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Department of Physics and Astronomy, University of Massachusetts, Amherst, MA, 01003, USA

1 February 2008

ABSTRACT

In this work we investigate the evolution of the mass function of the Galactic globular
cluster system (GCMF) taking into account the effects of stellar evolution, two-body
relaxation, disk shocking and dynamical friction on the evolution of individual globular
clusters. We have adopted a log-normal initial GCMF and considered a wide range
of initial values for the dispersion, σ, and the mean value, 〈log M〉. We have studied
in detail the dependence on the initial conditions of the final values of σ, 〈log M〉, of
the fraction of the initial number of clusters surviving after one Hubble time, and of
the difference between the properties of the GCMF of clusters closer to the Galactic
center and the properties of those located in the outer regions of the Galaxy. In most of
the cases considered evolutionary processes alter significantly the initial population of
globular clusters and the disruption of a significant number of globular clusters leads to
a flattening in the spatial distribution of clusters in the central regions of the Galaxy.
The initial log-normal shape of the GCMF is preserved in most cases and if a power-law
in M is adopted for the initial GCMF, evolutionary processes tend to modify it into a
log-normal GCMF. The difference between initial and final values of σ and 〈log M〉 as
well as the difference between the final values of these parameters for inner and outer
clusters can be positive or negative depending on initial conditions. A significant effect
of evolutionary processes does not necessarily give rise to a strong trend of 〈log M〉
with the galactocentric distance. The existence of a particular initial GCMF able to
keep its initial shape and parameters unaltered during the entire evolution through
a subtle balance between disruption of clusters and evolution of the masses of those
which survive, suggested in Vesperini (1997), is confirmed.

Key words: globular clusters:general – stellar dynamics

1 INTRODUCTION

Investigation of the luminosity function of the globular cluster system (hereafter GCLF) of our Galaxy and of globular

cluster systems in external galaxies has been the subject of many observational works (see e.g. Secker 1992, McLaughlin 1994,

Abraham & van den Bergh 1995, Kissler-Patig 1997, Harris 1991 and references therein) because of its relevance for a number

of issues of great astrophysical interest, such as the formation of globular clusters, the role of the external galactic field on

the evolution of their properties and the possibility of using the turnover of the GCLF as a standard candle calibrated on

the values of globular cluster systems in the Local Group for the determination of the distance of external galaxies (see e.g.

Jacoby et al. 1992).

The determination of the distances of external galaxies by means of the turnover of the GCLF relies on the assumed

constancy of the properties of the GCLF for galaxies of different structure and type which is quite surprising: in fact, unless one

advocates a scenario in which clusters in different galaxies have different initial conditions and different dynamical histories but

all leading to the same final state, such common characteristics imply that the process of formation of globular clusters does

not depend on the galactic environment and that evolutionary processes (tidal stripping, disk and bulge shocking, dynamical
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2 E.Vesperini

friction; see e.g. Meylan & Heggie 1997, for a recent review on the dynamics of globular clusters) have not played a relevant

role in determining the present properties of globular clusters.

While the present knowledge of the processes leading to the formation of globular clusters is still very uncertain (see e.g.

Fall & Rees 1985, Harris & Pudritz 1994, Vietri & Pesce 1995, Elmegreen & Efremov 1997) many theoretical investigations

(Aguilar, Hut & Ostriker 1988, Chernoff, Kochanek & Shapiro 1986, Chernoff & Shapiro 1987, Vesperini 1994, 1997, Okazaki

& Tosa 1995, Murali & Weinberg 1997, Gnedin & Ostriker 1997, Baumgardt 1998) have clearly shown that evolutionary

processes should have altered significantly the initial properties of globular clusters in galaxies like the Milky Way by causing

the complete disruption of a fraction of them and by altering the initial properties of the surviving ones. As it has been

shown in several works (see e.g. Caputo & Castellani 1984, Chernoff, Kochanek & Shapiro 1986, Vesperini 1994, 1997, Murali

& Weinberg 1997, Ostriker & Gnedin 1997, Baumgardt 1998) the inner regions of the Galaxy are those where evolutionary

effects are expected to be more efficient and where to look for traces of their effects. Indeed Chernoff & Djorgovski (1989) have

provided the first observational evidence of this by showing that the fraction of clusters in the post-core collapse phase increases

as the distance from the Galactic center decreases. In a subsequent work Bellazzini et al. (1996) have shown the existence

for clusters located in the inner regions of the Galaxy of a significant correlation between concentration and galactocentric

distance in the sense of more concentrated clusters being on average closer to the Galactic center. This is likely to result from

evolution (Vesperini 1994, 1997, Bellazzini et al. 1996) occuring faster for clusters located in the inner regions of the Galaxy

than for those in the outer ones.

The situation concerning differences between the GCLF of inner and outer clusters is far from being clear. In a recent

work Gnedin (1997) has carried out an analysis of the available observational data for clusters in the Galaxy, M31 and M87,

and his results seem to point to the existence of some differences between the GCLF of inner and outer clusters for all these

three galaxies: inner clusters tend to be brighter and to have smaller dispersions than outer clusters. Kavelaars & Hanes

(1997) have addressed the same issue for the Milky Way and M31 and their conclusion is that, while there is no significant

difference in the mean luminosity of inner and outer clusters, their distributions are actually different, the inner clusters being

well described by a Gaussian in the magnitude with a dispersion significantly smaller than that of outer clusters; as for M87,

Harris et al. (1998) in a recent analysis have not found any significant radial gradient in the properties of the GCLF for

clusters with masses M > 105M⊙ except for a possible trend for the dispersion of the GCLF of the innermost region of M87

that they have considered to be smaller than the dispersion of the GCLF of clusters in the outer regions of the galaxy. As

discussed in Gnedin (1997) the reason for the difference between his analysis and that by Kavelaars and Hanes could reside

in the different statistical methods adopted for deriving the parameters of the distribution. A trend for inner clusters to be

brighter than the outer ones was previously suggested by van den Bergh (1995) and Crampton et al. (1985) for clusters in the

Milky Way and in M31 respectively.

From a theoretical point of view, as we said above, this trend is consistent with that expected to result from evolutionary

processes, at least for some initial GCMFs, which are more efficient in the inner regions of the Galaxy where they can efficiently

disrupt low-mass clusters (see e.g. fig. 2 in Vesperini 1997). In Vesperini (1994, 1997) the evolution of the properties of a

system of globular clusters located in a model of the Milky Way under the effects of relaxation, disk shocking and, in an

approximate way, of dynamical friction, starting from three different initial GCMF, has been investigated. In all these cases

a trend for inner clusters to be more massive than outer clusters was obtained as a result of evolutionary processes, with the

extent of the difference depending on the initial GCMF chosen.

While in Vesperini (1994,1997), besides addressing some general issues on the evolution and the properties of the GCMF,

we investigated the origin of some observed correlations between structural properties of individual globular clusters and

between structural parameters of clusters and their position inside the host galaxy, in this work we will focus our attention on

and investigate in larger detail the evolution of the properties of the GCMF of a globular cluster system located in a model

for the Milky Way adopting some analytical formulae for the time evolution of the masses of individual clusters obtained by

the results of a large set of N-body simulations carried out by Vesperini & Heggie (1997).

We will adopt a log-normal distribution for the initial GCMF and we will consider a wide range of different initial

conditions largely spanning the space of the initial parameters (dispersion and mean) of the GCMF. Different functional

forms for the initial GCMF have also been studied to investigate the evolution of their shape and in particular to establish if

the current gaussian shape could result from an initial GCMF with a different functional form.

We will devote a section to the comparison of our results with observational data, but we point out that due to some

assumptions made in our analysis, which will be discussed in sect.2 together with the description of the method adopted for

our investigation, an exact comparison of our results with the available observational data is beyond the scope of our work.

The main goal of our analysis is that of providing general indications on the evolution of the properties of the GCMF, of

the spatial distribution and the fraction of the initial number of clusters surviving after one Hubble time. The evolution of

the shape of the GCMF for the whole sample of clusters and the possible development of differences between the GCMF of

clusters located in the inner and in the outer regions of the Galaxy will be thoroughly investigated paying particular attention

to the dependence of the final results on the initial conditions. The issue, raised in Vesperini (1997), of the possible existence

c© 0000 RAS, MNRAS 000, 000–000



Evolution of the mass function of the Galactic globular cluster system 3

of a dynamical “equilibrium” GCMF able to preserve its initial shape and parameters for one Hubble time through a subtle

balance between disruption of clusters and evolution of the masses of the surviving ones is further investigated.

The scheme of the paper is the following. In sect.2 the method adopted for our study is described; in section 3 we report

the main results of the investigation: after a preliminary qualitative discussion on the evolution of the GCMF in section 3.1, in

sections 3.2-3.6 we describe the results obtained not including the effects of disk shocking; in particular section 3.2 discusses

the possible evolutionary paths of the parameters of the GCMF depending on the initial conditions (see e.g. figure 3) and the

existence of a GCMF of dynamical equilibrium is shown and discussed in detail (see e.g. figure 4c), section 3.3 is focussed on

the dependence of the final GCMF on the distance from the Galactic center (see e.g. figure 10 and 11), in section 3.4 the time

evolution of some systems is followed in detail and some other aspects of the GCMF able to stay in dynamical equilibrium

are studied (see figure 13). Section 3.5 and 3.6 are devoted to the study of the fraction of surviving clusters and their spatial

distribution in the Galaxy respectively; in section 3.7 we discuss the results obtained including the effects of disk shocking.

In section 4 we describe the results obtained assuming a power-law initial GCMF and section 5 is devoted to the comparison

of our results with observational data. Summary and conclusions are in section 6.

2 METHOD

In order to calculate the evolution of the GCMF we need to know the time evolution of the masses of individual globular

clusters in the system. In this work we will adopt the analytical formulae obtained in Vesperini & Heggie (1997) which supply

the mass at any time t of a cluster with initial mass Mi and moving in a circular orbit at a distance Rg from the Galactic

center. These have been obtained by fitting the results of a large set of N-body simulations following the evolution of globular

clusters driven by internal relaxation, stellar evolution, disk shocking and including the effects of the tidal field of the Galaxy.

We summarize here for convenience the main assumptions made in the simulations carried out by Vesperini & Heggie (1997)

and we refer to that paper for further details.

(i) Clusters are assumed to move on circular orbits in a Keplerian potential determined by a point mass Mg equal to the

mass of the Galaxy inside the adopted galactocentric distance Rg . For the simulations including the effects of disk shocking,

it is assumed that orbits cross the galactic disk perpendicularly. The circular speed has been taken equal to vc = 220 km/s.

(ii) Disk shocking has been included according to the model described in Chernoff, Kochanek & Shapiro (1986) and the

same two-component disk model obtained by Chernoff et al. by a fit of the Bahcall’s (1984) determination of acceleration in

the solar neighbourhood has been adopted. This is an exponential isothermal disk model with scale heights equal to 175 pc

and 550 pc and scale length h = 3.5 Kpc.

(iii) An initial multi-mass King model with W0 = 7 has been adopted. A set of simulations starting with W0 = 5 has been

also carried out in Vesperini & Heggie (1997) and it was shown that the evolution of the total mass does not depend strongly

on the initial concentration of the cluster.

(iv) The initial stellar mass function has been taken equal to a power-law dN(m) = m−2.5dm between 0.1m⊙ and 15m⊙.

(v) Stellar evolution is modelled following the same model used in Chernoff & Weinberg (1990) and the mass lost by each

star is assumed to escape immediately from the cluster.

Fitting the results of N-body simulations not including the effects of disk shocking, Vesperini & Heggie (1997) have

obtained the following expression for the time evolution of the total mass of a cluster with initial mass Mi and galactocentric

distance Rg

M(t)

Mi

= 1 −
∆Mst.ev.

Mi

−
0.828

Fcw

t (1)

where t is time measured in Myr, ∆Mst.ev.

Mi
is the mass loss due to stellar evolution (see eq.[10] in Vesperini & Heggie 1997)

and Fcw is a parameter, introduced by Chernoff & Weinberg (1990), which is proportional to the relaxation time and defined

as

Fcw ≡
Mi

M⊙

Rg

Kpc

1

ln(N)

220km s−1

vc

(2)

where Mi and N are, respectively, the initial mass and the initial number of stars in the cluster, Rg is the distance from the

Galactic center and vc the circular velocity around the Galaxy.

From the simulations including disk shocking an expression analogous to eq.(1) has been derived but with the factor

0.828/Fcw replaced by the following factor λ (see Vesperini & Heggie 1997 for further details on the derivation)

log λ = 0.6931 − 1.46 log Rg − 1.134 log Fcw + 0.2916 log Fcw log Rg. (3)

A comparison of the characteristic cluster lifetime from eq.(1) with other estimates present in the literature has been

made in Vesperini & Heggie (1997). More recently in an analysis of the evolution of globular cluster systems Baumgardt
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4 E.Vesperini

(1998) has adopted a formula for the mass loss introduced by Wielen (1988) but with a new value for the numerical factor

present in the original expression obtained by fitting some numerical results present in the literature; for the initial conditions

considered in Vesperini & Heggie (1997) the cluster lifetime obtained by Baumgardt turns out to be 10 per cent longer than

that obtained by eq. (1) without considering the mass loss associated to stellar evolution (stellar evolution is not considered

in Baumgardt’s analysis) while if we include the effects of stellar evolution in the estimate of the cluster lifetime derived from

eq. (1), the lifetime obtained by Baumgardt is 30 per cent longer than ours.

As we have anticipated in the Introduction, in this investigation many different initial conditions for the GCMF of the

system have been investigated. For any system considered, 104 random values of Mi according to the chosen initial GCMF

have been calculated and a random value for the galactocentric distance from a distribution such that the number of cluster

per cubic Kpc is proportional to R−3.5
g has been assigned to each cluster with 1 Kpc < Rg < 20 Kpc. This functional form for

the number density profile is suggested by what is observed in our Galaxy between 4 Kpc < Rg < 20 Kpc where the sample

of observed clusters is likely to be complete (see e.g. Zinn 1985).

Once the initial conditions have been set, the GCMF at any time t can be easily calculated by means of eq. (1). In order

to consider the effects of dynamical friction, clusters whose timescale of orbital decay (see e.g. Binney & Tremaine 1987) is

less than t are removed from the sample at that time.

Our investigation will be focussed on initial conditions characterized by a log-normal initial GCMF; as we will see in the

following sections in most cases the gaussian shape is well preserved during the entire evolution until the final state at t = 15

Gyr. The median value, 〈log M〉, and the non-parametric estimate of the dispersion

σ = 0.7415(Q75 − Q25), (4)

where Q75 and Q25 are the 75th and 25th percentiles of the distribution from the final sample of surviving clusters, are the

parameters used throughout the paper in order to characterize the final GCMF.

3 RESULTS

3.1 Preliminary remarks on the evolution of the GCMF

Before discussing in detail the results obtained, we will make some preliminary qualitative considerations on the possible

evolutionary paths of the GCMF depending on the initial conditions chosen. In the following discussion we will assume a

log-normal initial GCMF.

We start by noting that, for a given initial value of the cluster mass, all evolutionary processes, with the exception of

mass loss associated to stellar evolution which depends only on the initial stellar mass function, are more efficient at smaller

distances from the Galactic center (see e.g. Vesperini 1997); on the other hand, at a given galactocentric distance, disruption

of clusters due to escape of stars through the tidal boundary is proportional to the relaxation time and thus it is more efficient

for low-mass clusters while the efficiency of dynamical friction is an increasing function of the mass of the cluster. This implies

that, while in any case inner regions are those where the effects of evolution are stronger, it is not obvious, a priori, in what

direction the difference between the initial and the final GCMF and the difference between the GCMF of inner and outer

clusters is to be driven by evolutionary processes; in fact, even though evolutionary processes always tend to decrease the

mass of individual globular clusters, this obviously does not imply that the final mean value of the GCMF will be smaller

than the initial one. Since a number of clusters will be disrupted before one Hubble time and will not be part of the final

system, depending on the balance between the evolution of the masses of surviving clusters and the distribution of masses of

those disrupted, the final mean value of the GCMF can be larger or smaller than the initial one.

For the initial conditions chosen in Vesperini (1997), as a result of disruption of inner low-mass clusters, the difference was

always in the sense of inner clusters to be on the average more massive than the outer ones, and the final mean value of the

whole sample of clusters was larger than the initial one but it is easily conceivable an initial GCMF dominated by high-mass

clusters whose evolution is dominated by the effects of dynamical friction and in which the final difference between inner and

outer clusters and the difference between the final and the initial mean value of the mass distribution is in the opposite sense.

As for the dispersion of the GCMF, one can anticipate that the effects of evolutionary processes is that of leading to a

decrease of this if the initial GCMF contains a significant fraction both of low-mass clusters, which are mainly affected by

tidal disruption, and of high-mass clusters significantly affected by dynamical friction: in this case dynamical friction and tidal

disruption deplete the tails of the initial GCMF and thus make the dispersion of the sample of surviving clusters smaller. On

the other hand the evolution of a distribution with a very small initial dispersion will be characterized by an increase of the

dispersion, due to an asymmetric diffusion driven by the different mass loss of clusters all approximately with the same initial

mass but located at different distances from the Galactic center.

We summarize in Table 1a the expected evolution of 〈log M〉 and σ under the effects of disruption by dynamical friction,

disruption by evaporation, and mass loss of individual clusters that do not suffer complete disruption, each one considered

separately from others. Depending on the relative efficiency of these three processes the GCMF can evolve in four different

c© 0000 RAS, MNRAS 000, 000–000



Evolution of the mass function of the Galactic globular cluster system 5

directions as indicated in Table 1b. We can thus divide the space of initial parameters in four regions according to the way

〈log M〉 and σ evolve and we note here that if there is a common point among these four regions this will define the initial

parameters of an “equilibrium” GCMF which will keep its initial parameters unaltered after one Hubble time.

3.2 Evolution of the GCMF

The set of initial values for the dispersion and mean value of the GCMF, σi and 〈log M〉i, considered in our investigation is

shown in figure 1a and the corresponding final values of σ, σf , and of 〈log M〉, 〈log M〉f , calculated at t = 15 Gyr (hereafter

by final value of any quantity we will mean that calculated at this time) are shown in figure 1b. The parameters to describe

the final GCMF are estimated as described in sect.2.

Figures 2a and 2b show the contour plots of (〈log M〉f −〈log M〉i) and (σf − σi) in the plane 〈log M〉i − σi from which it

is clear the dependence on the initial conditions of these quantities; figures 2c and 2d show the contour plots of 〈log M〉f and

σf in the same plane. In figure 3 we have plotted only the curves corresponding to 〈log M〉f − 〈log M〉i = 0 and σf − σi = 0

which divide the plane of initial parameters in the four regions described qualitatively in section 3.1 (see Table 1b).

For low values of σi the evolution is toward larger final dispersions, while as σi increases the effects of evolution drive

the system toward values of the dispersion smaller than the initial ones; the transition occurs approximately at σi ≃ 0.65. As

for 〈log M〉, for all the systems with 〈log M〉i > 5.2 disruption by dynamical friction of high-mass clusters and mass loss of

clusters without complete disruption are the dominant processes and thus 〈log M〉f < 〈log M〉i; for 〈log M〉i < 5.2, 〈log M〉f
can be smaller than 〈log M〉i if the process of mass loss of clusters without complete disruption dominates or larger than

〈log M〉i if disruption by complete evaporation of low-mass clusters is the most important process.

The intersection of the two curves, as anticipated in section 3.1, corresponds to the initial (and final) parameters of an

equilibrium GCMF; this particular GCMF (hereafter E-GCMF), as we will show in detail below, has the very interesting

property of maintaining its initial shape and parameters unchanged during the entire evolution even though a significant

number of clusters are disrupted because of evaporation or dynamical friction.

Figures 4a-b show the initial and the final GCMF with the corresponding gaussian fit for two typical cases of evolution

of the GCMF while figure 4c shows the evolution of the E-GCMF.

It is important to note from this figure that all the final GCMFs shown are still well described by a gaussian distribution.

This result, as pointed out in Vesperini (1997), is far from being obvious given the large number of clusters undergoing

disruption during one Hubble time in most of the cases considered.

The qualitative scenario anticipated in section 3.1 is now clearly shown in figure 4: in GCMFs initially dominated by

low-mass clusters the low-mass tail is significantly depleted and the final value of 〈log M〉 is larger than the initial one (figure

4a); for initial GCMFs dominated by high-mass clusters the evolution is in the opposite direction as the high-mass tail is that

more affected by evolutionary processes and the final value of 〈log M〉 is smaller than the initial one (figure 4b). Figure 4c

shows the E-GCMF: while, as it is evident from the figure, the final number of clusters in the system is significantly smaller

than the initial one (about 52 per cent of the clusters initially in the system are disrupted) the shape and the parameters of the

GCMF are almost exactly preserved after one Hubble time through the balance between disruption of clusters and evolution

of the masses of those which survive. The initial dispersion and mean value of the GCMF having this interesting characteristic

are σ ≃ 0.64 and 〈log M〉 ≃ 4.93. The agreement with the values for the equilibrium GCMF obtained by Vesperini (1997)

(σ ≃ 0.5 and 〈log M〉 = 5.0; see his GAU2 simulation) is quite remarkable given the differences in the method adopted for

the investigation in that and in the present work and the fact that in Vesperini (1997) no systematic investigation of different

initial conditions were done to locate the exact parameters of the equilibrium GCMF. Figure 5 shows the distribution of log Mi

of those clusters in the E-GCMF which at t = 15 Gyr have log Mf ≃ 〈log M〉f and it clearly illustrates that the equilibrium

is preserved dynamically.

3.3 Dependence of the GCMF on the galactocentric distance

As we discussed in the introduction, investigation of the possible differences between the properties of clusters located closer

to the Galactic center and the properties of those in the outer regions of the Galaxy is of particular interest because it can

provide important clues on the actual role of evolutionary processes in determining the present properties of globular clusters

and on the reliability of the distances of external galaxies estimated by using the turnover magnitude of the GCLF of their

globular cluster systems.

In our investigation we have classified as inner clusters all those at a distance from the Galactic center, Rg, smaller than

8 Kpc and as outer clusters all those having Rg > 8 Kpc.

First we focus our attention on the difference, ∆〈log M〉in−out = 〈log M〉inner − 〈log M〉outer, between the mean value of

the GCMF of inner clusters, 〈log M〉inner , and that of the GCMF of outer clusters , 〈log M〉outer.

Figure 6 shows the plot of ∆〈log M〉in−out versus 〈log M〉i. Depending on the initial conditions, ∆〈log M〉in−out can be

positive or negative: all systems with 〈log M〉i < 4.9 − 5.1, the exact value depending on σi, have, after one Hubble time,

c© 0000 RAS, MNRAS 000, 000–000



6 E.Vesperini

〈log M〉outer < 〈log M〉inner while the opposite trend is established by evolutionary processes for systems initially dominated

by massive clusters. The qualitative explanation for the observed behaviour of ∆〈log M〉in−out is similar to that discussed for

the difference between the final and the initial value of 〈log M〉 for the whole sample of clusters and in fact, as shown in figure

7, there is an evident correlation between ∆〈log M〉in−out and 〈log M〉f −〈log M〉i : the reason for this is clear if one considers

that the properties of outer clusters are in general expected to resemble those of the initial system while inner clusters are

likely to be those mainly responsible for the variation of the properties of the cluster system since they are more affected by

evolutionary processes.

We point out that most of the systems considered evolve significantly, undergoing a strong depletion of their initial

number of clusters, but in many cases the difference ∆〈log M〉in−out induced by evolutionary processes is not very large and

it is easily conceivable that its observational detection can be difficult. We will return to this point below in this section and

in section 5 when we will compare our results to observational data for the Milky Way.

For most of the initial conditions considered in this study, evolutionary processes tend to make the dispersion of the sample

of inner clusters smaller than that of outer clusters and this is consistent with the results of the analysis of observational data

for the Galaxy, M31 and M87 by Gnedin (1997) and Kavelaars & Hanes (1997). Only for systems initially characterized by a

low dispersion (σi < 0.5) the opposite trend is established in the course of evolution as it is clear from figure 8 which shows

the plot of ∆σin−out versus σi. This result can be easily interpreted if, as already discussed in section 3.1, one considers that

for a GCMF with initial dispersion large enough, evolutionary processes, more efficient in the inner regions, tend to deplete

more efficiently the low-mass tail (by tidal disruption) and the high-mass tail (by dynamical friction) of the initial distribution

thus causing it to become narrower as evolution goes on.

While the above analysis based on the division of a cluster population in two subpopulations of inner and outer clusters

allows to easily obtain a general quantitative measure of the radial variation of the properties of a GCMF, it is also important

to study some cases more in detail and to address the issue of the radial variation of the GCMF by making a finer division of

clusters according to their distance from the Galactic center and studying the properties of GCMF in more than two radial

bins. Thus we discuss now in some detail to what extent a correlation between the galactocentric distance Rg and the mean

mass 〈log M〉Rg and dispersion σRg of clusters located in spherical shells with limits Rg −∆Rg and Rg +∆Rg can be produced

by evolutionary process. No significant correlation between Rg and 〈log M〉Rg is observed in many galaxies (see e.g. Harris

et al. 1998, Forbes, Brodie & Hucra 1997, Forbes et al. 1996a,b), and this result is often interpreted as an indication that

evolutionary processes do not play a relevant role in the evolution of globular cluster systems.

We will show that a strong effect of evolutionary processes does not necessarily imply the formation of a strong radial

gradient of 〈log M〉Rg .

We focus our attention on three different initial log-normal GCMF among those considered in section 3.2:

(a) 〈log M〉i = 4.6, σi = 0.9;

(b) 〈log M〉i = 5, σi = 0.7;

(c) 〈log M〉i = 5.8, σi = 0.9.

Initial conditions (a) and (c) have been chosen because they are among those more significantly affected by evolutionary

processes since they contain many low-mass and many high-mass clusters respectively, while (b), besides being a system

undergoing a significant disruption and decrease in the total number of clusters, is an initial condition which could be similar

to that of the Galactic globular cluster system (see sect. 5). As shown in fig.4 (panels a and b) where the initial and the final

GCMF corresponding to the initial conditions (a) and (c) are plotted (the evolution of the system (b) is not shown in figure 4

but the initial conditions and the evolution are very similar to those shown in fig. 4c for the E-GCMF), in all these three cases

evolutionary processes play a significant role leading to the disruption of a significant number of globular clusters. Figure 9, in

which we have plotted the initial and the final histogram of Rg for these three systems, clearly shows the depletion of clusters

in the inner regions of the Galaxy.

Figure 10 shows the plot of 〈log M〉Rg and σRg versus Rg. 〈log M〉Rg and σRg have been calculated in five different radial

bins each one including clusters between Rg − 1.9 Kpc and Rg + 1.9 Kpc with Rg = 2.9, 6.7, 10.5, 14.3, 18.1. It is evident

that a significant disruption of clusters is not necessarily followed by the formation of a strong radial trend of 〈log M〉Rg ;

as we pointed out above, initial conditions (a) and (c) are two rather extreme cases unlikely to be relevant for real globular

cluster systems and they have been chosen because they are probably those able to give rise to the strongest radial gradient

of 〈log M〉Rg . Initial condition (b), which is likely to be a more realistic choice for the initial GCMF, does not have a strong

radial gradient of 〈log M〉Rg . Moreover we point out that the detection of any radial gradient of 〈log M〉 in globular cluster

systems of external distant galaxies is likely to be more difficult if the sample of clusters observed in distant galaxies does not

include the low-mass tail of the GCMF. This is clear from figure 11 where we have plotted 〈log M〉Rg versus Rg for the case

(a) as in figure 10 but excluding the low-mass tail of the GCMF beyond 1σ: the trend present when the complete population

of clusters is considered, disappears when the low-mass tail of the distribution is excluded. Finally we note that, since we have

considered only circular orbits, we expect any radial gradient in our theoretical sample to be stronger than the corresponding

one derived by observational data where the current values of the galactocentric distances do not necessarily provide an exact

indication of the galactic tidal field affecting clusters; this, of course, does not mean that no gradient at all is expected when
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non-circular orbits are considered and in fact Murali & Weinberg (1997) and Baumgardt (1998), who include non-circular

orbits in their analysis, find that evolutionary processes give rise to a radial trend in the properties of the mass distribution

with clusters on more eccentric orbits being in general those more easily disrupted. The situation is even more unfavourable

to the detection of a radial gradient when, as in the case of globular clusters in external galaxies, observational data provide

projected distances from the galactic center.

In conclusion while in principle evolutionary processes are expected to induce a radial gradient in the mean mass of

globular clusters, in practice the extent of this depends significantly on initial conditions and in some cases, even though

evolutionary processes are very efficient and a significant number of clusters are disrupted, the radial gradient of 〈log M〉 is

very weak.

3.4 Time evolution of the GCMF

While in the previous sections we have focussed our attention on the final properties of the GCMF and investigated their

dependence on the initial conditions, in this section we will study the time evolution of the parameters of the GCMF by

showing and discussing some typical “paths” followed by the properties of the GCMF from t = 0 to t = 15 Gyr.

The rate of evolution of the GCMF properties is determined by the rate of disruption of clusters and the rate of change

of the masses of those which survive. Mass loss by stellar evolution depends on time and it is significant only for t < 1Gyr

(see e.g. Vesperini & Heggie 1997) when more massive stars evolve out of the main sequence; as for disruption by evaporation

and by dynamical friction, since, for a given mass, inner clusters are those expected to be more affected by these evolutionary

processes, the rate of evolution of the GCMF is to depend on the number of clusters closer to the Galactic center; as time goes

on and the “weaker” clusters closer to the Galactic center are disrupted by evaporation or dynamical friction, the number of

clusters liable to the effects of these processes on relatively short time scales decreases and eventually the rate of change in

GCMF parameters slows down.

Figures 12a-c , where we have plotted the time evolution of 〈log M〉, of σ and of the ratio of the total number of clusters

in the system at time t to the total initial number of clusters clearly show this effect: after a phase of significant change in

〈log M〉 and σ, as mass loss by stellar evolution ceases to be important and the number of clusters in the inner regions of the

Galaxy has decreased, the evolution of the parameters of the GCMF slows down significantly.

It is important to note the difference between the equilibrium reached due to a more “favourable” spatial distribution and

the more interesting E-GCMF discussed in section 3.2 which remains unchanged since the beginning in dynamical equilibrium

independent on the underlying spatial distribution.

Figure 13 further clarifies this point by clearly showing the existence of a particular GCMF able to stay in equilibrium

for one Hubble time. The trajectories shown in figure 13 are determined in the following way: for a given initial condition an

arrow joins the initial conditions in the plane σ-〈log M〉 to the corresponding values after 15 Gyr, these final values of σ and

〈log M〉 are then used as initial conditions for the following step in which, again, an arrow joins these new initial conditions

to the corresponding final values and so on. It is important to realize that the trajectory obtained in this way is not a real

trajectory in the plane σ-〈log M〉 since each time a new step is done, the starting point of the new step is the final state of the

previous one but the underlying changes in the spatial distribution of clusters in the Galaxy and in the stellar mass function

of individual globular clusters, which cause the slowing down of the evolution, are eliminated; thus the system restarts with

the full spatial distribution, each cluster loses mass by stellar evolution according to the complete initial stellar mass function

and a new impulse is given to the motion in the σ-〈log M〉. In this sense the E-GCMF is an attractor in the plane σ-〈log M〉

since it is the only GCMF which, taken as an initial condition, does not need any particular spatial distribution and the

decrease of mass loss associated to stellar evolution to slow the rate at which its parameters evolve; as discussed above, these

preserve their initial values unaltered for a Hubble time due to the balance between disruption of clusters and evolution of

the masses of those which survive.

3.5 Fraction of surviving clusters

One interesting issue concerning the Galactic globular cluster system is the relationship between their present number, their

present total mass and the corresponding initial values of these quantities. As expected, the fraction of surviving clusters and

the ratio of the total present mass of clusters to the initial one depend significantly on the initial conditions. Figures 14a and

14b show the contour plot of the ratio of the total number of clusters surviving after 15 Gyr to the total initial number of

clusters, FN , and of the ratio of the total mass of all surviving clusters after 15 Gyr to the total initial mass of all clusters,

FM , in the plane σi-〈log M〉i.

For a given value of σi, FN (FM has a similar behaviour) has a maximum for the value of 〈log M〉i, 〈log M〉max, corre-

sponding to the most “robust” initial GCMF which is that having the minimum number of clusters undergoing disruption

by evaporation (low-mass clusters) or by dynamical friction (high-mass clusters); the increasing number of low-mass clusters
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(easily disrupted by evaporation), for 〈log M〉i < 〈log M〉max and of high-mass clusters (undergoing disruption by dynamical

friction) for 〈log M〉i > 〈log M〉max explains the observed decrease of FN .

Figure 14 gives an indication on the total number of clusters disrupted in one Hubble time but it is also interesting to

estimate the current disruption rate, FD, defined as the fraction of the number of clusters at t = 15 Gyr undergoing disruption

in the next 1 Gyr

FD =
Ngc(15) − Ngc(16)

Ngc(15)
(5)

where Ngc(t) indicates the total number of clusters at time t (in Gyr). Hut & Djorgovski (1992) by an analysis of the

distribution of the half-mass relaxation times of Galactic clusters have estimated FD ≃ 0.038 ± 0.02. Figure 15 shows the

contour plot of FD in the plane σi-〈log M〉i. It is interesting to note that for the values of σi and of 〈log M〉i which are likely

to be relevant for the Galactic globular cluster system (〈log M〉 ≃ 5 and σ ≃ 0.7) the values of FD we obtain are very close

to that obtained by Hut & Djorgovski (1992).

3.6 Spatial distribution

In section 3.4 we have already made some comments on the evolution of the spatial distribution of clusters in the Galaxy,

pointing out that the larger efficiency of evolutionary processes in the inner regions of the Galaxy tends to flatten the profile

of number density of clusters close to the galactic center. In the outer regions the fraction of disrupted clusters is in most cases

negligible and the initial power-law profile with index equal to -3.5 is preserved. In order to provide a quantitative measure

of the flattening in the density profile acquired during the evolution as a function of the initial conditions we have calculated

the core radius Rc by fitting the final number density profile for all the cases investigated with the following function (see,

e.g. Djorgovski & Meylan 1994)

n(Rg) = A (1 + Rg/Rc)
−3.5 (6)

We note that for the initial conditions n(Rg) ∝ R−3.5
g between Rg = 1 Kpc and Rg = 20 Kpc a fit of the initial number

density by eq. (6) results in a very small core radius (Rc ≃ 0.1 Kpc).

The contour plot of Rc in the plane σi-〈log M〉i is shown in fig.16. In all the cases investigated the spatial distribution

tend to flatten in the inner regions of the Galaxy and the effect is stronger (larger values of Rc) for initial conditions containing

many low-mass clusters (efficiently disrupted by evaporation) or many high-mass clusters (efficiently disrupted by dynamical

friction).

3.7 Inclusion of disk shocking

All the simulations discussed in the previous section do not include the effects of disk shocking. In the light of the results

obtained by Vesperini & Heggie (1997) concerning the difference between the time evolution of the total mass with and without

disk shocking, it is obvious to expect some quantitative differences in the final results once the effects of disk shocking are

included but all the general conclusions concerning the trends and the dependence of the final results on the initial conditions,

the existence of an equilibrium GCMF, the definition of different regions in the plane of initial conditions are unaltered.

Since, as discussed in Vesperini & Heggie (1997), the analytical expression providing the time evolution of the total mass

of a cluster as a function of its galactocentric distance and its initial mass is more approximate and is valid for a smaller range

of initial parameters than the corresponding one without the effects of disk shocking, we have adopted this formula only for

clusters with Rg < 8 Kpc assuming the effects of disk shocking at larger galactocentric distances to be negligible.

Figures 17a-d show the plots of the final values of 〈log M〉, σ, FN and FD from the runs not including disk shocking versus

the corresponding values (〈log M〉f,ds,σf,ds,FN,ds, FD,ds) obtained from the simulations including disk shocking. As expected

in all cases the number of surviving clusters is smaller when disk shocking is included but FN −FN,ds is never larger than 0.2FN

and in most cases is smaller than 0.1FN . As for 〈log M〉 and σ we obtain −0.015 < (〈log M〉f,ds −〈log M〉f )/〈log M〉f < 0.013

and −0.12 < (σf,ds − σf )/σf < 0.07.

For what concerns the parameters of the equilibrium GCMF we obtain 〈log M〉i ≃ 5.03, σ ≃ 0.66 quite close to the

corresponding values obtained without disk shocking (〈log M〉i ≃ 4.93, σ ≃ 0.64).

4 DIFFERENT INITIAL GCMF

A complete theory of the process of globular cluster formation is still lacking and the only support for a log-normal initial

GCMF comes from the observations of the present GCMF. While assuming such a functional form also for the initial GCMF

is a reasonable guess it is interesting to consider other possibilities.

In some works it has been suggested that the initial GCMF could be a power-law in M (see e.g. Harris & Pudritz (1994),
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Elmegreen & Efremov (1997) and also Elemegreen & Efremov (1997) for references to past observational and theoretical

analysis on this issue) and observations of the luminosity function of young clusters in interacting galaxies (see e.g. Whitmore

& Schweizer (1995) for NGC 4038/39) show a GCLF which is a power law in L (but see Fritze-v.Alvensleben (1998), for a

recent interesting analysis determining the intrinsic mass distribution of young clusters in NGC 4038/39 and showing this to

be a log-normal distribution; see also Meurer (1995)). Thus we have considered this possibility and investigated the evolution

of systems with an initial GCMF given by

f(M) = AM−α for Mlow < M < Mup (7)

with α = 2, 1.7, 1.5, Mup(M⊙) = 106.5 and Mlow(M⊙) = 103, 103.5, 104, 104.5, 105, 105.5. In agreement with the results

of previous analysis (see e.g. Okazaki & Tosa 1995, Vesperini 1994, 1997, Baumgardt 1998) we obtain that in all these cases

evolutionary processes tend to modify the initial power-law GCMF in a bell-shaped GCMF when binned in log M . In figure

18 the initial and the final GCMF for the case (Mlow = 104M⊙, α = 2) are shown: it is evident that evolutionary processes

are very efficient in modifying the initial GCMF into a log-normal distribution. As Mlow increases the evolution of the mass of

individual surviving clusters occurs on longer timescales and thus the process of asymmetric diffusion (see section 3.1) which

is responsible for the formation of the low-mass tail in the final GCMF is slower; consequently, even though the tendency of

the GCMF to evolve toward a bell-shaped distribution in log M persists, the deviations of the GCMF at t = 15 Gyr from a

log-normal distribution increases for larger values of Mlow.

Figures 19a-b show the plots of 〈log M〉 and σ of the final GCMF (defined as described in sect. 2 also for the cases in

which the final GCMF deviates significantly from a log-normal distribution) versus log Mlow for the values of α considered. It

is interesting to note the existence of two regimes: for small values of Mlow (Mlow < 104.5M⊙), the final value of 〈log M〉 and

σ do not depend on Mlow and they are determined by evolutionary processes and by the value of α; for Mlow > 104.5M⊙,

〈log M〉 and σ are essentially determined by the value of Mlow and 〈log M〉 keeps memory of the initial value of Mlow (in fact

it is approximately equal to log Mlow).

5 COMPARISON WITH OBSERVATIONAL DATA

As we discussed in the introduction a detailed comparison of our theoretical results with observational data is beyond the

scope of this work both because of some limitations in our analysis and because of the uncertainties in the initial conditions

to adopt for the Galactic globular cluster system. Nevertheless, while keeping these caveats in mind, it is interesting to see

to what extent the predictions of our analysis are in general consistent with some of the observed properties of the Galactic

globular cluster system.

Real initial conditions of the Galactic globular cluster system are unknown but a reasonable assumption is that of looking

at the properties of clusters in the outer regions of the Galaxy, where evolutionary processes act on longer timescales, and

adopting these as initial conditions for the entire cluster system (see also Fall & Malkan 1978 for an interesting study aimed to

obtain information on the initial distribution of globular cluster core properties from the current observational data). From the

estimate of the mean magnitude and dispersion of the current GCLF for galactic halo clusters with Rg > 8 Kpc obtained by

Gnedin (1997) (see his table 1), assuming M/LV = 2, the following values are obtained: 〈log M〉i = 5.0, σi = 0.7. Assuming an

initial log-normal GCMF with these parameters we have calculated some quantities that can be compared with observational

data.

The results of this calculation, summarized in Table 2, are in general in good agreement with the observational data.

In agreement with the analysis by Kavelaars & Hanes (1997), Gnedin (1997) and Ostriker & Gnedin (1997), we find that

the dispersion of inner clusters is smaller than that of outer clusters; as for the difference between 〈log M〉 of inner and outer

we find 〈log M〉inner > 〈log M〉outer in agreement with the conclusion of Gnedin (1997) and Ostriker & Gnedin (1997).

According to our results the current number of clusters would be about half (FN = 0.54 if disk shocking is not considered

and FN = 0.48 taking into account the effects of disk shocking) of the total initial number of clusters and the total current

mass would be about 40 per cent of the total initial mass. This implies that the total initial number of clusters in our Galaxy

would be about 300 and their total initial mass about 9 × 107M⊙ (where we have adopted M/LV = 2 and the values of the

total visual magnitude of Galactic clusters tabulated in Djorgovski 1993) from which it follows that the contribution to the

halo mass from disrupted clusters and stars escaped from survived clusters would be about 5.5×107M⊙ a value very far from

being able to account for the entire halo mass.

Figure 20 shows the histogram of the ratio of the current to initial masses of surviving clusters (the effects of disk

shocking are considered) providing us with an interesting information on the relationship between the initial and the final

state of surviving clusters. The bin 0.9 < Mf/Mi < 1 is empty since all clusters lose about 18 per cent of their initial mass due

to the mass loss associated to the stellar evolution; this means that clusters from which no star escapes have Mf/Mi ≃ 0.82

and they are in the bin 0.8 < Mf/Mi < 0.9. It is interesting to note that, even though the masses of many surviving clusters

are quite close to their initial values, there are several clusters which have lost a significant fraction of their initial mass; for
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about 40 per cent of the surviving clusters the current mass is less than half the initial mass. As discussed in Vesperini &

Heggie (1997) the stellar IMF of these clusters evolves significantly and a significant fraction of their current mass is expected

to be in white dwarfs and thus they are object of great interest; unfortunately most of them are likely to be located in the

inner regions of the Galaxy and they are challenging targets for observations.

We conclude this section discussing the issue of the distribution of the disruption timescale td(t), defined as the time

necessary for the complete disruption of a cluster at a time t after its formation.

In a recent investigation Gnedin & Ostriker (1997) have addressed this point and have estimated the destruction rate for

119 Galactic globular clusters taking into account the current observed properties of the clusters considered.

As discussed in detail in Gnedin & Ostriker (1997), assuming that all clusters were formed at the same time t0 ≃ 0 the

number of clusters surviving at time t is equal to the number of clusters for which the initial value of td was larger than t and

the current distribution of disruption timescales is connected to the initial one by the simple relation f(td, tH) = fi(td + tH),

where fi denotes the initial distribution of the disruption timescales.

In figure 21a we show the histogram of log(td(tH)/tH) which we have obtained for the sample of clusters surviving at

tH from an initial population with a GCMF equal to that adopted above in this section for the comparison of our data

with observational data. The effects of stellar evolution, disk shocking, two-body relaxation and dynamical friction have been

considered and, for ease of later comparison with the results of the analysis of Gnedin & Ostriker, the Hubble time has been

taken equal to tH = 10 Gyr.

If, as suggested by Gnedin & Ostriker (1997), we make the hypothesis that the initial distribution of td is a power-law,

fi(td) ∼ t−q

d , from the median value of td in our sample we estimate q ≃ 1.6 which falls in the range of the values obtained

by Gnedin & Ostriker and as shown in figure 21a (dashed line) this distribution fits fairly well the data. On the other hand,

since in our analysis we know the real initial conditions we can calculate the initial distribution of td and verify the hyopthesis

made. In figure 21b the distribution of td(t = 0) is shown and it is evident that the initial distribution is not a power-law, but

it is well fitted by a log-normal distribution; as expected, adopting this functional form for fi(td) a much better fit is obtained

for f(td, tH) (solid line in figure 21a).

We conclude emphasizing that much caution is needed in drawing any conclusion on the initial number and initial

properties of clusters on the basis of the current distribution of disruption times; as shown in fig.22, in fact, the differences in

f(td, tH) derived from three very different initial populations can be quite small and even a small uncertainty in the estimates

of the parameters of the current distribution of timescales, or in the timescales themselves, can lead to a large error in the

estimate of the parameters of the initial population of clusters.

6 SUMMARY AND CONCLUSIONS

In this work we have investigated the evolution of the mass function of a globular cluster system located in a model for the

Milky Way. The effects of stellar evolution, two-body relaxation, disk shocking, dynamical friction and the presence of the

tidal field of the Galaxy have been taken into account in the evolution of the mass of individual globular clusters in the system

which is calculated on the basis of the results of the N-body simulations carried out by Vesperini & Heggie (1997).

A log-normal and a power-law initial GCMF have been considered. The main effort has been devoted to the investigation

of systems starting with an initial log-normal GCMF spanning a wide range of values of the mean value and the dispersion of

the initial distribution. The gaussian shape has been shown to be preserved very well during the entire evolution until t = 15

Gyr while for systems in which the initial GCMF is a power-law a bell-shaped GCMF resembling a Gaussian in log M tends

to be established in the course of evolution.

Depending on the initial GCMF parameters, the mean value of the GCMF, 〈log M〉, can increase or decrease during the

evolution according to whether the dominant process is that of disruption of low-mass clusters by evaporation of stars through

the tidal boundary (for initial GCMF dominated by low-mass clusters) or that of disruption by dynamical friction of high-

mass clusters (for initial GCMF dominated by high-mass clusters). The regions in the space of initial parameters 〈log M〉i-σi

corresponding to these two different regimes as well as the corresponding regions for the evolution of the dispersion σ has

been shown.

The differences between the final values of 〈log M〉, ∆〈log M〉in−out, and σ, ∆σin−out, of inner (Rg < 8 Kpc) and outer

clusters (Rg > 8 Kpc) have been investigated. Depending on the dominant evolutionary process ( disruption of low-mass

clusters or dynamical friction) ∆〈log M〉in−out can be larger or smaller than zero. As for ∆σin−out, in most cases considered

evolutionary processes tend to make the dispersion of inner clusters smaller than that of outer clusters. The formation of a

gradient of 〈log M〉 and σ with the galactocentric distance due to evolutionary processes has been investigated. The direction

of the gradient of 〈log M〉 depends on the initial GCMF: an increasing 〈log M〉 as Rg increases is common for systems initially

containing many high-mass clusters while the opposite trend is typical of systems initially dominated by low-mass clusters. It

has been shown that a significant effect of evolutionary processes does not necessarily imply the formation of a strong radial

trend of 〈log M〉.
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For most initial conditions considered, and in particular for those likely to be relevant for real systems, evolutionary

processes give rise to a trend for σ to decrease at smaller galactocentric distances.

The existence of a particular GCMF able to stay in dynamical equilibrium keeping its initial shape and parameters

unaltered during the entire evolution by means a subtle balance of disruption of clusters and evolution of the masses of those

surviving, first suggested by Vesperini (1997), has been confirmed.

The initial number density distribution of clusters in the Galaxy has been taken proportional to R−3.5
g and it has been

shown that evolutionary processes tend to flatten this distribution close to the Galactic center. The extent of the flattening

depends on the initial conditions and it has been estimated quantitatively by calculating the final core radius, Rc, of the

distribution of survived clusters in the Galaxy. The range spanned by Rc for the initial conditions considered in our work is

0.4 − 2 Kpc.

The fraction of the total initial number of clusters surviving after one Hubble time, FN , the fraction of the total initial

mass of all the clusters in the system, FM , and the current cluster disruption rate (defined as the fraction of the number of

clusters at t = 15 Gyr undergoing disruption within the next 1 Gyr), have been calculated and their dependence on the initial

conditions investigated.

The exact comparison of our results with observational data is beyond the scope of our work both because of some

simplifying assumptions we have made and because of the current lack of a precise knowledge of the initial properties of the

Galactic globular cluster system; nevertheless assuming the current properties of outer clusters to be similar to the initial

ones of the entire system we have calculated the values predicted from our analysis for some of the observed properties of the

Galactic globular cluster system and we have found them to be in general in good agreement with the observational values.

As for the fraction of the total initial number of cluster surviving at the current epoch, FN , and the fraction of the total

initial mass of all the globular clusters, FM , the values predicted for the Galactic system are FN ≃ 0.54 (0.48 if the effects of

disk shocking are included) and FM ≃ 0.41 (0.38 with disk shocking). These values imply that the initial population of Galactic

globular clusters would consist of about 300 clusters with a total mass of about 9 × 107M⊙ and that the contribution to the

halo mass from disrupted clusters and stars escaped from survived clusters would be about 5.5 × 107M⊙. The distribution

of clusters disruption times has been calculated and shown to be similar to the distribution of disruption times for a sample

of 119 Galactic clusters obtained by Gnedin & Ostriker (1997); we have shown that very different initial distributions of

disruption timescales can lead to very similar final distributions and thus much caution is necessary in drawing any conclusion

on the initial population of clusters from the present distribution of disruption timescales.
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Table 1a

Effects of evolutionary processes
on the parameters of the mass function of a globular cluster system

# process σ < log M >

I disruption by evaporation ↓ ↑
II disruption by dynamical friction ↓ ↓
III mass loss of individual surviving clusters ↑ ↓

A log-normal GCMF with dispersion σ and mean value < log M > is assumed.
The third and the fourth column indicate the effect on σ and < log M > respectively
if the corresponding process indicated in the second column were the only one
determining the evolution of the GCMF.

Table 1b

Evolution of the parameters of the GCMF

< log M >f − < log M >i σf − σi balance of evolutionary effects

< 0 < 0 IIM + IIIM > IM ; Iσ + IIσ > IIIσ

< 0 > 0 IIM + IIIM > IM ; Iσ + IIσ < IIIσ

> 0 < 0 IIM + IIIM < IM ; Iσ + IIσ > IIIσ

> 0 > 0 IIM + IIIM < IM ; Iσ + IIσ < IIIσ

I, II, III indicate the effect on the dispersion (subscript σ)
and on the mean value (subscript < log M >) of the GCMF
of the three evolutionary processes as indicated in Table 1a

c© 0000 RAS, MNRAS 000, 000–000
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Table 2

Comparison with observational data

Observ. Theorno−ds Theords

〈log M〉 5.10 ± 0.06 4.99 5.02
σ 0.56 ± 0.04 0.65 0.67

∆〈log M〉in−out 0.16 ± 0.09 0.07 0.12
∆σin−out −0.09 ± 0.06 -0.07 -0.06

FD 0.038 ± 0.02 0.036 0.036
FN − 0.54 0.48
FM − 0.41 0.38

Observational values of 〈log M〉, σ are from Gnedin (1997) (assuming M/LV = 2),
∆〈log M〉in−out and ∆σin−out are taken from Ostriker & Gnedin (1997).
The observational value of FD is taken from Hut & Djorgovski (1992).
Theorno−ds indicates the theoretical values estimated without the
effects of disk shocking.
Theords indicates the theoretical values estimated with the
effects of disk shocking.

c© 0000 RAS, MNRAS 000, 000–000
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FIGURE CAPTIONS

Figure 1 (a) Dispersion σi and mean value of log M , 〈log M〉i , of the initial log-normal GCMFs investigated in this paper;

(b) final (at t = 15 Gyr) values of σ, σf , and of 〈log M〉, 〈log M〉f , from the set of initial conditions shown in (a).

Figure 2 Contour plots in the plane σi − 〈log M〉i of 〈log M〉f − 〈log M〉i (a), σf − σi (b), 〈log M〉f (c), σf (d).

Figure 3 Initial values of σi and 〈log M〉i for which σf = σi (dashed line) and initial values of σi and 〈log M〉i for which

〈log M〉f = 〈log M〉i (solid line). These two lines divide the space of initial conditions in four regions, each one characterized

by a different evolution of the parameters of the GCMF (see discussion in the text). The point of intersection of the two lines

corresponds to an ”equilibrium” initial GCMF whose parameters do not evolve even though a significant number of clusters

are disrupted in a Hubble time (see text).

Figure 4 Initial (dashed lines) and final (dots and solid lines) GCMF for (a) σi = 0.9, 〈log M〉i = 4.6, (b) σi = 0.9,

〈log M〉i = 5.8, (c) σi = 0.64,〈log M〉i = 4.93. Dots show the real GCMF obtained at t = 15 Gyr while solid lines show the

gaussian distributions with mean value and dipersion estimated from the sample of surviving clusters as discussed in sect.2.

Figure 5 Distribution of the initial values of the mass of those clusters which have log M at t = 15 Gyr approximately equal

to 〈log M〉f (in the range 〈log M〉f ± 0.03). The initial GCMF is a log-normal distribution with σ = 0.64 and 〈log M〉 = 4.93

(E-GCMF see text).

Figure 6 Difference, ∆〈log M〉in−out between the final value of 〈log M〉 of inner clusters (Rg < 8 Kpc) and that of outer

clusters (Rg > 8 Kpc) versus the initial mean value of the GCMF.

Figure 7 ∆〈log M〉in−out versus the difference between the final and the initial value of 〈log M〉 for all clusters.

Figure 8 ∆σin−out versus the initial dispersion of the GCMF σi.

Figure 9 Initial (solid line) and final histogram of Rg for three different initial GCMF: σi = 0.9, 〈log M〉i = 4.6 (dotted line);

σi = 0.7, 〈log M〉i = 5 (short-dashed line); σi = 0.9, 〈log M〉i = 5.8 (long-dashed line).

Figure 10 (a) 〈log M〉 at t = 15 Gyr for clusters in five radial bins versus galactocentric distance of the bin for the following

initial conditions σi = 0.9, 〈log M〉i = 4.6 (filled dots); σi = 0.7, 〈log M〉i = 5 (open circles); σi = 0.9, 〈log M〉i = 5.8

(triangles). (b) σ at t = 15 Gyr for clusters in five radial bins versus galactocentric distance of the bin. (symbols as in (a)).

Figure 11 Same as figure 10 (a) for the initial condition σi = 0.9, 〈log M〉i = 4.6 but excluding the low-mass tail of the GCMF

at t = 15 Gyr. (the values for the entire sample already shown in figure 10 (a) are plotted as filled dots for ease of comparison).

Figure 12 Time evolution of 〈log M〉 (a) , σ (b) and of the ratio of the total number of clusters at time t to the total initial

number of clusters, N(t)/N(0) (c) for initial log-normal GCMF with 〈log M〉i = 4.5 and σi = 1 (circles) and with 〈log M〉i = 6

and σi = 1 (triangles).

Figure 13 Trajectories in the plane σ-〈log M〉 (see sect.3.4 for a detailed comment on the figure)

Figure 14 Contour plot in the plane σi − 〈log M〉i of the ratio, FN , of the total number of clusters surviving after 15 Gyr to

the total initial number of clusters (a), and of the ratio,FM , of the total mass of all surviving clusters after 15 Gyr to the total

initial mass of all clusters (b).

Figure 15 Contour plot in the plane σi − 〈log M〉i of the current value of cluster disruption rate (see text for definition).

Figure 16 Contour plot of the core radius, Rc, of the spatial distribution (at t = 15 Gyr) of clusters in the Galaxy in the plane

σi − 〈log M〉i.

Figure 17 Final values of 〈log M〉 (a), σ (b), FN (c), FD (d) from the simulations without the effects of disk shocking versus

those obtained taking into account disk shocking.

Figure 18 Initial and final GCMF for a simulation starting with a power-law GCMF with α = 2 and Mlow = 104M⊙. Dots

show the real GCMF obtained at t = 15 Gyr while solid line shows the gaussian distribution with mean value and dipersion

estimated from the sample of surviving clusters as discussed in sect.2. Dashed line shows the initial GCMF.

Figure 19 Final values of 〈log M〉 (a) and σ (b) versus the low-mass cutoff in the initial GCMF for systems with a power-law

initial GCMF, f(M) ∝ M−α. α = 2 (filled dots), α = 1.7 (triangles ), α = 1.5 (crosses).

Figure 20 Histogram of the ratio of the final to initial mass for clusters surviving after one Hubble time in a system with an

initial log-normal GCMF with (〈log M〉i = 5.0, σi = 0.7). (N(15) is the total number of clusters survived at t = 15 Gyr)

Figure 21 (a) Histogram of log[td(tH)/tH ] (where td(tH) is the disruption timescale of a cluster at tH = 10 Gyr) for the sample

of clusters surviving at t = tH from an initial population with a log-normal GCMF (with σi = 0.7 and 〈log M〉i = 5.0). The

dashed line is the fit to the histogram assuming the initial distribution of td to be a power-law while the solid line is the

resulting distribution at t = tH adopting the real initial distribution of td (see panel (b)) which is a log-normal distribution.

(b) Histogram of the initial values of log td for the system of clusters with an initial log-normal GCMF (with σi = 0.7 and

〈log M〉i = 5.0). The solid line shows the best fit log-normal distribution (σ = 0.67, 〈log[td(0)/tH ]〉 = 0.15).

Figure 22 Initial (t = 0) and final (at t = 10 Gyr) distribution of log td/tH for three different systems: short dashed lines show

the initial (upper curve) and final (lower curve) distributions for a system with an initial log-normal distribution of td with

(σ = 1.0, 〈log[td(0)/tH ]〉 = −0.7); solid lines (initial distribution is the upper curve and final distribution is the lower curve)

correspond to a system with an initial log-normal distribution of td with (σ = 0.67, 〈log[td(0)/tH ]〉 = 0.15); long dashed

lines (initial distribution is the upper curve and final distribution is the lower curve) correspond to a system with an initial

c© 0000 RAS, MNRAS 000, 000–000
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power-law distribution of td, fi ∼ t−q

d
, with q = 1.6.

The normalizations of the initial distributions have been chosen so to have the same total number of surviving clusters in the

final samples at t = tH .

c© 0000 RAS, MNRAS 000, 000–000
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