r}} x_{r}\right)$. We define $u^{\mu} * y$ in an analogous way.

If A is as in (8), $f_{A}(x, y ; t, s, u)=f_{A_{1}}\left(u^{\gamma} * x ; t\right)+f_{A_{2}}\left(u^{\mu} * y ; s\right)$ and, therefore,

$$
J\left(f_{A}\right)=\left\langle J\left(f_{A_{1}}\left(u^{\gamma} * x ; t\right)\right), J\left(f_{A_{2}}\left(u^{\mu} * y ; s\right)\right), \partial f_{A} / \partial u\right\rangle
$$

In particular, we get a map $\Phi: \mathbb{V}_{A} \rightarrow \mathbb{V}_{A_{1}}$ given by $\Phi(x, y, t, s, u)=\left(u^{\gamma} * x, t\right)$. We also define $\Psi: \mathbb{V}_{A} \rightarrow \mathbb{C}^{*} \times \nabla_{A}$ by $\Psi(x, y, t, s, u)=(u, x, y)$. Let $Z=\operatorname{Im}(\Psi) \subset \mathbb{C}^{*} \times \nabla_{A}$, and let $\Pi: \mathbb{V}_{A_{1}} \rightarrow \nabla_{A_{1}}$ denote the natural projection. Finally, define $\phi: Z \rightarrow \nabla_{A_{1}}$ by $\phi(u, x, y)=u^{\gamma} * x$. Then the diagram

commutes. We note that $\operatorname{dim} Z=\operatorname{dim} \nabla_{A}$. Indeed, the natural projection $p: Z \rightarrow \nabla_{A}$ has finite fibers since, for any $(u, x, y) \in Z, u^{\mu} * y \in \nabla_{A_{2}}$. But A_{2} is a codimension-one configuration and therefore its discriminant is given by (4). Hence, u must satisfy an equation of the form $u^{q}=c y^{\alpha}$, for some $q \in \mathbb{Z}, c \in \mathbb{Q}$, and $\alpha \in \mathbb{Z}^{n-r}$.

We now claim that the conclusion of Theorem 3 will follow from Lemma 5, proved below, which asserts that ϕ is generically surjective with fibers of dimension $n-r$. Indeed, we have $\operatorname{dim} \nabla_{A}=\operatorname{dim} Z=\operatorname{dim} \nabla_{A_{1}}+n-r$ and, consequently,

$$
\operatorname{codim}\left(\nabla_{A}\right)=n-\operatorname{dim} \nabla_{A}=r-\operatorname{dim} \nabla_{A_{1}}=\operatorname{codim}\left(\nabla_{A_{1}}\right)
$$

Before proving the statements on generic surjectivity and fiber dimension, we prove an auxiliary Lemma.

Lemma 4 Let A be a $d \times n$ integer matrix of rank d with Gale dual $B=\left\{b_{1}, \ldots, b_{n}\right\}$. Let $x \in \mathbb{C}^{n}, t \in\left(\mathbb{C}^{*}\right)^{d}$. Suppose that for some $\Theta \in \mathbb{Z}^{n}, \mathbb{V}_{A} \subset\left\{f_{A}(\Theta * x ; t)=0\right\}$. Then $\Theta_{1} b_{1}+\cdots+\Theta_{n} b_{n}=0$.

Proof. Let $t_{0}=(1, \ldots, 1) \in\left(\mathbb{C}^{*}\right)^{d}$. Then, the set $\left\{x \in \mathbb{C}^{n}:\left(x, t_{0}\right) \in \mathbb{V}_{A}\right\}$ agrees with the conormal space of X_{A} at the point $[1: \cdots: 1] \in X_{A} \subset \mathbb{P}^{n-1}$. For each such $x=\left(x_{1}, \ldots, x_{n}\right)$ we have, by assumption

$$
\Theta_{1} x_{1}+\cdots+\Theta_{n} x_{n}=0
$$

Hence Θ lies in the tangent space to X_{A} at the point [1: $\cdots: 1$]. Since this tangent space equals the row span of A, the result follows.

Lemma 5 Under the hypotheses (8), the map $\phi: Z \rightarrow \nabla_{A_{1}}$ is generically surjective with fibers of dimension $n-r$.

Proof. To prove the first statement we show that $\Phi: \mathbb{V}_{A} \rightarrow \mathbb{V}_{A_{1}}$ is generically surjective. Let $(\bar{x}, t) \in \mathbb{V}_{A_{1}}$ and choose (u, y) such that

$$
\begin{equation*}
D_{A_{2}}\left(u^{\mu} * y\right)=0 \tag{10}
\end{equation*}
$$

As noted above, for any choice of $y \in \mathbb{C}^{n-r}$ there are finitely many possible choices of u satisfying (10). We next choose $s \in\left(\mathbb{C}^{*}\right)^{d_{2}}$ such that $\left(u^{\mu} * y, s\right) \in \mathbb{V}_{A_{2}}$. Note that the assumption that A_{2} is in standard form implies that if $\left(u^{\mu} * y, s\right) \in \mathbb{V}_{A_{2}}$ then so does $\left(u^{\mu} * y, s_{\lambda}\right)$, where $s_{\lambda}=\left(\lambda s_{1}, s_{2}, \ldots, s_{d_{2}}\right) ; \lambda \in \mathbb{C}^{*}$. For the given choice of u, let x be defined by $u^{\gamma} * x=\bar{x}$. Therefore, $(x, t) \in \mathbb{V}\left(J\left(f_{A_{1}}\left(u^{\gamma} * x ; t\right)\right)\right.$. Thus, it suffices to show that we can choose $\lambda \in \mathbb{C}^{*}$ such that $\left(x, y, t, s_{\lambda}, u\right)$ satifies

$$
\begin{equation*}
\frac{\partial f_{A}}{\partial u}\left(x, y ; t, s_{\lambda}, u\right)=0 \tag{11}
\end{equation*}
$$

But clearly

$$
u \frac{\partial f_{A}}{\partial u}\left(x, y ; t, s_{\lambda}, u\right)=f_{A_{1}}\left(\gamma * u^{\gamma} * x ; t\right)+\lambda f_{A_{2}}\left(\mu * u^{\mu} * y ; s\right)
$$

where $\gamma * u^{\gamma} * x=\left(\gamma_{1} u^{\gamma_{1}} x_{1}, \ldots, \gamma_{r} u^{\gamma_{r}} x_{r}\right)$, and similarly for $\mu * u^{\mu} * y$. Lemma 4 and (7) imply that we may assume without loss of generality that (y, s, u) have been chosen so that $f_{A_{2}}\left(\mu * u^{\mu} * y ; s\right) \neq 0$. Thus, if (\bar{x}, t) are so that $f_{A_{1}}(\gamma * \bar{x} ; t) \neq 0$, then we can certainly choose $\lambda \in \mathbb{C}^{*}$ so that (11) holds and, consequently, Φ is surjective outside the zero locus of $f_{A_{1}}(\gamma * \bar{x} ; t)$. Appealing once again to Lemma 4 and (7), it follows that this zero locus does not contain $\mathbb{V}_{A_{1}}$ which completes the proof of the first assertion.

Finally, we note that the remark after (10) implies the statement about the fiber dimension of ϕ.

Suppose now that we are under the same assumptions as in Theorem 3. That is, A is a configuration in \mathbb{Z}^{n} which is not a pyramid. $B \subset \mathbb{Z}^{m}$ is a Gale dual of A which may be decomposed as $B=C_{1} \cup C_{2}$, where C_{1} and C_{2} are homogeneous configurations. C_{1} is of rank m, and C_{2} is of rank 1 . Moreover, let A_{1} be a dual of C_{1}. We then have

Theorem 6 If C_{1} has index q, then the Newton polytope $\mathcal{N}\left(D_{A}\right)$ is affinely isomorphic to $q \cdot \mathcal{N}\left(D_{A_{1}}\right)$.

Proof. By Theorem $3, D_{A}=1$ if and only if $D_{A_{1}}=1$, thus we may assume $D_{A} \neq 1$. Let $B=\left\{b_{1}, \ldots, b_{n}\right\} \subset \mathbb{Z}^{m}$ and suppose that that $C_{1}=\left\{b_{1}, \ldots, b_{r}\right\}$. We will then show that the projection $\pi_{r}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{r}$ on the first r coordinates maps $\mathcal{N}\left(D_{A}\right)$ to $q \cdot \mathcal{N}\left(D_{A_{1}}\right)$. Since both of these polytopes have the same dimension the result follows.

Note that since the vectors $\left\{b_{r+1}, \ldots, b_{n}\right\}$ are all collinear and $b_{r+1}+\cdots+b_{n}=0$, we have, for all $k=1, \ldots, m$, that the product

$$
\prod_{i=r+1}^{n}\left(b_{i 1} \zeta_{1}+\cdots+b_{i, n-d} \zeta_{n-d}\right)^{b_{i k}}
$$

is a constant $\lambda_{k} \in \mathbb{Q}$. Hence, the defining equations $F_{B}(z), F_{C_{1}}(z)$ of $\widetilde{\nabla}_{B}, \widetilde{\nabla}_{C_{1}}$, are related through

$$
\begin{equation*}
F_{B}\left(z_{1}, \ldots, z_{m}\right)=F_{C_{1}}\left(\lambda_{1} z_{1}, \ldots, \lambda_{m} z_{m}\right) \tag{12}
\end{equation*}
$$

By (6), substituting z_{j} by $x^{\nu_{j}}, j=1, \ldots, m$, where ν_{j} is the the j-th column vector of B, into $F_{B}(z)$ gives the discriminant $D_{A}(x)$ up to a Laurent monomial factor. On the other hand, this same substitution in the right hand side of (12) yields a polynomial in $\mathbb{C}\left[x_{1}, \ldots, x_{r}\right]$ whose support equals that of $D_{C_{1}}$. Hence

$$
\pi_{r}\left(\mathcal{N}\left(D_{A}\right)\right)=\mathcal{N}\left(D_{C_{1}}\right)
$$

Since, on the other hand, (3) implies that $\mathcal{N}\left(D_{C_{1}}\right)=q \cdot \mathcal{N}\left(D_{A_{1}}\right)$, the result follows.
Definition 7 A configuration $B=\left\{b_{1}, \ldots, b_{n}\right\} \subset \mathbb{Z}^{m}$ is called irreducible if any two vectors in B are linearly independent. If A is dual to an irreducible configuration B, we shall also call A irreducible. Given a configuration B we will denote by \tilde{B} the irreducible configuration obtained by removing all vectors lying on splitting lines and replacing nonsplitting subsets of collinear vectors in B by their sum.
Remark $8 \mathcal{M}_{B}=(B, \mathcal{I})$ be the matroid defined by the family, \mathcal{I}, of linearly independent subsets of B. Then B is irreducible if and only if \mathcal{M}_{B} is simple.

Definition 9 Let $A \subset \mathbb{Z}^{d}$ be a configuration and $B \subset \mathbb{Z}^{m}$ a Gale dual. B is said to be degenerate if and only if $\operatorname{rank}(\tilde{B})<\operatorname{rank}(B)$.

The following corollary may be viewed as a generalization of the results in (Dickenstein and Sturmfels, 2002, §4).

Corollary 10 Let A be a $d \times n$, integer matrix of rank defining a homogeneous configuration. Let $B=\left\{b_{1}, \ldots, b_{n}\right\}$ be a Gale dual of A. Let \tilde{B} be as above. Then $\mathcal{N}\left(D_{B}\right)$ and $\mathcal{N}\left(D_{\tilde{B}}\right)$ are affinely isomorphic.

Proof. Let L_{1}, \ldots, L_{s} denote the set of lines in \mathbb{R}^{m} containing vectors in B. For each $j=1, \ldots, s$, let

$$
\sigma_{j}:=\sum_{b_{k} \in B \cap L_{j}} b_{k} .
$$

Consider the configuration

$$
C:=B \cup\left\{\sigma_{1},-\sigma_{1}\right\} \cup \cdots \cup\left\{\sigma_{s},-\sigma_{s}\right\}
$$

Repeated applications of Theorem 6 gives that $\mathcal{N}\left(D_{C}\right) \cong \mathcal{N}\left(D_{B}\right)$. On the other hand we may also view C as

$$
C=\tilde{B} \cup C_{1} \cup \cdots \cup C_{s},
$$

where $C_{j}=\left\{-\sigma_{j}\right\} \cup\left(B \cap L_{j}\right)$. Theorem 6 then implies that $\mathcal{N}\left(D_{C}\right) \cong \mathcal{N}\left(D_{\tilde{B}}\right)$.
We next show that, with the notation and assumptions of Theorem 3, there is a univariate resultant formula relating the discriminants D_{A} and $D_{A_{1}}$.
Theorem 11 Let A, B, A_{1}, C_{1}, and C_{2} be as in Theorem 3 and let A_{2} be a dual of C_{2}. Assume moreover that C_{1} consists of the first r vectors in B. Then, there exist integers $\delta_{1}, \delta_{2}, \gamma_{1}, \ldots, \gamma_{r}, \mu_{r+1}, \ldots, \mu_{n}, M$ such that

$$
\begin{equation*}
M D_{A}(x)=\operatorname{Res}_{u}\left(u^{\delta_{1}} D_{A_{1}}\left(u^{\gamma} * x^{\prime}\right), u^{\delta_{2}} D_{A_{2}}\left(u^{\mu} * x^{\prime \prime}\right)\right) \tag{13}
\end{equation*}
$$

where $x=\left(x_{1}, \ldots, x_{n}\right), x^{\prime}=\left(x_{1}, \ldots, x_{r}\right), x^{\prime \prime}=\left(x_{r+1}, \ldots, x_{n}\right)$, and $*$ denotes componentwise multiplication with $u^{\gamma}=\left(u^{\gamma_{1}}, \ldots, u^{\gamma_{r}}\right)$ and $u^{\mu}=\left(u^{\mu_{r+1}}, \ldots, u^{\mu_{n}}\right)$.

Proof. If $D_{A}(x)=1$, then $D_{A_{1}}\left(x^{\prime}\right)=1$ by Theorem 3 and (13) is clearly true.
Suppose $D_{A_{1}} \neq 1$. Let q be the index of C_{1} and let w be a \mathbb{Z}-generator of the onedimensional lattice $\mathbb{Z}\left\langle b_{r+1}, \ldots, b_{n}\right\rangle$. Since B has index $1, q$ is the smallest positive integer such that $q w \in \mathbb{Z}\left\langle b_{1}, \ldots, b_{r}\right\rangle$. We can find integers $\gamma_{1}, \ldots, \gamma_{r}, \mu_{r+1}, \ldots, \mu_{n}$ such that

$$
\begin{equation*}
\gamma_{1} b_{1}+\cdots+\gamma_{r} b_{r}=q w=-\mu_{r+1} b_{r+1}-\cdots-\mu_{n} b_{n} \tag{14}
\end{equation*}
$$

We may then assume that A is as in (8) and therefore, since both A_{1} and A_{2} are in standard form, it follows from (2) that if $D_{A}(x)=0$ then the discriminants $D_{A_{1}}\left(u^{\gamma} * x^{\prime}\right)$ and $D_{A_{2}}\left(u^{\mu} * x^{\prime \prime}\right)$ vanish simultaneously for some $u \in \mathbb{C}^{*}$. Let $\delta_{1}, \delta_{2} \in \mathbb{Z}$ be such that $u^{\delta_{1}} D_{A_{1}}\left(u^{\gamma} * x^{\prime}\right)$ and $u^{\delta_{2}} D_{A_{2}}\left(u^{\mu} * x^{\prime \prime}\right)$ are polynomials in u with non-zero constant term. Then there exists a polynomial $F(x)$ such that

$$
\begin{equation*}
\operatorname{Res}_{u}\left(u^{\delta_{1}} D_{A_{1}}\left(u^{\gamma} * x^{\prime}\right), u^{\delta_{2}} D_{A_{2}}\left(u^{\mu} * x^{\prime \prime}\right)\right)=F(x) D_{A}(x) \tag{15}
\end{equation*}
$$

The proof of Theorem 6 implies that the degree of $D_{A}(x)$ in the variables x^{\prime} equals $q \operatorname{deg}\left(D_{A_{1}}\left(x^{\prime}\right)\right)$. On the other hand, the degree of the left-hand side of (15) is the u degree of $u^{\delta_{2}} D_{A_{2}}\left(u^{\mu} * x^{\prime \prime}\right)$ times $\operatorname{deg}\left(D_{A_{1}}\left(x^{\prime}\right)\right)$. By definition of w, we can write $b_{j}=\beta_{j} w$, $\beta_{j} \in \mathbb{Z}, j=r+1, \ldots, n$, and therefore

$$
q=-\mu_{r+1} \beta_{r+1}-\cdots-\mu_{n} \beta_{n}
$$

but then it follows from the expression (4) for the discriminant of a codimension-one configuration that

$$
\operatorname{deg}_{u}\left(u^{\delta_{2}} D_{A_{2}}\left(u^{\mu} * x^{\prime \prime}\right)\right)=q
$$

Hence both sides of (13) have the same degree in the variables x^{\prime} and, consequently, $F(x)$ depends only on $x^{\prime \prime}=\left(x_{r+1}, \ldots, x_{n}\right)$.

Suppose $F\left(x^{\prime \prime}\right)$ is not constant. We can write

$$
\begin{align*}
& u^{\delta_{1}} \cdot D_{A_{1}}\left(u^{\gamma} * x^{\prime}\right)=g_{l}\left(x^{\prime}\right) u^{\ell}+\cdots+g_{1}\left(x^{\prime}\right) u+g_{0}\left(x^{\prime}\right) \tag{16}\\
& \left.u^{\delta_{2}} \cdot D_{A_{2}}\left(u^{\mu} * x^{\prime \prime}\right)\right)=u^{q} \prod_{\beta_{j}>0} \beta_{j}^{\beta_{j}} \prod_{\beta_{j}<0} x_{j}^{-\beta_{j}}-\prod_{\beta_{j}<0} \beta_{j}^{-\beta_{j}} \prod_{\beta_{j}>0} x_{j}^{\beta_{j}} \tag{17}
\end{align*}
$$

Choose $a^{\prime \prime}=\left(a_{r+1}, \ldots, a_{n}\right)$ with $F\left(a^{\prime \prime}\right)=0$. Then

$$
\operatorname{Res}_{u}\left(u^{\delta_{1}} \cdot D_{A_{1}}\left(u^{\gamma} * x^{\prime}\right), u^{\delta_{2}} \cdot D_{A_{2}}\left(u^{\mu} * a^{\prime \prime}\right)\right)=0
$$

for all $x^{\prime}=\left(x_{1}, \ldots, x_{r}\right)$. This means Equations (16) and (17) are solvable in u for all $\left(x^{\prime}, a^{\prime \prime}\right)$. There are at most q possible values for u which solve (17), which means that (16) must be the zero polynomial which is a contradiction since the monomials appearing in $g_{i}\left(x^{\prime}\right)$ are distinct monomials of $D_{A_{1}}$. Thus $F(x)$ is a constant $M \in \mathbb{Z}$.

Remark 12 We note that there are many possible choices for $\delta_{1}, \delta_{2}, \gamma, \mu$ in Theorem 11. Indeed, it suffices that γ and μ satisfy (14) and that δ_{1} and δ_{2} be chosen so that the products $u^{\delta_{1}} D_{A_{1}}\left(u^{\gamma} * x^{\prime}\right)$ and $u^{\delta_{2}} D_{A_{2}}\left(u^{\mu} * x^{\prime \prime}\right)$ be polynomials in u with non-zero constant term. In fact, if we replace (14) by

$$
\begin{equation*}
\gamma_{1}^{\prime} b_{1}+\cdots+\gamma_{r}^{\prime} b_{r}=q^{\prime} w=-\mu_{r+1}^{\prime} b_{r+1}-\cdots-\mu_{n}^{\prime} b_{n} \tag{18}
\end{equation*}
$$

where $q^{\prime}=k q$, with k a positive integer, then its effect is to make a change of variable $u \mapsto u^{k}$ in the resultant and therefore we would have:

$$
\begin{equation*}
M D_{A}(x)^{k}=\operatorname{Res}_{u}\left(u^{\delta_{1}^{\prime}} D_{A_{1}}\left(u^{\gamma^{\prime}} * x^{\prime}\right), u^{\delta_{2}^{\prime}} D_{A_{2}}\left(u^{\mu^{\prime}} * x^{\prime \prime}\right)\right) \tag{19}
\end{equation*}
$$

for suitable integers $\delta_{1}^{\prime}, \delta_{2}^{\prime}$.
The following corollary which will be needed in the next section describes the effect on the discriminant of adding to the B configuration a vector and its negative.
Corollary 13 Let $A \in \mathbb{Z}^{d \times n}$ be a homogeneous configuration and let $B=\left\{b_{1}, \ldots, b_{n}\right\} \subset$ $\mathbb{Z}^{m}, m=n-d$, be a Gale dual. Let $v \in \mathbb{Z}^{m}$ be a non-zero vector and let

$$
B^{\sharp}:=B \cup\{v,-v\} .
$$

Let A^{\sharp} be dual to B^{\sharp}. Let $x=\left(x_{1}, \ldots, x_{n}\right)$ and $D_{A} \in \mathbb{C}[x], D_{A^{\sharp}} \in \mathbb{C}\left[x ; y_{+}, y_{-}\right]$, the discriminants associated with A and A^{\sharp}, respectively. Then

$$
D_{A}(x)=\left.D_{A^{\sharp}}\left(x, y_{+}, y_{-}\right)\right|_{y_{+}=1, y_{-}=-1} .
$$

Proof. Since B has index 1, we can write

$$
v=\sum_{j=1}^{n} \gamma_{j} b_{j} ; \gamma_{j} \in \mathbb{Z}
$$

and setting $\mu_{n+1}=0, \mu_{n+2}=1$, we can apply (13) and obtain

$$
D_{A^{\sharp}}\left(x ; y_{+}, y_{-}\right)=\operatorname{Res}_{u}\left(u^{\delta_{1}} \cdot D_{A}\left(u^{\gamma} * x\right), y_{+}+u y_{-}\right)
$$

for a suitable integer δ_{1}. We may specialize this resultant to $y_{+}=1, y_{-}=-1$ since that does not change the u-degrees of the polynomials involved and obtain:

$$
\left.D_{A^{\sharp}}\left(x, y_{+}, y_{-}\right)\right|_{y_{+}=1, y_{-}=-1}=\operatorname{Res}_{u}\left(u^{\delta_{1}} \cdot D_{A}\left(u^{\gamma} * x\right), 1-u\right)=D_{A}(x) .
$$

We end this section with a simple example to illustrate how we can use Theorem 11 and Corollary 13 to reduce the computation of discriminants to that of irreducible configurations and univariate resultants.

Example. We work directly on the B side and consider a configuration B consisting of seven vectors $\left\{b_{1}, \ldots, b_{7}\right\}$, where

$$
\begin{gathered}
b_{1}=(0,1), \quad b_{2}=(-3,1), \quad b_{3}=(2,-3), \quad b_{4}=(-1,1), \\
b_{5}=(1,0), \quad b_{6}=(3,0), \quad b_{7}=(-2,0)
\end{gathered}
$$

The last 3 vectors lie on a line L and $\sigma(L)=(2,0)$. As before, we set

$$
B^{\sharp}=B \cup\{\sigma(L),-\sigma(L)\}=C_{1} \cup C_{2},
$$

where $C_{1}=\left\{b_{1}, b_{2}, b_{3}, b_{4}, \sigma(L)\right\}$ and $C_{2}=\left\{b_{5}, b_{6}, b_{7},-\sigma(L)\right\}$. We let $\left\{x_{1}, \ldots, x_{7}\right\}$ denote variables ssociated with $\left\{b_{1}, \ldots, b_{7}\right\}$, respectively, and let y_{+}, y_{-}be associated with $\sigma(L)$ and $-\sigma(L)$.

We note that C_{1} and C_{2} are homogeneous configurations satisfying the assumptions in Theorem 11 and index $\left(\mathrm{C}_{1}\right)=1$. Following the notation of Theorem 11 we have $w=(1,0)$ and therefore

$$
\begin{equation*}
b_{1}-b_{4}=w=-(-1) b_{5} \tag{20}
\end{equation*}
$$

On the other hand, using Singular (Greuel et al., 2001) we compute

$$
\begin{aligned}
& D_{C_{1}}\left(x_{1}, x_{2}, x_{3}, x_{4}, y_{+}\right)=256 x_{2}^{5} x_{3}^{6} x_{4}+13824 x_{1} x_{2}^{6} x_{3}^{3} x_{4}^{2}+186624 x_{1}^{2} x_{2}^{7} x_{4}^{3}- \\
& 432 x_{2}^{2} x_{3}^{8} y_{+}^{2}-24224 x_{1} x_{2}^{3} x_{3}^{5} x_{4} y_{+}^{2}-359856 x_{1}^{2} x_{2}^{4} x_{3}^{2} x_{4}^{2} y_{+}^{2}-432 x_{1} x_{3}^{7} y_{+}^{4}- \\
& 24696 x_{1}^{2} x_{2} x_{3}^{4} x_{4} y_{+}^{4}-1210104 x_{1}^{3} x_{2}^{2} x_{3} x_{4}^{2} y_{+}^{4}-823543 x_{1}^{4} x_{4}^{2} y_{+}^{6} .
\end{aligned}
$$

While clearly

$$
D_{C_{2}}\left(x_{5}, x_{6}, x_{7}, y_{-}\right)=8 x_{5} x_{6}^{3}-27 x_{7}^{2} y_{-}^{2} .
$$

Thus, given (20), we may apply Theorem 11 with $\delta_{1}=0, \delta_{2}=1$ and obtain

$$
\begin{aligned}
& D_{B^{\sharp}}\left(x, y_{+}, y_{-}\right)=\operatorname{Res}_{u}\left(D_{C_{1}}\left(u x_{1}, x_{2}, x_{3}, u^{-1} x_{4}, y_{+}\right), u D_{C_{2}}\left(u^{-1} x_{5}, x_{6}, x_{7}, y_{-}\right)\right)= \\
& 5038848 x_{2}^{5} x_{3}^{6} x_{4} x_{7}^{6} y_{-}^{6}-746496 x_{1} x_{3}^{7} y_{+}^{4} x_{5}^{2} x_{6}^{6} x_{7} y_{-}^{2}-421654016 x_{1}^{4} x_{4}^{2} y_{+}^{6} x_{5}^{3} x_{6}^{9}- \\
& 2098680192 x_{1}^{2} x_{2}^{4} x_{3}^{2} x_{4}^{2} y_{+}^{2} x_{5} x_{6}^{3} x_{7}^{4} y_{-}^{4}-42674688 x_{1}^{2} x_{2} x_{3}^{4} x_{4} y_{+}^{4} x_{5}^{2} x_{6}^{6} x_{7}^{2} y_{-}^{2}- \\
& 2519424 x_{2}^{2} x_{3}^{8} y_{+}^{2} x_{5} x_{6}^{3} x_{7}^{4} y_{-}^{4}-141274368 x_{1} x_{2}^{3} x_{3}^{5} x_{4} y_{+}^{2} x_{5}^{1} x_{6}^{3} x_{7}^{4} y_{-}^{4}+ \\
& 272097792 x_{1} x_{2}^{6} x_{3}^{3} x_{4}^{2} x_{7}^{6} y_{-}^{6}+3673320192 x_{1}^{2} x_{2}^{7} x_{4}^{3} x_{7}^{6} y_{-}^{6} .
\end{aligned}
$$

According to Corollary 13 setting $y_{+}=1, y_{-}=-1$ yields $D_{B}(x)$. Since y_{-}appears only raised to even powers, the expression for $D_{B}(x)$ is obtained from that for $D_{B^{\sharp}}\left(x, y_{+}, y_{-}\right)$ erasing y_{+}and y_{-}. Finally, note that if, instead of (20), we use the relation:

$$
\sigma(L)=2 w=-(-\sigma(L))
$$

then, as noted in Remark 12

$$
D_{B^{\sharp}}^{2}\left(x, y_{+}, y_{-}\right)=\operatorname{Res}_{u}\left(D_{C_{1}}\left(x, u y_{+}\right), D_{C_{2}}\left(x, u y_{-}\right)\right) .
$$

4. Specialization of the \boldsymbol{A}-discriminant

The main result of this section is a specialization theorem for the A-discriminant generalizing Lemma 3.2 in (Cattani et al., 2001) and Lemma 3.2 in (Cattani and Dickenstein, 2004). In these references, the lemmata in question play an important role in the study of rational hypergeometric functions.

We begin with a general result on the variable grouping in the A-discriminant.
Proposition 14 Let A be a $d \times n$, integer matrix of rank d and $B=\left\{b_{1}, \ldots, b_{n}\right\} \subset \mathbb{Z}^{m}$ a Gale dual of A. Let $D_{A}(x), x=\left(x_{1}, \ldots, x_{n}\right)$, be the sparse discriminant. Then, if b_{k} and $b_{\ell}, 1 \leq k, \ell \leq n$, are positive multiples of each other,

$$
\left.D_{A}\right|_{x_{k}=0}=\left.D_{A}\right|_{x_{\ell}=0}
$$

Proof. Define $\omega_{k} \in \mathbb{R}^{n}$ by $\left(\omega_{k}\right)_{j}=-\delta_{k j}, j=1, \ldots, n$, . It is clear that the initial form $i n_{\omega_{k}}\left(D_{A}\right)$ of D_{A} relative to the weight ω_{k} agrees with the restriction $\left.D_{A}\right|_{x_{k}=0}$. Thus, it suffices to show that

$$
\begin{equation*}
i n_{\omega_{k}}\left(D_{A}\right)=i n_{\omega_{l}}\left(D_{A}\right) \tag{21}
\end{equation*}
$$

We recall (Gel'fand et al., 1994, Chapter 10, Theorem 1.4 a) that the secondary fan $\Sigma(A)$ is the normal fan to the Newton polytope $\mathcal{N}\left(E_{A}\right)$ of the principal A-determinant (we refer to (Gel'fand et al., 1994, Chapter 10) for the definition and main properties of the principal A-determinant). Then

$$
\begin{equation*}
i n_{\omega_{k}}\left(E_{A}\right)=i n_{\omega_{\ell}}\left(E_{A}\right) \tag{22}
\end{equation*}
$$

if and only if ω_{k} and ω_{ℓ} are in the same relatively open cone of $\Sigma(A)$.
On the other hand, it follows from (Billera et al., 1990, Lemma 4.2), that the linear map $-B^{T}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ defines an isomorphism of fans between the secondary fan, $\Sigma(A)$, and its image, a polytopal fan \mathcal{F} defined on \mathbb{R}^{n-d}. Hence, (22) holds if and only if $-B^{T} \cdot \omega_{k}$ and $-B^{T} \cdot \omega_{\ell}$ are in the same relatively open cone of \mathcal{F}. But $-B^{T} \cdot \omega_{k}=b_{k}$ is a positive multiple of $-B^{T} \cdot \omega_{l}=b_{l}$ by assumption, so they must be in the same relatively open cone of \mathcal{F}.

Since D_{A} is a factor of E_{A} by (Gel'fand et al., 1994, Chapter 10, Theorem 1.2), the normal fan of E_{A} refines that of D_{A}. Then, any two vectors giving the same initial form on E_{A} give the same initial form on D_{A}. This proves equation (21) and concludes the proof of the Proposition.

As before, let $A=\left\{a_{1}, \ldots, a_{n}\right\}$ be a homogeneous configuration in \mathbb{Z}^{d} which is not a pyramid. For any index set $I \subset\{1, \ldots, n\}$, we denote by $A(I)$ the subconfiguration of A consisting of $\left\{a_{i}, i \in I\right\}$. Let $B \subset \mathbb{R}^{m}$ be a Gale dual of A. Given a line $\Lambda \subset \mathbb{R}^{m}$, let

$$
I_{\Lambda}=\left\{j: b_{j} \notin \Lambda\right\} \subset\{1, \ldots, n\} ; J_{\Lambda}=\{1, \ldots, n\} \backslash I_{\Lambda}
$$

and

$$
\sigma(\Lambda):=\sum_{j \in J_{\Lambda}} b_{j}
$$

If Λ is a non-splitting line, let w be the \mathbb{Z}-generator of $\mathbb{Z}\left\langle b_{j} ; j \in J_{\Lambda}\right\rangle$ in the same direction as $\sigma(\Lambda)$ and, for $j \in J_{\Lambda}$ write $b_{j}=\beta_{j} w$. We set $J_{\Lambda}^{+}=\left\{j \in J_{\Lambda}, \beta_{j}>0\right\}$ and define J_{Λ}^{-} accordingly.

We may now prove the main result of this section
Theorem 15 Let A be a homogeneous, $d \times n$ integer matrix of rank d, and let Λ be a non-splitting line. Then, for any $j \in J_{\Lambda}^{+}$,

$$
D_{A\left(I_{\Lambda}\right)} \text { divides }\left.D_{A}\right|_{x_{j}=0}
$$

Proof. We may assume that $I_{\Lambda}=\{1, \ldots, r\}$, and let us denote by $x^{\prime}=\left(x_{1}, \ldots, x_{r}\right)$, $x^{\prime \prime}=\left(x_{r+1}, \ldots, x_{n}\right)$. Let $B^{\sharp}=B \cup\{\sigma(\Lambda),-\sigma(\Lambda)\}$ and A^{\sharp} a dual of B^{\sharp}. As we have done before, let us denote by y_{+}, respectively y_{-}, the variable associated with $\sigma(\Lambda)$, respectively $-\sigma(\Lambda)$. By Corollary 13

$$
D_{A}(x)=\left.D_{A^{\sharp}}\left(x, y_{+}, y_{-}\right)\right|_{y_{+}=1, y_{-}=-1} .
$$

On the other hand, we can write $B^{\sharp}=C_{1} \cup C_{2}$, where

$$
C_{1}=\left\{b_{1}, \ldots, b_{r}, \sigma(\Lambda)\right\} ; \quad C_{2}=\left\{b_{r+1}, \ldots, b_{n},-\sigma(\Lambda)\right\}
$$

Let w be a generator of $\mathbb{Z}\left\langle b_{r+1}, \ldots, b_{n}\right\rangle$ so that $\sigma(\Lambda)=c w$ with c a positive integer. Let q be the index of C_{1}. Then we may write:

$$
q \cdot \sigma(\Lambda)=c \cdot q \cdot w=-q \cdot(-\sigma(\Lambda))
$$

Thus, it follows from (19) that, up to constant,

$$
\left(D_{A^{\sharp}}(x)\right)^{c}=\operatorname{Res}_{u}\left(D_{A_{1}}\left(x^{\prime}, u^{q} \cdot y_{+}\right), D_{A_{2}}\left(x^{\prime \prime}, u^{q} \cdot y_{-}\right)\right),
$$

since we can choose $\delta_{1}^{\prime}=\delta_{2}^{\prime}=0$. Consequently

$$
\left(D_{A}(x)\right)^{c}=\left.\operatorname{Res}_{u}\left(D_{A_{1}}\left(x^{\prime}, u^{q} \cdot y_{+}\right), D_{A_{2}}\left(x^{\prime \prime}, u^{q} \cdot y_{-}\right)\right)\right|_{y_{+}=1, y_{-}=-1}
$$

On the other hand, let $b_{j}=\beta_{j} \cdot w, \beta_{j} \in \mathbb{Z}, j=r+1, \ldots, n$. Then, since $-\sigma(\Lambda)=-c \cdot w$,

$$
D_{A_{2}}\left(x^{\prime \prime}, u^{q} \cdot y_{-}\right)=K_{1} \prod_{j \in J_{\Lambda}^{+}} x_{j}^{\beta_{j}}-K_{2} u^{c q} y_{-}^{c} \prod_{j \in J_{\Lambda}^{-}} x_{j}^{-\beta_{j}}
$$

where K_{1} and K_{2} are integers. It then follows that we may specialize $x_{j}=0, j \in J_{\Lambda}^{+}$, in the resultant since that does not change the leading term of $D_{A_{2}}\left(x^{\prime \prime}, u^{q} \cdot y_{-}\right)$. Hence, up to constants and monomials:

$$
\left.\left(D_{A}(x)\right)^{c}\right|_{x_{j}=0}=\left.D_{A_{1}}\left(x^{\prime}, u^{q} \cdot y_{+}\right)^{c q}\right|_{u=0, y_{+}=1}=\left.D_{A_{1}}\left(x^{\prime}, y_{+}\right)^{c q}\right|_{y_{+}=0}
$$

But, since $\sigma(\Lambda)$ is the unique vector in the line Λ in the configuration C_{1}, it follows that $A\left(I_{\Lambda}\right)$ is a non-facial circuit in A_{1} and therefore by (Cattani et al., 2001, Lemma 3.2), $D_{A\left(I_{\Lambda}\right)}$ divides $\left.D_{A_{1}}\left(x^{\prime}, y_{+}\right)\right|_{y_{+}=0}$ and the result follows.

5. Dual Defect Varieties

In this section we apply the specialization Theorem 15 and recent results in Dickenstein et al., 2005) to prove, in Theorem 18, a Gale dual characterization of dual defect toric varieties. This leads to a classification of dual defect toric varieties of codimension less than or equal to four. Motivated by this classification, we prove that the Gale dual of a configuration may be decomposed as a disjoint union of non dual-defect configurations which are maximal in an appropriate sense. Using this decomposition we give a sufficient condition for a configuration to be dual defect. We believe that this condition is necessary as well. Indeed, it follows from Theorems 20 and 21, that this is the case for codimension less than or equal to four.

Throughout this section, we let A be a homogeneous configuration of n points in \mathbb{Z}^{d} which is not a pyramid. We assume moreover that the elements of A span the lattice \mathbb{Z}^{d}. As always, if convenient, we will view A as a $d \times n$ integer matrix of rank d. Let X_{A} denote the associated projective toric variety and $X_{A}^{*} \subset \mathbb{P}^{n-1}$ its dual variety. Let $\mathcal{S}(A)$ denote the geometric lattice whose elements are the supports, ordered by inclusion, of the vectors in $\operatorname{ker}(A)$. The following result is proved in (Dickenstein et al., 2005) using tropical geometry methods.
Theorem 16 (Dickenstein et al. (2005, Corollary 4.5)) Let A be as above. The dimension of X_{A}^{*} is one less than the largest rank of any matrix $\left(A^{t}, \sigma_{1}, \ldots, \sigma_{n-d-1}\right)$, where $\sigma_{1}, \ldots, \sigma_{n-d-1}$ is a proper maximal chain in $\mathcal{S}(A)$.

Let $B \subset \mathbb{Z}^{m}, m=n-d$, be a Gale dual of A and let $\mathcal{M}_{B}=(B, \mathcal{I})$ be the matroid defined by the family, \mathcal{I}, of linearly independent subsets of B. Given a subset $B^{\prime} \subset B$, the rank of B^{\prime} is defined as the cardinality of the maximal element of \mathcal{I} completely contained in B^{\prime}. A subset $F \subset B$ is called a k-flat if it is a maximal, rank- k subset of B. Clearly every subset $B^{\prime} \subset B$ spans a subspace $\left\langle B^{\prime}\right\rangle \subset \mathbb{R}^{m}$ whose dimension equals the rank of B^{\prime}. A subspace $W \subset \mathbb{R}^{m}$ is said to be B-spanned if $\operatorname{dim}(W)=\operatorname{rank}(B \cap W)$. Given a flat $F \subset B$ we denote

$$
\sigma(F)=\sigma(\langle F\rangle)=\sum_{b \in F} b
$$

A subset $C \subset B$ such that $\sigma(C)=0$ will be called a homogeneous subconfiguration (or a homogeneous flat if C is a flat in B).
Definition 17 Ak-flag of flats \mathcal{F} is a flag $F_{0} \subset F_{1} \subset \cdots \subset F_{k}$, where $F_{j} \subset B$ is a j-flat. The flag is said to be non-splitting if and only if $\sigma\left(F_{j}\right) \notin\left\langle F_{j-1}\right\rangle$, for all $j=1, \ldots, k$.

Note that $F_{0}=\emptyset$ and $\left\langle F_{0}\right\rangle=\{0\}$, so we will usually drop it from the notation. If \mathcal{F} is a non-splitting flag then, for all $j=1, \ldots, k,\left\langle F_{j}\right\rangle$ is a B-spanned subspace and $\sigma\left(F_{j}\right) \neq 0$. Moreover, $\left\langle F_{j}\right\rangle$ projects to a non-splitting line in $\mathbb{R}^{m} /\left\langle F_{j-1}\right\rangle$. Clearly, the projection of a non-splitting k-flag \mathcal{F} to $\mathbb{R}^{m} /\left\langle F_{1}\right\rangle$ is a non-splitting $(k-1)$-flag in the configuration defined by the projection of B.

The following is a characterization of dual defect toric varieties which parallels that contained in Theorem 16 although it only involves the Gale dual B.
Theorem 18 Let $A \subset \mathbb{Z}^{d}$ be as above and $B \subset \mathbb{Z}^{m}$ a Gale dual of A. Then X_{A} is dual defect if and only if B does not have any non-splitting $(m-1)$-flags.

Proof. We prove the if direction by induction on the codimension m. The result is obviously true for $m=1$. Assuming it to be true for configurations of codimension $m-1$, let B be a codimension m configuration with a non-splitting ($m-1$)-flag $F_{1} \subset \cdots \subset F_{m-1}$. Let $\pi_{1}: \mathbb{Z}^{m} \rightarrow \mathbb{Z}^{m-1}$ denote the projection onto a rank $m-1$ lattice complementary to $\left\langle F_{1}\right\rangle \cap \mathbb{Z}^{m}$ and let $G_{j}=\pi_{1}\left(F_{j+1}\right)$. Clearly, $G_{1} \subset \cdots \subset G_{m-2}$ is a non-splitting ($m-2$)-flag for $\pi_{1}\left(B_{1}\right)$, where $B_{1}:=\left\{b \in B: b \notin F_{1}\right\}$. We recall that $\pi_{1}\left(B_{1}\right)$ is a Gale dual for the configuration $A_{1}:=\left\{a_{i} \in A: b_{i} \in B_{1}\right\}$. By induction hypothesis, A_{1} is not dual defect and, by Theorem 15, the discriminant $D_{A_{1}}$ must divide an appropriate specialization of D_{A}. Hence A is not dual defect.

We also prove the converse by induction on the codimension m. Once again, the case $m=1$ is clear. We begin by considering the special case of a configuration A with an irreducible Gale dual B. If A is not dual defect, by Theorem 16 , there exists a proper maximal chain in $\mathcal{S}(A), \sigma_{1}, \ldots, \sigma_{n-d-1}$, such that the matrix $M:=\left(A^{t}, \sigma_{1}, \ldots, \sigma_{n-d-1}\right)$ has rank $n-1$. After reordering the columns of A, and consequently the entries of σ_{j}, we may assume that $\operatorname{supp}\left(\sigma_{j}\right)=\left\{1, \ldots, k_{j}\right\}$ with $k_{1}<\cdots<k_{n-d-1}$.

We claim that there exists an index $i, k_{n-d-2}<i \leq k_{n-d-1}$ such that the matrix M_{i}, obtained by removing the i-th row and the last column of M, has rank $n-2$. Indeed, if the columns of M_{i} are linearly dependent then, since the corresponding columns of M are independent, it follows that the basis vector e_{i} may be written as a linear combination of the first $n-2$ columns of M. If this were true for every $i, k_{n-d-2}<i \leq k_{n-d-1}$, we could write the vector

$$
\sigma_{n-d-1}-\sigma_{n-d-2}=\sum_{k_{n-d-2}<j \leq k_{n-d-1}} e_{j}
$$

as a linear combination of the first $n-2$ columns of M, a contradiction.
We fix now an index i, as above, such that $\operatorname{rank}\left(M_{i}\right)=n-2$. Let A^{\prime} be configuration obtained by removing the i-th column of A. Notice that the vectors $\sigma_{1}^{\prime}, \ldots, \sigma_{n-d-2}^{\prime}$ obtained, also, by removing the zero in the i-th entry from the corresponding σ_{j}, define a proper maximal chain in $\mathcal{S}\left(A^{\prime}\right)$. We then have, by Theorem 16 , that A^{\prime} is not dual defect and, therefore any Gale dual B^{\prime} of A^{\prime} must contain a non-splitting ($m-2$)-flag $G_{1} \subset \cdots \subset G_{m-2}$. Now, since B is irreducible, B^{\prime} agrees - up to \mathbb{Q}-linear isomorphismwith the projection of B onto $\mathbb{R}^{m} /\left\langle b_{i}\right\rangle$. Then, denoting by V_{j} the lifting of $\left\langle G_{j-1}\right\rangle$ to \mathbb{R}^{m}, $j=2, \ldots, m-1$, and setting

$$
F_{j}:=V_{j} \cap B ; \quad j=2, \ldots, m-1,
$$

$F_{1}=\left\{b_{i}\right\}$, we have that $F_{1} \subset F_{2} \subset \cdots F_{m-1}$ is a non-splitting flag of flats in B.
Finally, consider the general case. That is, let A be a non dual-defect configuration whose Gale dual B is not necessarily irreducible. As before, let \tilde{B} be the irreducible configuration obtained from B by replacing all subsets of collinear vectors in B by their sum. Note that \tilde{B} need not have index one, but we may still consider a dual A_{1} of \tilde{B}. It follows from Corollary 10 that $D_{A_{1}} \neq 1$. Moreover, a Gale dual B_{1} of A_{1}, being \mathbb{Q}-linearly isomorphic to \tilde{B}, is irreducible. Therefore B_{1} has a non-splitting $(m-1)$-flag. But then so do \tilde{B} and B.

Corollary 19 Let $A \subset \mathbb{Z}^{d}$ be a homogeneous configuration and let B be a Gale dual. Then if B is degenerate, A is dual defect.

Proof. If $\operatorname{codim}(A)=m$ but B is degenerate, then $\operatorname{rank}(\tilde{B})<m$ and \tilde{B} may not contain any non-splitting $(m-1)$-flags and, therefore, neither does B.

Note that, by Theorem 18, if A is not a pyramid and $\operatorname{codim}(A)=2$, then $D_{A}=1$ if and only if a Gale dual B has no non-splitting one-flags, i.e. if and only if every line is splitting or, equivalently, if $\tilde{B}=\emptyset$. This classification of codimension-two dual defect toric varieties is contained in Corollary 4.5 of (Dickenstein and Sturmfels, 2002). This observation may be generalized to the codimension-three case:
Theorem 20 Let $A=\left\{a_{1}, \ldots, a_{n}\right\} \subset \mathbb{Z}^{d}$ be a homogeneous configuration of codimension three, which is not a pyramid. Let $B \subset \mathbb{Z}^{3}$ be a Gale dual of A. Then $D_{A}=1$ if and only if B is degenerate.

Proof. By the above Corollary and Theorem 18 it suffices to show that if B is an irreducible configuration of rank three, then B has a non-splitting two-flag. Let b and b^{\prime} be distinct elements in B and set F_{2} be the two-flat containing $\left\{b, b^{\prime}\right\}$. If, $\sigma\left(F_{2}\right) \neq 0$ then we may assume $\sigma\left(F_{2}\right) \notin\langle b\rangle$ and $\{b\} \subset F_{2}$ is a non-splitting two-flag. On the other hand, suppose every B-spanned plane $P \subset\langle B\rangle$ satisfies $\sigma(P)=0$. Then, fixing an element $b \in B$, and denoting by P_{1}, \ldots, P_{r} the distinct B-spanned planes containing b we would have that $0=\sigma(B)=\sigma\left(P_{1}\right)+\cdots+\sigma\left(P_{r}\right)-(r-1) \cdot b$. But, we have assumed $\sigma\left(P_{i}\right)=0$ for all $i=1, \ldots, r$. Hence $r=1$, and this implies that $\operatorname{rank}(B)=2$, a contradiction.

We consider now the case of codimension-four configurations:
Theorem 21 Let $A=\left\{a_{1}, \ldots, a_{n}\right\} \subset \mathbb{Z}^{d}$ be a homogeneous configuration of codimension four, which is not a pyramid. Let $B \subset \mathbb{Z}^{4}$ be a Gale dual of A. Then $D_{A}=1$ if and only if either B is degenerate, or there exist planes $P, Q \subset \mathbb{R}^{4}$, such that $P \cap Q=\{0\}$, and every non-splitting line lies either in P or in Q.

Proof. Let A be such that $D_{A}=1$ and suppose B is non-degenerate. Let \tilde{B} be the irreducible configuration as in Definition 7. Since B is non-degenerate the vectors in \tilde{B} span \mathbb{R}^{4} and, by Corollary $10, D_{A}=1$ if and only if $D_{\tilde{B}}=1$. Thus, we may assume without loss of generality that B is irreducible. We note that if $B=C_{1} \cup C_{2}$, where C_{1} and C_{2} are homogeneous configurations contained in complementary planes P and Q, respectively, then B may not contain any non-splitting three-flags and, therefore, A is dual defect.

In order to prove the only-if direction of Theorem 21 we begin with two lemmas which hold for arbitrary rank.
Lemma 22 Let B be a homogeneous configuration of rank m and let $\Lambda \subset\langle B\rangle$ be a line. Suppose B has a non-splitting flag of rank k. Then, B has a non-splitting flag \mathcal{G} of rank k such that $\left\langle G_{k}\right\rangle \cap \Lambda=\{0\}$.

Proof. We prove the result by induction on $k, 1 \leq k \leq m-1$. The result is obvious for $k=1$ since $m \geq 2$ and B is homogeneous which means that the number of non-splitting one-flats in B is either zero or at least three. Assume it to be true for non-splitting flags of rank less than k, and let \mathcal{F} be a non-splitting flag \mathcal{F} in B of rank $k \geq 2$. We can assume that $\left\langle F_{1}\right\rangle \neq \Lambda$. Consider the projection $\pi(B)$ to $\langle B\rangle /\left\langle F_{1}\right\rangle$. Λ projects to a line $\bar{\Lambda}$
in $\langle B\rangle /\left\langle F_{1}\right\rangle$. Moreover, the projection of \mathcal{F} defines a non-splitting flag of rank $k-1$ in $\pi(B)$. By inductive hypothesis there exists a non-splitting flag $\overline{\mathcal{G}}$ in $\pi(B)$ of rank $k-1$ such that $\left\langle\bar{G}_{k-1}\right\rangle \cap \bar{\Lambda}=\{0\}$. Let $W_{j+1} \subset\langle B\rangle$ be the unique subspace of dimension $j+1$ containing $\left\langle F_{1}\right\rangle$ and projecting onto $\left\langle\bar{G}_{j}\right\rangle, j=1, \ldots, k-1$. Notice that by construction $W_{k} \cap \Lambda \subset\left\langle F_{1}\right\rangle$ but, since $\Lambda \cap\left\langle F_{1}\right\rangle=\{0\}$ we have $W_{k} \cap \Lambda=\{0\}$. Setting $G_{1}=F_{1}$, $G_{j}=W_{j} \cap B$ for $j=2, \ldots, k$, we get the desired non-splitting k-flag in B.

Lemma 23 Let $A \subset \mathbb{Z}^{d}$ be a homogeneous configuration of codimension m and $B a$ Gale dual. If B is non-degenerate, then there exists a flat $F \subset B$ of rank $m-1$ such that $\sigma(F) \neq 0$. Moreover, if we denote by B_{F} the homogeneous configuration in $\langle F\rangle$ defined by $B_{F}:=F \cup\{-\sigma(H)\}$, then, if B_{F} is non dual-defect, B is not dual defect.

Proof. If every flat of rank $m-1$ is homogeneous, let $s<m-1$ be the maximal rank of a non-homogeneous flat F in B. We have $s>0$ since B is non-degenerate. Choose a flat G of rank s with $\sigma(G) \neq 0$ and let $\Theta_{1}, \ldots, \Theta_{r}$ be the rank $s+1$ flats which contain G. By assumption, $\sigma\left(\Theta_{i}\right)=0$ for all $i=1, \ldots, r$. Then,

$$
0=\sigma(B)=\sum_{i=1}^{r} \sigma\left(\Theta_{i}\right)-(r-1) \cdot \sigma(G)=-(r-1) \cdot \sigma(G)
$$

Hence $r=1$ and therefore B has rank $s+1$. Since $s+1<m$ this implies that B is degenerate, a contradiction.

Suppose now that B_{H} is not dual defect. By Theorem $18, B_{H}$ has a non-splitting flag \mathcal{G} of rank $m-2$ and, by Lemma 22 , we may assume that $G_{j} \cap\langle\sigma(F)\rangle=\{0\}$. But then,

$$
G_{1} \subset \cdots \subset G_{m-2} \subset F
$$

is a non-splitting flag of rank $m-1$ in B. Applying Theorem 18 again we deduce that B is not dual defect.

Corollary 24 Let $A \subset \mathbb{Z}^{d}$ be a homogeneous configuration of codimension four and suppose a Gale dual $B \subset \mathbb{R}^{4}$ of A is irreducible. Suppose B does not have any nonsplitting three-flags and let F be a rank-three flat with $\sigma(F) \neq 0$. Then $\sigma(F) \in F$ and the elements $\{b \in F: b \neq \sigma(F)\}$ span a plane $P \subset\langle F\rangle$, with $\sigma(P)=0$.

Proof. Let B_{F} be as in Lemma 23. Since B is dual defect so is B_{H} and hence, by Theorem 20, B_{F} must be degenerate. Since F has rank three and B is irreducible, this can only happen if $\sigma(F) \in F$, so that $\{\sigma(F),-\sigma(F)\}$ define a splitting line. The second assertion is then clear by Theorem 20.

We now return to the proof of Theorem 21. Because of Corollary 10 and Theorem 18, it suffices to prove that if $B \subset \mathbb{R}^{4}$ is an irreducible, non-degenerate configuration which does not have any non-splitting three-flags, then $B=C_{1} \cup C_{2}$, where C_{1} and C_{2} are homogeneous, rank-two configurations.

Let $F \subset B$ be a rank three flat with $\sigma(F) \neq 0$. By Corollary 24, $F \cap B=C_{1} \cup \sigma(F)$ and C_{1} is a rank-two flat with $\sigma\left(C_{1}\right)=0$. Let $C_{2}:=B \backslash C_{1}$. We claim that C_{2} does not have any non-splitting two-flags. Indeed, suppose $G_{1} \subset G_{2}$ is a non-splitting two-flag. Let $b \in C_{1} \backslash G_{2}$. Such b exists since $C_{1} \neq G_{2}$. Then, letting G_{3} be the smallest three-flat
containing $G_{2} \cup\{b\}$, we would have that $G_{1} \subset G_{2} \subset G_{3}$ would be a non-splitting threeflag in B, contradicting our assumption. But, it is easy to see that the argument used in the proof of Theorem 20 implies that since C_{2} is irreducible and has no non-splitting two-flags, it must have rank two and $\sigma\left(C_{2}\right)=0$. Since B has rank four, the planes $\left\langle C_{1}\right\rangle$ and $\left\langle C_{2}\right\rangle$ must be complementary.

Theorem 21 motivates the following decomposition theorem which gives a sufficient condition for a Gale configuration to be dual defect.
Theorem 25 Let B be a homogeneous, irreducible configuration of rank m. Then, we can write

$$
\begin{equation*}
B=C_{1} \cup \cdots \cup C_{s} \tag{23}
\end{equation*}
$$

where the C_{i} 's are homogeneous, disjoint, non dual-defect subconfigurations of B. Moreover, C_{i} is a flat in $C_{i} \cup C_{i+1} \cup \cdots \cup C_{s}$ and the C_{i} 's are maximal with these properties. Moreover, the rank of a non-splitting flag in B is bounded by

$$
\begin{equation*}
\rho=\rho(B):=\sum_{i=1}^{s} \operatorname{rank}\left(C_{i}\right)-s \tag{24}
\end{equation*}
$$

Hence if $\rho \leq m-2, B$ is dual defect.
Remark 26 It follows from Theorems 20 and 21 that the condition $\rho \geq m-1$ is a necessary and sufficient condition for a configuration B, of rank at most four, to be dual defect. We expect this to be the case in general. This would give a complete classification of dual defect toric varieties in terms of their Gale configuration.

Proof. The following two lemmas, necessary for the proof of Theorem 25, may be of independent interest as well.

Lemma 27 Let B be a homogeneous non dual-defect configuration of rank m. Suppose $V \subset\langle B\rangle$ is a k-dimensional subspace, $0 \leq k<m$. Then, B has a non-splitting flag \mathcal{F} of rank $m-1$ such that $\left\langle F_{1}\right\rangle \cap V=\{0\}$.

Proof. We proceed by induction on m. The result is clear for $m=2$. Assume our statement holds for configurations of rank $m-1$. Let \mathcal{G} be a non-splitting flag of rank $m-1$ in B. If $\left\langle G_{1}\right\rangle \cap V=\{0\}$ we are done. Assume then that $G_{1} \subset V$ and consider the projection $\pi(B)$ to $\langle B\rangle /\left\langle F_{1}\right\rangle$. Then, $\pi(B)$ is not dual defect and, by inductive hypothesis, there exists a non-splitting $(m-2)$-flag $\overline{\mathcal{F}}$ in $\pi(B)$ such that $\left\langle\bar{F}_{1}\right\rangle \cap \pi(V)=\{0\}$. Let W_{j+1} be the unique subspace of $\langle B\rangle$ containing $\left\langle G_{1}\right\rangle$ and projecting to $\left\langle\bar{F}_{j}\right\rangle$ and set $F_{j+1}=W_{j+1} \cap B$. Note that $\sigma\left(F_{j+1}\right) \notin\left\langle F_{j}\right\rangle$ since $\overline{\mathcal{F}}$ is non-splitting. Now $\left\langle\bar{F}_{1}\right\rangle \cap \pi(V)=\{0\}$ implies that $\left\langle F_{2}\right\rangle \cap V=\left\langle G_{1}\right\rangle$. Now, since F_{2} is spanned by non-splitting one-flats, there exists a one-flat $F_{1} \subset F_{2}$, with $\left\langle F_{1}\right\rangle \neq\left\langle G_{1}\right\rangle$, and such that $\sigma\left(F_{2}\right) \notin F_{1}$. The flag $F_{1} \subset F_{2} \subset \cdots \subset F_{m-1}$ is a non-splitting flag in B with $\left\langle F_{1}\right\rangle \cap V=\{0\}$.

Lemma 28 Let B be an irreducible, homogeneous, dual defect configuration and let Λ a line in $\langle B\rangle$. Then there exists a homogeneous, non dual-defect flat $C \subset B$ of rank k, $2 \leq k<m$, such that $\langle C\rangle \cap \Lambda=\{0\}$.

Proof. We proceed by induction on $m=\operatorname{rank}(B)$. If $m \leq 3$ then, by Theorem 20, there are no irreducible, non dual-defect configurations. So assume that $m \geq 4$ and that the result holds for configurations of rank less than m. Let $k<m-1$ be the largest rank of a non-splitting flag in B. We may assume that $k \geq 2$. Otherwise, given any one-flat F_{1} in B, every two-flat containing it must be homogeneous, but this is impossible since B is irreducible. Moreover, by Lemma 22, we may assume that B has a non-splitting k-flag \mathcal{F} such that $\left\langle F_{k}\right\rangle \cap \Lambda=\{0\}$.

Let $\Theta_{0}, \ldots, \Theta_{q}$ be the distinct $(k+1)$-flats in B containing F_{k}. Since $m>k+1$, $q \geq 1$, and at most one $(k+1)$-flat may contain both $\left\langle F_{k}\right\rangle$ and Λ. Hence may assume $\Lambda \cap\left\langle\Theta_{j}\right\rangle=\{0\}$ for $j \geq 1$. If $\sigma\left(\Theta_{j}\right)=0$ for some $j \geq 1$, then we can take $C=\Theta_{j}$ and we are done. If not, let Let $W=\left\langle\Theta_{1}\right\rangle$ and $B_{W}=\Theta_{1} \cup\left\{-\sigma\left(\Theta_{1}\right)\right\}$. Then B_{W} is a homogeneous configuration of rank $k+1$, which may or may not be irreducible. Let \tilde{B}_{W} be as in Definition 7.

Suppose $\operatorname{rank}\left(\tilde{B}_{W}\right)=k$. Then, since B is irreducible, $C:=\tilde{B}_{W}$ is a homogeneous B-flat of rank k which, we claim, is not dual defect. Indeed, let j be such that $\sigma\left(\Theta_{1}\right) \in$ $F_{j} \backslash F_{j-1}$, we can define a non-splitting flag $F_{1}^{\prime} \subset \cdots \subset F_{k-1}^{\prime}$, of rank $k-1$ in C, by $F_{i}^{\prime}=F_{i}$ for $i<j$ and $F_{i}^{\prime}=F_{i+1} \cap C$ for $i=j, \ldots, k-1$.

If, on the other hand, $\operatorname{rank}\left(\tilde{B}_{W}\right)=k+1$, then note that \tilde{B}_{W} is dual defect. Indeed, suppose \tilde{B}_{W} has a non-splitting k-flag $G_{1} \subset \cdots \subset G_{k}$. Then, by Lemma 22 , we may assume without loss of generality that $\left\langle G_{k}\right\rangle \cap\left\langle\sigma\left(\Theta_{1}\right)\right\rangle=\{0\}$. But then $G_{1} \subset \cdots \subset G_{k} \subset$ Θ_{1} would be a non-splitting flag of rank $k+1$ in B, a contradiction. Hence, by inductive hypothesis, \tilde{B}_{W} has a homogeneous, non dual-defect flat C of rank at least two and such that $\langle C\rangle \cap\left\langle\sigma\left(\Theta_{1}\right)\right\rangle=\{0\}$. Therefore, C is a flat in B as well and the proof is complete.

We return now to the proof of Theorem 25 . We prove the existence of (23) by induction on the rank m. If $m=2$ then, being irreducible, B is not dual defect and we may take $B=C_{1}$.

Suppose the theorem holds for configurations of rank less than m and let B be an irreducible, dual defect configuration of rank m. By Lemma 28, there exists a homogeneous, non dual-defect, B-flat $C_{1} \subset B$. We may assume that C_{1} is not contained in any larger, homogeneous, non dual-defect B-flat and $\operatorname{rank}\left(C_{1}\right)<m$. Let $B_{1}=B \backslash C_{1}$. Clearly, B_{1} is homogeneous and irreducible. If B_{1} is not dual defect then taking $C_{2}=B_{1}$ we are done. On the other hand, if B_{1} is dual defect and of rank less than m, then we may apply the inductive hypothesis to write $B_{1}=C_{2} \cup \cdots \cup C_{s}$ where the C_{j} are maximal, homogeneous, disjoint, non dual-defect subconfigurations of B_{1} and, for $i \geq 2, C_{i}$ is a flat in $C_{i} \cup C_{i+1} \cup \cdots C_{s}$. Finally, if $\operatorname{rank}\left(B_{1}\right)=m$, we repeat the argument and write B_{1} as a disjoint union $B_{1}=C_{2} \cup B_{2}$, where C_{2} is a homogeneous non dual-defect B_{1} flat. Since at each step the cardinality of the remaining homogeneous configuration B_{j} strictly decreases, it is clear that this process terminates.

In order to prove the second assertion, consider a non-splitting flag \mathcal{F} of rank k in B. We claim that, for each $p \leq k$, there exist C_{i}-flats $F_{i, p} \subset C_{i} \cap F_{p}$ such that
(1) $\left\langle F_{p}\right\rangle=\left\langle F_{1, p}\right\rangle \oplus \cdots \oplus\left\langle F_{s, p}\right\rangle$ and
(2) if $\sigma\left(F_{i, p}\right) \in\left\langle F_{i, p-1}\right\rangle$, then $F_{i, p}=F_{i, p-1}$.

Clearly, this would imply the result since the distinct flats among the $F_{i, p}, p=1, \ldots, k$ would define a non-splitting flag in C_{i} whose rank would, therefore, be bounded by $\operatorname{rank}\left(C_{i}\right)-1$. To prove the claim we proceed by induction on p. If $p=1$, then we
may assume $F_{1} \subset C_{1}$ and it suffices to choose $F_{1,1}=F_{1}$ and $F_{i, 1}=\emptyset$ for $i>1$. Suppose now that we have constructed $F_{i, p-1}, i=1, \ldots, s$ and set $G_{i, p}:=C_{i} \cap F_{p}$. Then F_{p} is the disjoint union of the C_{i}-flats $G_{i, p}$, for $i=1, \ldots, s$. Let i_{0} be the first index such that $\sigma\left(G_{i_{0}, p}\right) \notin\left\langle F_{p-1}\right\rangle$. Such an index exists since \mathcal{F} is a non-splitting flag. Since $\sigma\left(G_{i_{0}, p}\right) \notin\left\langle F_{p-1}\right\rangle$, there exists a $C_{i_{0}}$-flat $F_{i_{0}, p}$ such that $F_{i_{0}, p-1} \subset F_{i_{0}, p} \subset G_{i_{0}, p}$ and $\operatorname{rank}\left(F_{i_{0}, p}\right)=1+\operatorname{rank}\left(F_{i_{0}, p-1}\right)$. Set $F_{i, p}=F_{i, p-1}$ for $i \neq i_{0}$. Note that since $F_{i_{0}, p} \not \subset F_{p-1}$ $\operatorname{rank}\left(F_{1, p} \cup \cdots \cup F_{s, p}\right)$ must be strictly larger than $p-1$. Hence $\left\langle F_{p}\right\rangle=\left\langle F_{1, p}\right\rangle+\cdots+\left\langle F_{s, p}\right\rangle$ and, for dimensional reasons, this must be a direct sum.

We have shown in Theorem 21 that if $A \subset \mathbb{Z}^{d}$ is a dual defect homogeneous configuration of codimension four, which is not a pyramid, and B is a Gale dual then either B is degenerate or $\tilde{B}=C_{1} \cup C_{2}$, and $\left\langle C_{1}\right\rangle$ and $\left\langle C_{2}\right\rangle$ are complementary planes. In this case, if \tilde{A} is a dual of \tilde{B} then \tilde{A} is a union of homogeneous, codimension-two configurations lying in complementary subspaces of \mathbb{Z}^{d}. Similarly, if B is a degenerate configuration consisting of vectors in a splitting line and in a complementary three-dimensional space, then A is a union of two homogeneous configurations, of codimension one and three respectively, lying in complementary subspaces of \mathbb{Z}^{d}. In either case, the projective toric variety X_{A} is obtained from a join of two varieties by attaching codimension-one configurations according to (8).

More generally, if B is decomposed as in (23) and A is a dual of B, then A will be a Cayley configuration of s configurations A_{0}, \ldots, A_{s-1} in \mathbb{Z}^{q}, where $q=|B|-\operatorname{rank}(B)-s$, in the following sense:
Definition 29 Let $A_{0}, \ldots, A_{k} \subset \mathbb{Z}^{r}$ be configurations. The configuration

$$
\operatorname{Cay}\left(A_{0}, \ldots, A_{k}\right):=\left(\left\{e_{0}\right\} \times A_{0}\right) \cup \cdots \cup\left(\left\{e_{k}\right\} \times A_{k}\right) \subset \mathbb{Z}^{k+1} \times \mathbb{Z}^{r}
$$

where e_{0}, \ldots, e_{k} is the standard basis of \mathbb{Z}^{k+1}, is called the Cayley configuration of A_{0}, \ldots, A_{k}.

In the special case when $B=C_{1} \cup \cdots \cup C_{s}$, as in Theorem 25 , is an irreducible configuration such that

$$
\langle B\rangle=\left\langle C_{1}\right\rangle \oplus \cdots \oplus\left\langle C_{s}\right\rangle
$$

then, if $A \subset \mathbb{Z}^{d}$ is dual to B, the toric variety X_{A} is a join of varieties $X_{A_{1}}, \ldots, X_{A_{s}}$ lying in disjoint linear subspaces and the dual variety X_{A}^{*} has codimension s. However, as the following example shows, for codimension greater than four, it is no longer true that every dual defect toric variety is obtained from a join by attaching codimension-one configurations according to (8).
Example. Let A be the Cayley configuration in \mathbb{Z}^{4},

$$
A:=\operatorname{Cay}(\{0,1,2\},\{0,1,2\},\{0,1,2\}) .
$$

The variety X_{A} is a smooth three-fold in \mathbb{P}^{8}. It is easy to show that a Gale dual $B \subset \mathbb{Z}^{5}$ may be decomposed as $B=C_{1} \cup C_{2} \cup C_{3}$, where C_{i} is an irreducible, homogeneous, codimension-two configuration and, therefore, non dual-defect. Let $\rho(B)$ be as in (24). Then $\rho(B)=3=\operatorname{rank}(B)-2$ and, by Theorem $25, B$ is dual defect. In fact using Theorem 16 one can show that X_{A}^{*} is a six-dimensional subvariety of \mathbb{P}^{8}.

Di Rocco has obtained a classification of dual defect projective embeddings of smooth toric varieties in terms of their associated polytopes (Di Rocco, 2004). Recall that a homogeneous configuration A is said to be saturated if $A=\left\{a_{1}, \ldots, a_{n}\right\}$ consists of all
the integer points of a $d-1$ dimensional polytope with integer vertices, P, lying on a hyperplane off the origin. Moreover, the projective toric variety X_{A} is smooth, if and only if the polytope P is Delzant, that is, for each vertex v of P, there exist $w_{1}, \ldots, w_{d} \in \mathbb{Z}^{d}$, such that $\left\{w_{1}, \ldots, w_{d}\right\}$ is a lattice basis of \mathbb{Z}^{d}, and $P=v+\sum_{j=1}^{d} \mathbb{R}_{+} \cdot w_{j}$ near v. It is well known that projective embeddings of smooth toric varieties are in one-to-one correspondence with Delzant polytopes.

Di Rocco's classification theorem (Di Rocco, 2004, Theorem 5.12), which is proved by techniques completely different to the ones in this paper, may now be stated as follows: Theorem 30 Let A be a saturated, homogeneous, configuration in \mathbb{Z}^{d} which is not a pyramid and such that $P=\operatorname{conv}(A)$ is Delzant. Then A is dual defect if and only if

$$
A=\operatorname{Cay}\left(A_{0}, \ldots, A_{k}\right)
$$

where k is such that $\max \left(2, \frac{d}{2}\right) \leq k \leq d-1, A_{0}, \ldots, A_{k}$ are saturated and the polytopes $P_{i}:=\operatorname{conv}\left(A_{i}\right) \subset \mathbb{R}^{d-k-1}$ are all Delzant polytopes of the same combinatorial type.

Thus, we see that the smoothness condition puts very strong conditions on the type of Cayley configuration we may consider. To illustrate this, we will list all smooth dual defect projective toric varieties of codimension at most four.

We note first of all that in these cases, the configurations A_{i} in Theorem 30 must be one-dimensional. In fact, let A be a dual defect, saturated, homogeneous, configuration in \mathbb{Z}^{d} which is not a pyramid and such that $P=\operatorname{conv}(A)$ is Delzant, and write $A=$ $\operatorname{Cay}\left(A_{0}, \ldots, A_{k}\right)$, as in Theorem 30. Then, if $\operatorname{codim}\left(X_{A}\right) \leq 5$, each polytope P_{i} must be one-dimensional. Indeed, let us consider the simplest case when the polytopes P_{i} are two-dimensional. Then $d=k+3$ and since by assumption $k \geq(k+3) / 2$, we must have $k \geq 3$. The fewest number of integral points in a Delzant polytope in \mathbb{R}^{2} is three. Hence $n=|A| \geq 12$ and $m=n-6 \geq 6$.

Let $[p]$ denote the configuration $\{0,1, \ldots, p\} \subset \mathbb{Z}$. An easy counting argument now shows that the smooth dual defect toric varieties of codimension less than or equal to four are the ones associated with the Cayley configurations listed below:
Codimension 2: $\operatorname{Cay}([1],[1],[1])$.
Codimension 3: $\operatorname{Cay}([1],[1],[2]) ; \operatorname{Cay}([1],[1],[1],[1])$.
Codimension 4: $\operatorname{Cay}([1],[2],[2]) ; \operatorname{Cay}([1],[1],[3]) ; \operatorname{Cay}([1],[1],[1],[2]) ;$

$$
\operatorname{Cay}([1],[1],[1],[1],[1])
$$

The Gale duals of the configurations in the above list are easily computed. Indeed, it is easy to see that each Cayley factor $A_{i}=[1]$ contributes a splitting line containing two vectors from B, and this vectors are primitive relative to the lattice \mathbb{Z}^{m}. Similarly, each factor $A_{j}=[k]$ contributes a homogeneous subconfiguration C_{j} of rank k and containing exactly $k+1$ primitive vectors in B. Thus, for example, in the codimension four case, the configuration $\operatorname{Cay}([1],[2],[2])$ has a Gale dual B whose reduced configuration \tilde{B} decomposes as $C_{1} \cup C_{2}$, where C_{i} are homogeneous configurations of rank two, lying in complementary planes, and consisting of three primitive vectors each.

Acknowledgements. We are grateful to Alicia Dickenstein and to two anonymous referees for their thoughtful comments on a previous version of this paper.

References

Batyrev, V.V., Materov E.N., 2002. Toric residues and mirror symmetry. Mosc. Math. J., 2(3):435-475.
Beltrametti, M. C., Fania, M. L., Sommese, A. J., 1992. On the discriminant variety of a projective manifold. Forum Math. 4 (6), 529-547.
Billera, L. J., Filliman, P., Sturmfels, B., 1990. Constructions and complexity of secondary polytopes. Adv. Math. 83 (2), 155-179.
Cattani, E., Dickenstein, A., 2004. Planar configurations of lattice vectors and GKZrational toric fourfolds in \mathbb{P}^{6}. J. Algebraic Combin. 19 (1), 47-65.
Cattani, E., Dickenstein, A., Sturmfels, B., 2001. Rational hypergeometric functions. Compositio Math. 128 (2), 217-239.
Curran, R., 2005. Toric ideals and discriminants in codimensions greater than two. Doctoral dissertation. University of Massachusetts, Amherst.
Dickenstein, A., Feichtner, E., Sturmfels, B., 2005. Tropical Discriminants. Preprint. math.AG/0510126
Dickenstein, A., Sturmfels, B., 2002. Elimination theory in codimension 2. J. Symbolic Comput. 34 (2), 119-135.
Di Rocco, S., Projective duality of toric manifolds and defect polytopes. Proc. of the London Math. Society. To appear.
Ein, L., 1985. Varieties with small dual varieties. II. Duke Math. J. 52 (4), 895-907.
Ein, L., 1986. Varieties with small dual varieties. I. Invent. Math. 86 (1), 63-74.
Gel'fand, I. M., Zelevinskiŭ, A. V., Kapranov, M. M., 1989. Hypergeometric functions and toric varieties. Funktsional. Anal. i Prilozhen., 23(2):12-26.
Gel'fand, I. M., Kapranov, M. M., Zelevinsky, A. V., 1994. Discriminants, resultants, and multidimensional determinants. Mathematics: Theory \& Applications. Birkhäuser Boston Inc., Boston, MA.
G.-M. Greuel, G. Pfister, and H. Schönemann, 2001. Singular 2.0. A Computer Algebra System for Polynomial Computations, Centre for Computer Algebra, University of Kaiserslautern. http://www.singular.uni-kl.de
Lanteri, A., Struppa, D., 1987. Projective 7-folds with positive defect. Compositio Math. 61 (3), 329-337.

