
Communicating Process Architectures 2008
P.H. Welch et al. (Eds.)
IOS Press, 2008
c© 2008 The authors and IOS Press. All rights reserved.

85

Two-Way Protocols for occam-π

Adam T. SAMPSON 1

Computing Laboratory, University of Kent

Abstract. In the occam-π programming language, the client-server communication
pattern is generally implemented using a pair of unidirectional channels. While each
channel’s protocol can be specified individually, no mechanism is yet provided to indi-
cate the relationship between the two protocols; it is therefore not possible to statically
check the safety of client-server communications. This paper proposes two-way pro-
tocols for individual channels, which would both define the structure of messages and
allow the patterns of communication between processes to be specified. We show how
conformance to two-way protocols can be statically checked by the occam-π com-
piler using Honda’s session types. These mechanisms would considerably simplify the
implementation of complex, dynamic client-server systems.

Keywords. client-server, concurrency, occam-π, protocols, session types.

Introduction

The occam-π process-oriented programming language supports very large numbers of
lightweight processes, communicating using channels and synchronising upon barriers. It has
roots in CSP and the π-calculus, making it possible to reason formally about the behaviour
of programs at all levels from individual processes up to complete systems.

In a process-oriented system, it is very common to have client-server relationships be-
tween processes: a server process answers requests from one or more clients, and may it-
self act as a client to other servers while processing those requests (see figure 1). The client-
server design rules [1] allow the construction of client-server systems of processes that are
guaranteed to be free from deadlock and livelock problems.

The client-server pattern has proved extremely useful when building complex process-
oriented systems. Server processes fill approximately the same role as objects in object-
oriented languages; indeed, OO languages such as Smalltalk use message-passing terminol-
ogy to describe method calls between objects. However, process-oriented servers avoid many
of the concurrency problems endemic in OO languages, and their interfaces are more pow-
erful: a client-server communication may be a conversation containing several messages in
both directions, not just a single request-response pair.

Most non-trivial occam-π programs today make some use of the client-server pattern,
with communication implemented using channels. However, while occam-π allows the pro-
tocol carried over an individual channel to be specified and checked by the compiler, it does
not yet provide any facilities for checking the protocols used across two-way communication
links such as client-server connections.

In this paper, we will first describe occam-π’s existing protocol specification facilities,
and how they are currently used to implement client-server communications. We will then
examine other implementations of two-way communication protocols, and how they can be

1Corresponding Author: Adam Sampson, Computing Laboratory, University of Kent, CT2 7NF, UK. Tel.: +44
1227 827841; E-mail: A.T.Sampson@kent.ac.uk.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Kent Academic Repository

https://core.ac.uk/display/13618?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

86 A.T. Sampson / Two-Way Protocols for occam-π

process process

process

process

c

s

cc

s s

Figure 1. Client-server relationships between processes

formally specified using session types. Finally, we will describe how two-way protocols could
be specified and implemented in occam-π, and discuss some possible syntax for them.

1. Unidirectional Protocols

occam-π’s channels are unidirectional and unbuffered, and the order of messages permitted
over each channel is specified using a protocol. The compiler checks that processes using
channels adhere to their protocols. Protocols have been present in the language since occam
2 [2].

A simple protocol is just a list of types which will be sent in sequence over the channel.

PROTOCOL REPORT IS INT; REAL32:
CHAN REPORT c:
c ! 42; 3.141

A variant protocol allows choice between several simple protocols, each identified by
a unique tag; each communication over the channel is preceded by a tag that indicates the
simple protocol to be followed.

PROTOCOL COLOUR
CASE

rgb; REAL32; REAL32; REAL32
palettised; INT

:
CHAN COLOUR c:
SEQ

c ! rgb; 0.3; 0.3; 0.0
c ! palettised; 42

occam-π introduced the idea of protocol inheritance [3], which allows the tags from one
or more existing variant protocols to be incorporated into a new variant protocol. A reading
end of a channel carrying one of the included protocols may be used as if it were a reading
end of a channel carrying the new protocol; for writing ends, the opposite applies.

A.T. Sampson / Two-Way Protocols for occam-π 87

PROTOCOL PRINT.COLOUR EXTENDS COLOUR
CASE

cmyk; REAL32; REAL32; REAL32; REAL32
:
CHAN PRINT.COLOUR c:
SEQ

c ! rgb; 0.3; 0.3; 0.0
c ! cmyk; 0.1; 0.4; 0.1; 0.0

Several channels may be grouped into a channel bundle [4]. The ends of a channel bundle
are mobile: they may be sent around between processes, allowing the process network to be
dynamically reconfigured at runtime. The channels inside a bundle may be used as if they
were regular channels.

CHAN TYPE DISPLAY
MOBILE RECORD

CHAN COORDS in?:
CHAN COLOUR out!:

:
DISPLAY! end:
INT c:
SEQ

end[in] ! 2.4; 6.8
end[out] ? CASE palettised; c

2. Client-Server Communication in occam-π

Client-server communications are currently implemented in occam-π using a pair of chan-
nels: one carries requests from the client to the server, and the other carries responses from the
server to the client. The two channels are usually packaged inside a channel bundle. We can
use this approach to specify a client-server interface to a random-number generator, which
will attempt to roll an N-sided die for you, and either succeed or drop it on the floor:

PROTOCOL DIE.REQ
CASE

roll; INT
quit

:
PROTOCOL DIE.RESP

CASE
rolled; INT
dropped

:
CHAN TYPE DIE

MOBILE RECORD
CHAN DIE.REQ req?:
CHAN DIE.RESP resp!:

:

The req and resp channels carry requests and responses respectively, each with their
own protocol. In this case, a roll message from the client would provoke a rolled or
dropped response from the server; a quit message would cause the server to exit with no
response. To use this process, a client need only send the appropriate messages over the
channels in the bundle:

88 A.T. Sampson / Two-Way Protocols for occam-π

PROC roll.die (DIE! die)
SEQ

... obtain die

die[req] ! roll; 6
die[resp] ? CASE

INT n:
rolled; n

... rolled an ’n’
dropped

... dropped the die

die[req] ! quit
:

The syntax for defining and using client-server interfaces is rather clumsy. Each client-
server interface requires two protocols and a channel bundle type to be declared. The protocol
names – DIE.REQ and DIE.RESP in this case – are usually only used within the channel bundle
definition. When sending messages over a client-server interface, the name of the channel
being used must always be specified, even though it is unambiguous from the direction of
communication whether the req or resp channel should be used.

More seriously, occam-π provides no facility for specifying the relationship between the
two protocols in a client-server interface. By convention, the programmer writes a comment
saying “replies rolled or dropped” next to the definition of roll, but this is only useful to
humans. The compiler cannot check that the processes using the channel bundle are correctly
ordering messages between channels. For example, a process like this correctly follows the
protocol on each individual channel:

SEQ
die[req] ! roll; 6
die[req] ! roll; 6

However, it would deadlock because the server expects to only receive a single roll

message before sending a response. At the moment, it will be accepted by the compiler
without complaint.

The vast majority of channel bundle definitions in existing occam-π code are client-
server interfaces like DIE. Providing a more convenient language binding for client-server
interfaces would not only simplify many programs, but also allow the compiler to detect more
programmer errors at compile time.

3. Related Work

Facilities for specifying two-way communication are present in some other process-oriented
languages.

The draft occam 3 language specification [5] described a call channels mechanism built
on top of channel bundles; this provided a way of declaring channel bundles that were used for
call-response communications. The declaration of a call channel therefore implicitly defined
protocols to carry the parameters and results of a procedure. A call channel named cosine

with a single input parameter and a single result would be defined as:

CALL cosine (RESULT REAL32 result, VAL REAL32 x):

The suggested syntax made clients look like procedure calls, and servers look like pro-
cedure declarations:

A.T. Sampson / Two-Way Protocols for occam-π 89

PAR
cosine (cos.pi, 3.141)
ACCEPT cosine (RESULT REAL32 result, VAL REAL32 x)

result := COS (x)

Since ACCEPT is implemented as a channel input for the parameters, followed by a chan-
nel output for the results after the block is complete, it is possible to use it as a guard in
an ALT. The same idea has been implemented in other process-oriented frameworks such as
JCSP [6].

Call channels are a useful abstraction for programmers transitioning from the object-
oriented world, since they make calls to a server look like method calls upon an object. How-
ever, they only allow a single request and response; they do not provide the richer conversa-
tions afforded by protocols.

The Honeysuckle language provides facilities for easily composing client-server sys-
tems, with interfaces being defined as services [7]. Of particular interest here are compound
services, which allow a server’s behaviour to be specified using a subset of Honeysuckle
including communication, choice and repetition constructs:

service class Console :
{

...

sequence
receive command
if command

write
acquire String

read
sequence

receive Cardinal
transfer String

}

This notation is very powerful; it allows arbitrary conversations between a client and
server to be precisely specified. It is, however, possible to specify a protocol that cannot be
statically verified by using repetition with a count obtained from a channel communication.
Such protocols may require runtime checks to be inserted by the compiler if the repetition
counts cannot be statically determined.

Honeysuckle’s services provide a convenient, flexible way of specifying client-server
interfaces; we would like to provide a similar facility in occam-π.

4. Session Types

Session types [8] provide a formal approach to the problem of specifying the interactions
between multiple processes, by allowing communication protocols to be specified as types.
The type of a communication channel therefore describes the sequence of messages that may
be sent across it. For example, a channel with the session type

foo! . bar?

can be used to send (“!”) the message foo, then receive (“?”) the message bar; the “.” operator
sequences communications.

90 A.T. Sampson / Two-Way Protocols for occam-π

Session types can also specify choice between several labelled variants using the “|”
operator. For example,

(left! . INT !) | (right! . BY TE!)

can be used to either send left followed by an integer, or right followed by a byte.
When checking the correctness of a process, a session-type-aware compiler will update

the type of each channel as communications are performed using it. For example, if a chan-
nel’s session type is initially foo! . bar? . baz?, after it is used to send the message foo, its
session type will be updated to bar? . baz?.

Session types were originally defined in terms of the π-calculus, but can also be ap-
plied to network protocols, operations in distributed systems, and – most interestingly for our
purposes – communications between threads in concurrent programming languages.

Neubauer and Thiemann [9] describe an encoding of session types in Haskell’s type sys-
tem, representing communication operations using a continuation-passing approach. Session
types may be defined recursively, which is convenient for specifying protocols containing
repetition or state progression – for example, a type may be defined as several operations
followed by itself again. The specifications are applied to sequences of IO operations, such as
communications on a network socket; there is no discussion of their application to local com-
munication, although the same approach could be used to sequence communication between
threads.

The Ldoos language [10] integrates object-oriented programming and session types. Its
session type specifications cannot contain branching or selection, but they support arbitrary
sequences of communications in both directions, making them more flexible than simple
method calls.

Vasconcelos, Ravara and Gay [11] give operational semantics and type-checking rules
for a simple functional language with lightweight processes and π-calculus-style channels,
where channel protocols are specified using session types. Its session types may be defined
recursively, and may include choice between several labelled options. It notes that aliasing
of channels can introduce consistency problems, since operations may affect one alias and
not update the session type of the others. It demonstrates that session types can be applied
effectively to communication between local concurrent processes.

The SJ language [12] extends Java with session sockets that are conceptually similar to
TCP sockets (and are implemented using TCP), but over which communication takes place
according to protocols which are defined using session types. It supports conditional and
iteration constructs in which the branch taken is implicitly communicated across the socket
by the sending process; this ensures that the two ends cannot get out of step.

Connected session sockets can be passed around between processes, and the SJ system
tracks their session types correctly even when they are in mid-communication; this makes it
possible to hand off a connected socket to another process to continue the conversation.

5. Two-Way Protocols

We propose generalising occam-π’s protocols so that they can specify two-way conversations
rather than just sequences of one-way communications.

occam-π’s unidirectional protocol specifications can be viewed as a restricted form of
session types: all the communications must be in the same direction, only a single choice
is permitted at the start of the protocol, and no facilities are provided for iteration and re-
cursion within a protocol (although the same protocol can be used multiple times across the
same channel). In order to specify two-way communications, we must relax some of these
restrictions.

A.T. Sampson / Two-Way Protocols for occam-π 91

For example, the DIE interface above could be expressed as a single two-way protocol
between the client and the server. In this protocol, a client starts a conversation by sending a
roll or quit message; the server will reply to roll only with rolled or dropped. We can
specify this as a session type from the client’s perspective:

(roll! . INT ! . (rolled? . INT? | dropped?)) | quit?

(We do not propose that occam-π programmers should use this syntax for protocol defi-
nitions – see section 7.)

Protocols can contain multiple direction changes; for example:

move! . (moved? | (suspend? . suspended!))

One valid conversation using this protocol would be move!, suspend?, suspended!;
another would be move!, moved?. The conversation suspended! would not be valid.

We constrain the first communication in a two-way protocol specification to always be
an output; this makes it possible for the compiler to always be able to tell in which direction
the next communication is expected to come.

A client-server connection can now just appear as a channel to the occam-π programmer;
there is no need to specify whether a particular communication is a request or a response,
since that is implicit in the operation being used. For example, our DIE client can now be
written this way:

PROC roll.die (CHAN DIE die!)
SEQ

die ! roll; 6
die ? CASE

INT n:
rolled; n

... rolled an n
dropped

... dropped the die
:

Furthermore, the compiler now has enough information to be able to tell that the follow-
ing process does not conform to the protocol:

SEQ
die ! roll; 6
die ! roll; 6

Since the session type is now tracked between multiple communications on the same
channel, we could allow sequential communications to be split up over multiple communica-
tion processes: that is, die ! roll; 6 would be merely syntactic sugar for:

SEQ
die ! roll
die ! 6

6. Implementation

6.1. Two-Way Channels

Two-way channels could be implemented by the occam-π compiler using a pair of regular
channels inside a channel bundle. The transformation required would be very straightforward,

92 A.T. Sampson / Two-Way Protocols for occam-π

210

3

roll!

quit!

INT? rolled?

INT!

dropped?

Figure 2. Finite state machine representing the DIE protocol

simply selecting the “request” or “response” channel inside the bundle based on the direction
of communication. This approach would allow the translation of occam-π code using two-
way channels into code that would be accepted by the existing compiler.

However, all existing implementations of occam-π channels on a single machine allow
communication in either directions, provided both users of the channel always agree about
the direction of communication they expect. Since session types allow the compiler to reason
about the direction of communication whenever a channel is used, we can use the existing
occam-π runtime’s channels as two-way channels with no additional overhead.

This also offers a small memory saving: one channel can now be used where two and a
channel bundle were previously necessary. This may be useful in programs with very large
numbers of channels.

6.2. Protocol Checking

Checking that one-way protocols are used correctly is simple: each input or output operation
must always perform the complete sequence of communications that the protocol describes,
so the compiler can tell what communications should happen from the type of the channel
alone. Two-way protocols complicate this somewhat because the protocol may take place
across multiple operations. We can solve this problem by representing protocols as session
types, and attaching a session type to each channel end.

A common representation for a session type is a finite state machine, with each message
being an edge in the state machine’s graph (see figure 2). The compiler will translate each
protocol definition it sees into a state machine; a session type can then be represented as a
pair of a state machine and a state identifier within that machine. Given a channel’s current
state, this makes it possible to tell whether an operation upon it is valid, and if so what the
resulting state is. The same approach is already used in Honeysuckle and in implementations
of session types in other languages.

Each protocol has an initial state for the start of a conversation. Since occam-π protocols
may be repeated arbitrarily as a whole, a message with nothing following it in the protocol
specification is recorded as a transition back to the initial state.

To check a program for protocol compliance, it is first transformed into a control flow
graph (which occam-π compilers already do in order to perform other sorts of static checks).
Each channel end variable is tagged with a state, which is set to the initial state when a channel
is first allocated. The control flow graph is traversed; when a communication operation is
performed upon a channel end, the current state and the message are checked against the

A.T. Sampson / Two-Way Protocols for occam-π 93

appropriate state machine, and the state is updated. If the communication is not valid for the
present state, the compiler can report not only that it’s invalid, but also what communications
would have been valid at that stage of the protocol.

When two flows of control rejoin, the compiler must check that the state of each channel
end is the same in both flows; this ensures that conditionals and loops do not leave channels
in an inconsistent state. When a channel is abbreviated – either via an explicit abbreviation,
or in a procedure definition – it must be left in the same state at the end of the abbreviation
that it was in at the start. (This rule may need to be adjusted to support mid-conversation
handoff; see section 7.3.)

Similarly, when a channel end is sent between processes (for example, as part of a chan-
nel bundle), its state must be preserved by the communication. As with SJ, it would be per-
fectly reasonable to hand off a channel end in the middle of a conversation to another pro-
cess, provided the receiving process agrees what session type it should have. This allows the
process network to be dynamically reconfigured without consistency problems.

A CLAIM upon a shared channel must start and end with the channel in its initial state,
since the channel must be left in a predictable state for its next user. Shared channels are
the only case in which channel ends may be aliased in occam-π, so this restriction avoids
consistency problems caused by aliasing of session-typed channels.

Note that the channel’s state is not tracked at runtime, as with many other session types
systems. Two-way protocols incur no runtime overheads.

7. Protocol Specifications

The syntax used so far for session types is hard to read and write, particularly for complex
protocols with many choices and direction changes; we would like something more conve-
nient for use in occam-π. We emphasise that we have not yet decided on a final syntax for
this; this section describes some of the possibilities we have considered.

7.1. Starting Small

We must preserve the existing syntax for unidirectional protocols in order to avoid breaking
existing occam-π code, but since a unidirectional protocol is just a special case of a two-way
protocol, we can deprecate the existing syntax in favour of a new one. However, there are
some advantages to basing our new syntax on the existing one: the existing syntax has worked
well for over twenty years, and occam-π programmers are already familiar with it.

A minimal approach would be to keep the existing syntax for unidirectional protocols –
so communications in the same direction are still sequenced using ; – but allow an indented
block inside a protocol specification to mean a change of direction. We could then write our
DIE protocol as:

PROTOCOL DIE
CASE

roll; INT
CASE

rolled; INT
dropped

quit
:

This protocol is very simple, but if it had more changes of direction (and therefore deeper
nesting), it would be harder to tell the direction of each communication. We could require the
user to explicit specify the direction of each communication:

94 A.T. Sampson / Two-Way Protocols for occam-π

PROTOCOL DIE
CASE

! roll; INT
CASE

? rolled; INT
? dropped

! quit
:

The directions are specified from the perspective of the client. This is more useful for
documentation purposes; a programmer is more likely to be writing a client to somebody
else’s server than a server to somebody else’s client. Since all the communications within a
single CASE must be in the same direction, it is somewhat redundant to specify the direction
on all of them; it would be possible to apply the direction to the CASE itself instead.

This syntax does not allow the full power of session types, though. It is only possible
to have choice at the start of a communication or after a change of direction, which means
you cannot send some identifying information followed by a command. Furthermore, there
is no way to name and reuse parts of the protocol; you cannot write a protocol containing
repetition, or share a response (such as a set of error messages) between several possible
commands.

7.2. Protocol Inheritance

We have not yet specified how protocol inheritance would work with these simple two-way
protocols. We could allow the inclusion of an existing protocol in a new one by giving the
existing protocol’s name. The effect would be as if the existing protocol’s specification were
textually included in the new protocol.

PROTOCOL ERROR
CASE

! ok
! file.not.found
! disk.full

:
PROTOCOL FILE

CASE
! open; FILENAME

ERROR
! write; STRING

ERROR
:

Note that the ERROR protocol’s direction has been implicitly reversed when it is included
in FILE. In combination with occam-π’s existing RECURSIVE keyword, which brings a name
into scope for its own definition, this approach would allow protocols containing repetition
to be defined recursively:

RECURSIVE PROTOCOL ARK
CASE

! animal; ANIMAL
CASE

? ok
ARK

? full
! done

:

A.T. Sampson / Two-Way Protocols for occam-π 95

This approach has several downsides, though.
It is only possible to recurse back to the “outside” of a protocol. Mutually recursive

protocols – which may be useful when you have a protocol that switches between two or
more stable states – cannot be written.

It is also difficult to describe the type of a channel in mid-conversation. The session type
of a CHAN FILE after an open or write message has been sent is the same: the expected mes-
sages are those from ERROR. However, it is not a CHAN ERROR, because after the error message
has been sent the next communication will be one from FILE. This makes it impossible to
write a reusable error-handling process.

7.3. Named Subprotocols

A more flexible approach would be to allow the user to define named subprotocols within
a single protocol definition – which the compiler will eventually translate into named states
within the protocol’s state machine. Our FILE protocol with errors can now be written using
a subprotocol for error reporting:

PROTOCOL FILE
SUBPROTOCOL ERROR

CASE
? ok
? file.not.found
? disk.full

:

CASE
! open; FILENAME

ERROR
! write; STRING

ERROR
:

Note that the message directions are now written consistently between the top-level pro-
tocol and its subprotocol.

We can now refer to a particular state within a protocol when describing a channel’s type,
which lets us write abbreviations and procedures expecting a channel in a particular state:

PROC handle.error (CHAN FILE[ERROR] c?)
...

:

SEQ
c ! open; "foo.occ"
handle.error (c?)

One problem with this is that, by the checking rules described earlier, the abbreviation
of c in the procedure definition would require it to have the same type when the procedure
exited – which will not be the case if it has handled the error. To solve this, we could allow the
input and output states of a protocol to be specified in an abbreviation’s type – for example,
CHAN FILE[ERROR, FILE] c?. Another option is to just specify CHAN FILE and have the
compiler infer the input and output states.

The top-level protocol’s name is still made available if RECURSIVE is used, so ARK can be
defined as it is above. We could generalise this to permit mutual recursion between subproto-
cols, which is rather unusual for occam-π; its scoping rules usually forbid mutual recursion.
Mutually-recursive subprotocols would allow us to specify a protocol with multiple “stable

96 A.T. Sampson / Two-Way Protocols for occam-π

states”: for example, a network socket that may be either connected or disconnected, and
supports different sorts of requests in different states.

PROTOCOL SOCKET
SUBPROTOCOL DISCONNECTED

CASE
! connect; ADDRESS

CONNECTED
:
SUBPROTOCOL CONNECTED

CASE
! send; DATA

CONNECTED
! disconnect

DISCONNECTED
:

DISCONNECTED
:

CHAN SOCKET c:
...
SEQ i = 0 FOR SIZE addrs

SEQ
c ! connect; addrs[i]
c ! send; "hello"
c ! disconnect

occam-π protocols are not currently written to be this long-lived: a socket protocol in
the current language can only describe a single request. Recursive protocols would allow
longer-lasting interactions to be captured.

8. Mobile Channels

At present, occam-π allows channel bundles to be mobile, but not individual channels. In
order to make a two-way channel mobile, it would need to be wrapped in a channel bundle. It
would be more convenient for most uses of two-way channels if the ends of a channel could
simply be declared to be mobile in the same way as data and barriers.

The existing syntax for channel end abbreviations in occam-π appends the ! and ? dec-
orators to the name of the abbreviation. The same syntax could be used for mobile channel
ends:

MOBILE CHAN FOO out!:
MOBILE CHAN FOO in?:
SEQ

out, in := MOBILE CHAN FOO
PAR

out ! some.foo
in ? other.foo

However, this makes it impossible to write the type of a channel end on its own – for
example, if you wanted to declare a protocol carrying channel ends, or define a type alias.
Where does the decorator go? It would be simpler to always include the direction as part of
the type of a channel end:

MOBILE CHAN! FOO out:
MOBILE CHAN? FOO in:

A.T. Sampson / Two-Way Protocols for occam-π 97

9. Conclusion

We have proposed extensions to the occam-π programming language that would significantly
extend the expressive power of channel protocols by permitting two-way communication on a
single channel. We have shown how session types can be used to specify these protocols, and
to check that processes implement the protocols correctly. We have therefore demonstrated
that session types can be used to improve the safety of inter-process communication in an
existing concurrent programming language.

Two-way protocols would significantly simplify the implementation of client-server sys-
tems in occam-π, but it is important to note that they are not tied to the client-server model.
For example, it would be possible to build a ring of processes connected by two-way chan-
nels, which would be a violation of the client-server design rules, but permissible using I/O-
PAR or other approaches. Two-way protocols simply ensure that the communications be-
tween any two connected processes proceed in a consistent manner.

Two-way protocols cannot guarantee that a system follows any particular set of design
rules; this is, in general, a difficult problem to solve, particularly in the face of dynamically-
reconfigurable process networks. Making guarantees about the system as a whole is out of
the scope of this proposal, although we hope that the ability to reason formally about channel
protocols using session types would make a future implementation of design-rule checking
more straightforward.

Acknowledgements

The author would like to thank Neil Brown and the other members of the Concurrency Re-
search Group at the University of Kent for their work on this proposal.

This work was supported by EPSRC grants EP/P50029X/1 and EP/E053505/1.

References

[1] J.M.R. Martin and P.H. Welch. A Design Strategy for Deadlock-Free Concurrent Systems. Transputer
Communications, 3(4), 1997.

[2] Inmos Limited. occam 2 Reference Manual. Technical report, Inmos Limited, 1988.
[3] Fred Barnes and Peter H. Welch. Prioritised Dynamic Communicating Processes - Part II. In J. Pascoe,

R. Loader, and V. Sunderam, editors, Communicating Process Architectures 2002, pages 353–370, 2002.
[4] Fred Barnes and Peter H. Welch. Prioritised Dynamic Communicating Processes - Part I. In J. Pascoe,

R. Loader, and V. Sunderam, editors, Communicating Process Architectures 2002, pages 321–352, 2002.
[5] Geoff Barrett. occam 3 Reference Manual. Technical report, Inmos Limited, March 1992.
[6] Peter H. Welch. Process Oriented Design for Java: Concurrency for All. In P.M.A.Sloot, C.J.K.Tan,

J.J.Dongarra, and A.G.Hoekstra, editors, Computational Science - ICCS 2002, volume 2330 of Lecture
Notes in Computer Science, pages 687–687. Springer-Verlag, April 2002. Keynote Tutorial.

[7] Ian R. East. Interfacing with Honeysuckle by Formal Contract. In J.F. Broenink, H.W. Roebbers, J.P.E.
Sunter, P.H. Welch, and D.C. Wood, editors, Communicating Process Architectures 2005, pages 1–11,
September 2005.

[8] Kohei Honda. Types for Dyadic Interaction. In Proc. CONCUR ’93, number 715 in LNCS, pages 509–523.
Springer, 1993.

[9] Matthias Neubauer and Peter Thiemann. An implementation of session types. In Bharat Jayaraman, editor,
PADL, volume 3057 of Lecture Notes in Computer Science, pages 56–70. Springer, 2004.

[10] Mariangiola Dezani-Ciancaglini, Nobuko Yoshida, Alex Ahern, and Sophia Drossopoulou. ldoos: a Dis-
tributed Object-Oriented language with Session types. In Rocco De Nicola and Davide Sangiorgi, editors,
TGC 2005, volume 3705 of LNCS, pages 299–318. Springer-Verlag, 2005.

[11] V. T. Vasconcelos, Antnio Ravara, and Simon Gay. Session types for functional multithreading. In CON-
CUR’04, number 3170 in LNCS, pages 497–511. Springer-Verlag, 2004.

[12] Raymond Hu, Nobuko Yoshida, and Kohei Honda. Language and Runtime Implementation of Sessions
for Java. In Olivier Zendra, Eric Jul, and Michael Cebulla, editors, ICOOOLPS’2007, 2007.

