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Kolmogorov and Kelvin-Wave Cascades of Superfluid Turbulence at T = 0:

What is in Between ?

Evgeny Kozik1 and Boris Svistunov1, 2

1Department of Physics, University of Massachusetts, Amherst, MA 01003
2Russian Research Center “Kurchatov Institute”, 123182 Moscow, Russia

As long as vorticity quantization remains irrelevant for the long-wave physics, superfluid turbu-
lence supports a regime macroscopically identical to the Kolmogorov cascade of a normal liquid. At
high enough wavenumbers, the energy flux in the wavelength space is carried by individual Kelvin-
wave cascades on separate vortex lines. We analyze the transformation of the Kolmogorov cascade
into the Kelvin-wave cascade, revealing a chain of three distinct intermediate cascades, supported by
local-induction motion of the vortex lines, and distinguished by specific reconnection mechanisms.
The most prominent qualitative feature predicted is unavoidable production of vortex rings of the
size of the order of inter-vortex distance.

PACS numbers: 67.40.Vs, 47.32.Cc, 47.37.+q, 03.75.Kk

Nowadays, superfluid turbulence [1, 2]—a structured
or non-structured tangle of quantized vortex lines—is
attracting much attention [3], stimulated, in particular,
by advances in experimental techniques allowing studies
of different turbulent regimes in diverse superfluid sys-
tems, such as 4He [2, 4], 3He-B [5, 6], and Bose-Einstein
condensates of ultacold atoms [2, 7]. In superfluids at
T = 0, vorticity can only exist in the form of topolog-
ical defects—vortex lines of microscopic thickness, the
circulation of velocity around which being equal to the
liquid-specific quantum κ. Speaking generally, the dy-
namical mechanisms governing superfluid turbulence are
fundamentally different from those of classical turbulence
(see, e.g., recent review [3] and references therein).

A new wave of interest in dynamics of superfluid
turbulence came with the experiment by Maurer and
Tabeling [8], who observed that superfluid turbulence
in 4He formed by counter-rotating discs is indistinguish-
able from classical turbulence at large length scales, in
particular, exhibiting the classical Kolmogorov cascade.
Shortly, the same effect was found in superfluid turbu-
lence generated by a towed grid [9]. In the experiments
[8, 9], the fraction of normal component is considerable
making analysis of vortex tangle dynamics and structure
significantly complicated [10, 11]. (Considerations re-
garding possible energy spectra in this case are presented
in Ref. [12].) However, the similarity between classical
and superfluid turbulence exists even at practically zero
temperature, which was first observed in numerical sim-
ulations [13, 14, 15], and, just recently, for the first time
confirmed by measurements in 3He-B [6].

By the nature of a cascade regime, implying that the
kinetic times get progressively shorter down the hierar-
chy of length scales, instantaneous structure of turbu-
lence follows the evolution at the largest length scales
(typically of order of system size), where the energy flux
(per unit mass) ε is formed. At very low temperatures,
due to the absence of frictional dissipation, the flux ε
must be carried down to scales significantly smaller than
the (related to ε) typical separation between the vortex
lines l0. At small enough length scales, the energy flux
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FIG. 1: Spectrum of Kelvin waves in the quantized regime.
The inertial range consists of a chain of cascades driven by
different mechanisms: (1) reconnections of vortex-line bun-
dles, (2) reconnections between nearest-neighbor vortex lines
in a bundle, (3) self-reconnections on single vortex lines, (4)
non-linear dynamics of single vortex lines without reconnec-
tions. The regimes (3) and (4) are familiar in the context of
non-structured vortex tangle decay [16, 21].

is carried by pure Kelvin-wave cascades on separate vor-
tex lines [16, 17], the cutoff being due to sound radiation
[10, 18, 19].

The fact that superfluid turbulence at large compared
to l0 length scales may be consistent with the classical
Kolmogorov law is not surprising (a formal proof is men-
tioned below). It is well known [1] that macroscopic ve-
locity profile of a rapidly rotated superfluid mimics solid-
body rotation, which is accomplished by formation of
a dense array of vortex lines aligned along the rotation
axis. By the same mechanism, “stirring” a superfluid
one can produce vorticity in the course-grained up to

http://arXiv.org/abs/cond-mat/0703047v3
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length scales larger than l0 superfluid velocity field, in-
distinguishable from that of a normal fluid, the underly-
ing vortex tangle being organized in polarized “bundles”
of vortex lines. What turns out to be a puzzle [20], how-
ever, is how the vortex tangle looks like when one zooms
in down to scales of order of the interline separation l0,
where the vorticity is essentially discrete.

In this Letter, we analyze the structure of turbulence
at all length scales tracing the transformation of the clas-
sical regime, described by the Kolmogorov law at large
length scales, into the quantized regime, in which the dis-
creteness of vortex lines is important, in the fundamental
case of zero temperature. The analysis relies on the large
parameter

Λ = ln(l0/a0) ≫ 1, (1)

where a0 is the vortex core radius. In realistic 4He ex-
periments, Λ ∼ 15. The attention to the problem of link-
ing the two regimes was drawn recently by L’vov et al.

[20], who realized that it is impossible to directly cross
over from Kolmogorov regime to the pure Kelvin-wave
cascade, and put forward the idea of a bottleneck, with
specific dynamical implications. The Achilles’ heel of the
treatment of Ref. [20] is taking it for granted [10, 11] that
the coarse-grained macroscopic description of quantized
vorticity remains valid down to the scale of l0.

We show that the locally-induced motion of the vortex
lines radically changes dynamical picture already at the
scale

r0 ∼ Λ1/2l0 , (2)

with the interline separation related to the energy flux
by

l0 ∼ (Λκ3/ε)1/4 . (3)

In the range of wavelength r0 > λ > λ∗,

λ∗ = l0/Λ1/2, (4)

there takes place a chain of three cascade regimes, in
which the energy flux ε is carried by locally-induced mo-
tion combined with vortex line reconnections. The three
regimes are distinguished by their specific types of re-
connections: (i) reconnections of vortex-line bundles, (ii)
reconnections between nearest-neighbor vortex lines, (iii)
self-reconnections on single vortex lines—the mechanism
introduced earlier by one of us [21] in the context of
the decay of non-structured superfluid turbulence. The
existence of the regime (iii) means unavoidable produc-
tion of vortex rings of the typical size λ∗ at a rate im-
mediately following from (3) by conservation of energy.
Namely, ∼ κΛ1/2/l20 rings are emitted per unit time in
the characteristic volume of l30. Remarkably, this rate is
∼ Λ3/2 times smaller than the rate of vortex ring pro-
duction characteristic of non-structured superfluid tur-
bulence [16, 21].

For realistic values of Λ, sharp distinction between the
three sub-regimes is likely to be lost, although character-
istic features of strong turbulence, such as generation of
a spectrum of vortex rings by the mechanism (iii), might
manifest themselves. At the wavelength scale λ∗, self-
reconnections cease and the weak-turbulent regime sets
in, with purely non-linear Kelvin-wave cascade [16]. This
regime covers a significant part of the inertial range until
eventually, at the scale [19]

λph =
[

Λ27 (κ/c)25 l60
]1/31

(5)

(c is the sound velocity), the cascade is cut off due to the
radiation of sound by Kelvin waves. With κ/c ∼ a0 we
have λph ≪ λ∗.

The structure of turbulence is summarized in Fig. (1).
We emphasize that the notion of energy spectrum E(k),
where E(k)dk gives the energy per unit mass associated
with variations of fluid velocity over length scales ∼ k−1

in the interval dk, is practically meaningful only in the
classical regime. In the quantized regime, the relevant
degrees of freedom are waves on vortex lines, while even
a perfectly straight vortex line has a nontrivial spectrum
E(k) ∼ k. On the experimental side, recently introduced
vortex line visualization technique in 4He [4] could pro-
vide the most direct probe for the quantized regime.

Analysis. The key to understanding vortex dynamics
at zero temperature is given by Kelvin-Helmholtz’s theo-
rem, which states that a vortex line element moves with
local fluid velocity. Mathematically, this is reflected in
the Biot-Savart equation [1],

ṡ = v(s) , v(r) =
κ

4π

∫

(s0 − r) × ds0/|s0 − r|3 . (6)

Here v(r) is the superfluid velocity field, s is the time-
evolving radius-vector of the vortex line element, the dot
denotes differentiation with respect to time, the vector
s0 has the same physical meaning as s, understood as
an integration variable, and the integration is along all
the vortex lines. In the long-wave limit, when discrete-
ness of vortex lines is irrelevant, Eqs. (6) can be coarse
grained: The second equation turns into Biot-Savart re-
solvent restoring the field v from its curl, w. The first
equation coarse-grains into Euler’s equation for incom-
pressible fluid,

ẇα = −vβ∂βwα + wβ∂βvα . (7)

Here the first term in the r.h.s. comes from translation of
the vortex array by the flow, the second term originates
from bending of the array by velocity gradient. This
formally proves the equivalence of (structured) superfluid
and normal-ideal-incompressible-fluid turbulence. For a
non-structured tangle, coarse graining trivially leads to
v ≡ 0.

For our purposes, it is instructive to formally decom-
pose the integral (6) into the self-induced part, v

SI(s),
for which the integration is restricted to the vortex line
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containing the element s, and the remaining contribution
induced by all the other lines v

I(s),

v(s) = v
SI(s) + v

I(s). (8)

Since the velocities v
SI and v

I define the r.h.s. of Eq. (6),
the competition between them is crucial for the problem.

The leading contribution to v
SI is given by the local in-

duction approximation (LIA), which reduces the integral
over the vortex line to its local differential characteristics,

v
SI(s) = ΛR

κ

4π
s
′ × s

′′, ΛR = ln(R/a0) , (9)

where the prime denotes differentiation with respect to
the arc length and R is the typical curvature radius. A
necessary condition of applicability of the LIA is ΛR ≫ 1.
Taking into account that ΛR is a very weak function of
R, we shall treat it as a constant of typical value ΛR ∼ Λ.
Note, however, that despite the fact that the condition
(1) is typically well satisfied, using the LIA is not always
appropriate.—Being an integrable model, LIA does not
capture reconnection-free (purely non-linear) kinetics of
Kelvin waves [16].

To determine the crossover scale r0, consider the struc-
ture of the vortex tangle in the classical regime. By the
definition of r0, at length scales r ≫ r0 turbulence mim-
ics classical vorticity by taking on the form of a dense
coherently moving array of vortex lines bent at curva-
ture radius of order r. Velocity field of this configuration
obeys the Kolmogorov law

vr ∼ (εr)1/3, r ≫ r0 . (10)

Here and below the subscript r means typical variation
of a field over distance ∼ r. On the other hand, the
value of vr is fixed by the quantization of velocity circu-
lation around a contour of radius r, namely vrr ∼ κnrr

2,
where nr is the areal density of vortex lines responsible
for vorticity at the scale r. Note, that scale invariance
requires that on top of vorticity at the scale r there be a
fine structure of vortex bundles of smaller sizes, so that,
mathematically, nrr

2 is the difference between huge num-
bers of vortex lines crossing the area of the contour r in
opposite directions. The quantity nr is related to the flux
by

nr ∼
[ ε

κ3 r2

]1/3

, r ≫ r0 . (11)

The underlying dynamics of a single vortex line in the
bundle is governed by vI

r and vSI
r . While, by its definition,

vI
r ∼ vr, which is given by Eq. (10), the self-induced part

is determined by the curvature radius r of the vortex line
according to Eq. (9),

vSI
r ∼ Λ

κ

r
. (12)

At length scales where vI
r ≫ vSI

r , the vortex lines in the
bundle move coherently with the same velocity ∼ vI

r.

However, at the scale r0 ∼ (Λ3κ3/ε)1/4, the self-induced
motion of the vortex line becomes comparable to the col-
lective motion, vSI

r ∼ vI
r. At this scale, individual vortex

lines start to behave independently from each other and
thus r0 gives the lower cutoff of the inertial region of the
Kolmogorov spectrum (10).

Since r0 is the size of the smallest classical eddies, the
areal density of vortex lines at this scale is given by the
typical interline separation, nr0

∼ 1/l20. With Eq. (11),
we arrive at (2)-(3).

At the scale r0, turbulence consists of randomly ori-
ented vortex line bundles of size r0, left by the classical
regime. The typical number of vortices in the bundle
is given by nr0

r2
0 ∼ Λ. The length r0 plays the role of a

correlation radius in the sense that relative orientation of
two vortex lines becomes uncorrelated only if they are a
distance & r0 apart. On the other hand, the crossover to
the quantized regime means that each line starts moving
according to its geometric shape, as described by Eq. (9).
Therefore, reconnections, at least between separate bun-
dles, are inevitable and, as we show below, capable of
sustaining the flux ε.

Reconnections play the leading role at r0 & λ & λ∗.
Although this region is relatively narrow as compared to
the whole Kelvin-wave inertial range, it is significantly
large in the absolute units. Before going into the details
of the reconnection-assisted regimes, we describe the re-
maining and dominant region of the cascade. As was
shown by the authors [16], at a sufficiently small wave-
length, a strongly turbulent cascade of Kelvin waves is
replaced by a purely non-linear cascade, in which the re-
connections are exponentially suppressed. The spectrum
of Kelvin-wave amplitudes bk, k ∼ λ−1, in the non-linear
cascade has the form

bk = (Θ/κ3ρ)1/10k−6/5, (13)

where Θ is the flux of energy per unit vortex line length
supported by the non-linear cascade. The value of λ∗

can be determined by matching the energy flux ε with
Θ/ρl20, where bk ∼ k−1 ∼ λ∗. With Eq. (3), we then
obtain Eq. (4).

Kelvin waves decay with emitting phonons [10]. For
Kelvin waves of wavenumber ∼ k, the power of sound
emission per unit line length is given by [19]

Πk ∼ Λ6 κ8 ρ b4
k k11 / c5. (14)

This dissipation mechanism is negligibly weak all the way
down to wavelengths of order λph, given by Eq. (5),
where Πk/ρl20 becomes comparable to ε. The scale
λph ≪ λ∗ gives the lower dissipative cutoff of the Kelvin
wave cascade.

Now we focus on the strongly turbulent regimes at
r0 & k−1 & λ∗. The key quantity here is the energy
transferred to a lower scale after one reconnection of vor-
tex lines at the scale k−1, which, following Ref. [21], can
be written as

ǫk ∼ f(γ) Λ ρ κ2k−1 . (15)
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Here, f(γ) is a dimensionless function of the angle γ at
which the vortex lines cross, γ = 0 corresponding to par-
allel lines. Its asymptotic form is

f(γ) ∼ γ2, γ ≪ 1 . (16)

Although, at the scale r0, there is already no coupling
between vortex lines to stabilize the bundles, they should
still move coherently—the geometry of neighboring lines
at this scale is essentially the same over distances ∼ r0—
until the whole bundles cross each other. It is possible,
however, that vortex lines within the bundle reconnect.
One can show that such processes can not lead to any
significant redistribution of energy, and thus to a defor-
mation of the bundle at the scale r0, because they happen
at small angles so that the energy (15) is too small. In-
deed, the dimensional upper bound on the rate at which
two lines at distance l ≪ r0 can cross each other is, from
Eq. (9), Λκ/r0l, while the actual value should be much
smaller due to the strong correlations between line ge-
ometries. Taking into account that the number of lines
in the bundle is (r0/l0)

2 and that γ ∼ l/r0, the contribu-
tion to the energy flux from these processes is bounded
by (l/r0)ε.

Crossing of the bundles results in reconnections be-
tween their vortex lines and Kelvin waves with somewhat
smaller wavelength λ are generated. The coherence of the
initial bundles implies that the waves on different vortex
lines must be generated coherently. Thus, at the scale
λ . r0, vortex lines should be also organized in bun-
dles of length λ that are bent with the amplitude of the
Kelvin waves bk, k ∼ λ−1, while the correlation radius
for vortex line configurations in the transversal direction
is ∼ bk. Then, reconnections between the bundles at the
scale λ transport the energy to a lower scale. The cascade
of bundles should repeat itself self-similarly in a range of
wavelength l0 ≪ k−1, bk < r0, in which the notion of
bundles is meaningful. The spectrum of Kelvin waves bk

in this regime can be obtained from the condition ε̃k ≡ ε,
where ε̃k is the energy flux per unit mass transported by
the reconnections at the scale k−1 given by

ε̃k ∼ (k/ρb2
k) Nk ǫk τ−1

k . (17)

Here, we take into account that the correlation volume is

b2
k/k, the Nk ∼ (bk/l0)

2 is the number of vortex lines in

the bundle, and τ−1
k ∼ Λκk2 is the rate at which the bun-

dles cross. Physically, bk determines the typical crossing
angle, γ ∼ bkk, thereby controlling the energy lost in one
reconnection. Thus, the spectrum of Kelvin waves in the
bundles is

bk ∼ r−1
0 k−2. (18)

At the wavelength ∼ λb = Λ1/4l0, the amplitudes be-
come of order of the interline separation bk ∼ l0 and the
cascade of bundles is cut off. At this scale, bkk ≪ 1,
so that the mechanism of self-reconnections is strongly
suppressed. The kinetic times of the purely non-linear
regime are too long to carry the flux ε [16]. We thus con-
clude that at λc . λ . λb the cascade is supported by
nearest-neighbor reconnections, the amplitudes bk being
defined by the condition of constant energy flux per unit
length and the crossover scale λc being associated with
the condition bk∼1/λc

∼ λc meaning that at λ . λc the
self-crossing regime takes over. The observation crucial
for understanding the particular mechanism of the cas-
cade and thus finding bk is that each nearest-neighbor
reconnection (happening at the rate ∝ Λ/λ2

b per each
line element of the length ∼ λb) performs a sort of parallel

processing of the cascade for each of the wavelength scales
of the range [λc, λb]. For the given wavelength scale
λ ∼ 1/k, the energy transferred by a single collision is
∝ Λ(bkk)2λ, and with the above estimate of the collision
rate per the length λb, this readily yields the estimate
bk ∼ l0(λbk)−1/2, and, correspondingly λc ∼ l0/Λ1/4.

In the range λc ≫ k−1 ≫ λ∗, the cascade is driven
by self-reconnections of vortex lines giving the spectrum
bk ∼ k−1 [21]. This regime is replaced by the purely
non-linear regime in the vicinity of k−1 ∼ λ∗ (the actual
transition region may be rather wide [16]).

To conclude, the transformation of classical-fluid Kol-
mogorov cascade of superfluid turbulence into the pure
Kelvin-wave cascade requires three intermediate stages
associated with locally-induced motion and reconnec-
tions of vortex lines, as illustrated in Fig. 1.

We thank Victor L’vov and Sergei Nazarenko for draw-
ing our attention to their work, and are grateful to Niko-
lay Prokof’ev for fruitful discussions.
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