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FROBENIUS MODULES AND HODGE ASYMPTOTICS

EDUARDO CATTANI AND JAVIER FERNANDEZ

Abstract. We exhibit a direct correspondence between the potential defining
the H1,1 small quantum module structure on the cohomology of a Calabi-Yau
manifold and the asymptotic data of the A-model variation of Hodge structure.
This is done in the abstract context of polarized variations of Hodge structure
and Frobenius modules.

1. Introduction

The even cohomology of a compact smooth manifold is a Frobenius algebra
with respect to the cup product and the intersection form. For a compact, Kähler
manifold X , multiplication by a Kähler class defines a representation of the Lie
algebra sl(2) on the full cohomology H∗(X, C), whose semisimple element induces
the standard Z-grading. This is the content of the Hard Lefschetz Theorem. Be-
ginning with the formulation of the Mirror Symmetry phenomenon [5], there has
been considerable interest in studying the simultaneous action on cohomology of
the Kähler cone K of X . Looijenga and Lunts [22] have shown that the copies
of sl(2) associated with the elements of K generate a semisimple Lie algebra and
have studied some of their properties. Another point of view, introduced in [10],
consists in studying H∗(X, C) as a mixed Hodge structure which splits over R and
is polarized by the action of every Kähler class. Hence, the crucial information
is contained in the structure of H∗(X, C) as a SymH1,1-module. In particular,
it follows from [9, Prop. 4.66] that we may define a polarized variation of Hodge
structure on H∗(X, C) parametrized by the complexified Kähler cone of X . If a
polyhedral cone of Kähler classes is chosen, this variation becomes a nilpotent orbit
in the sense of Schmid [27]. This approach has proved fruitful in the study of mixed
Lefschetz theorems [10].

Quantum cohomology is a deformation of the cup product on H∗(X, C) defined
in terms of the Gromov-Witten potential —a generating function for certain enu-
merative invariants. If X is a Calabi-Yau manifold, the action of H1,1 on ⊕Hp,p(X),
with respect to the small quantum product, leads to a variation of Hodge structure,
called the A-model variation by Morrison [25]. A local variation of Hodge structure
is described by an algebraic component —the nilpotent orbit— and an analytic part
described by a holomorphic map with values in a graded component of a nilpotent
Lie algebra. For the A-model variation the nilpotent orbit is the one described in
the previous paragraph.

Both Frobenius algebras and polarized variations of Hodge structure have been
extensively studied in the recent physics literature. Variations of Hodge structure
appear, for instance, in connection with the tree level amplitudes of twisted N = 2
theories –the B-model– and, for Calabi-Yau threefolds, as special geometry ([4, 11,
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12]). On the other hand, 2D topological field theories are equivalent to Frobenius
algebras. Families of these algebras were also considered: the tangent bundle of the
moduli space of topological conformal field theories has, on each fiber, a Frobenius
algebra structure ([17, 18]). A relation between the two objects arises in mirror
symmetry via the equivalence of the A and B model correlation functions ([5,
20, 14, 25]). What is perhaps not so well known is a direct construction due
to Morrison of a variation of Hodge structure based on the A-model [25]. In this
paper we show a correspondence between any polarized variation of Hodge structure
with appropriate degenerating behavior and a certain sub-structure of a family of
Frobenius algebras. Our main result is to exhibit a simple, direct correspondence
between the holomorphic data of the variation and the (small) quantum potential
in such a way that the horizontality equation of a variation of Hodge structure
corresponds to a graded component of the WDVV equations.

We will work throughout in the setting of abstract variations of Hodge structure.
The analogous abstract notion on the “quantum” side is that of a Frobenius module
introduced in Section 3 and their deformations defined by potentials encoding the
essential properties of a graded portion of the Gromov-Witten potential.

The paper is organized as follows. In §2 we review the asymptotic description
of variations. Theorem 2.2 contains the algebraic and analytic characterization
of local variations. We also recall the notion of maximally unipotent boundary
points and of canonical coordinates [5, 23, 16]. In Section 3 we define Frobenius
modules and their deformations. Section 4 is devoted to the proof of our main
result, Theorem 4.1, which establishes an equivalence between local variations with
appropriate behavior at the boundary and quantum potentials. Finally, in §5 we
review the construction of the A-model variation and show that it coincides with
the one constructed in Theorem 4.1. As a byproduct, we obtain a direct proof that
the A-model variation is indeed a polarized variation of Hodge structure.

We note that the A-model variation involves only the small quantum module
structure. In the case of Hodge structures of weights 3, 4 and 5, corresponding to
threefolds, fourfolds and fivefolds, the module structure suffices to recover the full
quantum algebra, so that our results extend the previously known correspondences
([26, 6]) in weights 3 and 4. Also, the full quantum algebra can be recovered if it
is assumed to be generated, in the geometric context, by H1,1. In this last case,
the family of Frobenius algebras obtained from a variation of Hodge structure can
be seen as a Frobenius manifold. These matters will be analyzed elsewhere [19]. S.
Barannikov [1, 2, 3] has introduced the notion of semi-infinite variations of Hodge
structure to deal with the full quantum algebra. He has also shown that, for
projective complete intersections, the A-model variation is of geometric origin and
coincides with the polarized variation of Hodge structure of the mirror family.

Finally, we wish to thank Gregory Pearlstein for his very helpful comments.

2. Hodge theory preliminaries

In this section we briefly review the asymptotic description of variations of Hodge
structure. We refer to [21, 27, 8, 6] for details and proofs.

A (real) variation of Hodge structure V over a connected complex manifold M
consists of a holomorphic vector bundle V → M , a flat connection ∇ on V with



FROBENIUS MODULES AND HODGE ASYMPTOTICS 3

quasi-unipotent monodromy, a flat real form VR ⊂ V , and a finite decreasing filtra-
tion F of V by holomorphic subbundles —the Hodge filtration— satisfying

∇Fp ⊂ Ω1
M ⊗Fp−1 (Griffiths’ Transversality) and (2.1)

V = Fp ⊕F
k−p+1

(2.2)

for some integer k —the weight of the variation— and where barring denotes con-
jugation relative to VR. As a C∞-bundle, V may then be written as a direct sum

V =
⊕

p+q=k

Vp,q , Vp,q := Fp ∩ F
q
; (2.3)

the integers hp,q := dim Vp,q are the Hodge numbers. A polarization of the varia-
tion is a flat non-degenerate bilinear form Q on V , defined over R, of parity (−1)k,
whose associated flat Hermitian form Qh( · , · ) := i−k Q( · , ·̄ ) makes the decompo-
sition (2.3) orthogonal and such that (−1)pQh is positive definite on Vp,k−p.

Via parallel translation to a fixed fiber V we may describe a polarized variation
of Hodge structure by a holomorphic period map Φ: M → D/Γ, where D is the
classifying space of polarized Hodge structures on V and Γ is the monodromy group.
We recall that D is Zariski open in the smooth projective variety Ď consisting of
all filtrations F in V , with dim F p =

∑

r≥p hr,k−r, satisfying Q(F p, F k−p+1) = 0 ,

where Q denotes the restriction of Q to V . The complex Lie group GC := Aut(V, Q)
acts transitively on Ď, and D is an open orbit of GR := Aut(VR, Q).

Let g and gR denote the Lie algebras of GC and GR, respectively. The choice of
a base point F ∈ Ď defines a filtration

F ag := {T ∈ g : T F p ⊂ F p+a }

compatible with the Lie bracket. In particular, F 0g is the isotropy subalgebra at
F and since [F 0g, F−1g] ⊂ F−1g, the quotient F−1g/F 0g defines a GC-invariant
subbundle of the holomorphic tangent bundle of Ď—the horizontal tangent bundle.
Because of (2.1), the differential of Φ or, more precisely, of any local lifting of Φ
takes values on the horizontal bundle. Such maps are called horizontal.

Suppose now that M has a smooth compactification M such that X := M \ M
is a normal crossings divisor. Around a point of X , the local variation may be
described by a horizontal map

Φ : (∆∗)r × ∆m → D/Γ, (2.4)

where ∆ is the unit disk in C and ∆∗ the punctured disk. We shall also denote by
Φ its lifting to the universal covering U r × ∆m, where U is the upper-half plane.
We let z = (zj), t = (tl) and s = (sj) be the coordinates on U r, ∆m and (∆∗)r

respectively. By definition, we have sj = e2πizj .
Asymptotically, a period map has an algebraic component —the nilpotent orbit—

encoding the singularities of the connection ∇, and an analytic part described by a
holomorphic map with values in a nilpotent Lie algebra. Assuming, for simplicity,
that the local monodromy of the variation is unipotent, let N1, . . . , Nr denote the
monodromy logarithms. Our convention is such that Φ(z + ei, t) = exp(Ni)Φ(z, t),
where ei denotes the i-th standard vector. It follows from Schmid’s Nilpotent Orbit
Theorem [27] that the Ď-valued map

Ψ(s, t) := exp

(

−

r
∑

j=1

log sj

2πi
Nj

)

· Φ(s, t)
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extends holomorphically to the origin. The limiting Hodge filtration is F0 :=
Ψ(0, 0) ∈ Ď. The map

θ(z) := exp

( r
∑

j=1

zj Nj

)

· F0 ∈ Ď (2.5)

is holomorphic, horizontal, and D-valued for Im(zj) ≫ 0; i.e., is the period map of
a local variation.

A nilpotent linear transformation N ∈ gl(VR) defines an increasing filtration, the
weight filtration, W (N) of V , defined over R and uniquely characterized by requiring

that N(Wl(N)) ⊂ Wl−2(N) and that N l : Gr
W (N)
l → Gr

W (N)
−l be an isomorphism.

It follows from [7, Theorem 3.3] that if N1, . . . , Nr are the monodromy logarithms of
a local variation, then the weight filtration W (

∑

λjNj), λj ∈ R>0, is independent
of the choice of λ1, . . . , λr and, therefore, is associated with the positive real cone
C ⊂ gR spanned by N1, . . . , Nr.

The shifted weight filtration W = W (C)[−k] and the limiting Hodge filtration
F0 ∈ Ď define a mixed Hodge Structure on V ; i.e. F0 induces a Hodge structure
of weight ℓ on GrW

ℓ for each ℓ. Recall ([9, Theorem 2.13]) that mixed Hodge
structures are equivalent to (canonical) bigradings of V , I∗,∗, satisfying Ip,q ≡ Iq,p

mod (⊕a<p,b<qI
a,b). Thus, Wl = ⊕p+q≤lI

p,q and F a
0 = ⊕p≥aIp,q.

A mixed Hodge structure (W, F ) is said to split over R if Ip,q = Iq,p; in that case
the subspaces Vl = ⊕p+q=lI

p,q define a real grading of W . A structure for which
Ip,q = {0} if p 6= q is said to be of Hodge-Tate type. A map T ∈ gl(VR) such that
T (Ip,q) ⊂ Ip+a,q+b is called a morphism of bidegree (a, b).

A polarized mixed Hodge structure [7, (2.4)] of weight k on VR consists of a mixed
Hodge structure (W, F ) on V , a (−1,−1) morphism N ∈ gR, and a nondegenerate,
(−1)k-symmetric, bilinear form Q such that

(1) Nk+1 = 0,
(2) W = W (N)[−k], where W [−k]j = Wj−k,
(3) Q(F a, F k−a+1) = 0 and,

(4) the Hodge structure of weight k + l induced by F on ker(N l+1 : GrW
k+l →

GrW
k−l−2) is polarized by Q(·, N l·).

It follows from Schmid’s SL2-orbit theorem [27] that the mixed Hodge structure
(W (C)[−k], F0) associated with a local variation is polarized by every N ∈ C. Con-
versely, given commuting nilpotent elements N1, . . . , Nr ∈ gR so that the weight
filtration W (

∑

λjNj), λj ∈ R>0, is independent of the choice of λ1, . . . , λr, and

F0 ∈ Ď such that (W (C), F0) is polarized by every element N ∈ C, the map (2.5)
is a period mapping for Im(zj) sufficiently large [9, Proposition 4.66]. Moreover, if
(W (C), F0) splits over R, then θ(z) ∈ D for Im(zj) > 0. We refer to the map θ, or
equivalently, to {N1, . . . , Nr; F0} as a nilpotent orbit.

The following example shows the relationship between nilpotent orbits (equiv-
alently, polarized mixed Hodge structures) and the Lefschetz structure on the co-
homology of a compact Kähler manifold. This point of view was introduced in
[10] where it was used to obtain relations between the Lefschetz decompositions
corresponding to different Kähler classes.

Example 2.1. If X is a compact Kähler manifold of dimension k, the bigrading
Ip,q := Hk−q,k−p(X) defines a mixed Hodge structure (W, F ) on H∗(X, C) that
splits over R. The interest of this construction lies in the fact that this mixed Hodge
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structure is polarized by the Kähler cone. Indeed, the Hard Lefschetz Theorem is
equivalent to the statement that if ω is a Kähler class and Lω denotes multiplication
by ω, then W = W (Lω)[−k]; while the Hodge-Riemann bilinear relations imply that
Lω polarizes (W, F ) relative to the intersection form. The restriction of (W, F ) to
V := ⊕k

p=0H
p,p defines a mixed Hodge structure of Hodge-Tate type.

We now describe the analytic component of a local variation. The bigrading
associated with the limiting mixed Hodge structure (W, F0) defines a bigrading
I∗,∗g of the Lie algebra g by Ia,bg := {X ∈ g : X(Ip,q) ⊂ Ip+a,q+b}. Set

pa :=
⊕

q

Ia,qg and g− :=
⊕

a≤−1

pa. (2.6)

The nilpotent subalgebra g− is a complement of the stabilizer subalgebra at F0.
Hence (g−, X 7→ exp(X) ·F0) provides a local model for the GC-homogeneous space
Ď near F0. Thus, locally around the origin, we may write Ψ(s, t) = exp(Γ(s, t)) ·F0,
where Γ(s, t) is a holomorphic g−-valued map with Γ(0, 0) = 0. We also write

Φ(s, t) = exp

(

1

2πi

r
∑

j=1

log(sj)Nj

)

· exp(Γ(s, t)) · F0 = exp
(

X(s, t)
)

· F0,

where X(s, t) ∈ g−. The horizontality of Φ now translates, in terms of the grad-
ings (2.6), into:

exp
(

−X(s, t)
)

d exp
(

X(s, t)
)

= dX−1 ∈ p−1 ⊗ T ∗((∆∗)r × ∆m), (2.7)

where X−1 denotes the p−1-graded part of X . In particular,

dX−1 ∧ dX−1 = 0, (2.8)

where X−1 = 1
2πi

∑r
j=1 log(sj)Nj + Γ−1.

The following result, which follows from [8, Theorem 2.8] and [6, Theorem 2.7],
shows that the nilpotent orbit together with the p−1-valued holomorphic function
Γ−1 completely determine the local variation:

Theorem 2.2. Let {N1, . . . , Nr; F0} be a nilpotent orbit and R : ∆r × ∆m → p−1

be a holomorphic map with R(0, 0) = 0. Define X−1(z, t) :=
∑r

j=1 zjNj + R(s, t),

sj = e2πizj , and suppose that the differential equation (2.8) holds. Then, there
exists a unique period mapping

Φ(s, t) = exp

(

1

2πi

r
∑

j=1

log(sj)Nj

)

· exp(Γ(s, t)) · F0,

defined in a neighborhood of the origin in ∆r+m such that Γ−1 = R.

In the ensuing sections we will be concerned with a special type of maximally
degenerating variation. These are relevant to the study of mirror symmetry and,
from a Hodge theoretic perspective they have the advantage of allowing us to use a
canonical system of coordinates on the parameter space of the variation. Following
Morrison [24, Def. 3], we consider

Definition 2.3. Given a polarized variation of Hodge structure of weight k over
(∆∗)r whose monodromy is unipotent, we say that 0 ∈ ∆r is a maximally unipotent
boundary point if

(1) dim Ik,k = 1, dim Ik−1,k−1 = r and dim Ik,k−1 = dim Ik−2,k = 0, where
I∗,∗ is the bigrading associated to the limiting mixed Hodge structure and,
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(2) SpanC{N1(I
k,k), . . . , Nr(I

k,k)} = Ik−1,k−1, where Nj are the monodromy
logarithms of the variation.

The limiting Hodge filtration F0 and the holomorphic function Γ of a local vari-
ation depend on the choice of coordinates on (∆∗)r. However, in the maximally
unipotent case we may normalize our choices as follows.

Proposition 2.4. Let Φ = exp(
∑r

j=1
1

2πi log(sj)Nj) · exp(Γ(s)) · F0 be a polarized
variation of Hodge structure that has a maximally unipotent boundary point at 0 ∈
∆r. Then, there is a coordinate system on ∆r, unique up to scaling, where Γ
satisfies Γ(I1,1) = 0.

For a proof of Proposition 2.4, see [6, §3]. We will refer to these as canonical
coordinates. They are standard in the physics literature and their Hodge-theoretic
interpretation is due to D. Morrison [23] and P. Deligne [16].

3. Frobenius modules

The cohomology of even degree of a compact manifold is a graded Frobenius
algebra relative to cup product and the intersection form. When X is Kähler, the
Hard Lefschetz Theorem and the Hodge-Riemann bilinear relations describe the
action of H1,1(X) on the full cohomology. We abstract these properties in the
notion of a (framed) Frobenius module.

Let V = ⊕k
p=0V2p be a graded C-vector space and B a symmetric nondegenerate

bilinear form on V pairing V2p with V2(k−p). Let {Ta}0≤a≤m be a B-self dual,
graded basis of V . We will refer to {Ta} as an adapted basis. For 0 ≤ a ≤ m define
δ(a) by B(Tδ(a), Tb) = δab for all b = 0, . . . , m. We also set ã := p if and only if
Ta ∈ Vp and assume that the map ∼ : {0, . . . , m} → {0, . . . , 2k} is increasing.

Definition 3.1. (V,B, e, ∗) is a graded V2-Frobenius module of weight k if

(1) e 6= 0 and V0 = 〈e〉.
(2) V is a graded SymV2-module under ∗.
(3) For all v1, v2 ∈ V and w ∈ V2

B(w ∗ v1, v2) = B(v1, w ∗ v2) (3.1)

(4) w ∗ e = w for all w ∈ V2.

Since T0 ∈ V0, it must be a non-zero multiple of e and we assume that an adapted
basis satisfies T0 = e. Clearly, the fact that V is a SymV2-module is equivalent to

Tj ∗ (Tl ∗ T ) = Tl ∗ (Tj ∗ T ) for all Tj, Tl ∈ V2 and T ∈ V. (3.2)

We say that V is real if V has a real structure, VR, compatible with its grading,
∗ is real, e ∈ VR, and B is defined over R.

Example 3.2. If X is a compact Kähler manifold of dimension k, let V2p :=
Hp,p(X), Bint the intersection pairing on V := ⊕k

p=0V2p, and ` the restriction of
the cup product to V . Then, (V,Bint, 1, `) defines a real Frobenius module. The
real structure is induced by H∗(X, R).

As in the case of the cohomology of a compact Kähler manifold, to any real
Frobenius module we can associate a Hodge-Tate mixed Hodge structure:

Ip,p := V2(k−p). (3.3)
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The multiplication operator Lw ∈ End(V ), w ∈ V2, is an infinitesimal automor-
phism of the bilinear form

Q(va, vb) := (−1)k+ã/2B(va, vb), (3.4)

as well as a (−1,−1)-morphism of the associated mixed Hodge structure. We will
say that w ∈ V2 ∩ VR polarizes V if the mixed Hodge structure (I∗,∗, Q, Lw) is
polarized. A real Frobenius module V is said to be polarizable if it contains a
polarizing element. Given a polarizing element w, the set of polarizing elements is
an open cone in V2 ∩VR. We can then choose a basis T1, . . . , Tr of V2 ∩VR spanning
a simplicial cone C contained in the closure of the polarizing cone and with w ∈ C.
Such a choice of a basis of V2 will be called a framing of the polarized Frobenius
module.

Given an adapted basis {T0, . . . , Tm} of V , let z0, . . . , zm be the corresponding
linear coordinates on V and set qj := exp(2πizj) for j = 1, . . . , r := dimV2 . We
may identify U r ∼= (V2 ∩ VR) ⊕ i C and view the correspondence

r
∑

j=1

zjTj ∈ (V2 ∩ VR) ⊕ i C 7→ (q1, . . . , qr) ∈ (∆∗)r

as the natural covering map.

Proposition 3.3. Framed, real Frobenius modules of weight k are equivalent to
nilpotent orbits of weight k whose limiting mixed Hodge structure is of Hodge-Tate
type, split over R, have a marked real element in F k, and have the origin as a
maximally unipotent boundary point.

Proof. Let (V,B, e, ∗) be a real Frobenius module with framing T1, . . . , Tr. Set
Nj := LTj

and F p := ⊕a≥pI
a,a. Then {N1, . . . , Nr; F} is a nilpotent orbit. The

element e ∈ Ik,k = F k is a distinguished real element and the conditions of Defini-
tion 2.3 are clearly satisfied.

Conversely, suppose {N1, . . . , Nr; F} is a nilpotent orbit whose limiting mixed
Hodge structure is of Hodge-Tate type, split over R and satisfies both conditions
of Definition 2.3. Set V2p := Ik−p,k−p; in particular, the marked element e ∈ F k =
Ik,k = V0 and it follows from (2) in Definition 2.3 that the map

N ∈ SpanC{N1, . . . , Nr} 7→ N(e)

identifies the polynomial algebra C[N1, . . . , Nr] with SymV2 and defines a SymV2-
action on V . Let B be defined from the polarization Q as in (3.4), then since
the monodromy transformations Nj are infinitesimal automorphisms of Q, (3.1)
is satisfied. Thus, (V,B, e, ∗) is a Frobenius module. The equivalence between
nilpotent orbits and polarized mixed Hodge structures implies that Tj = Nj(e),
j = 1, . . . , r, are a framing of V and the fact that N1, . . . , Nr are real implies that
the Frobenius structure is real. �

A Frobenius module structure may also be encoded in a polynomial of degree 3
in the variables z0, . . . , zm. Indeed, if we let

φ0(z0, . . . , zm) :=
∑

j̃=2, 0≤ã,b̃≤2k

zjzazb C(ã)B(Tj ∗ Ta, Tb) ,
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with

C(ã) :=











1
6 if k = 3 and ã = 2,
1
4 if k 6= 3 and ã = 2 or ã = 2k − 4,
1
2 otherwise,

then we recover the SymV2-action by:

Tj ∗ Ta :=
∑

c̃=ã+2

∂3φ0

∂zj∂za∂zδ(c)
Tc ; j = 1, . . . , r .

The polynomial φ0 is called a (classical) potential for the Frobenius module.
We may generalize this construction by considering deformations of the classical

potential. This is motivated by the construction of the quantum product as a
deformation of the cup product on the cohomology. We assume, for simplicity, that
k > 3. Let R := C{q1, . . . , qr}0 denote the ring of convergent power series vanishing
for q1 = · · · = qr = 0 and R′ be its image under the map induced by qj 7→ e2πizj

for 1 ≤ j ≤ r.

Definition 3.4. Let (V,B, e, ∗) be a Frobenius module of weight k > 3 with classical
potential φ0. A quantum potential on V is a function φ : V → C of the form
φ = φ0 + φ~, where

φ~(z) :=
∑

ã=2k−4

zaφa
h(z1, . . . , zr) +

∑

2<ã<2k−4
ã+b̃=2k−2

zazbφ
ab
h (z1, . . . , zr), (3.5)

with φa
h, φab

h ∈ R′ and such that

∑

c̃=ã+2

∂3φ

∂zl∂za∂zδ(c)

∂3φ

∂zj∂zc∂zδ(d)
=

∑

c̃=ã+2

∂3φ

∂zj∂za∂zδ(c)

∂3φ

∂zl∂zc∂zδ(d)
(3.6)

holds for all a, j̃ = l̃ = 2 and d̃ = ã + 4.

Given a quantum potential φ on (V,B, e, ∗), we can define a deformation of the
module structure by

Tj ·q Ta :=
∑

c̃=ã+2

∂3φ

∂zj∂za∂zδ(c)
Tc , with q = (q1, . . . , qr) ∈ ∆r . (3.7)

We should stress that, even though the right side of (3.7) depends explicitly on
the variables z0, . . . , zm, (3.5) implies that it is actually a function of q1, . . . , qr.
Condition (3.6) guarantees that (3.7) defines an action of Sym V2 for all q. Moreover,
(V,B, T0, ·q) is a Frobenius module of weight k for all q, and ·0 = ∗. We will say
that a deformation of the Frobenius module V is framed if V is framed.

Remark 3.5. Definition 3.4 abstracts the properties of the graded portion of the
Gromov-Witten potential needed to describe the action of H1,1(X, C) in the small
quantum cohomology ring of a Calabi-Yau manifold X . In particular, (3.6) is a
graded component of the WDVV equations. We refer to [14, §8.2, §8.3] and [6, §5]
for details.

We can extend the definition of quantum potential to the weight 3 case by taking
φ = φ0 + φ~ for φ~ ∈ R′. With this notion, all the results from Sections 4 and 5
extend to this weight. For V of weight 1 or 2, the Frobenius module is determined
by B and e; hence no deformations are possible.
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4. Correspondence

In this section we will prove the main result of this paper, namely the corre-
spondence between deformations of framed Frobenius modules and degenerating
polarized variations of Hodge structures. In §5 we will show that when the defor-
mation arises from the quantum product of a Calabi-Yau manifold, the associated
variation of Hodge structure is the so-called A-model variation.

Theorem 4.1. There is a one to one correspondence between

• Quantum potentials φ on a framed Frobenius module (V,B, e, ∗) of weight
k, and

• Germs of polarized variations of Hodge structure of weight k on V degen-
erating at a maximally unipotent boundary point to a limiting mixed Hodge
structure of Hodge-Tate type, split over R, and together with a marked real
point e ∈ F k.

Under this correspondence, classical potentials —equivalently, framed Frobenius
modules— correspond to nilpotent orbits as in Proposition 3.3.

Proof. Let (V,B, e, ∗) be a framed Frobenius module of weight k, {T0, . . . , Tm}
an adapted basis, and let {N1, . . . , Nr; F} be the nilpotent orbit associated by
Proposition 3.3. Given a quantum potential φ = φ0 + φ~ on V define

Γ−1(q)(Ta) :=
∑

c̃=ã+2

∂2φ~(q)

∂za∂zδ(c)
Tc. (4.1)

Notice that because of (3.5), Γ−1 is holomorphic on some open neighborhood of
q = 0 ∈ ∆r, Γ−1(0) = 0, and it takes values on p−1 relative to the grading (2.6)
defined by the limiting mixed Hodge structure of {N1, . . . , Nr; F}.

As before, we set X−1(q) := 1
2πi

∑r
j=1 log(qj)Nj + Γ−1(q) ∈ p−1 and note that

the deformed Frobenius structure may be recovered from X−1(q) by

Tj ·q Ta =
∂X−1

∂zj
(Ta) ; j̃ = 2 , 0 ≤ a ≤ m . (4.2)

The equations (3.6) imply that X−1 satisfies the integrability condition (2.8).
Indeed,

dX−1 ∧ dX−1 = 0 ⇐⇒
∂X−1

∂zj

∂X−1

∂zl
=

∂X−1

∂zl

∂X−1

∂zj

⇐⇒ Tj ·q (Tl ·q Ta) = Tl ·q (Tj ·q Ta) ,

(4.3)

which, by (3.6), holds whenever j̃ = l̃ = 2 and all a. Theorem 2.2 now implies that
X−1 defines a unique polarized variation of Hodge structure on a neighborhood of
0 ∈ ∆r whose nilpotent orbit is {N1, . . . , Nr; F}. Hence the origin is a maximally
unipotent boundary point and the limiting mixed Hodge structure is of Hodge-Tate
type.

Conversely, let Φ be the period map of a local variation having a maximally
unipotent boundary point at the origin. Let {N1, . . . , Nr; F} be the corresponding
nilpotent orbit and I∗,∗ the limiting mixed Hodge structure, which we assume to be
of Hodge-Tate type. Let (V,B, e, ∗) be the real, framed Frobenius module given by
Proposition 3.3 and φ0 the corresponding classical potential. Let {T0, . . . , Tm} be
an adapted basis such that Tj = Nj(e), j = 1, . . . , r. Using canonical coordinates q
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on ∆r, we define a quantum potential from the holomorphic function Γ: ∆r → g−
associated with Φ by:

φab
h (q) :=

1

2
B(Γ−1(Ta), Tb) for 2 < ã < 2k − 4 and ã + b̃ = 2k − 2

φa
h(q) := B(−Γ−2(Ta), T0) for ã = 2k − 4

φ~ :=
∑

ã = 2k−4

zaφa
h +

∑

2 < ã < 2k−4
ã+b̃ = 2k−2

zazbφ
ab
h

φ := φ0 + φ~.

Clearly, φ~ is as in (3.5). In order to verify that (3.6) is satisfied we consider the
associated deformation (3.7) of the Frobenius module structure

Tj ·q Ta :=
∑

c̃=ã+2

∂3φ

∂zj∂za∂zδ(c)
Tc

and show that it may also be given as

Tj ·q Ta =
∂X−1

∂zj
(Ta). (4.4)

Indeed, for 2 < ã < 2k − 4 we have Γ−1(Ta) =
∑

c̃=ã+2 φ
aδ(c)
h Tc, so that

∂Γ−1

∂zj
(Ta) =

∑

c̃=ã+2

∂

∂zj
φ

aδ(c)
h Tc =

∑

c̃=ã+2

∂3

∂zj∂za∂zδ(c)

∑

ũ+ṽ=2k−2

1

2
zuzv φuv

h

=
∑

c̃=ã+2

∂3φ~

∂zj∂za∂zδ(c)
Tc,

where we have used that φab
h = φba

h . Then

∂X−1

∂zj
(Ta) = Nj(Ta) +

∂Γ−1

∂zj
(Ta)

=
∑

c̃=ã+2

∂3φ0

∂zj∂za∂zδ(c)
Tc +

∑

c̃=ã+2

∂3φ~

∂zj∂za∂zδ(c)
Tc

=
∑

c̃=ã+2

∂3φ

∂zj∂za∂zδ(c)
Tc = Tj ·q Ta.

In order to verify (4.4) when ã = 2k − 4 we first prove the identity

Γ−1(Ta) =
∑

c̃=2k−2

∂

∂zδ(c)
B(−Γ−2(Ta), T0) Tc , ã = 2k − 4 (4.5)

as a consequence of the horizontality condition (2.7). If this condition is rewritten
in terms of G(q) := exp Γ(q) and Θ =

∑

Nj dzj we get

dG = [G, Θ] + GdΓ−1.

This equation is graded by (2.6) and its homogeneous pieces are

dG−ℓ = [G−ℓ+1, Θ] + G−ℓ+1 dΓ−1, ℓ ≥ 2. (4.6)

In particular, for ℓ = 2 we obtain

dΓ−2 = [Γ−1, Θ +
1

2
dΓ−1].
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Evaluating at Ta and given that the canonical coordinates (q1, . . . , qr) are charac-

terized by Γ−1(Tb) = 0 for all b̃ = 2k − 2, we obtain

dΓ−2(Ta) = −Θ
(

Γ−1(Ta)
)

. (4.7)

By the B-self-duality of the basis {T0, . . . , Tm}, we can write

Γ−1(Ta) =
∑

c̃=2k−2

B(Γ−1(Ta), Tδ(c))Tc. (4.8)

Now, if c̃ = 2k − 2 and j = 1, . . . , r, then Nj(Tc) = δjcTm and, therefore, Θ(Tc) =
Tm dzδ(c) and (4.7), (4.8) imply

dΓ−2(Ta) = −
∑

c̃=2k−2

dzδ(c)B(Γ−1(Ta), Tδ(c))Tm,

so that,
∂

∂zδ(c)
Γ−2(Ta) = −B(Γ−1(Ta), Tδ(c))Tm

implying that

B

(

∂

∂zδ(c)
Γ−2(Ta), T0

)

= −B(Γ−1(Ta), Tδ(c)). (4.9)

Finally, (4.5) follows from applying (4.9) to (4.8).
Thus, if ã = 2k − 4,

∂Γ−1

∂zj
(Ta) =

∑

c̃=2k−2

∂

∂zj

∂

∂zδ(c)
B(−Γ−2(Ta), T0) Tc

=
∑

c̃=ã+2

∂

∂zj

∂

∂zδ(c)

∂

∂za

(

∑

b̃=2k−4

zbφ
b
h(q)

)

Tc

=
∑

c̃=ã+2

∂3φ~

∂zj∂za∂zδ(c)
Tc .

and (4.4) follows as before.
Given (4.4), the equivalences in (4.3) show that the integrability condition (2.8)

implies that the quantum potential φ satisfies (3.6).
Finally, we note that (4.4) and (4.2) imply that these correspondences are in-

verses of each other. �

5. A-model variation

Here we will show that the polarized variation of Hodge structure associated to
a quantum potential by Theorem 4.1 agrees with the A-model variation defined,
in the case of the cohomology on a Calabi-Yau manifold, by the Gromov-Witten
potential, as in, for example, [14, Chapter 8]. As a byproduct we give a different
proof of the fact that the A-model variation associated with a general potential, in
the sense of Definition 3.4, is a polarized variation of Hodge structure.

We begin by recalling the definition of the A-model variation. Let φ = φ0+φ~ be
a quantum potential on the framed Frobenius module (V,B, e, ∗). Let {T0, . . . , Tm}
be an adapted basis of V and (z0, . . . , zm) the corresponding linear coordinates on
V ; set qj = exp(2πizj) for j = 1, . . . , r. We view (q1, . . . , qr) as coordinates on
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(∆∗)r. Let ∇ be the connection on the vector bundle V := (∆∗)r × V defined on a
constant section T by

∇ ∂
∂qj

T :=
1

2πiqj
Tj ·q T. (5.1)

Proposition 5.1. The connection ∇ is flat. It has a simple pole at qj = 0 and its
residue is the nilpotent operator

Resqj=0(∇)(Ta) =
1

2πi

(

∑

c̃=ã+2

∂3φ0

∂zj∂za∂zδ(c)
Tc

)

. (5.2)

Proof. Given the definition of the quantum product (3.7) and (5.1), if Ta denotes
a constant section,

∇ ∂
∂qj

Ta =
1

2πiqj

(

∑

c̃=ã+2

∂3φ0

∂zj∂za∂zδ(c)
Tc

)

+ Hja(q)

for some function H , which extends holomorphically to 0 ∈ ∆r. This implies the
residue assertion.

The curvature of ∇ reduces to

R∇

(

∂

∂qj
,

∂

∂ql

)

(Ta) =
1

2πi

(

1

ql
∇ ∂

∂qj

(Tl · Ta) −
1

qj
∇ ∂

∂ql

(Tj · Ta)

)

.

A straightforward computation shows that this last expression vanishes since φ
satisfies (3.6). �

Remark 5.2. It follows from (5.2) that the operators Resqj=0(∇) agree, up to
a constant, with the morphisms LTj

of left multiplication by Tj in the Frobenius
module (V,B, e, ∗).

Consider the flags of subbundles of V :

Fp := (∆∗)r × (⊕a≥pV2(k−a)) and Uℓ := (∆∗)r × (⊕b≥ℓV2b).

Proposition 5.3. The subbundles Fp satisfy Griffiths’ horizontality (2.1). More-
over, for any given q̂ ∈ (∆∗)r, there is a (multivalued) flat frame of V, {T ♭

a}, such
that T ♭

a(q) ≡ Ta mod Uã+1 and T ♭
a(q̂) = Ta.

Proof. Since the maps T 7→ Tj ·q T are homogeneous of degree 2, the horizontality
follows directly from (5.1).

Since ∇ defines a connection on the bundle Uℓ inducing a trivial connection on
Uℓ/Uℓ+1, the second statement follows. �

Next, we want to compute the monodromy of ∇. We fix all the coordinates qi for
i 6= j and consider the one-dimensional problem around qj = 0. The flat sections

T ♭
a can be written in terms of the constant sections as T ♭

a =
∑

b fbaTb, and the
flatness condition leads to the ODE with a regular singularity at the origin

∂fba

∂qj
= −

∑

c

(

1

qj
(Resqj=0(∇))bc + Hjcδ(b)

)

fca, (5.3)

where Hjcd are holomorphic at qj = 0. Therefore, classical results for such an
equation (see [13, Ch. 4, Thm. 4.1]) imply that the coefficients fba are of the form

fba(q) =
(

G(qj) exp(− log(qj)Resqj=0(∇))
)

ba
(5.4)

for some function G, holomorphic at qj = 0, with G(0) = Idn .
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Parallel transport around qj = 0, in the anti-clockwise direction, gives that the

monodromy of ∇, written relative to the frame {T ♭
a}, is

Mj := exp
(

−2πi Resqj=0(∇)
)

.

We let Nj := − log(Mj) = 2πi Resqj=0(∇). Notice that, in view of (5.2), the mon-
odromy in a flat frame can be computed purely in terms of the classical potential.
All together we conclude:

Proposition 5.4. The matrix of the local monodromy logarithm operator Nj with

respect to the frame {T ♭
a} coincides with the matrix of left ∗-multiplication by Tj,

LTj
, with respect to the basis {Ta}.

The fact that ∇ has a simple pole at qj = 0 with nilpotent residue LTj
allows us

to construct Deligne’s canonical extension (Vc,∇c) [15] which is characterized by
the fact that

T̃a := exp

( r
∑

j=1

log(qj)

2πi
Nj

)

T ♭
a , a = 0, . . . , m, (5.5)

are a flat frame of (Vc,∇c).

Proposition 5.5. For a = 0, . . . , m, T̃a is the unique ∇c-flat section of Vc such
that T̃a ≡ Ta mod Uã+1, and T̃a(q̂) = Ta. The matrix of Nj acting on the frame

{T̃a} equals the matrix of the classical product ∗ acting on {Ta}.

Proof. The first statement follows from Proposition 5.3 and (5.5). Since [Nj , Nl] =
0 for all 1 ≤ j, l ≤ r, we have

Nl(T̃a) = Nl

(

exp

( r
∑

j=1

log(qj)

2πi
Nj

)

T ♭
a

)

= exp

( r
∑

j=1

log qj

2πi
Nj

)

Nl(T
♭
a)

=
∑

b

(LTl
)baT̃b,

and the second statement follows. �

Remark 5.6. In the context of the Gromov-Witten potential, the previous result
reduces to [14, Prop. 8.5.4] whose proof involves the formalism of gravitational
correlators. The elementary proof given above shows that it is a direct consequence
of the definition of the connection and, in particular, of the homogeneity of the the
operators LTj

.

Because of Propositions 5.3 and 5.5, we know the first (graded) component of the

sections T ♭
a and T̃a. A lengthy but straightforward computation yields the second

component of both T ♭
a and T̃a.

Lemma 5.7. The ∇-flat sections T ♭
a satisfy

T ♭
a(q) ≡ Ta −

∑

c̃=ã+2

∂2φ

∂za∂zδ(c)
Tc mod Uã+2.

Lemma 5.8. The ∇c-flat sections T̃a satisfy the following formulas, for k > 3.
For ã ≥ 2k − 2, T̃a = Ta.
For ã = 2k − 4, T̃a = Ta −

∑

c̃=ã+2 2πiqδ(c)
∂

∂qδ(c)
φa

h Tc + φa
h Tm.

For 2 < ã < 2k − 4, T̃a ≡ Ta −
∑

c̃=ã+2 φ
aδ(c)
h Tc mod Uã+2.
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For ã = 2, T̃a ≡ Ta −
∑

c̃=ã+2 2πiqa
∂

∂qa
φ

δ(c)
h Tc mod Uã+2.

For ã = 0, T̃0 ≡ T0 mod Uã+2.

We can now extend trivially the form Q, defined by (3.4), to a form Q on V . Q
is flat because of (3.2).

To define a flat real structure VR on V we proceed as follows. Let

Ṽ := ∆r × V and ∇̃ := ∇−
1

2πi

r
∑

j=1

Nj
dqj

qj
.

Then ∇̃ is a flat connection on the bundle Ṽ ; for v ∈ V we define σ̃v to be the
∇̃-flat section of Ṽ such that σ̃v(0) = v. Then VR is the local system generated by
the sections exp(− 1

2πi

∑r
j=1 log(qj)Nj) σ̃v(q), for all v ∈ VR.

Definition 5.9. Let φ = φ0 + φ~ be a quantum potential on the framed, real
Frobenius module (V,B, e, ∗). Then (V ,∇,F ,VR,Q) is the A-model variation of
the potential.

Theorem 5.10. The A-model variation is a polarized variation of Hodge structure.
Moreover, it is the variation associated to the potential φ by Theorem 4.1.

Proof. Let Φ be the “period map” of (V ,∇,F ,VR,Q) defined by parallel transport
to the fiber Vq̂, q̂ ∈ (∆∗)r. By Proposition 5.4 the local monodromy logarithms
Nj are the left multiplication operators LTj

and, by Proposition 5.5, the limiting
Hodge filtration becomes F p := ⊕a≥pV2(k−a). Thus, Proposition 3.3 implies that
{N1, . . . , Nr; F} is a nilpotent orbit.

Let now exp(−
∑

j zj Nj) · Φ(q) = expΓ(q) · F , where Γ is a holomorphic, g−-
valued map defined locally around 0 ∈ ∆r. Since the map Φ is horizontal, the
p−1-valued map X−1 =

∑

j zj Nj + Γ−1 satisfies the integrability condition (2.8)

and it follows from Theorem 2.2 that (V ,∇,F ,VR,Q) is a polarized variation of
Hodge structure.

In order to prove that this variation agrees with the one defined in Theorem 4.1
we appeal to the uniqueness statement in Theorem 2.2. Hence, it suffices to show
that Γ−1 is related to the potential φ by (4.1). But, the matrix presentation of

exp(−Γ(q)) in the basis {Ta} is the matrix expressing the ∇c-flat frame {T̃a} in
terms of the constant frame {Ta}. Thus, it follows from Lemma 5.8, that

Γ−1(Ta) =
∑

c̃=ã+2

∂2φ~

∂za∂zδ(c)
Tc,

as desired. �

References

1. Barannikov, S.: Semi-infinite Hodge structures and mirror symmetry for projective spaces,
arXiv:math.AG/0010157, 2000.

2. , Quantum periods. I. Semi-infinite variations of Hodge structures, Internat. Math.
Res. Notices (2001), no. 23, 1243–1264. Also, arXiv:math.DG/0006193.

3. , Non-commutative periods and mirror symmetry in higher dimensions, Comm. Math.

Phys. 228 (2002), no. 2, 281–325. Also, arXiv:math.AG/9903124.
4. Bershadsky, M., Cecotti, S., Ooguri, H., and Vafa, C.: Kodaira-Spencer theory of gravity and

exact results for quantum string amplitudes, Comm. Math. Phys. 165 (1994), no. 2, 311–427.
Also, arXiv:hep-th/9309140.

http://arXiv.org/abs/math/0010157
http://arXiv.org/abs/math/0006193
http://arXiv.org/abs/math/9903124
http://arXiv.org/abs/hep-th/9309140


FROBENIUS MODULES AND HODGE ASYMPTOTICS 15

5. Candelas, P., de la Ossa, X., Green, P., Parkes, L.: A pair of Calabi-Yau manifolds as an

exactly soluble superconformal theory, Nuclear Phys. B 359 (1991), no. 1, 21–74.
6. Cattani, E., Fernandez, J.: Asymptotic Hodge theory and quantum products, Advances in

Algebraic Geometry Motivated by Physics, E. Previato (ed.), Contemp. Math., vol. 276,
pp. 115–136, Amer. Math. Soc., Providence, RI, 2001. Also, arXiv:math.AG/0011137.

7. Cattani, E., Kaplan, A.: Polarized mixed Hodge structures and the local monodromy of a

variation of Hodge structure, Invent. Math. 67 (1982), no. 1, 101–115.
8. : Degenerating variations of Hodge structures, Astérisque 179-180 (1989), 67–96.
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