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ABSTRACT 

MOLECULAR-BEAM MASS-SPECTROMETRIC ANALYSES OF HYDROCARBON 
FLAMES 

 
FEBRUARY 2008 

SAUGATA GON, B.TECH., Ch.E, HALDIA INSTITUTE OF TECHNOLOGY, 
HALDIA, INDIA 

M. TECH., Ch.E, INDIAN INSTITUTE OF TECHNOLOGY BOMBAY, POWAI, 
MUMBAI, INDIA 

M.S. Ch.E, UNIVERSITY OF MASSACHUSETTS AMHERST 
 

Directed by: Professor Phillip R. Westmoreland 

 

 Laminar flat flame combustion has been studied with molecular-beam mass-

spectrometry (MBMS) for a fuel-rich cyclohexane (Ф = 2.003) flame, a fuel-lean toluene 

(Ф = 0.895), and a fuel-rich toluene (Ф = 1.497) flame. Different hydrocarbon species in 

these flames were identified, and their mole fraction profiles were measured. The 

information can be used to propose reaction mechanisms for the different hydrocarbon 

flames.  

 One MBMS apparatus located at Advanced Light Source (ALS) at Lawrence 

Berkeley National Laboratory was used to identify and measure the mole-fraction 

profiles of different species in these flames. The MBMS apparatus located at University 

of Massachusetts Amherst was used to measure the temperature profile of the 

cyclohexane flame. The temperature profile of two different fuel-rich toluene flames (Ф= 

2.02 , Ф = 3.94) and a fuel-lean (Ф=0.452) methane flame were also measured with the 

UMass apparatus.  

 iv



TABLE OF CONTENTS 
 
                                                                      Page 
 
ACKNOWLEDGEMENTS............................................................................................... iii 
 
ABSTRACT....................................................................................................................... iv 
 
LIST OF TABLES............................................................................................................ vii 
 
LIST OF FIGURES ......................................................................................................... viii 
 
CHAPTER 
 
1. INTRODUCTION ...........................................................................................................1 
 

1.1 Premixed laminar flames .................................................................................. 1 
1.2 The motivation ................................................................................................. 2 
1.3 Research objectives .......................................................................................... 3 
1.4 Hydrocarbon combustion - An overview.......................................................... 3 
1.5 Molecular-beam mass spectrometry ..................................................................7 
 

2. EXPERIMENTAL EQUIPMENT AND PROCEDURES ............................................10 
 

2.1 UMass equipment ............................................................................................10 
2.2 ALS equipment ................................................................................................16 
2.3 Experimental procedures .................................................................................19 
 

3. EXPERIMENTAL DATA AND ANALYSIS .............................................................36 
 

3.1 Procedure of acquiring mole fraction profile from the  
                  MBMS experiment ..........................................................................................36 

3.2 Cyclohexane (Ф = 2.003) data analysis ..........................................................38 
3.3 Toluene flame (Ф = 0.895) data analysis ........................................................69 
3.4 Toluene flame (Ф = 1.497) data analysis ........................................................94 
3.5 Temperature measurement for toluene and methane flames ........................127 
 

4. CONCLUSION AND RECOMMENDATIONS ........................................................131 
 

4.1 Conclusions ...................................................................................................131 
4.2 Recommendations .........................................................................................134 
 
 
 

 
 

 v



APPENDICES 
 
A. PHOTOIONIZATION CROSS-SECTIONS AND MASS DISCRIMINATION 
FACTORS........................................................................................................................139 
          
B.     EXPERIMENTAL CALIBRATIONS....................................................................147 
 
C. MODELING OF FUEL-RICH CYCLOHEXANE FLAME..................................151 
    
BIBLIOGRAPHY............................................................................................................163 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 vi



LIST OF TABLES 

Table Page 
 
3.1. Condition for the fuel-rich cyclohexane flame. ..........................................................38 
 
3.2. List of species measured in the fuel-rich cyclohexane flame, ionization energies 

of the species as reported in NIST (Lias et al., 2005), ionization energy 
observed, and ionization energy used to measure the profile ................................39 

 
3.3. Comparison of mole fraction of the feed and to the first data point away from 

the burner. ............................................................................................................ 67 
 
3.4. Condition for the fuel-lean toluene flame. ................................................................. 69 
 
3.5. List of species measured in the fuel-lean toluene flame, ionization energies of 

the species as reported in NIST (Lias et al., 2005), ionization energy 
observed, and ionization energy used to measure the profile.  ............................ 69 

 
3.6. Comparison of mole fraction of the feed composition to mole fraction at first 

data point away from the burner ............................................................................93 
 
3.7. Condition for the fuel-rich toluene flame ..................................................................94 
 
3.8. List of species measured in the fuel-rich toluene flame, ionization energies of 

the species as reported in NIST (Lias et al., 2005), ionization energy 
observed, and ionization energy used to measure the profile ................................95 

 
3.9 Comparison of mole fraction of the feed composition and mole fraction 

obtained at the first data point away from the burner. ........................................127 
 

 

 

 

 

 

 

 

 

 vii



LIST OF FIGURES 

Figure Page 

2.1. Schematic of the UMass molecular-beam mass spectrometer system .......................11 
 
2.2. Feed delivery system for the UMass system...............................................................13 
 
2.3. Schematic of the ALS system.....................................................................................17 
 
2.4. PIE scan analysis of mass 78 in the fuel-rich cyclohexane flame. ............................21 
 
2.5. Burner-scan profile of mass 78 at 10 eV in the fuel-rich cyclohexane flame.............23 
 
2.6. Typical autoionization-peak measurement of oxygen in ALS system. .....................24 
 
2.7. Heat transfer modes from thermocouple (Shaddix, 1999)..........................................25 
 
2.8. Schematic of the thermocouple probe. ...................................................................... 28 
 
2.9. Schematic of thermocouple circuit ............................................................................ 31 
 
2.10. Calibration comparison of thermocouple wire exposed to different flames.............33 
 
3.1. Mole-fraction profile of major species cyclohexane, CO, CO2, O2, H2O, Ar. ...........41 
 
3.2. Mole-fraction profile of hydrogen ..............................................................................42 
 
3.3. Mole-fraction profile of methyl radical. ....................................................................42 
 
3.4. Mole-fraction profile of methane. ..............................................................................43 
 
3.5. Mole-fraction profile of acetylene. ............................................................................43 
 
3.6. Mole-fraction profile of major radicals: methyl, propargyl, formyl, allyl, 
cyclopentadienyl, cyclohexyl, 1-buten-3-yl. .....................................................................44 
 
3.7. Mole-fraction profile of ethylene................................................................................44 
 
3.8. Mole-fraction profile of HCO. ...................................................................................45 
 
3.9. Mole-fraction profile of HCHO. ................................................................................45 
 
3.10. Mole-fraction profile of propargyl. ..........................................................................46 
 
3.11. Mole-fraction profile of allene and propyne. ...........................................................46 
 

 viii



3.12. Mole-fraction profile of allyl.  .................................................................................47 
 
3.13. Mole-fraction profile of propene. ............................................................................47 
 
3.14. Mole-fraction profile of diacetylene (C4H2).  ..........................................................48 
 
3.15. Mole-fraction profile of 1-buten-3-yne. ...................................................................48 
 
3.16. Mole-fraction profile of 1,3-butadiene. ...................................................................49 
 
3.17. Mole-fraction profile of 1-buten-3-yl radical ..........................................................49 
 
3.18. Mole-fraction profile of 1-butene.  ..........................................................................50 
 
3.19. Mole-fraction profile of 1,3-pentadiyne ...................................................................50 
 
3.20. Mole-fraction profile of cyclopentadienyl radical. ..................................................51 
 
3.21. Mole-fraction profile of 1,3-cyclopentadiene. .........................................................51 
 
3.22. Mole-fraction profile of 1,3-pentadiene. ..................................................................52 
 
3.23. Mole-fraction profile of 2-pentene. ..........................................................................52 
 
3.24. Mole-fraction profile of 1,3,5-hexatriyne (triacetylene). .........................................53 
 
3.25. Mole-fraction profile of benzyne.   ......................................................................... 53 
 
3.26. Mole-fraction profile of benzene. ............................................................................54 
 
3.27. Mole-fraction profile of 1,3-cyclohexadiene. ..........................................................54 
 
3.28. Mole-fraction profile of cyclohexene. .....................................................................55 
 
3.29. Mole-fraction profile of cyclohexyl radical. ............................................................55 
 
3.30. Mole-fraction profile of toluene. ..............................................................................56 
 
3.31. Mole-fraction profile of phenol. ..............................................................................56 
 
3.32. Mole-fraction profile of cyclohexanone. .................................................................57 
 
3.33. Mole-fraction profile of phenylacetylene. ...............................................................57 
 
3.34. Mole-fraction profile of styrene. ..............................................................................58 
 

 ix



3.35. Mole-fraction profile of xylene. ...............................................................................58 
 
3.36. Mole-fraction profile of indene. ...............................................................................59 
 
3.37. Mole-fraction profile of naphthalene. ......................................................................59 
 
3.38. Temperature profile for the fuel-rich cyclohexane flame (∆ refers to heated 
temperature profile, ■ refers to unheated temperature profile). ........................................68 
 
3.39. Mole fraction profiles of major species in the fuel-lean toluene flame. .................. 71 
 
3.40. Mole fraction profile of H in the fuel-lean toluene flame. ...................................... 71 
 
3.41. Mole fraction profile of H2 in the fuel-lean toluene flame. .....................................72 
 
3.42. Mole fraction profile of CH3 in the fuel-lean toluene flame. ...................................72 
 
3.43. Mole fraction profile of CH4 in the fuel-lean toluene flame. ...................................73 
 
3.44. Mole fraction profile of O in the fuel-lean toluene flame. .......................................73 
 
3.45. Mole fraction profile of OH in the fuel-lean toluene flame......................................74 
 
3.46. Mole fraction profile of C2H2 in the fuel-lean toluene flame. .................................74 
 
3.47. Mole fraction profile of C2H4 in the fuel-lean toluene flame. .................................75 
 
3.48. Mole fraction profile of HCHO in the fuel-lean toluene flame. ..............................75 
 
3.49. Mole fraction profile of C3H3 in the fuel-lean toluene flame. .................................76 
 
3.50. Mole fraction profile of allene and propyne in the fuel-lean toluene flame. ............76 
 
3.51. Mole fraction profile of ketene in the fuel-lean toluene flame. ...............................77 
 
3.52. Mole fraction profile of diacetylene in the fuel-lean toluene flame. .......................77 
 
3.53. Mole fraction profile of vinylacetylene in the fuel-lean toluene flame. ..................78 
 
3.54. Mole fraction profile of 1,3-butadiene in the fuel-lean toluene flame. ....................78 
 
3.55. Mole fraction profile of methoxyacetylene in the fuel-lean toluene flame. ............79 
 
3.56. Mole fraction profile of 1,3-pentadiyne in the fuel-lean toluene flame. ..................79 
 
3.57. Mole fraction profile of cyclopentadienyl radical in the fuel-lean toluene flame.  .80 

 x



 
3.58. Mole fraction profile of 1,3-cyclopentadiene in the fuel-lean toluene flame. ..........80 
 
3.59. Mole fraction profile of 1,2-butadienone  in the fuel-lean toluene flame.................81 
 
3.60. Mole fraction profile of triacetylene  in the fuel-lean toluene flame. .......................81 
 
3.61. Mole fraction profile of benzyne in the fuel-lean toluene flame. ............................82 
 
3.62. Mole fraction profile of benzene in the fuel-lean toluene flame. ............................82 
 
3.63. Mole fraction profile of methyl cyclopentadiene  in the fuel-lean toluene flame. ..83 
 
3.64. Mole fraction profile of 1,2-butadienone-3-methyl in the fuel-lean toluene flame. 83 
 
3.65. Mole fraction profile of 1,3-cyclopentadiene-5-ethenylidene in the fuel-lean toluene 
flame. ................................................................................................................................84 
 
3.66. Mole fraction profile of benzyl radical in the fuel-lean toluene flame. ...................84 
 
3.67. Mole fraction profile of phenol in the fuel-lean toluene flame. ...............................85 
 
3.68. Mole fraction profile of phenylacetylene in the fuel-lean toluene flame. ................85 
 
3.69. Mole fraction profile of styrene in the fuel-lean toluene flame. ...............................86 
 
3.70. Mole fraction profile of benzaldehyde in the fuel-lean toluene flame. ....................86 
 
3.71. Mole fraction profile of benzyl alcohol in the fuel-lean toluene flame. ..................87 
 
3.72. Mole fraction profile of indene in the fuel-lean toluene flame. ................................87 
 
3.73. Mole-fraction profiles of major species in the fuel-rich toluene flame. .................. 97 
 
3.74. Mole-fraction profile of H atom in the fuel-rich toluene flame. ..............................98 
 
3.75. Mole-fraction profile of H2 in the fuel-rich toluene flame. ..................................... 98 
 
3.76. Mole-fraction profile of CH3 radical in the fuel-rich toluene flame.  ..................... 99 
 
3.77. Mole-fraction profile of CH4 in the fuel-rich toluene flame. ...................................99 
 
3.78. Mole-fraction profile of O in the fuel-rich toluene flame. .....................................100 
 
3.79. Mole-fraction profile of OH in the fuel-rich toluene flame. ..................................100 
 

 xi



3.80. Mole-fraction profile of acetylene (C2H2) in the fuel-rich toluene flame. .............101 
 
3.81. Mole-fraction profile of ethylene (C2H4) in the fuel-rich toluene flame. ..............101 
 
3.82. Mole-fraction profile of HCHO in the fuel-rich toluene flame. ............................102 
 
3.83. Mole-fraction profile of C3H3 in the fuel-rich toluene flame. ...............................102 
 
3.84. Mole-fraction profiles of allene and propyne in the fuel-rich toluene flame. ........103 
 
3.85. Mole-fraction profile of ketene in the fuel-rich toluene flame. .............................103 
 
3.86. Mole-fraction profile of diacetylene in the fuel-rich toluene flame. .....................104 
 
3.87. Mole-fraction profile of vinylacetylene in the fuel-rich toluene flame. ................ 104 
 
3.88. Mole-fraction profile of 1,3-butadiene in the fuel-rich toluene flame................... 105 
 
3.89. Mole-fraction profile of methoxyacetylene in the fuel-rich toluene flame. ...........105 
 
3.90. Mole-fraction profile of 1,3-pentadiyne in the fuel-rich toluene flame................. 106 
 
3.91. Mole-fraction profile of cyclopentadienyl radical in the fuel-rich toluene flame. 106 
 
3.92. Mole-fraction profile of 1,3-cyclopentadiene in the fuel-rich toluene. .................107 
 
3.93. Mole-fraction profile of cyclopentene in the fuel-rich toluene flame. ...................107 
 
3.94. Mole-fraction profile of triacetylene in the fuel-rich toluene flame. ..................... 108 
 
3.95. Mole-fraction profile of benzyne in the fuel-rich toluene flame. .......................... 108 
 
3.96. Mole-fraction profile of benzene in the fuel-rich toluene flame. ...........................109 
 
3.97. Mole-fraction profile of methyl cyclopentadiene in the fuel-rich toluene flame....109 
 
3.98. Mole-fraction profile of 1,2-butadienone-3-methyl in the fuel-rich toluene flame.110 
 
3.99. Mole-fraction profile of 1,3-cyclopentadiene-5-ethenylidene in the fuel-rich toluene 
flame. ..............................................................................................................................110 
 
3.100. Mole-fraction profile of benzyl radical in the fuel-rich toluene flame. ...............111 
 
3.101. Mole-fraction profile of phenol in the fuel-rich toluene flame. ...........................111 
 
3.102. Mole-fraction profile of phenylacetylene in the fuel-rich toluene flame..............112 

 xii



 
3.103. Mole-fraction profile of styrene in the fuel-rich toluene flame. ..........................112 
 
3.104. Mole-fraction profile of benzaldehyde in the fuel-rich toluene flame. ................113 
 
3.105. Mole-fraction profile of benzyl alcohol in the fuel-rich toluene flame. .............. 113 
 
3.106. Mole-fraction profile of indene in the fuel-rich toluene flame. ........................... 114 
 
3.107. Mole-fraction profile of indenyl radical in the fuel-rich toluene flame. ..............114 
 
3.108. Mole-fraction profile of indane in the fuel-rich toluene flame. .......................... 115 
 
3.109. Mole-fraction profile of 1-phenylethenol in the fuel-rich toluene flame..............115 
 
3.110. Mole-fraction profile of 4-ethylphenol in the fuel-rich toluene flame. ............... 116 
 
3.111. Mole-fraction profile of 1,4-diethynylbenzene in the fuel-rich toluene flame. ...116 
 
3.112. Mole-fraction profile of naphthalene in the fuel-rich toluene flame. ..................117 
 
3.113. Mole-fraction profile of methylindene in the fuel-rich toluene flame. ................117 
 
3.114. Mole-fraction profile of C9H8O in the fuel-rich toluene flame. ...........................118 
 
3.115. Mole-fraction profile of 1-H-indene-2-ethenyl in the fuel-rich toluene flame. ....118 
 
3.116. Mole-fraction profile of naphthalene-1-methyl in the fuel-rich toluene flame.....119 
 
3.117. Mole-fraction profile of C10H8O in the fuel-rich toluene flame. ........................ 119 
 
3.118. Mole-fraction profile of acenaphthylene in the fuel-rich toluene flame...............120 
 
3.119. Signals of mass 154, 156, 166, 168 and 184 in the fuel-rich toluene flame. ........120 
 
3.120. Temperature profile for methane flame (Ф =0.451) ( ■ Heated temperature, 
▲unheated temperature )................................................................................................ 129 
 
3.121. Temperature profile for toluene flame (Ф = 2.03) (∆ Heated temperature, ■ 
unheated temperature) .....................................................................................................129 
 
3.122. Temperature profile for toluene flame (Ф = 3.95) (∆ Heated temperature, ■ 
unheated temperature)......................................................................................................130 

 xiii



CHAPTER 1  

 INTRODUCTION 

 

 Combustion can be broadly defined as a series of self-sustaining exothermic 

reactions. Combustion with the ability to propagate through a suitable reaction medium 

can be called a flame (Fristrom, 1995). Flames constitute a particularly complex 

phenomenon representing a strong coupling between chemical reactions and heat, 

momentum, and species transport processes (Stavropoulos, 2005). We see the application 

of combustion in our everyday life. Its applicability has spread from our kitchen to the 

power plants, from automobiles to spacecrafts. Despite the long history of combustion in 

human society, its quantitative understanding is relatively new, because of the complexity 

involved in combustion.  To find some of the answers to the numerous riddles of 

combustion, we study premixed laminar flames with flat flame structure. A general 

description of this type of flame is given below. 

 

1.1 Premixed laminar flame 

As the name suggests, the gaseous fuel and oxidizer are premixed on the 

molecular level and the flow is laminar in a premixed laminar flame. Such a flame is 

most easily visualized as a thin reaction sheet separating unburned from burned gases and 

propagating normal to themselves at a characteristic velocity. This surface can be 

approximately identified with the thin luminous zone characteristic of common flames 

(Fristrom, 1995).  

 1



 Based on the flow characteristics of the fuel-oxidizer mixture, a flame can form 

several structures. The flat flame is one of them. The premixed fuel-oxidizer mixture is 

passed through a water-cooled sintered plate, which produces a uniform velocity field, 

and when ignited, it forms a flat flame structure. In a flat flame, the temperature gradient 

along the radial direction is negligible. As a result, the diffusion of the species along the 

radial direction can also be neglected. Hence these flames can be described with one-

dimensional transport models. 

 

1.2 The motivation 

It is hard to detect the unstable species in a combustion process because of the 

lack of suitable techniques. However, combustion studies with molecular-beam mass 

spectrometry (MBMS) have been able to solve this aspect of the problem to some extent. 

With the help of MBMS, new insights can be obtained into several reaction pathways in 

combustion for better understanding. Combustion processes may produce air-toxic 

pollutants as byproducts, especially at fuel-rich combustion. The formation of 

intermediate products like polycyclic aromatic hydrocarbons (PAH) and soot occurs 

under fuel-rich conditions in the flames. Because radiation from soot particles dominates 

the energy transfer in large fires, soot formation influences the combustion efficiency in 

furnaces. Particle formation and amount of energy transfer control smoke production, 

which is important for fire detection (Smyth and Miller, 1987).  All these issues couple to 

motivate the study hydrocarbons flames to bring insights into production of soot. 
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1.3 Research objectives 

Research objectives for this project include understanding the flame 

microstructure of different premixed laminar hydrocarbon flames in detail. 

Characterizing the flame microstructure requires identifying the different products in a 

particular flame, mapping them spatially, and measuring the temperature profile for the 

flame. The bigger objectives behind this approach were to understand the molecular 

growth chemistry of higher hydrocarbons and to investigate the oxidation chemistry of 

these hydrocarbons. Mainly two flames were studied for this purpose, a fuel-rich 

cyclohexane flame (Ф = 2.003) and a lean toluene flame (Ф =0.895). A fuel-rich toluene 

flame (Ф =1.497) was also studied, but further experiments are required for that flame. 

 

1.4 Hydrocarbon combustion - An overview 

1.4.1 Different reaction zones, reaction products, radical reactions 

The combustion of hydrocarbons can be broadly categorized as oxidation. The 

final byproducts would be CO2 and H2O if combustion to fully oxidized products were 

complete. Equation 1.1 describes the overall combustion reaction for an ideal, 

stoichiometric combustion process of a hydrocarbon. 

 

CxHy + (x+y/4) O2 = xCO2 + y/2 H2O (1.1) 

 

In reality, all the carbon and hydrogen may not get fully oxidized during the 

combustion process, and some of the species may remain partially oxidized to form CO 

and H2. The intermediate species that are formed in the process of getting to CO2 and 
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H2O make combustion an interesting problem chemically. The reaction-pathway analysis 

for these intermediates can lead to insights into the formation of major pollutants like 

PAHs and soot. It can be broadly said that the final products found in the post-flame zone 

of almost all fuel-rich hydrocarbon fuels are CO, CO2, C2H2, H2 and H2O (Homann and 

Wagner, 1968). Other types of species observed in the flames are polyacetylenes, 

intermediate hydrocarbons, oxygenates, and PAH like naphthalene, phenanthrene, 

pyrene, and coronene. 

Radicals play a crucial role in combustion. The reactions associated with radicals 

can be broadly categorized as four types (Borghi and Destriau, 1998): 

• Initiation. When a radical is produced in the flame from a nonradical, the process 

is called initiation. 

• Chain Propagation. When a radical reacts with a molecule or atom to produce 

another radical, the process is called chain propagation. 

• Chain Branching. When one radical gives rise to more than one radical, the 

process is called chain branching. 

• Chain Termination. When the radical recombination gives rise to formation of 

stable species, the process is called chain termination. 

 There are three zones that are observed in an laminar premixed flat flame. These 

zones can be explained in terms of the radical reactions described above.  The zones are: 

• Preheat Zone. The fuel-oxidizer mixture travels a small distance before it is 

ignited. This region close to the burner and just underneath the flame is called the 

preheat zone. Some of the radicals that get produced in the flame zone undergo 

molecular or thermal diffusion, diffuse back to the fuel-oxidizer mixture in this 
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zone, and are terminated. The temperature in this region is not high, and heating 

occurs mainly by conduction from the hotter flame zone back to the burner 

(Dixon-Lewis, 1979). 

• Luminous Flame Zone. This is the hottest region in the flame. Chain initiation, 

propagation, and branching reactions occur here. This zone is also termed as the 

oxidation zone. Various hydrocarbon intermediates go through maxima in this 

zone, and molecular oxygen gets almost used up by the end of flame zone 

(Homann and Wagner, 1968). 

• Post-Flame Zone. This zone is downstream of the flame zone. Mostly chain-

termination reactions occur in this zone. Mostly CO, CO2, H2O, radicals, and 

unburned hydrocarbons are present in this zone. 

 The reactions between oxygen and hydrogen are the core of the hydrocarbon 

combustion reactions. According to Dixon-Lewis (1979), the important hydrogen-oxygen 

chemistry information is found from the following reactions: 

2 2OH H H O H+ +

+

+

2

2+

2+

        (1.2) 

2H O OH O+          (1.3) 

2O H OH H+          (1.4) 

2 2H O M HO M+ + +         (1.5) 

2H HO O H O+ +         (1.6) 

2 2H HO O H+          (1.7) 

2 2 2OH HO O H O+ +         (1.8) 

2O HO OH O+          (1.9) 
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2H H M H M+ + +         (1.10) 

2H OH M H O M+ + +         (1.11) 

H O M OH M+ + +         (1.12) 

2OH OH H O O+ +         (1.13) 

 Dixon-Lewis (1979) suggested that the heat release occurred principally by 

reaction 1.5, followed by one of 1.6, 1.7, 1.8 or 1.9 of HO2 with H, OH or O, and then, 

where appropriate, by one or both of 1.2 and 1.4 to reform H. These heat-releasing 

reactions depend on the radicals being produced by reaction 1.2, 1.3 and 1.4 in the hotter 

region of the flame.  The radicals diffuse upstream to meet O2 and react with it by 

reaction 1.5. The radical recombination reactions 1.10, 1.11 and 1.13 are coupled with 

this process, but these three reactions can dominate only in the absence of O2 because of 

competition with reaction 1.5. 

 

1.4.2 Hydrocarbon growth chemistry 

 Smyth and Miller (1987) suggested that soot formation is influenced by two major 

steps. 

i) Production of precursor molecules, which react rapidly to give larger species;  

ii) Chemical growth that results in formation of several small primary particles. 

Different models have been proposed with different precursors for soot. Homann and 

Wagner (1967) suggested that polyacetylene plays the major role in soot formation. 

Calcote (1981) suggested that the precursor would be chemiions on which free radicals, 

polyacetylenes and PAHs add in repeatedly in fast ion-molecule reactions and produce 

soot. Benson (1982) suggested that neutral radicals are the most significant intermediate. 
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Smyth and Miller (1987) suggested that vinyl and ethynyl radicals are important 

precursors to benzene and that benzene in turn is an important precursor to soot 

formation; however, McEnally and Pfefferle (2004) suggested that benzene formation is 

not the rate-determining step for soot formation in non-premixed flames. Öktem et al. 

(2005) suggested during particle inception and initial growth the PAHs contribute 

significantly, but after a stage, aliphatic compounds can also play a major role in soot 

formation. 

As benzene is widely considered as an crucial intermediate to PAH formation, 

detailed research work has been done on understanding the benzene formation pathway.  

According to Westmoreland et al. (1989), three main reaction pairs have been suggested 

for benzene formation. C2 + C4 , C3+ C3 and C1 + C5 species. Among these three, the 

most widely accepted mechanism is Hydrogen Abstraction / Carbon Addition or the 

HACA mechanism (C2 + C4), suggested by Wang and Frenklach (1997). Law (2005) 

found that with a stoichiometric cyclohexane flame, a dehydrogenation mechanism is the 

major benzene formation pathway.  

Zervas et al. (2004) empirically found that benzene formation increases with high fuel 

equivalence ratio from a SI engine. They also found that with addition of oxidants, the 

soot formation decreased. This result supports the idea that for understanding molecular 

weight growth in hydrocarbons, fuel-rich flames should be studied. 

 

1.5 Molecular-beam mass spectrometry (MBMS) 

Molecular-beam mass spectrometry has long been recognized to be one of the 

most powerful techniques in analyzing flame structure (Biordi, 1977; Turbiez et al., 
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1999).  Molecular-beam sampling probes coupled with mass-spectrometric detection can 

detect species that are unstable to wall and/or gas collisions, such as atoms, radicals, and 

highly reactive stable species (Biordi, 1977).  

 

1.5.1 General idea of the MBMS apparatus 

A molecular-beam mass spectrometer system consists of a source combustion 

chamber, source orifice, source chamber, skimmer, collimation chamber, collimating 

orifice, detection chamber and mass-spectrometer detector (Knuth, 1973). Under 

conditions of vacuum, the source gas expands via the source orifice into the source 

chamber. The skimmer transfers the core of the free jet into the collimating chamber. The 

collimating orifice passes those molecules flying near the system centerline into the 

detection chamber. The mass spectrometer then is used to generate a signal proportional 

to the species density in the beam at the detector. Based on the conditions of operation, 

the molecular beam can be of two types, as discussed below. 

 

1.5.2 Beams from effusive sources 

 Anderson et al. (1965) defined beams from effusive sources as classical oven 

beams.  According to them, the beam source, which can be called an oven, is a cavity that 

communicates with an evacuated chamber through a small orifice or slit.  They further 

pointed out that if the gas density in the oven is such that the mean free path (the average 

distance between collisions for a gas molecule) is greater than the diameter of the orifice, 

then there would be effusive flow of molecules into the evacuated chamber. In other 

words, the molecules would wander through the orifice without colliding with each other.  
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 Due to the low intensity of the beam from effusive sources (Biordi, 1977), this 

type of beam is not desirable to flame sampling. It was early proposed that the oven 

beams could be replaced by supersonic jets (Anderson et al., 1965). 

 

1.5.3 Beams with supersonic jets 

 The present work uses nozzle beams. Biordi (1977) noted that if the mean free 

path, λ, of a gas flowing through the orifice is small relative to the orifice diameter, d (i.e. 

if λ/d ≡ Kn0 << 1, where the subscript zero refers to source condition and Kn0 is Knudsen 

number) and if the pressure ratio across the orifice is sufficiently large (105 – 106), then 

the gas flow across the orifice is supersonic and the initial stage of expansion may be 

treated as isentropic expansion of a macroscopic bulk fluid. Anderson et al. (1965) 

described this type of beam as a beam from a nozzle source.  According to Biordi (1977), 

as the gas expands across the orifice, it experiences a rapid reduction in temperature and 

collision frequency, and molecular flow prevails. This expansion quenches the chemical 

reactions occurring in the source and species such that atoms and radicals may survive. A 

skimmer isolates the central portion of the beam.  Thus, one can discriminate against the 

peripheral region of the beam, which can be expected to have some interactions with the 

cone walls.  

 During the course of this study, two molecular-beam mass spectrometers were 

used. One in the laboratory at the University of Massachusetts Amherst, which will be 

referred as the UMass equipment, and the other is at the Advanced Light Source of the 

Lawrence Berkeley National Laboratory in Berkeley, California. This system will be 

referred as the ALS equipment.  
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CHAPTER 2 

 EXPERIMENTAL EQUIPMENT AND PROCEDURES 

 

During the course of this study, two molecular-beam mass spectrometers were 

used. One is in the Westmoreland laboratory at the University of Massachusetts Amherst, 

which will be referred as the UMass equipment, and the other is at the Advanced Light 

Source of the Lawrence Berkeley National Laboratory in Berkeley, California. This 

system will be referred as the ALS equipment.  

 

2.1 UMass equipment  

 The original equipment incorporated into the MBMS apparatus at the University 

of Massachusetts Amherst was built by Biordi, Lazzara, and Papp (1973) at the 

Pittsburgh Mine and Safety Research Center of the U.S. Bureau of Mines, Pittsburgh, PA. 

The Westmoreland research group at the University of Massachusetts Amherst acquired 

the system in 1986, and thereafter the group has made several modifications in the 

system.  Figure 2.1 shows a schematic diagram of the UMass equipment. The different 

parts of the equipment will be described under the equipment description section, and the 

feed delivery will be covered subsequently. 

 

2.1.1 Equipment description 

 The reaction chamber of the UMass equipment is a vertical cylindrical chamber of 

45.7 cm diameter and 48.3 cm height. It was built of steel with an alumina (Al2O3) 

coating inside. It has several small ports for windows and feedthroughs. A large window 

(8 cm x 12 cm) is used for viewing and maintenance. A 5.3-cm-diameter circular window 
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is used for viewing and positioning the igniter on top of the burner. This window is on the 

right side of the chamber when the large window is faced. An identical viewing window 

of diameter 5.3 cm is on the left side of the reaction chamber. When the temperature 

measurements are conducted, the thermocouple probe is mounted through this opening. 

   

 

 

Figure 2.1. Schematic of the UMass molecular-beam mass spectrometer system. 
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 Inside the chamber, a 6.03-cm-diameter, McKenna-type burner (Holthuis & 

Associates) is mounted on a positioning system (Velmex Unislide), which can move the 

burner toward the sampling quartz cone (axially) or normal to this axis (radially). A code 

written by Law (2005) in LabVIEW (National Instruments, Inc.) can control the 

movement of the burner. The burner must be water-cooled when a flame is lit. A water 

inlet line, a water outlet line, a fuel gas line and a shroud argon inlet line are connected to 

the burner. As argon shroud is found to diffuse into the flame away from the burner 

(Morel, 2005), the shroud argon inlet is not used.  

Two single-stage pumps (Busch RS super series) are used to create the vacuum in 

the combustion chamber. One of them has 20 CFM pumping capacity (BP – RA0025101) 

while the other one (BP – RA0040101) has a 28 CFM pumping capacity. The Busch 

pumps need to be shut off after every 10 hours of operation to allow opening the check 

valve to drain back the oil that is collected in the exhaust filter (Busch maintenance and 

repair manual). [An effort is underway to connect the chamber to a 300 CFM Stokes 

pump (CB82518). The Stokes pump would be able to take the load off the Busch pumps 

and would deliver a continuous pumping capability.] The chamber pressure is maintained 

mainly by the gate valve between the Busch pumps and the chamber and more precisely 

by a control valve (MKS 0248A) that introduces a ballast flow of air and maintains the 

pressure within ± 0.01 Torr from the set point.  

The chamber pressure is read approximately by a Bourdon-tube pressure gauge 

(Wallace and Tiernan FA160 with a range of 0 to 800 Torr) and precisely by a 

diaphragm-deflection gauge (MKS Baratron, 50230-1-5) which has a maximum pressure 

range of 100 Torr.  
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In the present work, this system’s capabilities for molecular-beam sampling and 

quadrupole mass spectrometry were not used and so are not described further here.  The 

interested reader may refer for its details to Law (2005). 

 

2.1.2 Feed delivery system for the UMass system 

The flames that were studied with the UMass system were toluene, cyclohexane 

and methane. Methane is a gas at room temperature but toluene and cyclohexane are 

liquid at room temperature, therefore both liquid and gas delivery systems were required. 

The fuel is mixed with premixed with oxygen and argon and then fed into the burner. The 

schematic of the feed delivery system is given in Figure 2.2.   

 

Figure 2.2. Feed delivery system for the UMass system. 
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 Gas feed delivery system.  Argon and oxygen were gases used in all the flames 

studied with the UMass apparatus. Ethylene was used as a fuel to ignite the flame before 

introducing vapor-phase feed of the liquid fuels toluene and cyclohexane. The gases were 

metered with individual mass flow controllers (MKS Instruments 2259 B with a MKS 

247-C power supply and read-out). The gases were premixed in heat-traced, stainless-

steel tubing (approximately 23 ft long). 

 Gas flow rates were calibrated by flowing the gas into a calibration cylinder with 

a volume of 43.364 liters. The pressure rise in the cylinder was noted at different times, 

and the molar flow rate was calculated using the ideal gas law. The calibration of argon 

and oxygen for the fuel-rich cyclohexane flame is presented in Appendix A.1. The MKS 

Baratron gauge that reads the chamber pressure is also used to read the pressure in the 

calibration chamber. As the Baratron can read the pressure only up to 100 Torr, when the 

pressure in the cylinder rises to 100 Torr, gas flow is stopped and the calibration cylinder 

is evacuated using a vacuum pump. As the pressure lowers below 10 Torr, the vacuum 

line is closed and gas flow into the cylinder is resumed. 

 Liquid feed delivery system. The liquid delivery system has two main 

components, the syringe pump and the vaporizer. 

 A Harvard Apparatus PHD 2000 syringe pump was used to deliver the liquid. It 

operates four 50-ml glass syringes. The pump operates with a push/pull mechanism. 

While two syringes deliver the liquid, the other two syringes get refilled. Two two-way 

valves alternate flow from the feed line or to the delivery line for the syringes. The arrow 

in Fig. 2.2 refers to the motion of the plungers in the syringe pumps. When one set of 

syringes approaches empty, the other set becomes almost filled. Then the pump is 
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stopped briefly, the delivery mode of the pump (infuse/refill) is changed, and the flow 

paths for the two-way valves are switched, and the pump is re-started. This sequence 

takes care of continuous delivery of liquid to the vaporizer with a small transition time 

while altering the pump motion.  

The required flow rate can be set for the pump, and the pump generally obeys its 

set point quite accurately. However, when high flow rate through the pump is required, 

the actual flow delivered starts deviating from the set point. A calibration curve given in 

Appendix A.2 gives this variation. In order to get the calibration curve, the syringes are 

filled with water, a required flow rate is set in the syringe pump, and then the pump is run 

for a certain time. The water coming out of the syringe is collected in a beaker of known 

weight, and then sample is weighed. The room temperature is noted, and water density at 

that temperature is looked up. From the density and the weight of the water sample, the 

volume of the water collected in a known time period is found out, and thus the exact 

volumetric flow rate delivered by the syringe pump can be calibrated.  

The liquid from the syringe pump then goes into the vaporizer. It is a cylindrical 

pipe (2.2 cm diameter and 14.9 cm long) wrapped with heating tape. A variable-voltage 

transformer (Variac) is used to control the heating tape. The liquid fed into the vaporizer 

forms a liquid pool at the bottom of the vaporizer and gets vaporized continuously. A K-

type thermocouple is placed just above the pool of vaporizing gas. A digital thermometer 

(Omega 650) reads the temperature from the thermocouple. The temperature in the 

vaporizer is set high above the boiling point of the liquid fuel.  

The diluent gas argon is fed to a ¼-inch tube connecting the vaporizer and a surge 

volume.  The argon serves as a carrier gas for the vaporized fuel, and it also maintains the 
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pressure in the vaporizer. The fuel and the diluent enter a constriction volume. The 

purpose of the constriction volume is to diminish any fluctuation in the flow of liquid fuel 

vapor.  

The vapor and the diluent gas mixture then reach the surge volume, which further 

diminishes the fluctuations in the flow. The pressure in the surge volume is controlled by 

a needle valve. The pressure in the surge volume needs to be at atmospheric pressure. If 

the pressure becomes higher than atmospheric pressure, it would push the liquid out of 

the syringes in the syringe pump. If the pressure in the surge volume is far lower than one 

atmosphere, air would be sucked into the syringes. This limitation is solely due to the 

operating-range pressure limitation of the syringe pump.  

The downstream line of the vaporizer that goes into the burner is made of 

stainless steel. Approximately 23 feet of stainless-steel tubing is used to premix the 

argon, fuel vapor and oxygen before it is fed to the burner. The tubing is heated with 

heating tape to prevent formation of liquid droplets. Four variable-voltage transformers 

are used to heat the tubing. Three K-type thermocouples are used to read the temperature 

of the tubing at three different points.  

 

2.2 ALS equipment 

 The MBMS apparatus situated at the Advanced Light Source (ALS) Laboratory 

of the Lawrence Berkeley National Laboratory was built in an combined effort of Prof. 

Terrill Cool of Cornell University, Prof. Phillip R. Westmoreland of University of 

Massachusetts Amherst, and Dr. Andrew McIlroy of Sandia National Laboratories. 
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 The ALS apparatus is similar to the UMass apparatus. The main difference 

between the two apparatuses lies in the method of ionization and the mass spectrometers 

used for the two apparatuses. 

 

 

Figure 2.3. Schematic of the ALS system. 
 
 

 A sketch of the ALS system is given in Fig. 2.3; details are reported in Cool et al. 

(2005) and summarized here. At the ALS, photon beams are generated within a narrow 

energy distribution. The photon energy can be tuned and the sampled molecular beam can 

be ionized at a desired energy ranging from 7.5 to 24 eV.  The photon beam is passed 

through a gas filter to remove higher harmonics of the photons. Argon is used in the gas 

 17



filter when using photon energies below the ionization energy of argon (15.76 eV). 

Argon is replaced by helium when higher energy is required. The photon beam then 

passes through a slit filter that adjusts the flux of photons sent to the MBMS system. A 

silicon photodiode is used to measure the variation in photon flux with photon energy for 

photon energies from 8 to 15 eV.  

 

2.2.1 Equipment description 

 The reaction chamber is an axially horizontal, cylindrical, stainless-steel chamber. 

A 6-cm diameter, internally water-cooled, McKenna-type flat-flame burner is located 

inside the chamber. The burner is translatable along the horizontal direction of flow with 

a computer-controlled stepper motor. A mechanical pump pumps the exhaust from the 

chamber, and an automated MKS control valve on the exhaust line with feedback control 

can maintain constant pressure ranging from 20 to 60 Torr. A tungsten-wire flame-

ignition source is used to ignite the fuel. Two circular windows are there for viewing and 

maintenance-access purposes. 

 The molecular-beam sampling train is similar to the UMass equipment. The 

sample is collected by a quartz cone and the beam goes through a skimmer. A 

turbomolecular pump maintains low pressure of the order of 1.0 × 10-4 Torr or lower in 

the skimmer chamber. 

 Several turbomolecular pumps maintain low pressure in the mass-spectrometer 

chamber. The photon beam enters the main test chamber through a differentially pumped 

aperture, designed to ensure that the pressure at the exit slit does not exceed 2.0 × 10-8 

Torr.  Three plates are at the bottom of the time-of-flight mass spectrometer (TOFMS). 
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The bottom plate is called as the repeller, the middle one is the extractor, and the top one 

is called an accelerator. The photon beam intersects the molecular beam at the ionization 

source region between the repeller and extraction plates of the TOFMS. Cool et al. (2005) 

found optimal plate voltages to be 2997, 3005, and 0 V respectively for the repeller, 

extractor, and accelerator. They justified the 8-V potential difference between extractor 

and the repeller plates as a discriminator to reduce a small random background signal 

caused by ions escaping the source region. A pulsed voltage is applied to the repeller 

plate to propel ions up the 1.3-m flight tube to a multichannel plate (MCP) detector. 

Because of their differences in mass, different species hit the MCP at different times and 

are separated. The pulsed gating voltage applied to the repeller has 300 V amplitude and 

15 kHz frequency. A multiscaler (FAST Comtec P7886) is used to record the TOFMS 

mass spectra. One pulse of mass spectrum is one sweep. Depending upon the signal 

strength of the species of interest, 218 to 221 sweeps are added together to form one data 

point of the mass spectrum (Law, 2005). Signals are sent to a desktop computer, and a 

custom LabVIEW code processes the data. 

 

2.3 Experimental procedures 

 The experimental procedures can be broadly categorized into two classes, (1) 

species identification and measurement and (2) temperature measurement.  The species 

identification and measurement of burner scan profiles were done with the ALS 

equipment, and the temperature measurement were done with the UMass equipment. The 

details of these experimental procedures are illustrated below. 
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2.3.1 Species measurements and identifications 

 A full characterization of a flame includes identifying the different species present 

in the flame and measuring their profiles along the flame axis. Species identification is 

done by analyzing photoionization efficiency (PIE) scans, and mole fraction profiles are 

obtained from burner scans. Detailed descriptions of both processes are described below. 

 

2.3.1.2 Photoionization efficiency (PIE) scan 

 Photoexcitation is a process where an atom can absorb radiation and rise from a 

normal, ground state to an excited state.  The Bohr relation connects the energy  

difference and the frequency of the radiation absorbed. 

( )ul u l ch V V e V eν = − =          (2.1) 

where νul is the frequency of the radiation absorbed in a transition from a state of energy 

eVl to eVu . The absorption lines corresponding to transitions from a particular initial state 

form a spectral series. As the wavelengths become shorter, the wavelength difference 

between successive transitions decreases and the series converges on a series limit. 

Beyond this limit, there is region of continuous absorption, which is called 

photoionization (Marr, 1967). 

The ionization energies (the minimum energy required to remove an electron 

from the outermost orbital of a neutral species) for different species are different. In the 

PIE scan, the burner is positioned at a fixed distance from the quartz sampling probe and 

the photon energy is changed from a low to a higher energy. Different species appear at 

different energies, and based on the appearance potential and mass, we can identify a 

particular species. It has been found that most of the hydrocarbon and C/H/O species in a 
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given flame appear in the energy range between 8.0 to 10.8 eV. At high photon energies, 

there is significant fragmentation of ions, therefore a scan at very high energies is not 

useful for these species. The flame species H2O, O, O2 , CO, CO2, H2, H, OH appear at 

higher energies.  
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Figure 2.4. PIE scan analysis of mass 78 in the fuel-rich cyclohexane flame. 
 

Figure 2.4 shows the PIE scan diagram for the mass 78 signal in a fuel-rich 

cyclohexane flame (Φ = 2). It shows that the signal ionization energy threshold for the 

respective signal is about 9.24 eV.  The NIST Webbook (webbook.nist.gov) gives the 

ionization energy of benzene (mass 78) as 9.24378 ± 0.00007 eV. Hence, this mass 78 

species was identified as benzene. The PIE scans were also compared to the available 

photoionization cross section data for the probable species. The similarity in shape often 

indicates the presence of that particular species. This insight will be discussed in detail in 

Chapter 3 where the data analysis will be covered.  
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 Isomers (different compounds having the same molecular weight) are common in 

hydrocarbon flames. However, each isomer may appear at a detectably different 

ionization energy, allowing. If an isomer at a higher energy has a weaker signal, 

determination of its appearance potential (onset) and thus identification become 

ambiguous. However, applying a linear extrapolation from the point of deviation can 

often allow the ionization potential of the higher-I.E. isomer to be detected. 

 

2.3.1.2 Burner scan 

Mole fraction profiles of the identified species are achieved through burner scans. 

In order to obtain the mole fraction profile along the axis perpendicular to the burner, the 

burner is moved towards the quartz cone and brought to the origin (the closest point the 

burner can reach towards the quartz cone tip). The origin is typically set at 1.02 mm away 

from the quartz cone tip for the ALS equipment. This is a safety measure so that the 

burner does not hit the cone. 

A photon energy is chosen that is higher than the ionization energy (IE) of the 

species whose profiles are intended but lower than the IE of any isomer of the target 

species that may be present in the flame.  The burner is moved stepwise slowly away 

from the sampling probe. Samples are collected at different steps along this axis, and the 

data is interpreted using a LabVIEW code. The signals thus obtained can then be 

transformed to mole fraction profiles as discussed later. The 10-eV burner scan profile at 

mass 78 in the fuel-rich cyclohexane flame is shown in Figure 2.5.  
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Figure 2.5. Burner-scan profile of mass 78 at 10 eV in the fuel-rich cyclohexane flame. 
 

2.3.1.3 Energy calibration 

 The energy calibration factor is a correction for the photon energy, which is 

required to determine the actual ionization energy of a species. The photon energy is 

calibrated by doing an energy scan at a range of 12.0 to 13.2 eV, which is the 

autoionization region of molecular oxygen.  

 When an inner electron of an atom gets excited and the atom reaches superexcited 

state, it can undergo a radiationless transition from the discrete superexcited state over 

into the state of an ion plus an electron. This process is called autoionization (Marr, 

1967). 
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The peaks that are observed at this energy range are compared with the literature 

values (Nicholson, 1963). The difference between the energies at which these peaks are 

observed are taken into account, and an average of the differences is made. This average 

gives the energy calibration factor. Figure 2.6 shows the typical autoionization peaks of 

O2 as observed in the ALS. 
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Figure 2.6. Typical autoionization-peak measurement of oxygen in ALS system. 
 

2.3.2 Temperature measurement 

 The flame temperatures for a fuel-rich cyclohexane flame (Ф =2.0), two fuel-rich 

toluene flames (Ф = 2.03, and Ф = 3.95), and a lean methane flame (Ф = 0.451) were 

measured using a R-type (Platinum / Platinum 13% Rhodium) thermocouple. A detailed 

description of the measurement technique is presented here. 
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2.3.2.1 Basic principles of temperature measurement with a thermocouple 

 A thermocouple is a temperature sensor, which consists of two dissimilar metals 

joined together. When one junction of the thermocouple is held at a different temperature 

from the other, an electromotive force (voltage) is generated. Generally the reference 

temperature is selected as 0˚C. The voltage is a function of the temperature and can be 

read using an analog-to-digital converter or a voltmeter. The corresponding temperature 

can be inferred from standard tables available for the particular thermocouple materials.

 For high-temperature applications. type R, S (Platinum/ Platinum 10% Rhodium), 

C (Tungsten 5% Rhenium/ Tungsten 26% Rhenium) and B (Platinum 30% Rhodium/ 

Platinum 6% Rhodium) type thermocouples are typically used.  

 

 

Figure 2.7. Heat transfer modes from thermocouple (Shaddix, 1999). 
 
 

A schematic of typical laboratory thermocouple assembly is shown in Fig. 2.7. 

The major modes of heat transfer are indicated in the figure.  A general energy balance 
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on the thermocouple is given in equation 2.2 (Shaddix, 1999). The left-side terms of the 

equation are heat transfer associated with surface-induced catalytic reactions, convection 

between the gases and the thermocouple, conduction along the thermocouple wires, and 

radiant heat transfer between the gases and the thermocouple and its surroundings 

respectively. The right-side term refers to the transient heating or cooling of the 

thermocouple. 

. . . .
tc

pcat conv cond rad
dTQ Q Q Q c V
dt

ρ+ + + =        (2.2) 

 As the catalytic and conductive heat transfer effects are hard to quantify, attempts 

are made to minimize these terms. A 4.5% BeO / Y2O3 coating was applied on the 

thermocouple to minimize potential catalytic reactions, which will be discussed in detail 

later. The diameter of the Pt and Pt 13% Rh wires were chosen as 0/003-in. (0.076 mm), 

and the length of the thermocouple wire was taken approximately as 4 cm. The length 

and the narrow diameter minimized the conductive heat transfer effect. 

 The radiation term can be expressed as the expression in equation 2.3 

.
4 4(tc tc wradQ Tε σ= − )T

)

         (2.3) 

Combining Eqs. 2.2 and 2.3, we get 

4 4( ) (g tc tc tc wh T T T Tε σ− = −         (2.4) 

 Ttc, Tg and Tw refers to the thermocouple temperature, the gas temperature, and the 

chamber-wall temperature respectively. The emissivity, Stefan-Boltzmann constant, and 

heat transfer coefficient are denoted as εtc, σ and h respectively. Therefore the heat 

transfer coefficient and the emissivity for the thermocouple should be known to rectify 
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the radiation loss effect theoretically. This problem can be avoided by the electrical 

compensation technique, which will be discussed later. 

 

2.3.2.2 Thermocouple construction 

 A schematic of the thermocouple probe is shown in Fig. 2.8. The support wires 

(one platinum and the other platinum 13% rhodium) were bigger in diameter than the 

thermocouple element (0.76 mm vs. 0.076 mm). The support wires were threaded 

through a ceramic support, which was then put inside a stainless-steel protection tube, 

which was in turn filled with Apiezon W100 wax. This sealing was necessary to prevent 

air leakage when the thermocouple was inserted into the reaction chamber. The 

protection tube was then capped at both ends.  

The support wires were shaped as shown in Fig. 2.8. To ensure stability and 

toughness in the support wires, they were clamped together using a pair of ceramic 

washers, a nut and a bolt. Care was taken so that the support wires could not touch each 

other, as any short circuit would lead to error in the thermocouple voltage.  

The thermocouple element was built by butt-welding a 2-cm-long platinum wire 

(Omega Engineering, SPPL-003) with a diameter of 0.076 and a platinum 13% rhodium 

wire  (Omega Engineering, SP13RH) of the same size. Prior to welding, care was taken 

to align the two wires such that the ends of both wires precisely touched each other. One 

end of the platinum wire was held with an adjustable clip. One end of the platinum 13% 

rhodium wire was held onto a micromanipulator. The micromanipulator enabled full X-

Y-Z movement of the platinum 13% rhodium wire. A binocular microscope (Reichert-

Jung)  was used to look at the two wire tips, while the micromanipulator was used to 
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align the platinum 13% rhodium wire properly against the stationary end of platinum 

wire held by the adjustable clip. After the alignment was finished, the tips of the two 

wires were welded using a micro torch (Smith Equipment, 23-1001B). A propane/oxygen 

flame was used to weld the wires.  

 

Figure 2.8. Schematic of the thermocouple probe. 
 

Once the thermocouple element was built, it was welded to the thick support wire. 

Care was taken to weld the platinum end of the thermocouple element onto the platinum 

support wire. 

 

2.3.2.3 Applying noncatalytic ceramic coating 

 The procedures followed by Bhargava (1997) and Law (2005) were followed to 

put the ceramic coating onto the thermocouple. After the thermocouple element was 
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welded onto the support wire, the element was cleaned by repeating a rinsing cycle of 1 

N HCl, distilled water, and CH2Cl2. The thermocouple was immersed into the HCl, water, 

and CH2Cl2 for thirty seconds each. The procedure was repeated three times before 

applying the ceramic coating. 

 To prevent catalysis of radical recombination reactions on the bare thermocouple 

wire, a 4.5 wt% BeO-Y2O3 ceramic coating was applied to the wire by the procedure of 

Kent (1970). Pure ceramic powders were weighed first and then mixed well with a 

spatula. Then HCl was added in drops until the powder formed a milky solution. Ethylene 

glycol was added to the solution to get an enhanced wettability that would help the 

solution stick well onto the thermocouple element. 

 The thermocouple was coated with the ceramic solution by taking the solution 

onto a spatula and holding it close to the thermocouple so that the thermocouple was 

immersed into the ceramic solution pool. Then the spatula was moved along the 

thermocouple element so that all of the element could be coated with the ceramic coating.  

 The thermocouple was then inserted into the reaction chamber of the UMass 

system, and the chamber pressure was reduced to approximately 2 torr. Reduced pressure 

densified the coating, and then the coating was fired by resistively heating the 

thermocouple. The element was heated for 1 minute to 373 K (0.647 mV vs. an ice-point 

reference thermocouple) and then for 1 minute to 471 K (1.451 mV) to volatilize HCl and 

ethylene glycol, respectively. Then the element was heated over 5 minutes to 1715 K 

(16.633 mV) to sinter the ceramic. The coating was sintered at that temperature for 5 to 8 

minutes. Temperature was then slowly reduced to 450 K (1.268 mV), where the Pt was 

annealed for 2 minutes. Finally, system pressure and the thermocouple temperature were 
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restored to ambient conditions. The procedure was repeated for ten times. The resulting 

coating was grayish white and opaque. To expose the coating to the highest temperature 

the sintering of ceramic might face, the thermocouple was coated four additional times 

with the ceramic coating and the firing process as mentioned was repeated with the 

addition of one last step. In the final step, after the thermocouple was heated to 1715 K 

for 5 to 8 minutes, it was further heated to 1923 K (19.540 mV) over a period of 5 

minutes and sintered for 5 minutes.  The thermocouple was then restored to initial 

temperature and pressure.  The coating underwent a glass transition at that temperature 

and the final coating looked glassy and transparent.  

 A first-order test was performed to test the catalytic activity of the coating (Kent, 

1970). The thermocouple probe was placed into the flame. The support and the element 

glowed red hot. The flame was extinguished by momentarily shutting off the fuel flow, 

and then the fuel flow was resumed. The support wire continued to glow due to catalytic 

oxidation on the bare wire; however, the element did not glow further. This observation 

suggested that the coating prevented catalytic activity of the thermocouple element. 

 

2.3.2.4. Thermocouple circuit 

 The circuit that was used to measure the temperature and provide the resistive 

heating was the same as used by Law (2005). A JDR Instruments DFG-600 sweep 

function generator was used to create a 3 kHz AC current and was then amplified by a 

Radio Shack MPA-101 100 watt amplifier. A 1-kΩ variable potentiometer between the 

main potentiometer and the function generator was used to adjust the current flow 

through the thermocouple. A high-pass RC filter was placed by combining a 10-µF 
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capacitor on the amplifier output and an effective 8-Ω resistance, which removed any DC 

current from the circuit. An ammeter (Keithley 168 DMM) with 0-2 amp range was used 

to read the heating current, and a digital voltmeter was used to read the voltage produced 

by the thermocouple. Two low-pass filters placed in conjunction with the voltmeter 

filtered out the AC voltage. A reference thermocouple junction point was placed in ice 

water. A schematic of the circuit diagram is given in Figure 2.9. 

 
Figure 2.9. Schematic of thermocouple circuit (Law, 2005). 

 

2.3.2.5 Resistive heating technique to eliminate radiation loss 

 A resistive heating technique used by Bittner (1981) was used here to compensate 

for the radiation loss. When the thermocouple is resistively heated, the energy balance 

equation described in Eq. 2.4 becomes 

2
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ρε σ
π

− − − + = 0       (2.5)  
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where ρe , I, D, and d refer to electrical resistivity per unit length, heating current, 

thermocouple wire diameter, and coated-thermocouple diameter, respectively. At low 

pressures, the heat transfer coefficient can be neglected and the expression becomes. 

2
4 4

2 2

4 ( )e
tc tc w

I T T
D d

ρ ε σ
π

− − 0=         (2.6) 

 The thermocouple is calibrated at fairly low pressure to get the convection-free 

relationship of Ttc and I. To get the thermocouple in this low-pressure range, it was sealed 

in a vacuum chamber (a decommissioned turbopump housing), and the vacuum was 

applied in the range of 2 to 15 mTorr with a diffusion pump and a roughing pump in 

series (Duo Seal Model 1400, Welch). Current flowing through the thermocouple was 

varied and the voltage-current relationship was recorded from the voltmeter and the 

ammeter.  

The voltage-current relationship was likewise measured for the thermocouple in 

the flame. When the voltage-current relationship measured in the flame intersects the 

calibration curve, the point of intersection gives the actual voltage that corresponds to the 

temperature corrected for the radiation loss. At that point Ttc becomes Tg, convective heat 

transfer is eliminated, and Eq. 2.5 becomes Eq. 2.6.  

For the temperatures measured in the flames with the UMass equipment, care was 

taken not to exceed 20 mV to avoid melting the thermocouple.   

The emissivity of the thermocouple changes as it is exposed to different flames 

(Shaddix, 1999). This change in emissivity is also reflected in the calibration curve for 

the thermocouple. Figure 2.10 shows the shift in the calibration curve for a post-flame 

thermocouple calibration of the fuel-lean methane flame and the preflame calibration for 

the fuel-rich cyclohexane flame. For this particular case, the thermocouple was used to 
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measure the methane flame temperature. Then a post-flame calibration was done on it. 

After that and prior to measuring the temperature for the cyclohexane flame, the 

thermocouple was put in the post-flame zone of the fuel-rich cyclohexane flame for an 

hour and then a preflame calibration was performed.  

0

5

10

15

20

25

0 0.2 0.4 0.6 0.8 1 1.2

I ( Amp )

V
 (m

ili
vo

lts
)

 

 

Figure 2.10. Calibration comparison of thermocouple wire exposed to different flames 

( ■ refers to postflame calibration of methane flame, ∆ refers to preflame calibration of 

cyclohexane flame). 

 

At high temperatures, it would not be possible to get an intersection of the 

calibration curve and the measured data points. In that case, Tg could be calculated from 
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Eq. 2.4. The heat transfer coefficient can be calculated from the widely used Kramers 

(1946) correlation given in Eq. 2.7. 

0.2 1/3 1/20.42Pr 0.57 Pr RedNu = + d        (2.7) 

where the Nusselt number Nu refers to hd/k, the Prandtl number Pr refers to µcp/k and the 

Reynolds number Re refers to dvρ/µ. The gas velocity v can be computed from hot-wire 

anemometry experiments. The specific heat (cp) of the gas mixture, viscosity (µ), thermal 

conductivity (k) and density (ρ) of the gas can be calculated at a film temperature Tf = (Tg 

+ Ttc)/2 using gas phase kinetics and transport codes developed at Sandia National Labs 

(Kee et al., 1986, 1987). Emissivity must be inferred from the radiation-compensated 

measurements made at lower temperatures. 

 

2.3.2.6 Temperature measurement procedure  

 The thermocouple was calibrated prior to measuring the flame temperature. The 

thermocouple was placed inside the reaction chamber with the thermocouple element 

oriented parallel to the burner surface. Next, the burner distance from the thermocouple 

was calibrated using the LabView code developed by (Law, 2005). In order to do the 

calibration with respect to the burner, a 13-mm machinist’s block was placed on top of 

the burner and the burner was moved toward the thick support wire of the thermocouple. 

When the block barely touched the lower side of the thick wire support, the distance was 

set in the LabView code. Thereafter, the burner can be moved by specified step sizes with 

respect to the thick wire. After the calibration was done, the flame was lit. The 

thermocouple glowed red. At that point using a cathetometer, the positions were noted of 

the thermocouple junction and the lower end of the thick support wire (with which the 
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burner was calibrated against). The difference in the two positions was used to find the 

exact distance of the burner from the thermocouple junction.  Thereafter the burner was 

taken away from the thermocouple and the heated and unheated voltages were noted.  

Once the readings were taken at a particular point, the burner was moved towards 

the thermocouple and five minutes was allowed to get the flame stabilized. After that, 

another set of data points were taken and the burner was moved on to the next desired 

point. The position of the thermocouple junction point was observed using the 

cathetometer to account for sagging of the thermocouple.  After the data were obtained at 

all the points, the flame was extinguished and the thermocouple was calibrated again in 

the low-pressure chamber. The preflame and post-flame calibrations were compared.  If 

they were within a few percent of each other, the measurement was considered good.  

 

2.3.2.7 Analysis of temperature measurement data 

 As mentioned earlier, the experimental data points did not intersect the calibration 

curve in the high-temperature region of the flame. Close to the burner surface where the 

temperature was sufficiently low, an intersection was observed. For other points where 

the intersection point would have been too hot, a polynomial fit of the data points that 

could be safely measured was obtained using Origin software. Then, extrapolating the 

calibration curve and the polynomial fit, the intersection point was achieved. The 

intersection gave the thermocouple voltage corresponding to the flame temperature. The 

heated and unheated voltages were converted to temperature using the ITS-90 

thermocouple inverse polynomials for R-type thermocouples reported by Omega 

Engineering, Inc. (2000). 
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CHAPTER 3 

EXPERIMENTAL DATA AND ANALYSIS 

 

3.1 Procedure of acquiring mole-fraction profile from the MBMS experiment 

 The intensity of a required species is measured from its burner-scan profile as 

discussed in Chapter 2. The signal of a species can be presented as. 

 

VolNNVMmVI piiiii )()()( σ=        (3.1)  

 

where Ii is the species signal intensity at a given photon energy (V); mi is the mass 

discrimination factor (takes into account the difference in translation velocity of a species 

from other species present at a particular point in the flame due to mass difference), 

which is a function of species molecular weight (Mi) only; σi(V) is the photoionization 

cross section of the species (which is a function of photon energy, V) at same V; Ni is the 

molar concentration of species i; Np is the concentration of photons; and Vol is the 

ionization volume (a function of the slit width).  Now as mole fraction Xi is proportional 

to Ni , the ratio of mole fraction of species i to that of a reference species measured at the 

same slit width can be represented as 
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 When all the mole fraction ratios are obtained, the mole fraction of the reference 

species can be found by taking an overall mole-fraction balance of all the species for each 

distance from the burner. 
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Hence, the mole fraction of species i can be obtained from the mole-fraction ratio 

of species i to that of reference species and the mole fraction of the reference species.  

Sometimes the signal of a species needs to be extrapolated from a lower energy 

(V1) to a higher energy (V2) for separating different species of same mass number. If the 

species signal is I1 at V1 then the signal of that particular species at V2 is given by 
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σ
σ         (3.5) 

A few corrections are required for the mole-fraction profile generation. First, the 

intensity signal for each species should be normalized by the photodiode signal because 

the photon flux and thus the photon concentration varies with time.  Second, a sweep 

correction of the intensity signal should be incorporated; i.e. all the species whose mole 

fractions are compared should be adjusted to the same number of sweeps because Ii is 

proportional to the number of sweeps.  Third, the signal should be corrected for the 

isotopic contribution of 13C. Generally for each 12C atom present in a particular species, 

the relative natural abundance of 13C would be approximately 1.1% (Brosi and Hankins, 

 37



1937). Fourth, if the reference species signal is taken at a different slit width, a volume 

correction factor should be incorporated to take into account the change in ionization 

volume of the reference species. Suppose I1 and I2 are signals for species i at two 

different slit widths w1 and w2 and at two voltages V1 and V2, respectively and the 

reference species signal is measured at slit width w2 and at voltage V2. 

 

11111 )()()( VolNNVMmVI piii σ=        (3.6) 

 

22222 )()()( VolNNVMmVI piii σ=        (3.7) 

 

Now the correction factor with which the reference species should be multiplied is 

C = Vol1/Vol2 (Law, 2005), which is given by 
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3.2 Cyclohexane data analysis 

The fuel-rich cyclohexane flame feed conditions are tabulated in Table 3.1. 

Table 3.1 Condition for the fuel-rich cyclohexane flame. 
 Flow Rates Pressure in the 

Reaction Chamber 
Fuel Equivalence 
Ratio (Ф) 

Cyclohexane 1.133 ml/min  
(liquid, 25 oC) 

Oxygen 1.058 SLM 
Argon 0.564 SLM 

30 Torr 2.003 
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The species identified in the fuel-rich cyclohexane flame are reported in Table 

3.2. The description of the mole-fraction profiles of these species follows below. An 

energy scan from 8 to 10.7 eV was used to identify the species in the cyclohexane flame.  

 
Table 3.2 List of species measured in the fuel-rich cyclohexane flame, ionization 

energies of the species as reported in the NIST Chemistry WebBook (NIST, 2005), 
ionization energy observed, and ionization energy used to measure the profile. 

AMU Species Identified Ionization energy 
from literature 
(eV) 

Ionization 
energy 
observed 
(eV) 

Burner 
scan 
Energy 
(eV) 

2 H2 15.42593±0.00005 - 16.2 
15 Methyl  

(CH3 )radical  
9.84±0.01 9.765 10.00 

16 Methane (CH4) 12.61±0.01 - 13.20 
18 Water (H2O) 12.621 ±0.002 - 13.20 
26 Acetylene (C2H2) 11.4±0.002 - 12.30 
27 Vinyl (C2H3) radical 8.25 8.37 12.30 
28 Ethylene  

(C2H4 ) 
10.5138±0.0006 10.469 12.30 

29 Formyl (HCO) radical 8.12±0.04  8.365 10.00 
30 Formaldehyde 10.88±0.01 - 11.50 
39 Propargyl 

 (C3H3) radical 
8.67±0.02 8.697 10.00 

40 Allene (C3H4) 9.692±0.004 9.769 10.00 
40 Propyne (C3H4) 10.36±0.01 10.319 10.50 
41 Allyl radical(C3H5 ) 8.18±0.07 8.119 10.00 
42 Ketene (C2H2O) 9.617±0.003 9.602  
42 Propene (C3H6) 9.73±0.01 9.719 10.00 
44 Carbon dioxide (CO2) 13.797±0.001 - 14.35 
50 1-3 Butadiyne (C4H2) 10.17 10.119 10.50 
52 1-Buten-3-yne (C4H4) 9.58±0.02 9.515 10.50 
54 1,3-Butadiene (C4H6) 9.072±0.007 9.069 10.00 
55 1-Buten-3-yl (C4H7) radical 7.49±0.02 Below 7.5 10.00 
56 2-Butene (C4H8) and its 

stereoisomers (E and Z) 
9.13 8.915 - 

56 1-Butene (C4H8) 9.55±0.06 9.565 10.00 
64 1,3-Pentadiyne (C5H4) 9.5 ± 0.02 9.465 10.00 
65 Cyclopentadienyl (C5H5) radical 8.41 8.415 10.00 
66 1,3-Cyclopentadiene (C5H6) 8.57 ± 0.01 8.515 10.00 
67 Cyclopentenyl ( C5H7) radical 7 Below 8  
68 1,3-Pentadiene (C5H8) 8.6 8.615 10.00 
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AMU Species Identified Ionization energy 
from literature 
(eV) 

Ionization 
energy 
observed 
(eV) 

Burner 
scan 
Energy 
(eV) 

70 2-Pentene (C5H10) stereoisomers 
(Z and E ) 

9.01±0.03 
9.04±0.01 

9.015 10.00 

74 1,3,5-Hexatriyne (C6H2) 9.5±0.02 9.492 10.00 
76 Benzyne (C6H4) 9.03±0.05 8.965 10.00 
78 Fulvene (C6H6) 8.36 8.365 10.00 
78 Benzene (C6H6) 9.24378±0.00007 9.215 10.00 
80 1,3-Cyclohexadiene (C6H8) 8.25 8.215 10.00 
82 Cyclohexene (C6H10) 8.95±0.01 8.915 10.00 
83 Cyclohexyl (C6H11) radical 7.66±0.05 Below 8 10.00 
84 Cyclohexane (C6H12) 9.88±0.03 9.915 10.00 
92 Toluene (C7H8) 8.828±0.001 8.815 10.00 
92 5-Methylene-1,3-Cyclohexadiene 

(C7H8) 
8.1 8.115 10.00 

94 Phenol (C6H6O) 8.49±0.02 8.515 10.00 
98 Cyclohexanone  (C6H10O) 9.16±0.02 9.165 10.00 
102 Phenylacetylene (C8H6) 8.82±0.02 8.79 10.00 
104 Styrene (C8H8) 8.464±0.001 8.465 10.00 
106 Para-xylene (C8H10) 8.44±0.05 8.365 10.00 
116 Indene (C9H8) 8.14±0.01 8.115 10.00 
128 Naphthalene (C10H8) 8.144±0.001 8.117 10.00 
 
 

3.2.1 Mole-fraction profiles  

        The mole-fraction profiles of the species identified follow in an ascending mass 

number order. The photoionization cross-sections and mass discrimination factors used 

are given in Appendix A. 

Mass 2. The mass 2 species was not detected in the energy scan range of 8 to 10.7 

eV. The species showed up at 16.2 eV burner scan. It was identified as hydrogen 

molecule. The hydrogen mole-fraction profile is depicted in Figure 3.2. It shows a linear 

increase in hydrogen mole fraction away from the burner (up to about 10 mm) and then 
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the mole fraction increases very gradually towards the end of the post flame zone. At the 

post-flame zone, the mole fraction reaches 8.17 % of the post-flame gases. 

Mass 15. The mass 15 species was identified as methyl (CH3) radical, based on its 

mass and threshold ionization energy reported in Table 3.1. The mole-fraction profile was 

reported in figure 3.3. It shows a peak in methyl radical mole fraction at 9.02 mm from 

the burner, and then it decreased away from the burner.  
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Figure 3.1. Mole-fraction profile of major species cyclohexane, CO, CO2, O2, H2O, Ar. 
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Figure 3.2. Mole-fraction profile of hydrogen. 
 

Methyl

-0.0002

0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

0.0012

0 5 10 15 20 25 30

Distance from the burner (mm)

M
ol

e 
fra

ct
io

n

 
 

Figure 3.3. Mole-fraction profile of methyl radical. 
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Figure 3.4. Mole-fraction profile of methane. 
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Figure 3.5. Mole-fraction profile of acetylene. 
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Figure 3.6. Mole-fraction profile of major radicals. methyl, propargyl, formyl, allyl, 
cyclopentadienyl, cyclohexyl, 1-Buten-3-yl. 
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Figure 3.7. Mole-fraction profile of ethylene. 
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Figure 3.8. Mole-fraction profile of HCO. 
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Figure 3.9. Mole-fraction profile of HCHO. 
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Figure 3.10. Mole-fraction profile of propargyl. 
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Figure 3.11. Mole-fraction profile of allene and propyne. 
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Figure 3.12. Mole-fraction profile of allyl. 
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Figure 3.13. Mole-fraction profile of propene. 
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Figure 3.14. Mole-fraction profile of diacetylene (C4H2). 
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Figure 3.15. Mole-fraction profile of 1-buten-3-yne. 
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Figure 3.16. Mole-fraction profile of 1,3-butadiene. 
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Figure 3.17. Mole-fraction profile of 1-Buten-3-yl radical. 
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Figure 3.18. Mole-fraction profile of 1-Butene. 
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Figure 3.19. Mole-fraction profile of 1,3-pentadiyne. 
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Figure 3.20. Mole-fraction profile of cyclopentadienyl radical. 
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Figure 3.21. Mole-fraction profile of 1,3-cyclopentadiene. 
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Figure 3.22 Mole-fraction profile of 1,3-pentadiene. 
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Figure 3.23. Mole-fraction profile of 2-pentene. 
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Figure 3.24. Mole-fraction profile of 1,3,5-hexatriyne (triacetylene). 
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Figure 3.25. Mole-fraction profile of benzyne. 
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Figure 3.26. Mole-fraction profile of benzene. 
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Figure 3.27. Mole-fraction profile of 1,3-cyclohexadiene. 
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Figure 3.28. Mole-fraction profile of cyclohexene. 
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Figure 3.29. Mole-fraction profile of cyclohexyl radical. 
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Figure 3.30. Mole-fraction profile of toluene. 
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Figure 3.31. Mole-fraction profile of phenol. 
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Figure 3.32. Mole-fraction profile of cyclohexanone. 
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Figure 3.33. Mole-fraction profile of phenylacetylene. 
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Figure 3.34. Mole-fraction profile of styrene. 
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Figure 3.35. Mole-fraction profile of xylene. 
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Figure 3.36. Mole-fraction profile of indene. 
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Figure 3.37. Mole-fraction profile of naphthalene. 

 

Mass 16. The mass 16 signal was identified as methane (CH4). The CH4 was not 

detected in the low-energy scan as it has an ionization energy of 12.61 eV.  A 13.2 eV 

burner scan was used to obtain the methane mole-fraction profile. The methane mole-
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fraction profile is reported in Figure 3.4. The mole-fraction profile showed a peak at 7.02 

mm from the burner. 

Mass 18. The mass 18 signal was identified as water. Like methane, water has an 

ionization energy (12.621 eV) which is higher than the energy range used for the energy 

scan. The mass 18 signal observed at 13.2 eV burner scan showed a gradual increase of 

the species away from the burner and then it remained steady throughout the post-flame 

zone. The mole-fraction profile of water is given in Figure 3.1.  

Mass 26. The mass 26 species was not detected in the low-energy scan range of 8 

to 10.7 eV. In a 12.3 eV burner scan, the species showing up at mass 26 was identified as 

acetylene (C2H2) based on the mass number and the shape of the profile. Acetylene has a 

literature ionization energy of 11.4 ±0.002 eV. The mass 26 species did not show up at 10 

and 10.5 eV burner scans but was found in an 11.5 eV burner scan. Furthermore, 

acetylene is a common species found in hydrocarbon flames. Hence the mass 26 species 

was considered as acetylene. The mole-fraction profile is depicted in Figure 3.5.  The 

profile shows a peak at 9.52 mm from the burner. 

Mass 28. Two mass 28 species were reported in the cyclohexane flame. Ethylene 

(C2H4) showed up at 10.469 eV in the energy scan.  The second mass species was 

identified as carbon monoxide (CO). The mass 28 signal showed a peak at 12.3 eV, but at 

14.35 eV it showed a strong signal that gradually increased and then stayed almost 

constant towards the post-flame zone. The species that showed up above 12.3 eV was 

identified as CO, a species found in all hydrocarbon flames. C2H4 signal was extrapolated 

from 12.3 eV to 14.35 eV signal using the photoionization cross section of C2H4 at those 

two energies. The extrapolated signal of C2H4 was then subtracted from total mass 28 
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signal at 14.35 eV. This subtracted signal was considered to be the signal due to CO and 

was converted to mole fraction of CO. The peak for the C2H4 signal was observed at 8.02 

mm from the burner. The CO mole fraction showed a gradual increase up to 11.02 mm 

and then did not change much. 

Mass 29. The mass 29 species was identified as formyl radical (HCO). Figure 3.8 

depicts its mole-fraction profile. A burner scan at 10.00 eV was used to get its mole-

fraction profile. The profile shows a peak at 7.52 mm from the burner. 

Mass 30. The mass 30 species was identified as formaldehyde (HCHO). Figure 

3.9 depicts its mole-fraction profile. The profile shows a peak at 7.02 mm from the 

burner. 

Mass 32. The mass 32 species was identified as molecular oxygen (O2). Figure 

3.1 depicts its mole-fraction profile along with other major species. The oxygen profile 

shows a decrease until 11 mm away from the burner, and then it remains close to zero. 

Mass 39. The mass 39 species was identified as propargyl (C3H3). Figure 3.10 

depicts its mole-fraction profile. The propargyl profile shows a peak at 9.02 mm away 

from the burner. 

Mass 40. Three different species are present as mass 40 in the flame. They are 

argon, allene, and propyne. Allene showed up at approximately 9.7 eV and propyne 

showed up at approximately 10.3 eV. A burner scan at 10.0 eV was used to get the allene 

signal, while a burner scan at 10.5 eV had contributions from both the hydrocarbons. 

Using the cross photoionization cross sections of allene at 10 and 10.5 eV, allene signal 

was extrapolated to 10.5 eV, and the extrapolated allene was then subtracted from the 

combined signal to get the propyne signal. Argon did not show up at these energies as its 
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ionization energy is 15.759 eV. A burner scan at 16.2 eV was used to get the argon 

signal. As argon is fed into the burner and it is an inert gas, the argon signal is very high 

compared to allene and propyne. Hence the mass 40 signal at 16.2 eV burner scan was 

treated as pure argon to extract the mole-fraction profile. Figure 3.1 shows the mole-

fraction profile for argon along with other major species in the flame. The argon mole-

fraction profile showed a decrease from the burner to 9.52 mm, and then it remained 

steady. Argon is an inert gas that should not react in the flame, but this decrease is not 

due to reaction. Rather, as more and more CO, CO2, and H2O are produced, the total 

number of moles of exhaust gases increases, which decreases the mole fraction of argon 

although the number of moles of argon remains the same as it was in the inlet stream.  

Figure 3.11 shows the mole-fraction profiles for allene and propyne. 

Mass 41. The mass 41 species was identified as allyl radical (C3H5). Figure 3.12 

depicts its mole-fraction profile. A burner scan at 10.00 eV was used to get its mole-

fraction profile. The profile shows a peak at 7.52 mm from the burner. 

Mass 42. The mass 42 species was identified as propene (C3H6) and ketene 

(CH2CO). Because these species have ionization-energy thresholds very close to each 

other (propene I.E. 9.73 and ketene 9.617), the signal of mass 42 could not be resolved 

into profiles for these separate identities. From the energy scan, it appears that the signal 

intensity for propene is much higher than ketene. Moreover, as this is a fuel-rich flame, it 

would be justified to consider that the oxygenate (ketene) would be lower in signal 

compared to the propene. Hence the mass 42 signal was treated as propene and its mole-

fraction profile is depicted in Figure 3.12.  A burner scan at 10.00 eV was used to 

measure its mole-fraction profile. The profile shows a peak at 7.02 mm from the burner. 
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Mass 44. The mass 44 species was identified as carbon dioxide (CO2). CO2 did 

not show up in the low-energy scan (8 to 10.7 eV) because it has higher ionization 

energy, but the mass 44 signal that was detected in 14.3 eV signal was considered to be 

CO2. Its profile is shown in Figure 3.1 along with other major species. 

Mass 50. The mass 50 species was identified as 1,3-butadiyne or diacetylene. 

Figure 3.13 depicts its mole-fraction profile. The profile shows a peak at 9.52 mm from 

the burner. 

Mass 52. The mass 52 species was identified as 1-buten-3-yne. Figure 3.15 

depicts its mole-fraction profile. The profile shows a peak at 8.52 mm from the burner. 

Mass 54. The mass 54 species was identified as 1,3-butadiene. Figure 3.17 

depicts its mole-fraction profile. The profile shows a peak at 7.02 mm from the burner. 

Mass 55. The mass 55 species was identified as 1-buten-3-yl radical. Figure 3.16 

depicts its mole-fraction profile. A burner scan at 10.00 eV was used to get its mole-

fraction profile. The profile shows a peak at 9.02 mm from the burner. 

Mass 56. The mass 56 species was identified as a mixture of 1-butene (C4H8) and 

2-butene (C4H8). As both of these species have ionization energy thresholds very close to 

each other (1-butene at 9.55 and 2-butene at 9.13 eV), the signal of mass 56 could not be 

resolved into profiles for separate identities. From the energy scan, it seems that the 

signal intensity for 1-butene is much higher than 2-butene. Hence the mass 56 signal was 

treated as 1-butene, and its mole-fraction profile is depicted in Figure 3.19.  A burner 

scan at 10.00 eV was used to get its mole-fraction profile. The profile shows a peak at 

6.52 mm from the burner. 
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Mass 64. The mass 64 species was identified as 1,3-pentadiyne (C5H4). Figure 

3.20 depicts its mole-fraction profile. A burner scan at 10.00 eV was used to get its mole-

fraction profile. The profile shows a peak at 5.52 mm from the burner. 

Mass 65. The mass 65 species was identified as cyclopentadienyl radical (C5H5). 

Figure 3.21 depicts its mole-fraction profile. A burner scan at 10.00 eV was used to get 

its mole-fraction profile. The profile shows a peak at 7.52 mm from the burner. 

Mass 66. The mass 66 species was identified as 1,3-cyclopentadiene (C5H6). 

Figure 3.22 depicts its mole-fraction profile. A burner scan at 10.00 eV was used to get 

its mole-fraction profile. The profile shows a peak at 7.52 mm from the burner. 

Mass 68. This species was identified as 1,3-pentadiene (C5H8). Figure 3.23 

depicts its mole-fraction profile. A burner scan at 10.00 eV was used to get its mole-

fraction profile. The profile shows a peak at 7.02 mm from the burner. 

Mass 70. The mass 70 species was identified as 2-pentene (C5H10). Figure 3.24 

depicts its mole-fraction profile. A burner scan at 10.00 eV was used to get its mole-

fraction profile. The profile shows a peak at 5.52 mm from the burner. 

Mass 74. The mass 74 species was identified as 1,3,5-hexatriyne or 

triacetylene(C6H2). Figure 3.25 depicts its mole-fraction profile. A burner scan at 10.00 

eV was used to get its mole-fraction profile. The profile shows a peak at 9.52 mm from 

the burner. 

Mass 76. The mass 76 species was identified as benzyne (C6H4). Figure 3.26 

depicts its mole-fraction profile. The profile shows a peak at 9.02 mm from the burner. 

Mass 78. The PIE scan of mass 78 signal showed two different species, fulvene 

(C6H6, I.E. 8.36 eV) and benzene (C6H6, I.E. 9.243 eV). From the PIE scan it was evident 
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that benzene was the dominant species at mass 78. Hence the total mass 78 signal was 

considered to be benzene, and its mole fraction was obtained. Figure 3.27 depicts the 

benzene mole-fraction profile. It shows a peak at 8.02 mm from the burner. 

Mass 80. The mass 80 species was identified as 1,3-cyclohexadiene (C6H8). 

Figure 3.26 depicts its mole-fraction profile. The profile shows a peak at 7.52 mm from 

the burner. 

Mass 82. The mass 82 species was identified as cyclohexene (C6H10). Figure 3.27 

depicts its mole-fraction profile. A burner scan at 10.00 eV was used to get its mole-

fraction profile. The profile shows a peak at 6.52 mm from the burner. 

Mass 83. The mass 83 species was identified as cyclohexyl radical (C6H11). 

Figure 3.27 depicts its mole-fraction profile. The profile shows a peak at 5.52 mm away 

from the burner. 

Mass 84. The mass 84 species was identified as cyclohexane (C6H12). Figure 3.28 

depicts its mole-fraction profile. As cyclohexane is the fuel, it is oxidized until after 7.5 

mm from the burner, it is barely detectable. 

Mass 92. The mass 92 species was identified as toluene (C7H8). Figure 3.29 

depicts its mole-fraction profile. It shows a peak at 6.5 mm from the burner. 

Mass 94. The mass 94 species was identified as phenol (C6H6O). Figure 3.30 

depicts its mole-fraction profile. It shows a peak at 5.02 mm from the burner. 

Mass 98. The mass 96 species was identified as cyclohexanone (C6H10O). Figure 

3.31 depicts its mole-fraction profile. It shows a peak at 5.52 mm from the burner. 

Mass 102. The mass 102 species was identified as phenylacetylene (C8H6). Figure 

3.31 depicts its mole-fraction profile. It shows a peak at 8 mm from the burner. 
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Mass 104. The mass 104 species was identified as styrene (C8H8). Figure 3.32 

depicts its mole-fraction profile. It is a scattered signal and the peak cannot be identified 

from it. 

Mass 106. The mass 106 species was identified as para-xylene (C8H10). Figure 

3.33 depicts its mole-fraction profile. It had a weak and scattered signal as well, and at 

7.52 mm it seemed there was a peak. 

Mass 116. The mass 116 species was identified as indene (C9H8). Figure 3.34 

depicts its mole-fraction profile. It a weak and scattered signal as well and at 6.52 mm it 

seems there is a peak. 

Mass 128. The mass 128 species was identified as naphthalene (C10H8). Figure 

3.35 depicts its mole-fraction profile. It was a weak and scattered signal as well, and at 

7.52 mm away from the burner it seemed there was a peak. 

 

3.2.2. Checks of mole-fraction-profile analysis  

 The mole-fraction profile obtained from the flame data was checked with the 

initial feed composition, and a mole balance was performed with hydrogen and carbon 

atom balance in the feed and the post-flame zone of the flame. 

 The initial mole fractions of the feed gases going into the burner were obtained 

from the feed conditions of the cyclohexane flame. These values were then compared 

against the mole-fraction data achieved for the first data point away from the burner. The 

comparison is tabulated in Table 3.3. 
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Table 3.3. Comparison of mole fraction of the feed and to the first data point away 
from the burner. 

 Mole fraction in the feed gas Mole fraction at 1.02 mm from 
the burner 

Cyclohexane 0.127 0.0891 
Oxygen 0.570 0.502 
Argon 0.303 0.278 
 

 The mole fractions of cyclohexane, oxygen, and argon obtained at 1.02 mm away 

from the burner are lower than their respective values in the feed. This result was 

expected because at 1.02 mm away from the burner, the oxidation reactions have already 

started. As a result, the mole fractions of cyclohexane and oxygen should be slightly 

lower than their respective values in the feed. The argon mole fraction should be slightly 

decreased as well, as explained previously. 

 The mole balances for hydrogen and carbon atom are described below. Initially 

100 moles of feed gas was assumed. This gave 12.7 mole of cyclohexane in the feed, 

which further gave 76.2 moles of C and 152.4 moles of hydrogen in the inlet gas.  

 In the post-flame zone, the dominant gases are Ar (15.9%), CO (33.4%), H2O 

(30.3%), CO2 (8.65%), C2H2 (1.55%), H2 (8.17%) and O2 (2.25%). The carbon balance 

accounting for CO, CO2 and C2H2 is only 86.04 %. Hence, the carbon mole balance in the 

post-flame zone overshoots the inlet carbon moles. 

 The hydrogen (H atom) mole balance in the post-flame zone accounting for post-

flame H2O, H2, C2H2 was 152.9 mole. This value slightly overpredicts the initial number 

of moles of hydrogen atom in the feed gas.  

 The overprediction of carbon was estimated in this case as there is no detection of 

O, H and OH in the flame. In the post-flame zone, these species represent significant 

amounts (1 to 4 percent) and thus should lower the Ar, CO and CO2 mole fraction. The 
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mole balance depends on the Ar mole fraction in the post flame zone (we consider Ar as 

an inert species and the total number of moles of exhaust gas generated from 100 mole of 

feed gas is calculated from the Ar mole fractions). This would moderate the C 

overprediction.  

3.2.3 Temperature profile of the cyclohexane flame 

The temperature profile of the cyclohexane flame was measured as discussed in 

Chapter 2.  Figure 3.38 represents the temperature profile for the cyclohexane flame. The 

heated and unheated temperature profile is depicted in the figure. The experimental data 

points were fitted through a polynomial to get the smoothed temperature profile.  
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Figure 3.38. Temperature profile for the fuel-rich cyclohexane flame (∆ refers to heated 
temperature profile, ■ refers to unheated temperature profile). 
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3.3 Toluene flame (Ф = 0.895)  data analysis 

 The fuel-lean toluene flame feed conditions are tabulated in Table 3.4. 

 

Table 3.4 Condition for the fuel-lean toluene flame. 
 Flow Rates Pressure in the reaction chamber Fuel equivalence 

ratio (Ф) 
Toluene 0.8 ml/min 
Oxygen 1.69 SLM 
Argon 1.858 SLM 

15 Torr 0.895 

 

The species identified in the toluene flame are reported in Table 3.4. The 

description of the mole-fraction profiles of these species follows below. An 8.00 to 

11.155 eV energy scan is used to identify the species in the toluene flame.  

 
Table 3.5. List of species measured in the fuel-lean toluene flame, ionization energies 

of the species as reported in (NIST Chemistry WebBook), ionization energy 
observed, and ionization energy used to measure the profile. 

AMU Species Identified Ionization energy 
from literature  
(eV) 

Ionization 
energy 
observed 
(eV) 

Burner 
scan 
Energy 
(eV) 

1 H 13.59844 - 14.37 
2 H2 15.42593±0.00005 - 16.22 
15 Methyl (CH3) radical  9.84±0.01 9.83 10.06 
16 Methane (CH4) 12.61±0.01 - 13.22 
16 Oxygen atom (O) 13.61806 - 14.37 
17 Hydroxyl radical (OH) 13.017±0.002 - 13.22 
18 Water (H2O) 12.621 ±0.002 - 13.22 
26 Acetylene (C2H2) 11.4±0.002 - 12.32 
28 Ethylene  (C2H4) 10.5138±0.0006 10.53 12.32 
30 Formaldehyde 10.88±0.01 10.88 11.52 
32 Oxygen (O2) 12.0697±0.0002  12.32 
39 Propargyl (C3H3) radical 8.67±0.02 8.73 10.06 
40 Allene (C3H4) 9.692±0.004 9.675 10.06 
40 Propyne (C3H4) 10.36±0.01 10.319 10.52 
40 Argon (Ar) 15.759±0.001  16.22 
42 Ketene(C2H2O) 9.617±0.003 9.625 11.52 
44 Carbon dioxide (CO2) 13.797±0.001  14.37 
50 1,3-Butadiyne (C4H2) 10.17 10.119 10.52 
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AMU Species Identified Ionization energy 
from literature  
(eV) 

Ionization 
energy 
observed 
(eV) 

Burner 
scan 
Energy 
(eV) 

52 1-Buten-3-yne (C4H4) 9.58±0.02 9.575 10.06 
54 1,3-Butadiene (C4H6) 9.072±0.007 9.075 10.06 
56 Methoxyacetylene (C3H4O) 9.48 9.525 10.06 
64 1,3-Pentadiyne (C5H4) 9.5 ± 0.02 9.505 10.06 
65 Cyclopentadienyl (C5H5) radical 8.41/8.56 8.505 10.06 
66 1,3-Cyclopentadiene (C5H6) 8.57 ± 0.01 8.58 10.06 
68 1,2-Butadienone (C4H4O) 8.68±0.05 8.68 10.06 
74 1,3,5-Hexatriyne (C6H2) 9.5±0.02 9.48 10.06 
76 Benzyne (C6H4) 9.03±0.05 9.03 10.06 
78 Fulvene (C6H6) 8.36 8.365 - 
78 1,5-Hexadien-3-yne (C6H6) 8.5 8.43 - 
78 Benzene (C6H6) 9.24378±0.00007 9.215 10.06 
80 Methylcyclopentadiene (C6H8) 8.28±0.05 8.3 10.06 
82 1,2 Butadienone 3 methyl (C5H6O) 8.65 8.63 10.06 
90 1,3-Cyclopentadiene,5-ethenylidene 

(C7H6) 
8.29 8.275 10.06 

91 Benzyl radical (C7H7) 7.242±0.006 Below 8 10.06 
92 Toluene (C7H8) 8.828±0.001 8.825 10.06 
94 Phenol (C6H6O) 8.49±0.02 8.525 10.06 
102 Phenylacetylene (C8H6) 8.82±0.02 8.825 10.06 
104 Styrene (C8H8) 8.464±0.001 8.43 10.06 
106 Paraxylene (C8H10) 8.44±0.05 8.375 10.06 
106 Benzaldehyde (C7H6O) 9.5±0.08 9.48 10.06 
108 Benzyl alcohol (C7H8O) 8.26±0.05 8.28 10.06 
116 Indene (C9H8) 8.14±0.01 8.13 10.06 
 
 

3.3.1 Mole-fraction profiles 

        The mole-fraction profiles of the species identified follows in an ascending mass 

number order. The photoionization cross sections used, their references, and the mass 

discrimination factors are given in Appendix A. 

 70



Lean Toluene Major Species

-1.00E-01

0.00E+00

1.00E-01

2.00E-01

3.00E-01

4.00E-01

5.00E-01

6.00E-01

-2.00 3.00 8.00 13.00 18.00 23.00 28.00 33.00

Distance from Burner (mm)

M
ol

e 
fr

ac
tio

n

H2O CO CO2 O2 toluene Ar

 
 

Figure 3.39. Mole fraction profiles of major species in the fuel-lean toluene flame. 
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Figure 3.40. Mole fraction profile of H in the fuel-lean toluene flame. 
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Figure 3.41. Mole fraction profile of H2 in the fuel-lean toluene flame. 
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Figure 3.42. Mole fraction profile of CH3 in the fuel-lean toluene flame. 
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Figure 3.43. Mole fraction profile of CH4 in the fuel-lean toluene flame. 
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Figure 3.44. Mole fraction profile of O in the fuel-lean toluene flame. 
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Figure 3.45. Mole fraction profile of OH in the fuel-lean toluene flame. 
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Figure 3.46. Mole fraction profile of C2H2 in the fuel-lean toluene flame. 
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Figure 3.47. Mole fraction profile of C2H4 in the fuel-lean toluene flame. 
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Figure 3.48. Mole fraction profile of HCHO in the fuel-lean toluene flame. 
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Figure 3.49. Mole fraction profile of C3H3 in the fuel-lean toluene flame. 
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Figure 3.50. Mole fraction profile of allene and propyne in the fuel-lean toluene flame. 
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Figure 3.51. Mole fraction profile of ketene in the fuel-lean toluene flame. 
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Figure 3.52. Mole fraction profile of diacetylene in the fuel-lean toluene flame. 
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Figure 3.53. Mole fraction profile of vinylacetylene in the fuel-lean toluene flame. 
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Figure 3.54. Mole fraction profile of 1,3-butadiene in the fuel-lean toluene flame. 
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Figure 3.55. Mole fraction profile of methoxyacetylene in the fuel-lean toluene flame. 
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Figure 3.56. Mole fraction profile of 1,3-pentadiyne in the fuel-lean toluene flame. 
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Figure 3.57. Mole fraction profile of cyclopentadienyl radical in the fuel-lean toluene 

flame. 
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Figure 3.58. Mole fraction profile of 1,3-cyclopentadiene in the fuel-lean toluene flame. 
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Figure 3.59. Mole fraction profile of 1,2-butadienone  in the fuel-lean toluene flame. 
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Figure 3.60. Mole fraction profile of triacetylene  in the fuel-lean toluene flame. 
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Figure 3.61. Mole fraction profile of benzyne in the fuel-lean toluene flame. 
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Figure 3.62. Mole fraction profile of benzene in the fuel-lean toluene flame. 
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Figure 3.63. Mole fraction profile of methyl cyclopentadiene  in the fuel-lean toluene 
flame. 
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Figure 3.64. Mole fraction profile of 1,2-butadienone-3-methyl in the fuel-lean toluene 

flame. 
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Figure 3.65. Mole fraction profile of 1,3-cyclopentadiene-5-ethenylidene in the fuel-lean 

toluene flame. 
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Figure 3.66. Mole fraction profile of benzyl radical in the fuel-lean toluene flame. 
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Figure 3.67. Mole fraction profile of phenol in the fuel-lean toluene flame. 
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Figure 3.68. Mole fraction profile of phenylacetylene in the fuel-lean toluene flame. 
 
 

 85



styrene

-1.00E-04

0.00E+00

1.00E-04

2.00E-04

3.00E-04

4.00E-04

5.00E-04

6.00E-04

0.00 5.00 10.00 15.00 20.00 25.00 30.00

Distance from the burner (mm)

M
ol

e 
fr

ac
tio

n

 
Figure 3.69. Mole fraction profile of styrene in the fuel-lean toluene flame. 
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Figure 3.70. Mole fraction profile of benzaldehyde in the fuel-lean toluene flame. 
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Figure 3.71. Mole fraction profile of benzyl alcohol in the fuel-lean toluene flame. 
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Figure 3.72. Mole fraction profile of indene in the fuel-lean toluene flame. 
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Mass 1. The mass 1 species was not detected in the energy scan range of 8 to 

11.155 eV. The species showed up at 14.37 eV burner scan. It was identified as hydrogen 

atom. The hydrogen atom mole-fraction profile is depicted in Figure 3.40. It shows an 

increase in hydrogen atom mole fraction away from the burner up to the post-flame zone. 

In the post-flame zone, the mole fraction reaches 0.349% of the post-flame gases. 

Mass 2. As discussed in section 3.2.1, the mass 2 species was identified as 

molecular hydrogen. The hydrogen mole-fraction profile is depicted in Figure 3.41. 

Hydrogen mole fraction increases steadily away from the burner to about 3.87 mm, and 

then decreases to 9.82 mm from the burner, and then remains almost constant throughout 

the post-flame gases. 

Mass 15. The mass 15 species was identified as methyl (CH3) radical, as 

discussed in section 3.2.1. The mole-fraction profile is reported in Figure 3.42. It shows a 

peak in methyl radical mole fraction at 3.35 mm from the burner, falling to almost zero at 

6.85 mm away from the burner.  

Mass 16. The mass 16 signal was identified as methane (CH4) and O. Neither 

species was detected in the energy scan as their respective ionization energies are higher 

than 11.5 eV.  A 13.22 eV burner scan was used to obtain the methane mole-fraction 

profile (Figure 3.43). The mole-fraction profile shows a peak at 2.85 mm from the burner. 

A burner scan of mass 16 species at 14.37 shows that another species is present at that 

energy. This second species was identified as atomic oxygen. CH4 signal was 

extrapolated from 13.22 eV energy to 14.37 eV and then subtracted from the total mass 

16 signal. The subtracted signal was treated as being from the atomic oxygen. The 
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oxygen mole-fraction profile is depicted in Figure 3.44. It shows a scattered signal, but an 

overall gradual increase in oxygen mole fraction away from the burner is observed. 

Mass 17. The mass 17 signal was treated as hydroxyl radical (OH). The mole-

fraction profile shows a gradual increase to about 7.35 mm from the burner and then 

fluctuates a little towards the end of the post-flame zone. Figure 3.45 depicts the OH 

mole-fraction profile. 

Mass 18. The mass 18 signal was identified as water. The mole-fraction profile of 

water is given in Figure 3.39.  

Mass 26. The mass 26 species was identified as acetylene (C2H2), following the 

same principles as discussed in section 3.2.1. The mole-fraction profile of C2H2 is 

depicted in Figure 3.46.  The profile shows a peak at 4.35 mm from the burner. 

Mass 28. As discussed in the previous section, the mass 28 species found in the 

lean-toluene flame were identified as carbon monoxide (CO) and ethylene (C2H4). A 

peak for the C2H4 signal is observed at 2.85 mm from the burner. The CO mole fraction 

shows a peak at 5.35 mm from the burner. Figure 3.39 shows the CO mole fraction, and 

Figure 3.47 shows the C2H4 mole-fraction profile. 

Mass 30. The mass 30 species was identified as formaldehyde (HCHO). Figure 

3.48 depicts its mole-fraction profile. The profile shows a peak at 3.35 mm away from the 

burner. 

Mass 32. The mass 32 species was identified as molecular oxygen (O2). Figure 

3.39 depicts its mole-fraction profile along with other major species. The oxygen profile 

shows a sharp decrease in oxygen mole fraction to 6.35 mm from the burner, and then it 
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shows a gradual decrease up to 11.35 mm from the burner. After that, it did not change 

much throughout the post-flame zone. 

Mass 39. The mass 39 species was identified as propargyl (C3H3). Figure 3.49 

depicts its mole-fraction profile. The propargyl profile shows a peak at 4.35 mm from the 

burner. 

Mass 40. The mass 40 signal in the toluene flame  consists of allene, propyne and 

argon. These species were resolved following the same procedure described in section 

3.2.1. Figure 3.39 shows the mole-fraction profile for argon along with other major 

species in the flame. The argon mole-fraction profile shows a decrease to 5.35 mm away 

from the burner and then it remained steady. Figure 3.50 shows the mole-fraction profiles 

for allene and propyne. 

Mass 42. The mass 42 species was identified as ketene (C2H2O). Its mole-fraction 

profile is depicted in Figure 3.51.A burner scan at 10.06 eV is used to get its mole-

fraction profile. The profile shows a peak at 3.35 mm from the burner. 

Mass 44. The mass 44 species was identified as carbon dioxide (CO2). Although 

CO2 did not show up in the energy scan (8 to 11.5 eV) as it has a higher ionization 

energy, but the mass 44 signal that is detected in 14.37 eV is considered as CO2. Its 

profile is shown in Figure 3.39 along with other major species. 

Mass 50. The mass 50 species was identified as 1,3-butadiyne or diacetylene. 

Figure 3.52 depicts its mole-fraction profile. The profile shows a peak at 4.35 mm from 

the burner. 
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Mass 52. The mass 52 species was identified as 1-buten-3-yne or vinylacetylene. 

Figure 3.53 depicts its mole-fraction profile. The profile shows a peak at 3.87 mm from 

the burner. 

Mass 54. The mass 54 species was identified as 1,3-butadiene. Figure 3.54 

depicts its mole-fraction profile. The profile shows a peak at 3.87 mm from the burner. 

Mass 56. The mass 56 species was proposed to be methoxyacetylene. Its mole-

fraction profile is depicted in Figure 3.55. The profile shows a peak at 2.35 mm from the 

burner. 

Mass 64. The mass 64 species was identified as 1,3-pentadiyne (C5H4). Figure 

3.56 depicts its mole-fraction profile. The profile shows a peak at 4.35 mm from the 

burner. 

Mass 65. The mass 65 species was identified as cyclopentadienyl radical (C5H5). 

Figure 3.57 depicts its mole-fraction profile. The profile shows a peak at 3.87 mm from 

the burner. 

Mass 66. The mass 66 species was identified as 1,3-cyclopentadiene (C5H6). 

Figure 3.58 depicts its mole-fraction profile. The profile shows a peak at 3.35 mm from 

the burner. 

Mass 68. The mass 68 species was identified as 1,2-butadienone. Figure 3.59 

depicts its mole-fraction profile. The profile shows a peak at 2.85 mm -from the burner. 

Mass 74. The mass 74 species was identified as 1,3,5-hexatriyne or triacetylene 

(C6H2). Figure 3.60 depicts its mole-fraction profile. The profile shows a peak at 4.35 

mm -from the burner. 
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Mass 76. The mass 76 species was identified as benzyne (C6H4). Figure 3.61 

depicts its mole-fraction profile. The profile shows a peak at 4.35 mm from the burner. 

Mass 78. From the PIE scan of mass 78, benzene and fulvene were identified. It 

seems that there is another species 1,5-hexadien-3-yne (I.E. 8.5 eV) at mass 78. From the 

PIE scan, however, it is evident that benzene is the dominant species as mass 78. Hence 

the total mass 78 signal is to be all benzene, and its mole fraction is obtained. Figure 3.62 

depicts the benzene mole-fraction profile. It shows a peak at 3.35 mm from the burner. 

Mass 80. The mass 80 species was identified as methylcyclopentadiene (C6H8). 

Figure 3.63 depicts its mole-fraction profile. A burner scan at 10.06 eV is used to get its 

mole-fraction profile. The profile shows a peak at 3.35 mm from the burner. 

Mass 82. The mass 82 species was identified as 1,2-butadienone-3-methyl. Figure 

3.64 depicts its mole-fraction profile. The profile shows a peak at 1.85 mm from the 

burner. 

Mass 90. The mass 90 species was identified as 1,3-cyclopentadiene-5-

ethenylidene. Figure 3.65 depicts its mole-fraction profile. The profile shows a peak at 

3.87 mm from the burner. 

Mass 91. The mass 91 species was identified as benzyl radical. Figure 3.66 

depicts its mole-fraction profile. The profile shows a peak at 3.35 mm. 

Mass 92. The mass 92 species was identified as toluene (C7H8).This is the fuel in 

the flame. Figure 3.39 depicts its mole-fraction profile. It shows that all the toluene is 

oxidized within 3.87 mm. 

Mass 94. The mass 94 species was identified as phenol (C6H6O). Figure 3.67 

depicts its mole-fraction profile. It shows a peak at 3.35 mm. 
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Mass 102. The mass 102 species was identified as phenylacetylene (C8H6). Figure 

3.68 depicts its mole-fraction profile. It shows a peak at 4.35 mm. 

Mass 104. The mass 104 species was identified as styrene (C8H8). Figure 3.69 

depicts its mole-fraction profile. It showed a peak at 2.85 mm. 

Mass 106. The mass 106 species was identified as benzaldehyde (C7H6O). Figure 

3.70 depicts its mole-fraction profile. At 3.35 mm, it forms a peak. 

Mass 108. The mass 108 species was identified as benzyl alcohol (C7H8O). 

Figure 3.71 depicts its mole-fraction profile. At 2.85 mm, it forms a peak. 

Mass 116. The mass 116 species was identified as indene (C9H8). Figure 3.72 

depicts its mole-fraction profile. At 2.35 mm, it forms a peak. 

 

3.3.2 Check for mole-fraction-profile analysis 

 The mole-fraction profile obtained from the flame data is checked with the initial 

feed composition and a mole balance is performed with hydrogen and carbon atom 

balance in the feed and the post-flame zone of the flame. 

 Initial mole fraction of the feed gas going into the burner is obtained from the 

feed conditions of the toluene flame. This result is then compared against the mole 

fraction achieved for the first data point away from the burner. The comparison is 

tabulated in Table 3.6. 

Table 3.6. Comparison of mole fraction of the feed composition to mole fraction at 
first data point away from the burner. 

 Mole fraction in the feed gas Mole fraction at 1.35 mm away 
from the burner 

Toluene 0.045 0.0353 
Oxygen 0.455 0.303 
Argon 0.5 0.525 
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 The toluene and oxygen mole fractions at the first data point show a decrease 

from their feed mole fractions. The argon mole fraction shows a slight increase. Toluene 

and oxygen mole fractions were expected to show a decrease. With the cyclohexane data 

analysis, it was found that the argon mole fraction also showed a decrease. In this flame, 

a slight increase occurs in the argon mole fraction, although the initial argon mole 

fraction obtained was very close to the feed condition. Therefore, the initial check for 

mole fraction analysis was satisfactory. 

 The carbon and hydrogen atom balance performed on the lean toluene data show 

that the both the carbon and hydrogen balances in the post flame zone overshoot the 

number of moles in the carbon atoms and the number of mole of hydrogen atoms in the 

feed. This comparison suggests that the background correction for the flame needs to be 

adjusted. The mismatch also might be due to the wrong values of OH, H and O. The 

profiles for these species need to be obtained with the UMass apparatus and included into 

the data analysis.   

 

 

3.4 Toluene flame (Ф = 1.497)  data analysis 

 The fuel-rich toluene flame feed conditions are tabulated in Table 3.4. 

Table 3.7 Condition for the fuel-rich toluene flame 
 Flow Rates Pressure in the reaction chamber Fuel equivalence 

ratio (Ф) 
Toluene 1.2 ml/min 
Oxygen 1.516 SLM 
Argon 1 SLM 

30 torr 1.497 
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The species identified in the toluene flame were reported in Table 3.8. The 

description of the mole-fraction profiles of these species follows below. An 8.5 to 11.0 

eV energy scan was used to identify the species in the toluene flame.  

 
Table 3.8. List of species measured in the fuel-rich toluene flame, ionization energies 

of the species as reported in (NIST Chemistry WebBook), ionization energy 
observed, and ionization energy used to measure the profile. 

AMU Species Identified Ionization energy 
from literature  
(eV) 

Ionization 
energy 
observed 
(eV) 

Burner 
scan 
Energy 
(eV) 

1 H 13.59844 - 14.35 
2 H2 15.42593±0.00005 - 16.22 
15 Methyl (CH3 ) radical  9.84±0.01 9.775 9.98 
16 Methane (CH4) 12.61±0.01 - 13.20 
16 Oxygen atom ( O ) 13.61806 - 14.35 
17 Hydroxyl radical (OH) 13.017±0.002 - 13.20 
18 Water (H2O) 12.621 ±0.002 - 13.20 
26 Acetylene (C2H2) 11.4±0.002 - 12.30 
28 Ethylene (C2H4 ) 10.5138±0.0006 10.5138 12.30 
28 Carbon monoxide 

(CO) 
14.014±0.0003 - 14.35 

30 Formaldehyde 
(HCHO) 

10.88±0.01 10.875 11.52 

32 Oxygen ( O2 ) 12.0697±0.0002 - 12.30 
39 Propargyl 

 (C3H3) radical 
8.67±0.02 8.675 9.98 

40 Allene (C3H4) 9.692±0.004 9.675 9.98 
40 Propyne (C3H4) 10.36±0.01 10.325 10.52 
40 Argon (Ar) 15.759±0.001 - 16.22 
42 Ketene(C2H2O) 9.617±0.003 9.625 11.52 
42 Propene ( C3H6) 9.73 ± 0.01 9.725 - 
44 Carbon dioxide (CO2) 13.797±0.001 - 14.35 
50 1,3-Butadiyne (C4H2) 10.17 10.125 10.52 
52 1-Buten-3-yne (C4H4) 9.58±0.02 9.575 9.98 
54 1,3-Butadiene (C4H6) 9.072±0.007 9.075 9.98 
56 Methoxyacetylene 

(C3H4O) 

9.48 9.525 9.98 

64 1,3-Pentadiyne (C5H4) 9.5 ± 0.02 9.5 9.98 
65 Cyclopentadienyl 

(C5H5) radical 
8.41/8.56 Below 8.5 9.98 

66 1,3-Cyclopentadiene    
(C5H6) 

8.57 ± 0.01 8.575 9.98 
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AMU Species Identified Ionization energy 
from literature  
(eV) 

Ionization 
energy 
observed 
(eV) 

Burner 
scan 
Energy 
(eV) 

68 Cyclopentene (C5H8) 9.01 ± 0.01 Near 9 9.98 
74 1,3,5-Hexatriyne 

(C6H2) 
9.5±0.02 9.475 9.98 

76 Unknown - 8.575 - 
76 Benzyne (C6H4) 9.03±0.05 9.03 9.98 
78 Fulvene (C6H6) 8.36 Below 8.5  
78 Benzene (C6H6) 9.24378±0.00007 9.215 9.98 
80 Methylcyclopentadiene 

(C6H8) 
8.28±0.05 Below 8.5 9.98 

82 1,2-Butadienone,3-
methyl (C5H6O) 

8.65 8.63 9.98 

90 1,3-Cyclopentadiene,5-
ethenylidene (C7H6) 

8.29 Below 8.5 9.98 

91 Benzyl radical (C7H7) 7.242±0.006 Below 8 9.98 
92 Toluene (C7H8) 8.828±0.001 8.825 9.98 
94 Phenol (C6H6O) 8.49±0.02 Slightly 

below 8.5 
9.98 

102 Phenylacetylene 
(C8H6) 

8.82±0.02 8.775 9.98 

104 Styrene (C8H8) 8.464±0.001 Slightly 
below 8.5 

9.98 

106 Paraxylene (C8H10) 8.44±0.05 8.375 9.98 
106 Benzaldehyde  

(C7H6O) 
9.5±0.08 9.48 9.98 

108 Benzyl alcohol 
(C7H8O) 

8.26±0.05 Below 8.5 9.98 

115 Indenyl radical (C9H7) 8.35 Below 8.5 9.98 
116 Indene (C9H8) 8.14±0.01 8.13 9.98 
118 Indane (C9H10) 8.6 ± 0.1 8.625 9.98 
120 1-Phenylethenol 

(C8H8O) 
8.01 ± 0.03 Below 8.5 9.98 

122 Phenol , 4-ethyl 
(C8H10O) 

7.84 Below 8.5 9.98 

126 1,4-Diethynylbenzene 
(C10H6) 

8.58 ± 0.02 Near 8.5 9.98 

128 Naphthalene (C10H8) 8.144 ± 0.001 - 9.98 
130 Methyl Indene 

(C10H10) 
- - 9.98 

132 C9H8O - - 9.98 
140 1H-Indene,2-ethynyl 

(C11H8) 
8.04 - 9.98 
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AMU Species Identified Ionization energy 
from literature  
(eV) 

Ionization 
energy 
observed 
(eV) 

Burner 
scan 
Energy 
(eV) 

142 Naphthalene,1-methyl 
(C11H10) 

7.96 ± 0.03 - 9.98 

144 C10H8O - 8.575 9.98 
152 Acenaphthylene 

(C12H8) 
8.12± 0.1 - 9.98 

154 C12H10 - - 9.98 
156 (C12H12) - - 9.98 
166  ( C13H10) - - 9.98 
168  ( C13H12) - - 9.98 
180 C14H12 - - 9.98 
182 C14H14 - - 9.98 
184 C14H16 - - 9.98 
 
 

3.4.1 Mole-fraction profiles.  

        The mole-fraction profiles of the species identified are given below.  
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Figure 3.73. Mole-fraction profiles of major species in the fuel-rich toluene flame. 
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Figure 3.74. Mole-fraction profile of H atom in the fuel-rich toluene flame. 
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Figure 3.75. Mole-fraction profile of H2 in the fuel-rich toluene flame. 

 
 

 98



CH3

-5.00E-04

0.00E+00

5.00E-04

1.00E-03

1.50E-03

2.00E-03

2.50E-03

0.00 5.00 10.00 15.00 20.00 25.00 30.00

Distance from the burner (mm)

M
ol

e 
fr

ac
tio

n

 
 

Figure 3.76. Mole-fraction profile of CH3 radical in the fuel-rich toluene flame. 
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Figure 3.77. Mole-fraction profile of CH4 in the fuel-rich toluene flame. 
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Figure 3.78. Mole-fraction profile of O in the fuel-rich toluene flame. 
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Figure 3.79. Mole-fraction profile of OH in the fuel-rich toluene flame. 
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Figure 3.80. Mole-fraction profile of acetylene (C2H2) in the fuel-rich toluene flame. 
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Figure 3.81. Mole-fraction profile of ethylene (C2H4) in the fuel-rich toluene flame. 
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Figure 3.82. Mole-fraction profile of HCHO in the fuel-rich toluene flame. 
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Figure 3.83. Mole-fraction profile of C3H3 in the fuel-rich toluene flame. 
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Figure 3.84. Mole-fraction profiles of allene and propyne in the fuel-rich toluene flame. 
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Figure 3.85. Mole-fraction profile of ketene in the fuel-rich toluene flame. 
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Figure 3.86. Mole-fraction profile of diacetylene in the fuel-rich toluene flame. 
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Figure 3.87. Mole-fraction profile of vinylacetylene in the fuel-rich toluene flame. 
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Figure 3.88. Mole-fraction profile of 1,3-butadiene in the fuel-rich toluene flame. 
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Figure 3.89. Mole-fraction profile of methoxyacetylene in the fuel-rich toluene flame. 
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Figure 3.90. Mole-fraction profile of 1,3-pentadiyne in the fuel-rich toluene flame. 
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Figure 3.91. Mole-fraction profile of cyclopentadienyl radical in the fuel-rich toluene 
flame. 
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Figure 3.92. Mole-fraction profile of 1,3-cyclopentadiene in the fuel-rich toluene. 
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Figure 3.93. Mole-fraction profile of cyclopentene in the fuel-rich toluene flame. 
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Figure 3.94. Mole-fraction profile of triacetylene in the fuel-rich toluene flame. 
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Figure 3.95. Mole-fraction profile of benzyne in the fuel-rich toluene flame. 
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Figure 3.96. Mole-fraction profile of benzene in the fuel-rich toluene flame. 
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Figure 3.97. Mole-fraction profile of methyl cyclopentadiene in the fuel-rich toluene 
flame. 
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Figure 3.98. Mole-fraction profile of 1,2-butadienone-3-methyl in the fuel-rich toluene 
flame. 
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Figure 3.99. Mole-fraction profile of 1,3-cyclopentadiene-5-ethenylidene in the fuel-rich 
toluene flame. 
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Figure 3.100. Mole-fraction profile of benzyl radical in the fuel-rich toluene flame. 
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Figure 3.101. Mole-fraction profile of phenol in the fuel-rich toluene flame. 
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Figure 3.102. Mole-fraction profile of phenylacetylene in the fuel-rich toluene flame. 
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Figure 3.103. Mole-fraction profile of styrene in the fuel-rich toluene flame. 
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Figure 3.104. Mole-fraction profile of benzaldehyde in the fuel-rich toluene flame. 
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Figure 3.105. Mole-fraction profile of benzyl alcohol in the fuel-rich toluene flame. 
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Figure 3.106. Mole-fraction profile of indene in the fuel-rich toluene flame. 
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Figure 3.107. Mole-fraction profile of indenyl radical in the fuel-rich toluene flame. 
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Figure 3.108. Mole-fraction profile of indene in the fuel-rich toluene flame. 
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Figure 3.109. Mole-fraction profile of 1-phenylethenol in the fuel-rich toluene flame. 
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Figure 3.110. Mole-fraction profile of 4-ethylphenol in the fuel-rich toluene flame. 
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Figure 3.111. Mole-fraction profile of 1,4-diethynylbenzene in the fuel-rich toluene 
flame. 
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Figure 3.112. Mole-fraction profile of naphthalene in the fuel-rich toluene flame. 
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Figure 3.113. Mole-fraction profile of methylindene in the fuel-rich toluene flame. 
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Figure 3.114. Mole-fraction profile of C9H8O in the fuel-rich toluene flame. 
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Figure 3.115. Mole-fraction profile of 1-H-indene-2-ethenyl in the fuel-rich toluene 

flame. 
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Figure 3.116. Mole-fraction profile of naphthalene-1-methyl in the fuel-rich toluene 
flame. 
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Figure 3.117. Mole-fraction profile of C10H8O in the fuel-rich toluene flame. 
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Figure 3.118. Mole-fraction profile of acenaphthylene in the fuel-rich toluene flame. 
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Figure 3.119. Signals of mass 154, 156, 166, 168 and 184 in the fuel-rich toluene flame. 
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Mass 1. The mass 1 species was not detected in the energy scan range of 8.5 to 

11.0 eV. The species showed up at 14.35 eV burner scan. It was considered as hydrogen 

atom. The hydrogen atom mole-fraction profile is depicted in Figure 3.74. It shows an 

increase in hydrogen atom mole fraction away from the burner for a while and then 

shows a decrease into the post-flame zone. 

Mass 2. The mass 2 species was not detected in the energy scan range of 8.5 to 11 

eV. The species appeared at 16.2 eV burner scan. It was identified as hydrogen molecule. 

The hydrogen mole-fraction profile is depicted in Figure 3.75. Hydrogen mole fraction 

has a steady increase away from the burner to about 5.76 mm, and then it remains almost 

constant throughout the post-flame gases. 

Mass 15. The mass 15 was identified as methyl (CH3) radical, based on its mass 

and threshold ionization energy reported in Table 3.5. The mole-fraction profile was 

reported in Figure 3.78. It shows a peak  in methyl radical mole fraction at 3.76 mm and 

then reaches near almost zero at 8.26 mm away from the burner.  

Mass 16. The mass 16 signal was identified as methane (CH4) and O.  They were 

identified following the same principles as discussed in section 3.3.1. A 13.2 eV burner 

scan was used to obtain the methane mole fractionmole-fraction profile (Figure 3.77). 

The mole-fraction profile shows a peak at 2.76 mm. A burner scan at 14.35 eV was used 

to obtain the atomic oxygen mole fraction. The oxygen mole-fraction profile is depicted 

in Figure 3.78. It shows a peak at 3.26 mm. 

Mass 17. The mass 17 signal was treated as hydroxyl radical (OH). A 13.2 eV 

burner scan was used to obtain its mole-fraction profile. The mole-fraction profile shows 

a scattered signal (Figure 3.79). 
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Mass 18. The mass 18 signal was identified as water. The mole-fraction profile of 

water is given in Figure 3.73.  

Mass 26. The mass 26 was identified as acetylene (C2H2) based on the same 

principles discussed in section 3.2.1. The mole fraction profile is depicted in Figure 3.80.  

The profile shows a peak at 4.76 mm. 

Mass 28. As discussed in the lean-toluene flame, carbon monoxide (CO) and 

ethylene (C2H4) were identified as the two species present as mass 28. The peak for the 

C2H4 signal is observed at 2.26 mm. The CO signal showed a gradual increase away from 

the burner and then it remained at steady state in the post-flame zone. Figure 3.73 shows 

the CO mole fraction and Figure 3.81 shows the C2H4 mole fraction profile. 

Mass 30. The mass 30 species was identified as formaldehyde (HCHO). Figure 

3.82 depicts its mole-fraction profile. The profile shows a peak at 3.26 mm. 

Mass 32. The mass 32 species was identified as molecular oxygen (O2). Figure 

3.73 depicts its mole fraction profile along with other major species. The oxygen profile 

shows a sharp decrease in oxygen mole fraction to 5.76 mm away and becomes 

negligible in the post-flame zone. 

Mass 39. The mass 39 species was identified as propargyl (C3H3). Figure 3.83 

depicts its mole-fraction profile. The propargyl profile shows a peak at 4.26 mm. 

Mass 40. Allene, propyne, and argon were found in the fuel-rich toluene flame. 

Figure 3.73 shows the mole fraction profile for argon along with other major species in 

the flame. The argon mole fraction profile shows a decrease to 5.26 mm away from the 

burner and then it remained steady. Figure 3.84 shows the mole fraction profile for allene 

and propyne. 
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Mass 42. The mass 42 species was identified as ketene (C2H2O). Its mole-fraction 

profile is depicted in Figure 3.85. The profile shows a peak at 3.78 mm. 

Mass 44. The mass 44 species was identified as carbon dioxide (CO2). Although 

CO2 did not appear in the energy scan (8.5 to 11 eV) as it has a higher ionization energy, 

but the mass 44 signal that was detected at 14.35 eV was considered to be CO2. Its profile 

is shown in Figure 3.73 along with other major species. 

Mass 50. The mass 50 species was identified as 1,3-butadiyne or diacetylene. 

Figure 3.86 depicts its mole-fraction profile. The profile shows a peak at 4.76 mm. 

Mass 52. The mass 52 species was identified as 1-buten-3-yne or vinylacetylene. 

Figure 3.87 depicts its mole-fraction profile. The profile shows a peak at 3.78 mm. 

Mass 54. The mass 54 species was identified as 1,3-butadiene. Figure 3.88 

depicts its mole-fraction profile. A burner scan at 9.977 eV was used to get its mole 

fraction profile. The profile shows a peak at 2.76 mm. 

Mass 56. The mass 56 species was identified as methoxy acetylene. Its mole-

fraction profile is depicted in Figure 3.89. The profile shows a peak at 2.76 mm. 

Mass 64. The mass 64 species was identified as 1,3-pentadiyne (C5H4). Figure 

3.90 depicts its mole-fraction profile. The profile shows a peak at 4.26 mm. 

Mass 65. The mass 65 species was identified as cyclopentadienyl radical (C5H5). 

Figure 3.91 depicts its mole-fraction profile. The profile shows a peak at 3.78 mm. 

Mass 66. The mass 66 species was identified as 1,3-cyclopentadiene (C5H6). 

Figure 3.92 depicts its mole-fraction profile. The profile shows a peak at 3.78 mm. 

Mass 68. The mass 68 species was identified as cyclopentene. Figure 3.93 depicts 

its mole-fraction profile. The profile shows a peak at 2.26 mm. 
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Mass 74. The mass 74 species was identified as 1,3,5-hexatriyne or 

triacetylene(C6H2). Figure 3.94 depicts its mole-fraction profile. A burner scan at 9.977 

eV was used to get its mole fraction profile. The profile shows a peak at 4.76 mm. 

Mass 76. The mass 76 species was identified as benzyne (C6H4). Figure 3.95 

depicts its mole-fraction profile. The profile shows a peak at 4.26 mm. 

Mass 78. Fulvene (C6H6) and benzene (C6H6) were identified from the PIE scan 

of mass 78 signal. Benzene was found to be the dominant species at mass 78. Hence the 

total mass 78 signal was considered as benzene and its mole fraction was obtained. 

Figure 3.96 depicts the benzene mole-fraction profile. It shows a peak at 3.78 mm. 

Mass 80. The mass 80 species was identified as methyl cyclopentadiene (C6H8). 

Figure 3.97 depicts its mole fraction profile. A burner scan at 9.977 eV was used to get its 

mole-fraction profile. The profile shows a peak at 2.76 mm. 

Mass 82. The mass 82 species was identified as 1,2-butadienone-3-methyl. Figure 

3.98 depicts its mole-fraction profile. The profile shows rapid decrease of the species 

away from the burner. 

Mass 90. The mass 90 species was identified as 1,3-cyclopentadiene-5-

ethenylidene. Figure 3.99 depicts its mole-fraction profile. The profile shows a peak at 

4.26 mm. 

Mass 91. The mass 91 species was identified as benzyl radical. Figure 3.100 

depicts its mole-fraction profile. The profile shows a peak at 3.78 mm. 

Mass 92. The mass 92 species was identified as toluene (C7H8).This is the fuel in 

the flame. Figure 3.73 depicts its mole-fraction profile. It shows that all the toluene is 

oxidized within 4.76 mm. 
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Mass 94. The mass 94 species was identified as phenol (C6H6O). Figure 3.101 

depicts its mole-fraction profile. It shows a peak at 2.76 mm. 

Mass 102. The mass 102 species was identified as phenylacetylene (C8H6). Figure 

3.102 depicts its mole-fraction profile. It shows a peak at 4.26 mm. 

Mass 104. The mass 104 species was identified as styrene (C8H8). Figure 3.103 

depicts its mole-fraction profile. It showed a peak at 3.78 mm. 

Mass 106. The mass 104 species was identified as benzaldehyde (C7H6O). Figure 

3.104 depicts its mole-fraction profile. At 2.76 mm it forms a peak. 

Mass 108. The mass 108 species was identified as benzyl alcohol (C7H8O). 

Figure 3.105 depicts its mole-fraction profile. At 2.76 mm it forms a peak. 

Mass 115. The mass 115 species was identified as indenyl radical (C9H7). Figure 

3.107 depicts its mole-fraction profile. At 2.76 mm it forms a peak. 

Mass 116. The mass 116 species was identified as indene (C9H8). Figure 3.106 

depicts its mole-fraction profile. At 2.76 mm it forms a peak. 

Mass 118. The mass 118 species was identified as indane (C9H10). Figure 3.108 

depicts its mole-fraction profile. At 3.26 mm it forms a peak. 

Mass 120. The mass 120 species was identified as 1-phenylethenol (C8H8O) . 

Figure 3.109 depicts its mole-fraction profile. At 1.26 mm it forms a peak. 

Mass 122. The mass 122 species was identified as phenol,4-ethyl (C8H10O) . 

Figure 3.110 depicts its mole-fraction profile. At 1.26 mm it forms a peak. 

Mass 126. The mass 126 species was identified as 1,4-diethynylbenzene (C10H6). 

Figure 3.111 depicts its mole-fraction profile. At 4.26 mm it forms a peak. 
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Mass 128. The mass 128 species was identified as naphthalene (C10H8). Figure 

3.112 depicts its mole-fraction profile. At 4.26 mm it forms a peak. 

Mass 130. The mass 130 species was identified as methyl indene. Figure 3.113 

depicts its mole-fraction profile. At 2.76 mm it forms a peak. 

Mass 132. A species shows up as mass 132. Its ionization energy is below 8.5 eV, 

and it forms close to the burner surface. It might be an oxygenated species (C9H8O). With 

a carefully estimated cross section for this species, its mole-fraction profile is obtained 

and given in figure 3.114. 

Mass 140. The mass 140 species was proposed to be as 1H-indene-2-ethynyl. 

Figure 3.115 depicts its mole fraction profile. At 4.26 mm it forms a peak. 

Mass 142. The mass 142 species was proposed to be as 1-methylnaphthalene. 

Figure 3.116 depicts its mole-fraction profile. At 3.26 mm it forms a peak. 

Mass 144. A species shows up as mass 144. Its ionization energy is below 8.5 eV, 

and it forms close to the burner surface. It might be an oxygenated species (C10H8O). 

With a carefully estimated cross section for this species, its mole-fraction profile is 

obtained and given in Figure 3.117. 

Mass 152. The mass 152 species was identified as acenaphthylene (C12H8). 

Figure 3.118 depicts its mole-fraction profile. At 4.76 mm it forms a peak. 

Other higher hydrocarbons. Species with mass 154, 156, 166, 168, and 184 

were detected in the flame. These signals are weak and the ionization energies of these 

species appear to be below 8.5 eV. Further investigation is needed to identify these 

species. The raw signals for these species are depicted in Figure 3.119. 
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3.4.2 Checks for mole-fraction-profile analysis 

 The mole-fraction profiles obtained from the flame data was checked with the 

initial feed composition, and a mole balance was performed with hydrogen and carbon 

atom balances in the feed and the post-flame zone of the flame. 

 Initial mole fraction of the feed gas going into the burner was obtained from the 

feed conditions of the toluene flame. This result was then compared against the mole 

fraction achieved for the first data point away from the burner. The comparison is 

tabulated in Table 3.9. 

 

Table 3.9. Comparison of mole fraction of the feed composition and mole fraction 
obtained at the first data point away from the burner. 

 Mole fraction in the feed gas Mole fraction at 1.35 mm away 
from the burner 

Toluene 0.091 0.128 
Oxygen 0.548 0.37 
Argon 0.361 0.21 
 
 
 The initial check suggests that something is wrong with the data or data analysis 

as the initial mole fraction of toluene is slightly higher than that in the feed gas. This 

implies a need for re-measuring the species profiles in the flame. 

 

3.5 Temperature measurements for the toluene and methane flames 

 Experiments were done to measure the temperature profiles of the two toluene 

flames discussed beforehand and a stoichiometric methane flame. But after the 

experiments were done it was found that, there was an air leak while the flow conditions 

were calibrated. This air leak led to low flow rate of oxygen and made the toluene flames 

fuel-rich. After the air leak was fixed the exact flow rates for these flames were found out 
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and hence their fuel equivalence ratios were recalculated. Although the species 

measurements were not done with these flames, the temperature profile for these flames 

is reported here, as these data might be useful in the future. 

 Figure 3.120 depicts the temperature for the methane flame.  Figure 3.121 depicts 

the temperature profile for a toluene flame (Ф=2.03) and Figure 3.122 depicts the 

temperature profile for a toluene flame (Ф=3.97). 

 The difference between the heated and unheated temperature for the toluene flame 

(Ф=3.97) is significantly less compared to the difference between the two in other flames. 

This attributes to an error while measuring the temperature in this toluene flame. While 

the thermocouple was being heated up with the resistive circuit, it was heated up to 18 

mV (approximately). The data points were far away from the calibration curve and they 

were linearly extrapolated to get the crossing point between the data points and the 

calibration curve. This led to the error in getting the heated temperature accurately. 

However the unheated temperature that was measured with the thermocouple would be 

able to provide an estimation of temperature for the toluene flame. 
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Temperature profile for methane flame (phi 0.451) 
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Figure 3.120. Temperature profile for methane flame (Ф =0.451) ( ■ Heated temperature, 

▲unheated temperature ). 
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Figure 3.121. Temperature profile for toluene flame (Ф = 2.03)  

(∆ Heated temperature, ■ unheated temperature). 
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Temperature profile for toluene (phi = 3.95)
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Figure 3.122. Temperature profile for toluene flame (Ф = 3.97)  

(∆ Heated temperature, ■ unheated temperature).  
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CHAPTER 4 

CONCLUSIONS AND RECOMMENDATIONS 

 

4.1 Conclusions 

 Measurements. Three flames were studied with the MBMS system at the ALS 

during the course of this dissertation. One fuel-rich cyclohexane flame was studied to 

compare against a stoichiometric cyclohexane flame studied in the group before. Two 

toluene flames (one fuel-rich and the other fuel-lean) were studied to understand the 

hydrocarbon growth chemistry in combustion. Toluene was chosen as it was believed that 

more and more higher hydrocarbons would be observed in the toluene flame.  

 Several species were identified in these three flames. Their mole-fraction profiles 

were obtained. Species identification and their mole-fraction profiles contribute 

significantly to highlight the reactions going on in the flame. Thus, a useful basis for an 

understanding of the hydrocarbon flame kinetics was obtained during this study.  

 The fuel-rich cyclohexane flame analysis showed formation of some higher 

hydrocarbons that were not observed in the stoichiometric cyclohexane flame measured 

in the group previously. These species are triacetylene (C6H2), p-xylene (C8H10), indene 

(C9H8), styrene (C8H8), and naphthalene (C8H10). The formation of triacetylene indicates 

that when fuel equivalence ratio is increased, the polyacetylene chemistry in the flames 

become significant. It has been a long-standing debate whether these linear long-chain 

molecules contribute much to the formation of soot. The other group of thought is that the 

polyaromatic hydrocarbons (PAH) like indene and naphthalene are the precursors for 

soot. Although these PAHs were observed in the flame and their mole-fraction profiles 
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were obtained, the concentrations for these species were very low and the mole-fraction 

profiles looked scattered. Tetra-acetylene (C8H2) (I.E. 9.09 ± 0.02 eV) was believed to be 

in the flame, but the presence of cyclohexanone (I.E 9.16 ± 0.02 eV) dominates any 

signal from it. These species have the same mass number (98) and their ionization 

energies are very close. The burner scan of mass 98 shows a species close to the burner 

surface; hence, for this study it was considered that the mass 98 species was more likely 

cyclohexanone because the polyacetylenes form only at high temperatures.  A richer 

cyclohexane flame could be studied in the future to look for the formation of higher 

hydrocarbons in cyclohexane flames. 

 Cyclohexane flame modeling. Preliminary modeling was performed for the fuel-

rich cyclohexane flame with CHEMKIN. The convergence of the code was achieved only 

without considering thermal diffusion. A previous analysis with a stoichiometric 

cyclohexane flame modeling showed that the change in the mole fraction profile of the 

major species does not change much when thermal diffusion is considered. Suitable 

adjustments should be made in the mechanism or the code so that the calculation will 

converge while it accounts for thermal diffusion.  

The preliminary modeling results are discussed in Appendix C. A SENKPLOT 

analysis of the major reaction pathways for the cyclohexane flame has been performed 

and is discussed  in Appendix C as well. A qualitative comparison between the 

experimental results and the model prediction shows similarity in shape for the mole 

fraction profiles of major species Ar, H2O, CO, CO2, O2 ,cyclohexane and H2 in the 

flame. 
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 Species in the toluene flames. The two toluene flames that have been studied in 

the current research show several species that were not detected in the fuel-rich 

cyclohexane flame. 

• The radicals H, OH and O were observed in the toluene flames. These radicals 

should have been observed in the fuel-rich cyclohexane flame as well because 

these radicals play key roles in the combustion chemistry of all the hydrocarbons. 

This problem has been identified as one of the weakness of the ALS system 

because with this system, the data for H, O, and OH for different hydrocarbon 

flames are not consistent.  

• In the fuel-lean toluene flame, the mass 42 species was identified as ketene only. 

In the rich toluene flame both ketene and propene were identified.  

• In the fuel-rich toluene flame, several higher hydrocarbons were observed as well. 

These mass species are mass 115, mass 128, mass 130, mass 132, mass 140, mass 

142, mass 144, mass 152, mass 154, mass 156, mass 166, mass 168, mass 180, 

mass 182 and mass 184. The presence of these species once again is consistent 

with the importance of PAHs in soot formation. 

Temperatures.  Temperature measurement is an important aspect of combustion 

studies. The temperature measurements were carried out in the UMass apparatus for the 

fuel-rich cyclohexane flame, two toluene flames, and a lean methane flame as well. These 

temperature measurements should be helpful in understanding the detailed reaction 

chemistry of combustion for these fuels. 
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4.2 Recommendations 

 Recommendation 1.  The liquid feed delivery system for the UMass apparatus 

can be upgraded for better accuracy and ease of experimentation.  

• The current set-up uses four syringes in a syringe pump (Model PHD 2000, 

Harvard Apparatus). The operating limit of atmospheric pressure for these 

syringes makes it hard for the experiment. When the pressure in the vaporizer 

goes below atmospheric, air leaks into the syringes, which imparts error to the 

liquid flow rate. When the pressure in the vaporizer goes above atmospheric, the 

vapor starts pushing the liquid out of the syringes, which again imparts error in 

the liquid flow rate and creates a flame hazard in the lab as well. It takes lot of 

time and effort to build the right pressure in the vaporizer and get a stable flame 

with this setup.  

• Even after a stable flame is achieved, the storage capacity of the syringes brings 

further limitation in operation. Two syringes can deliver 100 ml of fuel altogether. 

When two syringes are emptied, the other two syringes are filled and the direction 

of the syringe pump needs to be reversed. There is always a possibility that the 

flame may go out during this transition. Even if the flame survives the transition, 

it takes about 20 minutes approximately to make the flame stable.  

• Getting rid of the air bubbles from the syringes is a laborious process, as the 

whole syringe-pump assembly needs to be held upright while the pump is 

running, and the buoyancy of the bubbles helps to get rid of them. A syringe 

pump assembly with a big single syringe standing upright can work better to 

resolve this issue.  
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Recommendation 2.  While measuring the temperature profile with the UMass 

system, it was found that the voltage reading fluctuates within a small range. The upper 

and lower bounds of that range were noted, and the average voltage was used to measure 

the temperature. Manual reading might incorporate error in the experimental data, hence 

a computer-controlled data acquisition system for reading the data over a period of time 

and averaging them might be more accurate way of reporting the data. 

Recommendation 3.  The tubing that carries the liquid vapor to the burner for the 

UMass system is heated with heating tapes and variable autotransformers. The 

temperature of the tubing is read at three points with a Type K thermocouple 

thermometer. This arrangement gives us a limited control over the actual temperature at 

which the tube can be heated. Care should be taken that the tubing is heated uniformly. 

Recommendation 4.  Measuring the area-expansion ratio profiles of the flames 

would bring more accuracy for modeling the flame. The area expansion ratios for the 

studied hydrocarbon flames need to be found and incorporated in the modeling. 

 Recommendation 5.  The issue related to the uncertainty in seeing the important 

radicals O, OH and H with the ALS system should be investigated. Careful preparation of 

the quartz sampling probe should resolve this issue. As one aspect, surface-catalyzed 

radical recombination reactions might be the key. In order to make the quartz probe outer 

surface perfect, the surface of the quartz probe was polished with sandpaper and crocus 

cloth until a good water-jet test was achieved with the cone (an aligned water jet 

produced in the probe from pressurized water at the probe tip). The experimental results 

showed a better signal intensity for these radicals detected in ALS. However the probe 

surface was cleansed with distilled water at that point. A dilute solution of hydrofluoric 
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acid would be able to cleanse the surface properly, and a second wash with distilled water 

would minimize the catalyzed radical recombination on the probe surface as suggested by 

Law (2005). This cleansing method should be incorporated to see if this solves the OH, H 

and O detection problem at the ALS. 

 Recommendation 6.  The UMass apparatus was able to detect the radicals O, H, 

and OH in hydrocarbon flames. The mole fraction profiles of these radicals should be 

found for the cyclohexane and toluene flames. 

 Recommendation 7.  Some of the higher hydrocarbons in the fuel-rich toluene 

flame were not identified sufficiently. The energy scans for these species were conducted 

at a range of 8.5 to 11.0 eV. The PIE scans of these species were observed to be below 

8.5 eV, as mentioned in Chapter 3. Most of these higher hydrocarbons show a peak at 

4.26 mm away from the burner; however, some of the oxygenated species show maxima 

closer to the burner surface (at 1.76 mm away from the burner).  A PIE scan in the range 

of 7 to 11 eV at 3 mm away from the burner would be helpful to identify these species.  

 Recommendation 8.  In the fuel-rich cyclohexane and fuel-rich toluene flames, 

both propene and ketene were found at mass 42, but as their ionization energies lie very 

close to each other, these species were not resolved with the ALS equipment. The UMass 

equipment has better mass resolution than the ALS equipment. These species need to be 

resolved with the UMass system for the flames mentioned above.  

 Recommendation 9.  Detailed modeling needs to be done for the cyclohexane 

and toluene flames. The reactions leading to the high-molecular weight species found in 

the fuel-rich toluene flame might clarify interesting aspects in understanding the 

hydrocarbon growth mechanism in flames. 
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 Recommendation 10.  When the flow conditions for the fuel-lean toluene flame 

were being set for temperature measurements with UMass system, there was an air leak 

that created a different toluene flame from that which was desired. It became a fuel-rich 

(Ф = 2.02) flame. The temperature profile that was measured with this flame showed a 

very gradual increase in temperature away from the burner. The flame stood away from 

the burner, it was very stable, and the luminous reaction zone was very wide 

(approximately 25 mm). The flame was not emitting soot. The wide reaction zone of this 

flame would lead to wider peaks for the intermediate hydrocarbons formed in the flame. 

This flame would be interesting to study. The mole-fraction profiles for this flame should 

be analyzed, and this flame should be modeled as the temperature profile for this flame 

has already been measured in the current work. A similar air-leak problem was also 

encountered while temperature profiles were being measured for a stoichiometric 

methane flame and a rich-toluene flame. As the temperature profile for these flames has 

already been measured, their mole fraction profiles can be measured, so that these flames 

could be modeled. 

 Recommendation 11.  The photo-ionization cross sections for different 

hydrocarbons are not readily available in the literature, and there is ambiguity for the 

specific photo-ionization cross sections of different species in the literature as well. In 

this current research, the photo-ionization cross sections that had been measured in the 

ALS/MBMS group were mainly used. For several intermediate species, an expression 

used by Koizumi (1990) was used. Although this might be a good first approximation, the 

expression suggests that the photo-ionization cross section decreases with increasing 
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photon energy, which is contradictory to the experimental findings. Hence, a better way 

for approximating the photo-ionization cross sections needs to be investigated. 
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APPENDIX A 

PHOTOIONIZATION CROSS-SECTIONS AND MASS DISCRIMINATION 

FACTORS 

 

A.1 Photo-ionization cross-sections used: 

 This appendix presents the values used in this work for photo-ionization cross-

sections. The values are given in megabarn (mbarn). The notations used for references 

are as follows. 

A Palenius et al. (1976) 

B Collaboratory for Multi-Scale Chemical Science, ALS Low Pressure Flames data 

base (cmcs.org) 

C Samson and Pareek, 1985 

D Dehmer, 1984 

E  Measured in the group 

F Measured with the expression used by Koizumi, 1991 

G Holland et al., 1993 

H Cool et al., 2003 

I Samson, and Stolte, 2002 
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Table A.1 Photo-ionization cross-sections 
Mass 
(amu) 

Name IP (eV) Energy 
measured 
at (eV) 

Photo-
ionization 
cross-section 
(mbarn) 

References 

1 Hydrogen atom 
(H) 

13.59844 14.37 4.85 A 

2 Hydrogen 
molecule (H2) 

15.42593 
±0.00005 

16.22 8.032 B 

15 Methyl radical 
(CH3) 

9.84±0.01 10.0 8 B 

16 Methane (CH4) 12.61 
±0.01 

13.21 3.75 B 

16 Oxygen (O) 13.61806 14.37 4.962 C 
17 Hydroxyl 

radical (OH) 
13.017 
±0.002 

13.21 4 D 

18 Water (H2O) 12.621 
±0.002 

13.21 7.2 B 

26 Acetylene 
(C2H2) 

11.4±0.00
2 

12.32 29.77 E 

28 Ethylene (C2H4) 10.5138 
±0.0006 

12.32 11.48 B 

28 Carbon 
monoxide (CO) 

14.014 
±0.0003 

14.37 26.542 B 

29 Formyl radical 
(HCO) 

8.12±0.04 10.00 6.913 F 

30 Formaldehyde 
(HCHO) 

10.88 
±0.01 

11.52 10.129 B 

32 Oxygen (O2) 12.0697 
±0.0002 

12.32 2.2 G 

39 Propargyl 
(C3H3) 

8.67±0.02 10.00 8.3 B 

40 Allene (C3H4) 9.692 
±0.004 

10.00 8.308 H 

40  Propyne (C3H4) 10.36 
±0.01 

10.52 23.06 H 

40 Argon (Ar) 15.759 
±0.001 

16.22 32.2 I 

41 Allyl radical 
(C3H5) 

8.18±0.07 10.00 6.2 B 

42 Propene  
(C3H6) 

9.73±0.01 10.00 6.316 B 

42 Ketene (C2H2O) 9.617 
±0.003 

11.52 6.9 F 

44 Carbon dioxide  
(CO2) 

13.777±0.
001 

14.37 20.65 B 
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Mass 
(amu) 

Name IP (eV) Energy 
considere
d (eV) 

Photo-
ionization 
cross-section 
(mbarn) 

References 

50 1,3-
butadiyne(C4H2
) 

10.17 10.52 23.82 E 

52 1-Buten-3-
yne(C4H4) 

9.58±0.02 10.06 24.57 E 

54 1,3-Butadiene 
(C4H6) 

9.072±0.0
07 

10.00 7.53 E 

56 Methoxyacetyle
ne (C4H8) 

9.48 10.06 9.94 F 

56 1-Butene 9.55±0.06 10.00 9.45 B 
64 1,3-Pentadiyne 

(C5H4) 
9.5 ± 0.02 10.00 8.2 F 

65 Cyclopentadien
yl (C5H5) 
radical 

8.41/8.56 10.00 7.22 F 

66 1,3-
Cyclopentadien
e    (C5H6) 

8.57 ± 
0.01 

10.00 7.39 F 

68 1,3-Pentadiene 
(C5H8) 

8.6 10.00 7.42 F 

68 1,2-Butadienone 
(C4H4O) 

8.68±0.05 10.06 7.45 F 

70 2-Pentene 
(C5H10) 

9.01±0.03 
 

10.00 7.89 F 

74 1,3,5-
Hexatriyne 
(C6H2) 

9.5±0.02 10.00 8.48 F 

76 Benzyne (C6H4) 9.03±0.05 10.00 7.91 F 
78 Benzene (C6H6) 9.24378±0

.00007 
10.00 24.28 B 

80 1,3-
Cyclohexadiene 
(C6H8) 

8.25 10.00 7.047 F 

80 Methylcyclopen
tadiene (C6H8) 

8.28±0.05 10.06 7.022 F 

82 Cyclohexene 
(C6H10) 

8.95±0.01 10.00 7.817 F 

82 1,2 Butadienone 
3 methyl 
(C5H6O) 

8.65 10.06 7.4 F 

83 Cyclohexyl 
radical (C6H11) 

7.66±0.05 10.00 6.46 F 
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Mass 
(amu) 

Name IP (eV) Energy 
measured 
at (eV) 

Photo-
ionization 
cross-section 
(mbarn) 

References 

84 Cyclohexane 
(C6H12) 

9.88±0.03 10.00 2.12 E 

90 1,3-
Cyclopentadien
e,5-ethenylidene 
(C7H6) 

8.29 10.06 7.03 F 

91 Benzyl radical 
(C7H7) 

7.242±0.0
06 

10.06 6.02 F 

92 Toluene (C7H8) 8.828±0.0
01 

10.06 35 E 

94 Phenol (C6H6O) 8.49±0.02 10.06 7.303 F 
 

98 Cyclohexanone 9.16±0.02 10.00 8.06 F 
102 Phenyl 

acetylene 
(C8H6) 

8.82±0.02 10.00 7.67 F 

104 Styrene (C8H8) 8.464±0.0
01 

10.00 7.27 F 

106 Para-xylene 
(C8H10) 

8.44±0.05 10.00 7.248 F 

106  Benzaldehyde 
(C7H6O) 

9.5±0.08 10.06 8.41 F 

108 Benzyl alcohol 
(C7H8O) 

8.26±0.05 10.00 7.06 F 

115 Indenyl Radical 
(C9H7) 

8.35 9.98 11.62 F 

116 Indene (C9H8) 8.14±0.01 10.00 6.93 F 
120 1-Phenylethenol 

(C8H8O) 
8.01 ± 
0.03 

9.98 12.25 F 

122 Phenol , 4-ethyl 
(C8H10O) 

7.84 9.98 12.53 F 

126 1,4-
Diethynylbenze
ne (C10H6) 

8.58 ± 
0.02 

9.98 11.23 F 

128 Naphthalene 
(C10H8) 

8.144 
±0.001 

10.00 6.96 F 

130 Methyl Indene 
(C10H10) 

8.27 9.98 11.79 F 

140 1H-Indene,2-
ethynyl (C11H8) 

8.04 9.98 12.2 F 

142 Naphthalene,1-
methyl (C11H10) 

7.96 ± 
0.03 

9.98 12.34 F 
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Mass 
(amu) 

Name IP (eV) Energy 
measured 
at (eV) 

Photo-
ionization 
cross-section 
(mbarn) 

References 

152 Acenaphthalene 
(C12H8) 

8.12± 0.1 9.98 12.06 F 

 
 
 
A.2 Mass discrimination factors used 

 Mass discrimination factors are used to rectify the error in the signal due to 

different velocities of ions of different masses. According to (Chernushevic et al., 2001), 

the velocity component of an ion in a monoenergetic beam in a time-of-flight mass 

spectrometer is inversely proportional to its mass-to-ion ratio. Thus lighter ions spread 

out over a distance larger than heavier ions. To account for this effect, mass 

discrimination factors are used. A sample gas with known mole fraction of the target 

species (whose mass discrimination factor is required) is fed into the instrument. The 

mass spectrometer detects its signal, and with known photo-ionization cross section of 

the species at a particular energy, its mass discrimination factor is measured. Mass 

discrimination factors measured for the ALS equipment were used for the data analysis in 

this study. The mass discrimination factors for a few species were measured, and the 

mass discrimination for the rest of the species were found by fitting a suitable curve 

through them. The data measured and the interpolated data with respect to argon are 

given below. 
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Table A.2 Experimental results of mass discrimination factors measured in ALS in 
January, 2006 

Species Mass Mass discrimination factor 

H2
2.02 0.21 

D2
4.03 0.47 

CH4
16.04 0.47 

C2H2
26.04 0.69 

CO 
28 0.70 

Ar 
39.948 1.00 

C3H4
42.08 1.04 

CO2
44.01 1.06 

C6H6
78.11 0.91 

Mass 84 
84 1.05 

Mass 132 
132 0.55 

 

 

Table A.3 Interpolated mass discrimination factors relative to argon for other mass 
species 

Mass Mass 
discrimination 

Mass Mass 
Discrimination

Mass Mass 
Discrimination

1 
0.252 

45 
1.045 

89 
1.047 

2 
0.281 

46 
1.052 

90 
1.040 

3 
0.309 

47 
1.059 

91 
1.033 

4 
0.337 

48 
1.066 

92 
1.026 

5 
0.365 

49 
1.073 

93 
1.019 

6 
0.391 

50 
1.079 

94 
1.011 
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Mass Mass 
discrimination 

Mass Mass 
Discrimination

Mass Mass 
Discrimination

7 
0.418 

51 
1.084 

95 
1.003 

8 
0.443 

52 
1.090 

96 
0.995 

9 
0.469 

53 
1.095 

97 
0.987 

10 
0.493 

54 
1.099 

98 
0.978 

11 
0.517 

55 
1.103 

99 
0.969 

12 
0.541 

56 
1.107 

100 
0.960 

13 
0.564 

57 
1.111 

101 
0.951 

14 
0.587 

58 
1.114 

102 
0.942 

15 
0.609 

59 
1.116 

103 
0.932 

16 
0.630 

60 
1.119 

104 
0.922 

17 
0.651 

61 
1.121 

105 
0.912 

18 
0.671 

62 
1.122 

106 
0.902 

19 
0.691 

63 
1.124 

107 
0.892 

20 
0.711 

64 
1.124 

108 
0.881 

21 
0.730 

65 
1.125 

109 
0.871 

22 
0.748 

66 
1.125 

110 
0.860 

23 
0.766 

67 
1.125 

111 
0.849 

24 
0.784 

68 
1.125 

112 
0.837 

25 
0.801 

69 
1.124 

113 
0.826 

26 
0.817 

70 
1.123 

114 
0.814 

27 
0.833 

71 
1.122 

115 
0.803 

28 
0.849 

72 
1.120 

116 
0.791 
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Mass Mass 
discrimination 

Mass Mass 
Discrimination

Mass Mass 
Discrimination

29 
0.864 

73 
1.118 

117 
0.779 

30 
0.879 

74 
1.116 

118 
0.767 

31 
0.893 

75 
1.113 

119 
0.754 

32 
0.906 

76 
1.110 

120 
0.742 

33 
0.920 

77 
1.107 

121 
0.729 

34 
0.932 

78 
1.104 

122 
0.716 

35 
0.945 

79 
1.100 

123 
0.704 

36 
0.957 

80 
1.096 

124 
0.691 

37 
0.968 

81 
1.091 

125 
0.677 

38 
0.979 

82 
1.087 

126 
0.664 

39 
0.990 

83 
1.082 

127 
0.651 

40 
1.000 

84 
1.077 

128 
0.637 

41 
1.010 

85 
1.071 

129 
0.624 

42 
1.019 

86 
1.066 

130 
0.610 

43 
1.028 

87 
1.060 

131 
0.596 

44 
1.036 

88 
1.054 

132 
0.582 
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APPENDIX B 

EXPERIMENTAL CALIBRATIONS 

 

B.1 Gas flow calibration methods 

As discussed in Chapter 2, the gas flow is calibrated against a dead volume.  One 

sample calculation for setting up the flow condition for the cyclohexane flame is 

tabulated below. The required flow rate for oxygen and argon for the cylohexane flame is 

1.058 slm and 0.564 slm respectively. The volume of the cylinder is 43.364 l. The 

temperature in the room was 294 K. Ideal gas law was applied to calculate the number of 

moles (M) in the cylinder. F refers to the molar flow rate. 

 

 

 

Table B.1 Gas flow required. 
Gas Flow required 

(SLM) 

Flow required 

(mole/sec) 

Oxygen 1.058 0.000787 

Argon 0.564 0.000412 
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Table B.2 Pressure and time reading for set point 52 for argon 
Set 
point 

Pressure
(Torr) 

Time 
(sec) 

dt 
(sec) 

M 
(moles) 

dM 
(moles) 

F (dM/dt) 
(moles/sec) 

Average 
(moles/sec) 

51 
22.05 0 0 5.22E-02   4.06E-04 

 
24.02 11.67 11.67 5.68E-02 4.66E-03 3.99E-04  

 
26.06 23.61 11.94 6.16E-02 4.82E-03 4.04E-04  

 
28.05 35.14 11.53 6.63E-02 4.71E-03 4.08E-04  

 
32.06 58.36 23.22 7.58E-02 9.48E-03 4.08E-04  

 
35.05 75.61 17.25 8.29E-02 7.07E-03 4.10E-04  
 

The following graph represents the molar flow rate versus set point for the argon. 
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Figure B.1. Molar flow rate against set point in argon. 

A similar procedure was followed to find the proper flow conditions for all the 

flames. 

 

 148



B.2 Calibration for the syringe pump 

The syringe pump flow was calibrated using water at room temperature (20 ۫ C). 

The pump flow rate was set at a certain value, and then the pump was run for a known 

period of time. The water that came out of the pump was collected and weighed. From 

the density of water, the total volume delivered by the pump was calculated. Using this 

known volume and time, the volumetric flow rate was calculated.  

Figure B.2 presents the actual flow rate against the target flow rate. The straight 

line represents the ideal case when actual flow rate equals the target flow rate. The points 

in the graph represents the data points. The deviation of the data points from the straight 

line represents the error involved with the syringe pump delivery rate. 

It shows that as the target flow rate is decreased, the error decreases significantly. 

During the course of experiment, the maximum target flow rate required by the syringe 

pump was 0.6 ml/min. It was assumed that at this flow rate the error involved was 

negligible, but a fluctuation observed in the toluene and cyclohexane flame while 

measuring  their temperature suggested that the syringe pump delivery rate might have 

fluctuated with time. This source of error needs to be further investigated. 
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Figure B.2. Syringe pump calibration 

( The straight line represents the ideal case where the actual flow rate equals the 

target flow rate, the diamonds represent the actual data point) 
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APPENDIX C 

MODELING OF  FUEL-RICH CYCLOHEXANE FLAME 

 

CHEMKIN, a code developed by Sandia, was used for the preliminary flame 

modeling. A general description of the numerical properties of the code is discussed 

below. 

C.1 Overview of the code 

The code solves the one-dimensional transport equations and, in principle, the  

energy-balance equations. The flame is called one-dimensional because there is assumed 

to be no radial velocity gradient and temperature gradient across the burner. The common 

practice is to measure the temperature profile in the flame and fit that data into the code 

to solve the transport equation because the energy conservation equation can not be 

solved efficiently without knowing the energy losses in different flames to its 

surroundings. The modeling approach of the combustion system uses a combination of 

time-dependent and steady-state methods. The idea of coarse-to-fine grid refinement was 

used as a means to enhance the convergence properties of the steady state approach and 

as a means to provide optimal mesh placement. The model can be used for analyzing 

species profiles in flame experiments with a known mass flow rate. 

 

C.2 Structure of the code. 

 The code depends on data and subroutines from the CHEMKIN and transport 

packages. Therefore to solve a flame problem, a command procedure needs to be set up 

that would allow for the execution of several preprocessor programs, the access to several  
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Figure C.1. Structure of the CHEMKIN code. 
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data bases, the loading of subroutines from several libraries, and the passing of files from 

one process to another. Figure C.1 shows the flow chart of the CHEMKIN code. 

The first step executes the CHEMKIN interpreter. It reads the user-supplied 

information about the species and chemical reactions for a particular reaction mechanism. 

It then extracts further information about the species thermodynamic properties from   a  

data base. This information is stored in the CHEMKIN linking file, a file that is needed 

by the transport property-fitting program TRANFIT and later by the CHEMKIN 

subroutine library, which is accessed by the flame-model program. 

The next program that is executed is the TRANFIT program. It needs input data 

from a transport property database and from the CHEMKIN subroutine library. Its 

purpose is to compute polynomial representations of the temperature dependent parts of 

the individual species viscosities, thermal conductivities and binary diffusion 

coefficients. Like the CHEMKIN interpreter, the TRANFIT program produces a linking 

file that is later needed in the transport-property subroutine library, which will evaluate 

mixture properties during the course of flame computation. 

The CHEMKIN and the transport subroutine libraries must be initialized before 

use and the flame program makes the appropriate initialization calls. The purpose of the 

initialization is to read the linking files and set up the internal working and storage space 

required by all subroutines in the libraries. 

The input that defines a particular flame and the parameters needed to solve it are 

read by the flame program in keyword format. The flame program can begin iteration 

from a previously computed flame solution. In this case the old solution is read from a 
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restart file. The program saves the solution, which can be used to continue iterating or 

can be read as a starting estimate for a different flame. 

 

C.3 Numerical Method Used 

In the premixed laminar quasi-one dimensional (flat) flame, the following 

assumptions were made in modeling the flame.  steady state, isobaric system, and the 

Dufour effect as well as external forces were negligible. The flame equations may then be 

written as: 

Conservation of mass.                                                                              (C.1) uAM ρ=
.

Energy conservation.  

∑ ∑
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Species continuity. 
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M ρ            (k = 1, 2, …., K)                     (C.3) 

Equation of state. 
RT
Wp

=ρ                                                                                  (C.4) 

where 
.

M is the mass flow rate, ρ is the mass density, u is the velocity of the fluid 

mixture, A is the area expansion ratio, T is the temperature, x is the spatial coordinate, cp 

is the constant pressure heat capacity of the mixture, λ is the thermal conductivity of the 

mixture, Yk is the mass fraction of the k th species (there are K species), Vk  is the 

diffusion velocity of the k th species, cpk is the constant pressure heat capacity of the k th 
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species, is the molar rate of production of the k th species, is the specific enthalpy 

of the k th species, is molecular weight of the k th species, 

.

kw kh

kW W is the mean molecular 

weight of the mixture, p is the pressure, and R is the universal gas constant. 

 

C.4 Modeling of thermodynamic properties 

Conventionally specific heats, standard state enthalpies and standard state 

entropies are expressed by polynomial fits of arbitrary orders. Seven-parameter fits 

developed by Gordon and McBride (1971) at NASA are used. These fits take the 

following form. 

0
2 3

1 2 3 4 5
pk

k k k k k

C
a a T a T a T a T

R
= + + + + 4       (C.5) 
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S a a aa T a T T T T a
R

= + + + + + 7
k

k      (C.7) 

Other thermodynamic properties are then calculated in terms of these parameters. To 

account for the variation of these properties with the temperature, two sets of seven 

coefficients are calculated, one for low temperature (300 - 1000 K) and one for high 

temperature (1000 – 3000 K). 

 

C.5 Transport processes 

The dominant transport processes in flames are diffusion, thermal conduction and 

thermal diffusion. As stated earlier, viscosity effects are neglected. Thermal 

conductivities and diffusion coefficients for the individual species are estimated using 
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methods available in the literature. For example, diffusion velocity is assumed to be 

composed of three parts. ordinary diffusion velocity Vk , thermal diffusion velocity ψk, 

and correction velocity Vc (included to make sure that the mass fractions sum to unity). 

ckkk VV ++= ψν                                                                    (C.8) 

dx
dX
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where is the mole fraction,  is the mixed average diffusion coefficient, is the 

binary diffusion coefficient, and  is the thermal diffusion ratio. 

kX kD kjD

kTK

 

C.6 Boundary conditions 

The burner surface is taken as cold boundary and a distance far away from the 

burner, usually 30 mm from the burner surface, represents the hot boundary. For 

premixed flame, 
.

M is a known constant. Temperature and mass flux fractions at the cold 

boundary are specified. Vanishing gradients are imposed at the hot boundary. 
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C.7 Modeling  results and comparison with experimental data. 

 The fuel-rich cyclohexane flame was modeled using CHEMKIN. The reactions 

for production of triacetylene, styrene, indene and naphthalene were added into the 

existing  mechanism of stoichiometric cyclohexane flame. The total number of species 

considered in the set of 891 reactions is 105.  The temperature profile that was measured 

for this particular flame, in the UMass Amherst lab was used in the modeling. 

  The model results are compared here for the major species.  
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Figure C.2. Comparison of code result and experimental result for production of CO ( the 

line represents model prediction, the diamonds represents experimental results). 
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Figure C.3. Comparison of code result and experimental result for production of CO2 (the 

line represents model prediction, the squares represents experimental results). 
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Figure C.4. Comparison of code result and experimental result for consumption of O2 

(the line represents model prediction, the triangles represents experimental results). 
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Figure C.5. Comparison of code result and experimental result for production of H2O (the 

line represents model prediction, the triangles represents experimental results). 
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Figure C.6. Comparison of CHEMKIN code result and experimental result for production 

of Ar (the line represents model prediction, the stars represents experimental results). 
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Figure C.7. Comparison of code result and experimental result for cyclohexane oxidation 

(the line represents model prediction, the stars represents experimental results). 
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Figure C.8. Comparison of code result and experimental result for H2 productin (the line 

represents model prediction, the stars represents experimental results). 

 160



 

 The results show qualitative similarity in the shape for all the species compared. 

For CO and Ar, the model prediction and experimental result matches well. For CO2, O2 , 

and H2O production, the model underpredicts the experiment. For cyclohexane 

combustion, the model predicts a faster combustion of cyclohexane compared to the 

experiment.  For H2 the model overpredicts the experimental findings by almost 4 times. 

This deviation is a major concern. The overprediction of H2 and underprediction of H2O 

suggest that H2 and O2 reactions in the mechanism need to be reinvestigated. 

 

C.8 Reaction pathway analysis of the cyclohexane flame 

 Using the mechanism file for the code and its prediction, a SENKPLOT analysis 

was done to find out the major reaction pathways for this mechanism in the fuel-rich 

cyclohexane flame. Figure C.9 shows the major reaction pathways, where CYC6H12 

refers to the cyclohexane, A refers to benzene, and CY refers to cyclic species. The 

reaction pathway analysis shows that cyclohexane forms cyclohexyl radical first, which 

then opens and forms a linear species.  This species upbeat-scissions into C4H7 and C2H4.  

C4H7  further breaks up into 1,3-butadiene (iiiC4H6).  1,3-Butadiene breaks up into C2H4 

and C2H3. C2H2 forms HCCO and CO. HCCO further gets oxidized to CO. C2H3 gets 

oxidized to HCO, which forms CO. CO then gets oxidized by OH to form CO2.  

 The pathway analysis also suggests that hydrogen abstraction reactions of 

cyclohexane are the major benzene formation reactions for this particular flame, which 

supports the findings of (Law, 2005) for a stoichiometric cyclohexane flame. 
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Figure C.9. Major reaction pathways for the cyclohexane flame.
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