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Abstract

Non-extreme black hole solutions of four dimensional, N = 2 supergravity theo-

ries with Calabi-Yau prepotentials are presented, which generalize certain known double-

extreme and extreme solutions. The boost parameters characterizing the nonextreme

solutions must satisfy certain constraints, which effectively limit the functional indepen-

dence of the moduli scalars. A necessary condition for being able to take certain boost

parameters independent is found to be block diagonality of the gauge coupling matrix. We

present a number of examples aimed at developing an understanding of this situation and

speculate about the existence of more general solutions.
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1. Introduction

Considerable effort has been devoted recently to studying black hole solutions in four-

dimensional, N = 2 supergravity theories [1-16]. Interest has been focused, so far, on

extreme black holes, which satisfy additional supersymmetry constraints and saturate a

BPS bound. A key discovery [3] in this case is that the values of the scalar moduli fields

of the N = 2 vector multiplets are actually fixed at the black hole horizon in terms of

the electric and magnetic charges carried by the black hole. In particular, the horizon

values of the scalar fields are independent of the values of the scalar fields at infinity. The

evolution of the scalar fields moving inward from infinity towards the horizon can then be

thought of as motion in a kind of attractor [3]. Of particular interest are the “double-

extreme” solutions, for which the scalar fields stay fixed at their horizon values throughout

the spacetime [9]. These are “doubly” extreme in the sense that, in addition to having

degenerate horizons, the black hole mass, for these solutions, is minimized for the given

charges. “Singly” extreme solutions with non-constant scalars are given in [11].

In this paper we will look at non-extreme black hole solutions in N = 2 theories in four

dimensions, obtained by dimensional reduction of Type II supergravity on a Calabi-Yau

threefold. Since the basic form of the extreme solutions in this case [11] is quite similar to

certain supersymmetric, intersecting brane solutions of torus compactifications [17,18], a

simple ansatz for the non-extreme N = 2 black holes arises from the known non-extreme

intersecting brane solutions in torus compactifications [19]. This ansatz is also analogous

to the non-extreme generalization of the extreme black branes solution of M-theory [20]. In

this ansatz, given below, there is a single “non-extremality” parameter µ and a number of

“boost parameters” γΛ related to the individual charges. We find below, however, that this

ansatz does not in general solve the equations of motion. Rather, the equations of motion

reduce to a condition which may be regarded as a constraint on the boost parameters.

The only general (i.e. for all Calabi-Yau manifolds) solution to this constraint, which we

have found, is when all the boost parameters are taken to be equal. For specific models,

such as the STU model and others discussed below, it is possible to take separate boost

parameters.

We have not yet explored these constraints fully. In the case of torus compactifications

of D = 11 supergravity, the general non-extreme solutions of [19] may be obtained from the

D = 10 Schwarzschild solution via various combinations of boosts, dimensional upliftings
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and reductions and duality symmetries. We note that these same methods cannot be used

to similarly construct the non-extreme N = 2 solutions. 1

2. The Basic Setup: N = 2 Lagrangian

We give only a brief summary of the formalism here. A more complete treatment may be

found in, e.g., [9]. An N = 2 supergravity theory in four dimensions includes, in addition

to the graviton multiplet, nv vector multiplets and nh hypermultiplets. In our work we

consistently take the hypermultiplet fields to be constant and will ignore them below. The

bosonic part of the action is then given by2

S =

∫
d4x

√
−G

[
R − 2gAB̄∂νzA∂ν z̄B − 1

4

(
FΛ

µνFΣµνImNΛΣ + FΛ
µν∗FΣµνReNΛΣ

)]
, (1)

where Gµν is the spacetime metric, zA with A = 1, . . . , nv are complex scalar moduli fields

parametrizing a special Kähler manifold and FΛ
µν = 2∂[µAΛ

ν] with Λ = 0, 1, . . . , nv are the

field strengths of nv +1 U(1) gauge fields AΛ
µ . Here, the complex scalars are related to the

holomorphic symplectic sections XΛ by the inhomogeneous coordinates condition

zA =
XA

X0
(2)

The Kähler potential K, scalar metric gAB̄ and gauge couplings NΛΣ are all determined

in terms of the prepotential F (X), which is a holomorphic, second-order homogeneous

function. The Kähler potential K is given by

e−K = i
(
X̄ΛFΛ − XΛF̄Λ

)
(3)

where FΛ = ∂F/∂XΛ. The Kähler metric on the scalar moduli space is then given by

gAB̄ = ∂A∂B̄K(z, z̄) where ∂Ā = ∂/∂z̄A and the gauge field couplings NΛΣ by

NΛΣ = F̄ΛΣ + 2i(ImFΛ∆)(ImFΣΓ)XΓX∆/
(
XΩXΦImFΩΦ

)
(4)

where FΛΣ = ∂FΛ/∂XΣ.

1 After this work was completed, we found that the same ansatz for the non-extreme solutions

had been made in [13]. We disagree with the claim there that the ansatz generally satisfies the

equations of motion.
2 We use the normalization ǫt̂r̂ϑ̂ϕ̂ = 1.
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For type II supergravity compactified on a Calabi-Yau space, the prepotential takes

the form

F (X) =
dABCXAXBXC

X0
, (5)

where the constants dABC , with ABC completely symmetric, are the topological intersec-

tion numbers of the manifold. We further restrict our interest here to the axion free case,

in which all the moduli scalars zA are pure imaginary. The gauge coupling matrix NΛΣ is

then pure imaginary, having nonzero components

N00 = −dABCzAzBzC , NAB = −6dABCzC + 9
dACDzCzDdBEF zEzF

dGHIzGzHzI
(6)

and the Kähler metric is given by

gAB̄ =
NAB

4N00
(7)

The equations of motion following from the action (with ReN = 0) are given by

∂µ

(√
−GFΛµνImNΛΣ

)
= 0 (8)

16gAB̄∇ν∂ν z̄B + 8(∂AgBC̄)∂µzB∂µz̄C − (∂AImNΛΣ)FΛ
µνFΣµν = 0 (9)

Rµν − 2gAB̄(∂µzA)∂ν z̄B − 1
2

(
FΛ

µσFΣσ
ν − gµν

4
FΛ

ρσFΣρσ
)

ImNΛΣ = 0. (10)

3. Non-Extreme Solutions

We want to generalize certain double-extreme and extreme solutions, which were given in

[9] and [11] respectively. In these solutions, the gauge field F 0
µν carries only electric charge,

while each gauge field FA
µν carries only magnetic charge. As discussed in [9,11], regarded

as a compactification of M-theory on S1 × CY , these solutions correspond to fivebranes

wrapping 4-cycles of the Calabi-Yau space, with a boost along the common string. For

the special case of a torus compactification, the corresponding non-extreme solutions are

given in [19]. It is straightforward to modify the solutions there to get an ansatz for the

non-extreme solutions in the present case,

ds2 = −e−2Ufdt2 + e2U
(
f−1dr2 + r2dΩ2

)
, e2U =

√
H0dABCHAHBHC

f = 1 − µ

r
, zA = iHAH0e

−2U , HA = hA
(
1 +

µ

r
sinh2 γA

)

A0
t =

rH̃ ′

0

h0H0
, AC

ϕ = r2 cos ϑ H̃C′

, H̃A = hA
(
1 +

µ

r
cosh γA sinh γA

)

H0 = h0

(
1 +

µ

r
sinh2 γ0

)
, H̃0 = h0

(
1 +

µ

r
cosh γ0 sinh γ0

)
,

(11)
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where prime denotes ∂r. Nonzero components of the gauge field strengths are

F 0
tr =

H̃ ′

0

H2
0

, FA
ϕϑ = r2 sin ϑH̃A′

. (12)

The ansatz (11) reduces to the “singly” extreme solutions given in [11] when the limit

µ → 0, γΛ → ∞ is taken with µ sinh2 γΛ ≡ kΛ held fixed and further to the “doubly”

extreme solutions, with constant moduli scalars, in [9] when all the kΛ are the same. It

can also be shown that, if the solution (11) with H0 = H̃0 = 1 satisfies the equations

of motion, then the solution with more general H0 and H̃0, as given in (11), satisfies the

equations of motion. This corresponds to a boost transformation in M-theory compactified

on S1 × CY . Henceforth, in checking the equations of motion, we will set H0 = H̃0 = 1.

It is straightforward to check that the ansatz (11) satisfies the gauge field equation of

motion (8). Equation (10) for the curvature reduces to the condition

r2ImNAB

(
fHA′

HB ′ − H̃A′

H̃B′

)
= 2µ

(
e2U

)′
, (13)

and the scalar field equation (9) leads to

r2 (∂AImNBC)
(
H̃C′

H̃B′ − fHC ′

HB ′
)

= 8µe2UgAB̄ z̄B′

. (14)

In deriving these last two equations we have made use of the fact that the extreme solutions,

with f = 1 and (H0, H
A) = (H̃0, H̃

A), satisfy the equations of motion. Note that both

sides of equations (13) and (14) vanish identically in this case. We also note that ImNBC =

−iNBC by virtue of (6) is a first order homogeneous function of zA and that, in particular,

zA∂AImNBC = ImNBC . This property can be used to “contract” equation (14) with zA

to obtain equation (13). Thus it is only necessary to show that the ansatz (11) (with

H0 = H̃0 = 1) satisfies (14).

It is not difficult to see that, for an arbitrary choice of the constants dABC in the

prepotential, the condition (14) is not satisfied unless the parameters γA are taken to be

equal. This differs from the case of intersecting branes on a torus [19], for parameters

γA may be specified independently for each set of branes. We do not at present fully

understand the significance of the restrictions placed by (14) on the parameters γA. Note

that, if all the boost parameters, including γ0, are set equal to some common value γ in

(11), then the scalars zA will be constant, having values

zA = ihAh0, (15)
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where the asymptotic flatness condition, h0dABChAhBhC = 1, has been used. This case

is then a non-extreme version of the “doubly” extreme black holes in [9]. Taking γ0 to be

different, as may always be done, makes the scalars zA non-constant, but keeps their ratios

constants. Clearly, if some, or all, of the γA’s may also be taken unequal, then there will

be additional functional independence between the scalars. In the next section, we will

explore some simple examples of prepotentials for which some, or all, of the γA’s may be

specified independently.

4. Examples

We list below some choices for the dABC which allow some of the γA’s also to be different

from each other. It follows from (13), that a necessary condition for (at least) some of the

γA’s to be independent is that the gauge coupling matrix ImNAB be block diagonal. In

this case there turns out to be one independent parameter per block. From this point of

view, it seems consistent that γ0 may always be specified independently of γA, since N0A

vanishes as evident by (6), and hence N00 forms a 1 × 1 block.

Our first example is the STU model [9] for which the only nonzero dABC is d123. In

this case the coupling matrix ImNBC is diagonal and all three parameters γ1, γ2, γ3 may

all be specified independently. However, when quantum corrections are added to the STU

model [9,11] d333 becomes nonzero. This makes the coupling matrix ImNBC completely

nondiagonal, which in turn implies that the γA’s must be taken equal.

As a second example, we can take only the constants d1AB to be nonzero, where

A, B 6= 1 (a similar model is considered in [5]). The coupling matrix ImNBC in this case

is block diagonal, having a 1× 1 block and an (nv − 1)× (nv − 1) block. It follows that γ1

can be chosen independently of the γA for A 6= 1, which must all be the same.

A specialization of the previous example is to take only d12B nonzero with B = 3 . . . nv.

This makes ImNBC block diagonal with two 1×1 blocks and one (nv −2)× (nv −2) block

and one can have three different γ’s: γ1, γ2 and one more γB for B = 3 . . . nv.
3

As a final example we consider a simple toy model where only d112 and d111 are

nonzero. In this case ImNBC is diagonal if and only if d111 = 0, i.e. γ1 = γ2 is required

unless d111 = 0. In each of these cases block diagonality of the gauge coupling matrix

ImNBC appears to be both a necessary and a sufficient condition to be able to take

independent γ’s, though we have not been able to show this generally.

3 Notice that if one specializes this last example one step further one ends up with the STU

model (without the quantum correction).
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5. Physical Parameters and Discussion

We examine the physical properties of the non-extreme solutions. In particular, we want to

check, given the restrictions on the γA’s, that the charges may still be specified arbitrarily,

as they can in the extreme limit [9,11]. We will first display all formulae as if the γA’s

can be specified independently and then discuss the actual solutions, in which the γA’s

are restricted. After imposing the asymptotic flatness condition, the set of independent

parameters for the solutions can be taken to be {µ, γ0, h
A, γA}. These can be exchanged

for the more physical set {E, q0, p
A, γA}, where E is the ADM mass, q0 the electric charge

for F 0
µν and pA the magnetic charges for FA

µν . The ADM energy is given by4

E = 1
2

[
µ + 1

2

(
k0 + 3h0dABChAhBKC

)]
(16)

where KC ≡ hCkC and kΛ = µ sinh2 γΛ as above. The electric charge q0 and magnetic

charges pA are defined by

q0 =
1

4π

∫
∗F 0

ϑϕImN00 dϑdϕ , pA =
1

4π

∫
FA

ϑϕ dϑdϕ. (17)

We find

q0 =
µh0 sinh 2γ0

2
, pA =

µhA sinh 2γA

2
(18)

The Hawking temperature is

T =
1

4πµ
√

λ0dABCλAλBλC
(19)

where λ0 = h0 cosh2 γ0 and λA = hA cosh2 γA and the Bekenstein entropy is

S = πµ2
√

λ0dABCλAλBλC . (20)

First, note that equation (18) implies that, even in the case that all boost parameters

are set equal, the charges q0, p
A may still be chosen arbitrarily by virtue of the constants

hA and the single boost parameter γ. As we observed above, the restrictions on the γA

should be regarded as restrictions on the functional independence of the scalars zA, with

respect to one another. Next, we note that, for all the examples discussed in the last

section, the formulae for the temperature (19) and the entropy (20) simplify considerably.

4 In order to simplify the formulae we explicitly display h0 bearing in mind that it can be

regarded as a function of h
A.
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The square roots in (19) and (20) can be “gotten rid of”, in these cases, because the λ

factors appearing in the each term of the sums are identical. For example, in the d1AB

model, the entropy (20) reduces to

S = πµ2 cosh γ0 cosh γ1 cosh2 γ, (21)

where γ = γA for A = 2 . . . nv.

It remains an open question, whether, or not, more general non-extreme solutions

(static, axion-free and carrying only the charges q0 and pA) exist. These might, for exam-

ple, have independent boost parameters for each of the Calabi-Yau 4-cycles. In the case of

orthogonally intersecting branes on a torus [19], there are at most four independent param-

eters corresponding to a boost and three sets of branes. However, the most general black

hole solutions in type II theory compactified to 4-dimensions on a torus are described by

28 electric and 28 magnetic charges (see e.g. [21]). The extreme solutions in this case arise

via collections of branes intersecting non-orthogonally [22]. It may be necessary to look

at a non-extreme solution based on branes intersecting at angles to get the most general

solution in the Calabi-Yau case as well. It would also be interesting to try to construct the

solutions, which we have found here, using the available symmetry transformations, which

in the present case include boosts in the time direction and symplectic transformations.

Finally, it should also be possible to find nonextreme solutions in N = 2 theories with

prepotentials not of the Calabi-Yau form. We note that since (13) and (14) are derived

using the extreme solution and since they are displayed not in terms of the particular

prepotential we have used in this paper, they are generally applicable to finding non-

extreme black hole solutions for other prepotentials. In particular the block diagonality

of ImNAB is a necessary condition for the existence of more than one γA. We emphasize

that the derivation of (13) and (14) does not depend on any specific expression for e2U and

depends only on the fact that ReN = 0, F 0
µν = 0, and FA

µν carries only magnetic charge.
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