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Mesophases of soft-sphere aggregates

Homin Shin,1 Gregory M. Grason,1 and Christian D. Santangelo2

1Department of Polymer Science and Engineering,

University of Massachusetts, Amherst, MA 01003, USA
2Department of Physics, University of Massachusetts, Amherst, MA 01003, USA

Soft spheres interacting via a hard core and range of attractive and repulsive “soft-shoulder” po-
tentials self-assemble into clusters forming a variety of mesophases. We combine a mean field theory
developed from a lattice model with a level surface analysis of the periodic structures of soft-sphere
aggregates to study stable morphologies for all clustering potentials. We develop a systematic ap-
proach to the thermodynamics of mesophase assembly in the low-temperature, strong-segregation
and predict a generic sequence of phases including lamella, hexagonal-columnar and body-center
cubic phases, as well as the associated inverse structures. We discuss the finite-temperature correc-
tions to strong segregation theory in terms of Sommerfeld-like expansion and how these corrections
affect the thermodynamic stability of bicontinuous mesophase structures, such as gyroid. Finally,
we explore the opposite limit of weakly-segregated particles, and predict the generic stability of a
bicontinuous cluster morphology within the mean-field phase diagram.

PACS numbers:

I. INTRODUCTION

New classes of soft materials assemble into a bewilder-
ing array of complex mesophases. These include bicon-
tinuous structures with multiple symmetries [1], unusual
lattices such as the A15 [2, 3, 4], as well as the more ex-
otic Frank-Kasper and quasicrystalline packings of den-
drimers and block copolymers [5, 6, 7]. This rich behavior
holds out the promise of designing materials to achieve
a complex target structure on length scales long enough
to be used as optical devices or as components of hybrid-
photovoltaic structures. Nevertheless, the principles con-
necting structure and interactions at the molecular scale
to the structure and thermodynamics of long-range as-
semblies remain poorly understood.

In this article, we study the stable morphologies of
a class of interacting particles with a hard core and an
isotropic, soft corona. The class is exemplified by a
corona which costs a fixed energy ǫ when it overlaps with
the corona of another particle. At sufficient densities, this
interaction results in stable, finite size clusters arranged
into a number of structures [8, 9, 10, 11, 12, 13, 14,
15, 16]. In two dimensions, these clusters arrange into ei-
ther hexagonally-packed clusters, stripes or a dense phase
of hexagonally-packed voids [8, 9, 12, 13, 17]. In three
dimensions, numerical calculations of the ground state
show a number of distinct lamellar, cylindrical and spher-
ical clusters as well as their inverse form-like structures
[9, 10, 11]. This behavior is by no means specialized, how-
ever, as a range of particle interaction types have demon-
strated to mesophase clustering. Another classic example
of cluster morphologies occurs for potentials with long-
range repulsion and short-range attractions [18, 19, 20].
Cluster phases have also been demonstrated with mag-
netic dipoles in a magnetic field in two dimensions both in
simulations [21] and, more recently, in experiments [22].

Beyond isotropic particle systems, it is striking that
predicted cluster morphologies bear a strong resemblance

to the phase morphologies of block copolymer melts [23].
Despite the obvious differences in the microscopic struc-
ture of polymeric amphiphiles and isotropic particles
with hard cores, we find that the gross features of the
long-range order expected in both systems to be in exact
correspondence both in terms of topology of aggregate
structures as well as the symmetry of their periodic ar-
rangement.

In this paper we explore the full potential of isotropic,
clustering particle systems to form long-range ordered
mesophases and investigate the thermodynamic princi-
ples underlying their assembly. In further analogy to the
theory of block copolymer thermodynamics, we develop
a mean-field approach to clustering morphologies which
is tractable both in the limit of strong-segregation [24],
valid at low temperature and sharp cluster boundaries,
and weak-segregation [25], valid near the order-disorder
transition. In addition to predicting the ground state
morphologies, our low-temperature expansion allows to
probe the explicit relationship between particle entropy,
interactions and cluster geometry. This expansion high-
lights a frustration between the particle interaction po-
tentials and suggests a mechanism whereby cluster mor-
phologies with high volumetric surface areas are stabi-
lized at higher temperatures. Interestingly, we predict a
stable orthorhombic, Fddd bicontinuous phase in a nar-
row region near the order-disorder transition in complete
analogy to the prediction [26, 27] and observation[1, 28]
of this same structure in copolymer melts.

Previous studies of clustering from isotropic particles
have largely focussed on properties of a specific type of
interaction potential. However, in ref. [16] a more gen-
eral classification of interaction potentials is introduced.
Here, we take this one step further, demonstrating that
the gross properties of equilibrium assembly are rather
insensitive to the precise details of the potential. This
universality stems largely from universal geometric con-
siderations both at high temperatures, where this is ex-
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pected [29], and at low temperatures.
In section II, we discuss the general features of soft

assemblies from the point of view of the Fourier transform
of the interaction potential. In section III, we derive the
phase diagram using a strong-segregation theory, valid
when the cluster interfaces are sharp and the temperature
is small. In section IV, we expand on these results with
a finite temperature expansion. Finally in section V, we
present a phase diagram valid near the order-disorder
transition. In section VI, we summarize our results. We
also discuss a paradigm for designing soft matter clusters.

II. STATISTICAL MECHANICS OF CLUSTER

MESOPHASES

A. Clustering instability and particle interactions

We begin our analysis by dividing the interaction be-
tween particles into two parts, the hard-core VHC(r) po-
tential, where

VHC(r) =

{

∞, r < a
0, r > a

(1)

and “soft-shoulder” VSS(r) which characterize the longer
range behavior of particle interactions. On its own, the
ground states of the step-function corona described in the
introduction

VSS(r) =

{

ǫ, r < σ
0, r > σ

(2)

solve a particularly simple optimization problem. Since
this potential is purely repulsive, the different morpholo-
gies that are observed, apparently, minimize the number
of overlaps within a distance less than σ at fixed den-
sity [10]. It is not clear, however, how other types of
clustering systems can be explained with such a simple
geometrical optimization. Moreover, designing clustering
particles that exploit ‘soft packing’ requires an additional
understanding of what principles guide cluster morphol-
ogy.

By examining the soft-shoulder potential from the
point of view of its Fourier transform,

V̂ (q) =

∫

d3rVSS(r)eiq·r, (3)

the more general conditions for the clustering behav-
ior become apparent. In refs. [16] and [13], the au-
thors observed that, at least within a mean-field ap-
proximation, interaction potentials whose Fourier trans-
forms have a negative region exhibit an instability lead-
ing to clustering. Precisely, the instability occurs when
1 + βV̂ (q)ρ(1 − ρ/ρm) < 0, where ρm is the maximum
packing density of cores, β = 1/kBT , ρ is the average
density [13].

It is, perhaps, not surprising that certain combinations
of attractive and repulsive interactions can satisfy this

FIG. 1: (Color online) Two real-space interparticle soft-
should potentials VSS(r) are shown in (a): eq. (2) in blue
and eq. (4) in red with A = 2ǫ, B = ǫ, λA = σ/3 and
λB = 2σ/3. In (b) the Fourier transforms of each poten-
tial, normalized by their respective values at q = 0. Both the
long-range repulsive/short-range attractive and step repulsive

potential exhibit a minimum for which V̂ (q∗) < 0, indicating
an instability to clustering at sufficiently low temperatures.

condition. For example, consider the interaction poten-
tial

VSS(r) = −A exp
(

−r2/λ2
A

)

+B exp
(

−r2/λ2
B

)

. (4)

where A and B are positive and λA/λB < 1. There-
fore, at distances r > λB the soft-shoulder potential is
repulsive but when r < λA it is attractive. The Fourier
transform is

V̂ (q) = −Aλ
3
A

2
√

2
exp

(

−λ2
Aq

2/4
)

+
Bλ3

B

2
√

2
exp

(

−λ2
Bq

2/4
)

,

(5)
which has a single negative peak at a non-zero wave vec-
tor, provided that Aλ3

A < Bλ3
B . More interesting is that

purely repulsive potentials, like the step potential in eq.
(2), can exhibit the same negative peak. Figure 1 shows
that these two very different soft shoulder forms give rise
to a similar properties of V̂ (q) in Fourier space, namely
a minimum at some finite wavevector |q| = q∗ for which

V̂ (q∗) < 0. Not even sharp discontinuities are required:
simulations [21] and experiments [22] in two-dimensions
of a dipolar magnetic repulsion softened by an attractive



3

component show clustering behavior even in regimes in
which the total potential is repulsive.

From this point of view the fundamental frustration oc-
curring in clustering particle systems becomes transpar-
ent. The soft shoulder portion of the interaction poten-
tial drives the system to order at a particular wavelength,
λ∗ = 2π/q∗, associated with minimum in V̂ (q). At the
onset of order, this may be accomplished by a weak sinu-
soidal modulation of the density profile. At lower tem-
peratures, the soft-shoulder interaction prefers a much
stronger density modulation, favoring particle packings
that are at higher densities than can be accommodated
by the hard-core of the particle. Hence, the hard-core
portion of the interaction prohibits “over-crowding” of
particles, forcing aggregates to spread out into clusters
of various morphologies.

This observation provides an alternate methodology
for soft sphere packing problems involving the features of
the Fourier transform of the potential. Moreover, similar-
ities in the Fourier transform of two potentials of very dif-
ferent origins lead one to an effective optimization prob-
lem expressed entirely in terms of minimizing the number
of corona overlaps subject to constraints on the particle
density.

In further sections of this article, we will focus on po-
tentials whose Fourier transforms–like those illustrated in
Fig. (1)–are dominated by two modes: the modes at q =

0 and |q| = q∗. This requires that |V̂ (q)/V̂ (q∗)| ≪ 1,
for wave numbers at other negative peaks q 6= q∗, as we
find for the potentials discussed in this section [42]. Ad-

ditionally, we assume that V̂ (q) is maximum and finite
at q = 0.

B. Lattice model particle clustering

To strip away the complexity arising from the hard
sphere packing of the particles, we follow ref. [13] and
introduce a lattice gas model to describe the mesophase
behavior of hard core/soft shoulder particles. In or-
der to prevent overlaps of particle cores, this model as-
sumes particles to occupy a close-packed lattice of cores.
Though this type of model only approximates the trans-
lational entropy of particle cores, we expect the model
to become accurate in the low temperature regime where
clusters are densely packed and when core size is much
smaller than dimensions of the clusters, λ∗ ≫ a. The
state of each lattice site i is represented by ni = 0 or
1. The soft-shoulder pair interaction between sites i and
j is represented by V ijSS = VSS(|xi − xj |). The effective
Hamiltonian is then written as

H[ni] =
1

2

∑

ij

niV
ij
SSnj −

∑

i

µni , (6)

where µ is the chemical potential that controls the den-
sity of particles in the system. After a delicate Hubbard-
Stratonovich transformation, the grand partition func-
tion can be written in terms of a coarse grained field

φ(x) [13] by Z =
∫

Dφ(x) exp {−A[φ(x)]}, where the ac-
tion A is

A[φ(x)] =
1

2β

∫

d3x

∫

d3x′ φ(x)V −1
SS (x − x′)φ(x′)

− ρm

∫

d3x ln [1 + exp(βµ+ iφ(x))] , (7)

where,

V −1
SS (x) =

∫

d3q

(2π)3
eiq·x

V̂ (q)
. (8)

The convergence of the path integral requires that φ be
purely real for Fourier modes where V̂ (q) > 0 and purely

imaginary for modes where V̂ (q) < 0 [30]. The mean-
field analysis we pursue here is insensitive to this techni-
cality.

We pursue our analysis of eq. (7) by making two
important approximations. First, we specialize to the
mean-field limit, in which φ(x) is given by the critical
point of A[φ(x)]. Minimizing the action with respect to
φ(x) leads to the mean-field equation, for each Fourier
component,

φ̂(q) = iβV̂ (q)ρ̂(q) , (9)

where ρ̂q = V−1
∫

d3x ρ(x) exp(−iq · x) and V is the
total volume. Along with the mean-field condition we
also have the relation between φ(x) and mean particle
density for the lattice gas model

ρ(xi) = ρm〈ni〉 = ρm
eβµ+iφ(xi)

1 + eβµ+iφ(xi)
. (10)

Together eqs. (9) and (10) form a self-consistent set of
equations for the mean-field density profile, ρ(x), and
self-consistent field, φ(x).

The validity of this saddle-point approximation is de-
termined by strength of interparticle interactions relative
to the thermal energy scale. Assuming that mean-field
solutions φ ∝ iβV̂ (q = 0) and the mean-field action

becomes linear in βV̂ (0)ρ2
mV . The mean-field analysis,

therefore, requires a steep saddle, or sufficiently strong
particle interactions βV̂ (0)ρm ≫ 1.

C. Level set representation of mean-field solutions

Clustering behavior is observed when the Fourier
transformed potential V̂ (q) takes on negative values for
some q. This suggests that equilibrium field configura-
tions will be periodic structures whose fundamental mode
will have length |q| = q∗. Further, from the mean-field

condition eq. (9), we see that if V̂ (q) is dominated by
q = 0 and q = q∗ modes, we may consider configura-
tions of φ(x) that contain only these wavevectors. Note
that this applies equally to the case of strong-segregation
where the mean-field density has many non-zero Fourier
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phases G m ψ(x) ranges of level set ψ0

lamellar ±x̂ 2 2 cos(x) −2 < ψ0 < 2

hexagonal ±x̂,± 1

2
x̂±

√
3

2
ŷ 6 2

h

cos(x) + 2 cos(x

2
) cos(

√
3

2
y)

i

−2 < ψ0 < 6

sc or P surface ±x̂,±ŷ,±ẑ 6 2 [cos(x) + cos(y) + cos(z)] −6 < ψ0 < 6

bcc or IWP surface ±x̂± ŷ,±ŷ ± ẑ,±ẑ ± x̂ 12 4 [cos(x) cos(y) + cos(y) cos(z) + cos(x) cos(z)] −4 < ψ0 < 12

fcc ±x̂± ŷ ± ẑ 8 8 [cos(x) cos(y) cos(z)] −8 < ψ0 < 8

gyroid ±x̂± ŷ,±ŷ ± ẑ,±ẑ ± x̂ 12 4 [sin(y) cos(z) + sin(z) cos(x) + sin(x) cos(y)] −6 < ψ0 < 6

TABLE I: Level surface functions for various phases. G is the primary reciprocal vector and m is the number of modes for
|G| = q∗. Notice that the gyroid phase is constructed by a phase shift δG = π/2.

FIG. 2: (Color online) Level surface morphologies in terms of level set constants ψ0 for Im3̄m space group. I-WP surface with
ψ0 = 1.0 (a) starts to pinch off at ψ0 = 0.0 (b) and evolves to bcc phases ψ0 = 0.4 (c), ψ0 = 4.0 (d), and ψ0 = 10.0 (e).

modes beyond its fundamental mode. Thus, for a given
periodic structure, characterized by a set of reciprocal
lattice vectors, G, we write φ(x) as a superposition of
plane waves with only q = 0 and q = q∗ modes:

φ(x) = φ̂0 +
∑

|G|=q∗

φ̂Ge
iG·x . (11)

For a given symmetry group, we can take advantage of
the fact that Fourier transforms along different reciprocal
lattice directions have the same amplitude to rewrite field
solutions as

φ(x) − φ̂0 = φ̂Gψ(x) (12)

where

ψ(x) =
∑

|G|=q∗

eiG·x+iδG , (13)

where δG are mode-dependent phases. For a given sym-
metry, all information about the three-dimensional, equi-
librium cluster morphology is encoded in ψ(x), the level

set function.

Using the mean-field values of ψ̂0 and ψ̂G from eq. (9)
and defining,

ψ0 ≡ V̂0ρ̂0 − µ

ρ̂∗|V̂∗|
(14)

and

α ≡ β|V̂∗|ρ̂∗, (15)

we may write the mean-field solution form of the density
as,

ρ(x)/ρm =
eα(ψ(x)−ψ0)

1 + eα(ψ(x)−ψ0)
. (16)

Here, we use the notation V̂0 = V̂ (0), V̂∗ = V̂ (q∗), ρ̂0 =
ρ̂(0) and ρ̂∗ = ρ̂(q∗) . Regions of high (low) particle
density correspond to regions where ψ(x) > ψ0 (ψ(x) <
ψ0); the boundaries of the clusters are defined by the
surfaces where ψ(x) = ψ0. Hence, adjusting the level-set
parameter ψ0 adjusts the size, structure and surface of
aggregates [31].

In table I, we list level set functions which correspond
to single-mode plane-wave superpositions of the type de-
fined in eq. (13). These include the one-dimensional
lamellar structure and two-dimensional hexagonal colum-
nar structure. Three-dimensional structures include cu-
bic arrays of spheres: simple-cubic (sc); body-centered
cubic (bcc); and face-centered cubic (fcc). Addition-
ally, these include multiply-connected bicontinuous struc-
tures, which we refer to by the name of the minimal sur-
face of the same topology: IWP surface; Schwarz’s P
surface, otherwise known as the “plumbers nightmare”;
and the gyroid (G) surface [31]. In the representation
of equation 13, two distinct morphologies can share the
same level surface function ψ(x). For example, the bicon-
tinuous I-WP surface, having Im3̄m space group, occurs
in the parameter range −4 < ψ0 < 0, whereas the bcc
structure occurs in 0 < ψ0 < 12. Similarly, Schwarz’s P
surface shares the same level function as the sc phases:
sc phases occur in the range 2 < |ψ0| < 6 whereas the P
surface occurs when −2 < ψ0 < 2 (Pm3̄m space group).
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In Fig. 2, we display a representative example of cluster
shapes with increasing ψ0 for the Im3̄m space group.

In terms of the mean-field solutions, themselves de-
scribed by a family of level-set functions, we now have
the grand potential in the saddle-point approximation,

βΩ

V =
β

2

(

m|V̂∗|ρ̂2
∗ − V̂0ρ̂

2
0

)

(17)

− ρm

∫

d3x ln [1 + exp{α(ψ(x) − ψ0)}] ,

where m is the number of plane-wave modes in ψ(x).

III. LOW TEMPERATURE,

STRONG-SEGREGATION LIMIT

In the limit of low temperatures the parameter α≫ 1,
indicating from eq. (16) that clusters are separated by
sharply defined boundaries dividing regions of densely
packed clusters with ρ(x) = ρm from empty regions with
ρ(x) = 0. In absolute limit of α → ∞, the temperature
dependence of all quantities is eliminated. In particular,
the value of the grand potential for a particular mean-
field solution has the form,

Ω̃(|Ṽ∗|, µ̃)

V =
1

2

(

m|Ṽ∗|ρ̂2
∗ − ρ̂2

0

)

− |Ṽ∗|ρ̂∗
∫

in

d3x

V (ψ(x) − ψ0) , (18)

where the scaled variables are defined by Ω̃ ≡ Ω/V̂0, Ṽ∗ ≡
V̂∗/V̂0, and µ̃ ≡ µ/V̂0, and the integral is carried out only

inside the clusters.
We compute Ω̃ from numerical calculations of ρ̂0 and

ρ̂∗ in terms of the level-set parameter for candidate mor-
phologies. Here, we are assisted by the fact that ρ(x)
is nearly ρm in the cluster interior, where ψ > ψ0, and
is nearly 0 between clusters, when ψ < ψ0. Due to the
non-linear relationship implied by eq. (10), this step-
wise density modulation occurs at low-temperature even
when φ(x) is dominated by a single mode. For lamel-
lar phases, we can compute the dependence of structural
quantities on ψ0 analytically. We find ρ̂0 = cos−1(ψ0)/π
and ρ̂∗ = sin[cos−1(ψ0)]/π.

We construct the phase diagram as a function of
(|Ṽ∗|, µ̃) comparing the computed values of grand poten-
tial from the candidate periodic phases as well as from the
uniform state with ρ̂∗ = 0. Our computed phase diagram
is shown for the range |Ṽ∗| < 1 in Fig. 3. We find that
lamellar, hexagonal-columnar, bcc phases, and their in-
verse phases are stable phases in the strong-segregation
limit. All transitions between phases of different sym-
metry are first-order. Note that the diagram is sym-
metric with respect to µ/V̂0 = 1/2, which arises from
the “particle-hole” symmetry of the lattice Hamiltonian.
The relation Eq. (??) returns µ̃′ = 1− µ̃ for the holes by
ρ̂′0 = 1 − ρ̂0, ρ̂

′
∗ = −ρ̂∗ and ψ0 = −ψ0.

FIG. 3: (Color online) Zero temperature phase diagram in
strong segregation limit. Lamellar, hexagonal-columnar, bcc
and their inverse phases (from the holes) are found as stable
structures.

FIG. 4: (Color online) The grand potential differences from
the lamellar phase for various candidate structures as a func-
tion of the chemical potential µ/V̂0.

In Fig. 4, we also plot the grand potential energy dif-
ferences from lamellar phase as a function of µ̃ for various
structures along the line of |Ṽ∗| = 0.2. Interestingly, the
gyroid phase is the second most stable phases in the range
of 0.4 . µ̃ . 0.6 and the most stable among the bicon-
tinuous phases by far. It is more stable than the lamellar
phase at very small and large µ̃, though it is pre-empted
by the hexagonal phase.

Though our model is unable to distinguish between
structures that differ only by how the hard cores pack,
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our phase diagram is in qualitative agreement with sim-
ulations and a direct minimization of the repulsive-
shoulder energy that allows lattice packing of cores to
adjust [11]. Moreover, our analysis suggests that this
phase diagram is universal among particle interactions
whose Fourier transform has a sharp, negative peak.

IV. FINITE-TEMPERATURE CORRECTIONS

At finite temperature, but still in the mean-field
regime, the clustering thermodynamics are modified by
the corrections arising from the finite width of the in-
terface between the high and low density regions. This
interfacial width is given by ∆ = 1/(α|∇ψ|) and depends
on both the large parameter α and the interfacial geom-
etry. This interfacial region at the boundary of clusters,
is the primary source of particle fluctuations in the low
temperature limit, giving rise to entropic contributions
to the zero-temperature theory described in the previous
section.

To compute the corrections to the energy, we employ
a Sommerfeld-like expansion. It is most convenient to
compute our corrections from an alternate expression for
the grand potential

βΩ =
β

2

∫

d3xd3x′ρ(x)VSS(x − x′)ρ(x′)+

∫

d3xS(x) − βµρ̂0, (19)

where

S(x) = ρ ln(ρ/ρm) + (ρm − ρ) ln(1 − ρ/ρm) (20)

is local contribution to the entropy of a lattice gas. This
form is equivalent to the standard density-functional the-
ory and can be derived from the grand potential using the
mean-field equations.

Both inside and outside of clusters where ρ(x) is equal
to ρm and 0 respectively, the local contribution to the
entropy is S(x) = 0. In the low temperature regime
S(x) is only non-zero at the cluster interfaces where ρm >
ρ(x) > 0. We expand the grand potential in powers of
ψ(x) − ψ0 and use a Sommerfeld expansion for ρ̂0 and

ρ̂∗. To lowest order in T̃ we have the low temperature
correction to the grand potential Eq. (19)

δΩ̃

V = ρ̂0δρ̂0 −m|Ṽ∗|ρ̂∗δρ̂∗ + T̃ δS − µ̃δρ̂0 − ρ̂0δµ̃, (21)

where

δρ̂0 =
π2

6α2

d2ρ̂0

dψ2
0

δρ̂∗ =
π2

6α2

d2ρ̂∗
dψ2

0

δµ̃ = δρ̂0 − |Ṽ∗|(δρ̂∗)ψ0

δS =

∫

dA

V |∇ψ|−1 =
π2

3α

dρ̂0

dψ0
, (22)

FIG. 5: (Color online) Grand potentials for the gyroid phase

as temperature increases, T̃ 2 = 1/10000, 1/2000, 1/1000 at

|Ṽ∗| = 0.2. The calculation from the lowest order corrections
(solid lines) are compared to the full mean-field calculation
(dashed lines). Note that the finite-temperature expansion

becomes less accurate both as T̃ is increased and µ/V̂0 ap-
proaches 0 and 1 (vanishing cluster width).

and T̃ = kBT/V̂0. Note that all properties about the
low-temperature fluctuations is encoded by the level-set
geometry, by first or second derivatives of ρ̂0 and ρ̂∗ with
respect to the level-set parameter ψ0. This also allows us
to assign geometrical meanings to these terms. For exam-
ple, the entropy correction δS is proportional to the inter-
facial volume, roughly ∆

∫

dA. When |∇ψ| = const., im-
plying a constant interfacial width, this correction simply
scales like the interfacial area. Similarly, d2ρ̂0/dψ

2
0 can be

associated with the curvature of the interface weighted by
the interfacial width. Since δS represents the entropy of
enhanced core fluctuations at the interface, its contribu-
tion to the grand potential is always negative. This sug-
gests an entropic preference for cluster morphologies with
a high volumetric surface area, a negative surface energy.
This tendency for large surface area structures competes
with the terms derived from soft-shoulder interactions
already included within strong-segregation theory.

As an illustration of the thermodynamics of low-
temperature corrections described above, we consider
the analysis at µ̃ = 1/2 (or equivalently, ρ̂0 = ρm/2,
or ψ0 = 0), where the lamellar and gyroid phases are
shown to be the most and second most stable structures
within strong segregation theory. For both structures,
ψ0 = 0 is a point of inflection for the density so δρ̂0 = 0.
The contribution to finite temperacture corrections only
arises from δS and δρ̂∗. In this case of the fixed den-
sity, we generally consider δρ̂∗ as to be negative because
the system becomes more homogenous as T increases
and the interface between core and cluster broadens. At
|Ṽ∗| = 0.2, the corrections to the grand potential per
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FIG. 6: (Color online) The comparison of grand potential
energy among lamellar, hexagonal-columnar, and bcc phases
from the full mean-field calculation for temperature T̃ 2 =
1/10000, 1/2000, 1/1000 at |Ṽ∗| = 0.2.

unit volume (λ3
∗) from ρ̂∗, −m|Ṽ∗|ρ̂∗δρ̂∗, are evaluated as

δUlam = 4.1123 T̃ 2 and δUgyr = 5.2592 T̃ 2, for lamellar
and gyroid phases, respectively. Although the interac-
tion energy of the gyroid phase increases more rapidly
with temperature than that of the lamellar phase, we find
that the mixing entropy correction plays a more dom-
inant role in the overall grand potential energy change
(per unit volume), giving δSlam = −8.2247 T̃ 2 and

δSgyr = −10.5197 T̃ 2, for lamellar and gyroid phases,
respectively. The surface area of gyroid phases signifi-
cantly lowers the grand potential and thus become more
stable at finite temperature relative to the zero temper-
ature limit. We plot the grand potential changes for the
gyroid phases as temperature increases (T̃ 2 = 1/10000,
1/5000 and 1/2000) in Fig. 5. Due to the invariance
of the mixing entropy S under inversion (ρ → ρm − ρ),
the contribution of temperature corrections is symmetric
with respect to ρ = 1/2.

This lowest order calculation is expected to break down
where the interfacial width ∆ becomes larger than the ac-
tual cluster size of order λ∗. This can occur either when
temperature becomes large, or when ρ̂∗ becomes suffi-
ciently small. This latter condition is always met as the
density of particles or holes goes to zero at the bound-
aries of the segregation regime. Therefore, the finite-
temperature expansion first breaks down as µ̃ → 0 or
µ̃ → 1. To more carefully test the validity of the low-
temperature expansion we also perform the full mean-
field calculation by numerically solving the nonlinear self-
consistent equations. The results are displayed along
with the lowest order calculations in Fig. 5. In order to
assess the equilibrium stability of the bicontinuous gy-
roid in the finite temperature phase diagram, we plot the
grand potential for hexagonal and bcc phases, which are

the stable phases in the strong segregation regime. The
full calculation results for lamellar, gyroid, hexagonal,
and bcc phases are presented in Fig. 6 for T̃ 2 = 1/10000,

1/5000, 1/2000 and |Ṽ∗| = 0.2. Despite the trend sug-
gested by the lowest-order finite temperature corrections,
we find that the gyroid structure is not stable at finite
temperature and the topology of the mean-field phase
diagram is not qualitatively changed in the low temper-
ature regime due to the presence of finite-temperature
corrections.

V. WEAK-SEGREGATION LIMIT

Intrigued by near stability of the gyroid phase in the
finite-temperature expansion, we pursue the mean-field
clustering phase behavior near to the order-disorder tran-
sition, where the density is nearly constant with only
small amplitude modulations. Here, we follow Liebler’s
approach to thermodynamics of block copolymer melts
[25] near the critical point to derive a Landau theory
expansion for thermodynamic potential in terms of the
lattice mean-field theory of clustering. As argued by
Alexander and McTague, the form of the expansion of
the free energy in terms of periodic density modulations
near the liquid-to-solid phase transition takes on a rather
generic form [33]. Our task is to derive expressions for
the coefficients of this expansion in terms of the thermo-
dynamic parameters of the cluster model: β, V̂0, V̂∗ and
µ. This is most concisely performed by first using the
density functional theory for the Helmholtz free energy
(fixed density), which is related to the mean-field theory
of the action in equation 7. This yields

βF =

∫

d3xS(x)+
β

2

∫

d3x′ ρ(x)VSS(x−x′)ρ(x′), (23)

where S(x) is the lattice-gas expression for the local con-
tribution to the entropy, eq. (20). We write ρ(x) =
ρ0 +δρ(x), where

∫

d3x δρ(x) = 0 and ρ0 is constant. To
Legendre transform to the grand canonical ensemble, we
add a term −Vµρ0 and minimize with respect to ρ0 for
a fixed density variation. Expanding to quadratic order
in δρ, we find the grand potential

βΩ

V =
1

2

∑

q

Γ2(q)|δρ̂(q)|2 +
γ

3!

∫

d3x

V δρ3(x) (24)

+
λ

4!

∫

d3x

V δρ4(x) − δ

4

(
∫

d3x

V δρ2(x)

)2

.

The coefficients are defined in terms of the function
A(ρ) = ρ ln(ρ/ρm) − (ρm − ρ) ln(1 − ρ/ρm). The mean
value of density, ρ̄0, is determined by the solution to the
equation

V̂0ρ̄0 +A(1)(ρ̄0) = βµ, (25)
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where A(n) = dnA/dρn. This allows us to write the co-
efficients as

Γ2(q) = A(2)(ρ̄0) + V̂ (q)

γ = A(3)(ρ̄0)

λ = A(4)(ρ̄0) (26)

δ =
[A(3)(ρ̄0)]

2

2(V̂0 +A(2)(ρ̄0)

Note that the final, non-local quartic term in the Landau
expansion of grand potential does not appear in origi-
nal analysis of Alexander and McTague, nor within the
mean-field treatment of diblock copolymer melts [25].

At this point we now consider the grand potential for
various periodic structures. As before, the function of
V̂ (q) is to select structures with a periodic modulation
of density at |q| = q∗, to minimize the values of the
quadratic coupling of the density, Γ2(q)|δρ̂(q)|2. Thus,
we consider density variations which, like ψ(x), are plane
wave superpositions of a given symmetry group. Follow-
ing a similar analysis for copolymer melts [27], for a given
symmetry the density modulation can be expanded in
terms of the basis functions

δρ(x) =
∑

i

Ψiφi(x) (27)

where Ψi is an amplitude (not related to level-set pa-
rameter) and φi(x) is given by a superposition of plane
waves

φi(x) =

√

2

ni

∑

Gi

cGi
eiGi·x (28)

. Here, Gi are a family of reciprocal basis vectors corre-
sponding to the symmetry of a candidate structure and
the cGi

are phase factors satisfying |cGi
| = 1. We again

consider only modes |Gi| = q∗.
It was the original insight of Alexander and McTague,

that the mean-field behavior of the liquid-to-solid tran-
sition is dominated by structures that contain a large
number of triplets for which Gi + Gj + Gk = 0. This
condition allows the cubic term in eq. (24) to be max-
imally negative, lowering the free energy of certain pe-
riodic structures.. It is this geometrical feature of the
reciprocal lattice of the bcc structure (8 triplets) which
generically favors this structure in the mean-field the-
ory of the liquid-to-solid transition [33] as well as in
the phase diagram of weakly segregated block copolymer
melts [25].

More recently it was discovered by Morse and cowork-
ers [26, 27] that there was a non-cubic bicontinuous struc-
ture, the orthorhombic Fddd structure, that was both
unimodal and contained an abundance of fundamental
mode triplets that add to zero. Structurally, this Fddd
structure is related to an orthorhombic distortion of the
cubic double-gyroid structure with Ia3̄d symmetry which
enforces the condition that all 14 wavevectors to have the

FIG. 7: The mean-field phase diagrams of isotropic, clustering
particles in the limit of weak-segregation. The phase diagrams
for two soft-shoulder potentials are shown: |V̂∗| = 0.2V̂0 in (a)

and |V̂∗| = 0.8V̂0 in (b). All phase transitions are first-order
except at the critical point (dark circle) where the system
may transition continuously from the disordered state to the
lamellar phase.

same length. The Fddd phase is constructed from three
families of modes: G1 = 2π[±

√
3x̂/2±

√
3ŷ/4± ẑ/4]/λ∗,

G2 = 2π[±
√

3ŷ/2 ± ẑ/2]/λ∗ and G3 = 2π[±ẑ]/λ∗.
Therefore, for this structure we also have three indepen-
dent amplitudes Ψi to consider.

Using the above Landau expansion, we derive the fol-
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lowing expressions for the grand potential

ωlam = Γ2(q
∗)Ψ2 + (λ/4 − δ)Ψ4

ωhex = Γ2(q
∗)Ψ2 − 2

3
√

3
Ψ3 +

(

5

12
λ− δ

)

Ψ4 (29)

ωbcc = Γ2(q
∗)Ψ2 − 4

3
√

6
γΨ3 +

(

5

8
λ− δ

)

Ψ4

ωFddd = Γ2(q
∗)

(

Ψ2
1 + Ψ2

2 + Ψ2
3

)

−γ
(

1√
2
Ψ2

1Ψ2 + Ψ2
2Ψ3

)

+λ
( 5

16
Ψ4

1 +
3

8
Ψ4

2 +
1

4
Ψ4

3

+Ψ2
1Ψ

2
2 + Ψ2

2Ψ
2
3 + Ψ2

1Ψ
2
3 +

1√
2
Ψ2

1Ψ2Ψ3

)

−δ
(

Ψ2
1 + Ψ2

2 + Ψ2
3

)2
.

The mean-field phase diagram near the critical point
is computed by minimizing over Ψi for each candidate
structure and comparing values to find the structure
which minimizes the potential.

For two values of V̂∗/V̂0 we show the computed phase
diagrams in Fig. 7. All phase transitions are predicted
to be first-order except at the critical point βV̂∗ = 4 and
µ = V̂0/2 where the system is predicted to pass from
the uniform, disordered state to the lamellar phase via a
continuous, second-order phase transition. Interestingly,
near the onset of order the the same cluster lattices are
stable: lamellar, hexagonal columnar and bcc lattice of
spherical clusters. More surprising is the fact the mean-
field theory predicts a narrow window of a stable bicon-
tinuous morphology, between the lamellar and columnar
morphologies.

Thus, we predict a mean-field phase diagram for clus-
ter particles that is on the whole rather similar to that
was originally predicted by Leibler [25]–and updated by
Ranjan and Morse [27]–for diblock copolymer melts. In
that system, beyond the weak-segregation theory, it be-
comes crucial to consider periodic structures with density
modulations for which |q| 6= q∗. In particular, this is a
critical ingredient for establishing that the double-gyroid
structure, rather than the orthorhombic Fddd morphol-
ogy, is by far the most prominent equilibrium bicontin-
uous structure in copolymer melts [37, 38]. Indeed, it is
quite reasonable to expect that a more realistic model of
a soft-shoulder potential that includes values of V̂ (q) for
“off-peak” wavevectors will predict the stable bicontinu-
ous structure to be the cubic double-gyroid morphology.
However, this complication is beyond the scope of our
present analysis. This shortcoming notwithstanding, our
present analysis is sufficient to conclude–at least within
some very narrow region of phase space in the neighbor-
hood of the critical point–that there is a stable bicontin-
uous morphology within the mean-field phase diagram of
isotropic, clustering particles.

Finally, it is important to note that our predictions
have focused strictly within the limit of mean-field. It

is well-known that near to the order-disorder transition
fluctuations of the order parameter–long-wavelength ex-
citations of the ordered structures–as well as fluctuations
within the disordered play an important role in deter-
mining phase behavior [34]. Within the context of block
copolymer melts, for example, these fluctuations shift
the thermodynamic onset of periodic order to slightly
lower temperatures and generally promote the stability
of the lamellar morphology with its abundance of soft-
modes [35, 36]. It would be straightforward to adapt
those theoretical methods to the analyses of clustering
mesophases, and expect the effect of thermal fluctuations
to play a similar role in the present context.

VI. DISCUSSION

We have presented calculations of the three-
dimensional phase diagram of a lattice gas of particles
interacting through a soft corona. When the interac-
tion potential displays a Fourier transform with a sharp,
negative peak, we find a universal phase diagram in
both the strong-segregation (low temperature) and weak-
segregation (near critical) limits. These phase diagrams
mirror those found in many soft systems, most promi-
nently for diblock copolymer melts. In the limit of weak-
segregation, this correspondence becomes more concrete
as the mean-field model describing the onset of peri-
odic order has the same generic form for both systems.
Though our lattice model is unable to distinguish be-
tween the different core packings leading to these com-
plex ground states, our results corroborate generally nu-
merical calculations by Pauschenwein and Kahl [10, 11]
of the ground state of particles with a particular soft-
shoulder potential, the step-function coronas described in
Eq. (2). A notable divergence of these analyses occurs at
very high particle densities, or large chemical potential.
Our results demonstrate a generic equivalence–even at
low temperature–between two- and three-dimensionally
modulated cluster morphologies and their inverse struc-
tures [see Fig. (3)]. These inverse morphologies are ab-
sent from the high-density predictions of refs. [10] and
[11], but appear in finite-temperature, Monte Carlo simu-
lations of step-shoulder potentials in two-dimensions [13].

Moreover, we are able to obtain systematic corrections
to the low temperature behavior and find that these act
as an effective negative surface tension – thermal fluctu-
ations prefer to create interface. This occurs because the
entropy is concentrated along the cluster interfaces. This
surface tension decreases the gyroid free energy but does
not, apparently, stabilize it at temperatures in which our
low temperature expansion is valid. The low energy of
the gyroid compared to other bicontinuous phases can
be attributed to the fact that the trigonometric approxi-
mation to the gyroid has a smaller mean curvature, and
is therefore an extremum of the area, compared to other
symmetry structures. This scenario is similar to a “pack-
ing frustration” which occurs in block copolymer mor-
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phologies [39, 40]. In that case, the propensity for an
extremal interface between two immiscible blocks is frus-
trated by the stretching of the polymers. Apparently,
the double gyroid is the extremal surface in which the
polymers are the most uniform. In the case of cluster-
ing particles, this three-dimensional uniformity is related
to the presence of a single characteristic length scale in
the interaction potential and the entropy frustrates this
energetic contribution.

For clustering interactions in which a single length
scale dominates, we can also turn these results around to
give a geometrical interpretation of cluster morphologies
in the strong-segregation regime. On the one hand, ener-
getics (roughly) minimize the number of corona overlaps
while, on the other hand, entropy maximizes interfacial
area.

In the weak-segregation regime, coarse-grained ap-
proaches to colloidal assembly with competing interac-
tions of various levels of sophistication have predicted
universal phase diagrams similar to ours [18, 29, 32]. We
are aware of one prediction in this regime of a possi-
ble bicontinuous phase with cubic symmetry [32]. Our
results give this universality a compelling geometrical in-
terpretation at low temperatures in terms of minimizing
the number of overlaps while simultaneously maximiz-
ing interfacial area under appropriate constraints. The

relatively low energy of the gyroid phase suggests that
the possibility that such phases could be observed as a
metastable structure, and could even become stable for
wider negative peaks that allow additional nearby length
scales.

What lessons can we glean from this analysis for “de-
signing” potentials to exploit the complex phase behav-
ior of clustering particles? Foremost, we note that the
morphological characteristics are controlled by the shape
of the potential in Fourier space. Additional morpholo-
gies are likely to be found by tuning potentials to select
one or more characteristic length scales. Future work
will explore the role of multiple, negative peaks and their
widths in the Fourier transform. In particular, such mul-
tiple peaks might stabilize unusual phases, including qua-
sicrystals [41] or an A15 lattice of clusters.
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