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Exact, Complete, and Universal Continuous-Time Worldline Monte Carlo Approach

to the Statistics of Discrete Quantum Systems

N. V. Prokof’ev, B. V. Svistunov, and I. S. Tupitsyn
Kurchatov Institute, 123182 Moscow, Russia

We show how the worldline quantum Monte Carlo procedure, which usually relies on an artificial
time discretization, can be formulated directly in continuous time, rendering the scheme exact.
For an arbitrary system with discrete Hilbert space, none of the configuration update procedures
contain small parameters. We find that the most effective update strategy involves the motion of
worldline discontinuities (both in space and time), i.e., the evaluation of the Green’s function. Being
based on local updates only, our method nevertheless allows one to work with the grand canonical
ensemble and non-zero winding numbers, and to calculate any dynamic correlation function as easily
as expectation values of, e.g., total energy. The principles found for the update in continuous time
generalize to any continuous variables in the space of discrete virtual transitions, and in principle
also make it possible to simulate continuous systems exactly.

PACS numbers: 05.30.Ch, 02.50.Ng

I. INTRODUCTION

Quantum Monte Carlo (MC) simulation is the most powerful available method, if not the only one, of obtaining
accurate results for complex systems, where analytic solutions are not possible and exact diagonalization methods
do not work because of the enormous Hilbert space. However, most MC schemes are far from ideal, and suffer from
significant shortcomings. These include (see, e.g., the most recent review article Ref.1)

a) systematic errors due to artificial time discretization, which in most schemes scales as (∆τ)2, where ∆τ is the
time slice width;

b) restriction of the simulation to the zero winding number sector M = 0 (a configuration in which world lines
connect the initial state |α1, α2, . . . , αL〉 at τ = 0 to the final state |γ1, γ2, . . . , γL〉 at τ = β, with the set {γi} being
obtained by cyclically permuting {αi} M times (and all topologically equivalent configurations), is said to have a
winding number M). Such a restriction results in systematic errors too, which however vanish with increasing system
size. Also, one loses the ability to study topological excitations in the system, e.g., vortices or supercurrent states;

c) working with a fixed number of particles N = const (canonical ensemble);
d) critical slowing down problem, which arises close to a second-order phase transition. This problem is closely

related to constraints (b) and (c), and is indicative of inefficient procedures used to update configurations with large
length scales;

e) slow accumulation of statistics when calculating correlation functions of operators not present in the initial
Hamiltonian, e.g., the Green’s function;

f) small acceptance rates in update procedures. These may be due to from small parameters present in the
formulation of the MC scheme, or systems described by Hamiltonians with different energy scales (e.g., when the
hopping matrix element t is much smaller than the typical potential energy change U ≫ t), or the necessity of global
Metropolis updates, which arise in certain cluster-update algorithms.

g) anomalous dependence of the computation time on system size (due to self-averaging effects in the thermodynamic
limit, the computation time required to achieve given accuracy is expected to be system-size independent);

h) notorious sign problem, which emerges when the configuration weight is not positive definite. Since we do not
see any reasonable solution of the sign problem in the general case, in what follows we exclude it from the discussion.

To eliminate some of these shortcomings, a number of different MC schemes were developed. Unfortunately, none
of the existing schemes succeeded in solving all of them (leaving the sign problem aside) in the general case: there
are extremely efficient algorithms which are far from universal, while the efficiency of existing universal algorithms is
far from high for a large number of problems.

The standard worldline algorithm is based on imaginary time discretization and utilizes the small parameter t∆τ ≪
1 in an approximate treatment of noncommuting operators in the Hamiltonian, known as Trotter break-up2,3. Physical
intuitiveness and easy programming probably make this method the one most widely used. On another hand, its weak
points range over the whole list from (a) to (f), the most severe ones being (e) and (f).

In the worldline algorithm, one describes the configuration by specifying the system state |αk〉 at all time slices
τk = k ∆τ , where k = 0, 1, . . . , Kβ and tKβ

= 1/T ≡ β. The system state is then conventionally defined in the basis
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set in which the potential energy of the system is diagonal, i.e., in the site representation. Consider, as a typical
example, the Hamiltonian of interacting particles on a lattice

H = −t
∑

<ij>

a†
iaj +

∑

ij

Uijninj , (1.1)

where a†
i creates a particle on site i, t is the hopping matrix element, ni = a†

iai, and < ij > denotes nearest-neighbor
sites. From now on, we call points in time at which the system changes state “kinks.” The typical separation in
time between two adjacent kinks on the same site is of order 1/t and independent of ∆τ , so that for small ∆τ there
are some 1/(t∆τ) ≫ 1 time intervals between them. The acceptance rate of the variation suggesting creation of a
new kink - antikink pair is proportional to the square of a small parameter, (t∆τ)2. On the other hand, when the
MC procedure suggests shifting an already existing kink to the nearest point in time, the corresponding variation of
the configuration is accepted with probability ∼ O(1). Thus, on average, by selecting different random time slices,
it takes some 1/(t∆τ)2 attempts to create a new kink - antikink pair and 1/(t∆τ) attempts to move a kink to
the nearest position in time. Still, the updated configuration is only slightly different from the previous one, and
expectation values calculated before and after the variation are strongly correlated. An uncorrelated contribution
of the given configuration fragment is obtained by shifting the kink a distance of order 1/t, which requires some
1/(t∆τ)3 operations, since the kink shift process is diffusive in nature. This means that the autocorrelation time in
the standard worldline algorithm grows as ∝ (∆τ)−3 even in the absence of critical slowing down. Since all update
procedures are local, the algorithm is subject to critical slowing down near the transition temperature.

In order to calculate the Green’s function G(i, τ), two worldline discontinuities are inserted at time slices τ1 = 0 and
τ2 = τ (in other words, one extra worldline is inserted in or removed from the interval [τ1, τ2] )3,4. One then probes
different configurations using standard update procedures and collects statistics in a d-dimensional histogram, which
describes the spatial separation i between the discontinuities. The length of the time interval is then changed, and
the same calculation is repeated. One MC step, i.e., the number of update operations performed between successive
“measurements,” whereupon another point is included in the statistics of the calculated quantity, is proportional to
Ldβ, where Ld is the number of lattice sites considered. Thus it requires about Ldβ operations to include only one
point in the (d + 1)-dimensional spacetime histogram for G.

In a way, the standard worldline procedure of calculating G(i, τ) has an anomalous dependence on N and β, since
it takes at least (Nβ)2 operations to update the whole histogram (typically G decays in space and time, and large
scale behavior requires much more computation). We note, that winding numbers and the grand canonical ensemble
average can be incorporated, in principle, in the worldline algorithm. It is sufficient to consider separate contributions
to the statistics of G(i, τ) when i = ML and τ = nβ with integer M and n. However, in practice, only small systems
at rather high temperatures can be considered using this algorithm.

The determinant method based on the Hubbard - Stratonovich transformation6–8 also uses the discrete-time Trotter
break-up, and thus becomes more and more inefficient due to long autocorrelation times when ∆τ → 0 (points (a)
and (f) above). It has an important advantage over the worldline method in calculating the Green’s function, since
it works with the grand canonical ensemble. However with increasing system size, the calculation time scales as L3

(point (g)) and some of the procedures become ill-conditioned at low temperatures.
Another technique allowing Green’s function calculations is called Green-function MC (or, more generally, the

projection-operator method)5. It is applicable at zero temperature only, and the final result for G(i, τ = 0) depends
on the trial wave function (we are not aware of whether it is possible to calculate the time dependence of G(i, τ) by
this method).

The stochastic series expansion (SSE) technique1,9,10, which stems from the Handscomb’s method11, relies on the
direct Taylor expansion of the statistical operator. This scheme is exact (contains no systematic errors). SSE has
clearly demonstrated that time discretization is an artificial trick that is not at all necessary for MC simulation. Since
an elementary update in the SSE scheme is equivalent to roughly 1/(t∆τ)3 updates in the standard worldline method,
it results in a significant drop in computation time for high-precision calculations. The rest of the problems, i.e., (b)-(f),
survive in the SSE approach (point (f) still applies, because by expanding in powers of the full Hamiltonian one has to
compare weights corresponding to the kinetic- and potential-energy terms, and if, e.g., U ≫ t in the Hamiltonian (1.1),
then small acceptance rates appear in the update procedures). Still, away from the transition point, for large systems
at low temperature, for which U ∼ t, the SSE method is superior in evaluating basic thermodynamic properties like
the total energy and density - density or current - current correlation functions.

A qualitatively new class of extremely efficient MC schemes13 has been developed in recent years14–19. These
schemes are based on the so-called loop cluster update (LCU) algorithm, which performs nonlocal updates for worldline
loops with sizes as large as the system itself. Apart from solving the problem of critical slowing down, it also allows one
to work in the grand canonical ensemble and with nonzero winding numbers. From this method we learn that problems
(b), (c) and (d) can be circumvented. Unfortunately, the LCU algorithm, as far as we know, is not universal. It applies
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to spin systems and to hard-core Hubbard models, but was never formulated for the general lattice Hamiltonian, like
interacting soft-core bosons with arbitrary Uij , arbitrary density (chemical potential), or on-site disorder. Another
shortcoming of the LCU, which in a sense can also be called nonuniversality, is that it does not admit of a universal
code20. It should be noted that LCU allows for considerable generalization to the cases of external magnetic field
and disorder, but generally speaking the cost is lost efficiency because of the exponentially small acceptance rates for
large loops21.

It is shown in Ref.12 how to build a path integral in continuous time for quantum systems in a discrete basis. The
configuration is specified by transition times and system states before and after the transition. Within this description
one can formally think about taking the limit ∆τ → 0 in the standard approach. However, to implement this
description one has to formulate the update process. In the standard worldline algorithm, one of the basic procedures
is generation of new kink-antikink pairs when system evolution on a given site changes from |α〉 → |α〉 → |α〉 to
|α〉 → |γ 6= α〉 → |α〉. In the continuous limit, the acceptance rate for such a variation vanishes as (∆τ)2, and thus
the problem of qualitatively new update principles arises.

Recently, two independent continuous time schemes utilizing the ideas of Ref.12 were developed19,22. Beard and
Wiese19 find that with the LCU algorithm, one can go directly to the continuous-time limit ∆τ → 0, thus rendering
the LCU algorithm exact.

The general solution to the problem of configuration update in continuous time is found in Ref.22. The resulting
continuous-time worldline (CTWL) method is exact, and like SSE, is 1/(t∆τ)3 times more efficient than finite-∆τ
local schemes. It also completely eliminates problem (f), since none of the procedures relies on small parameters
(potential energy is accounted for in the exponent, and one does not have to weight relative contributions to the
statistics of the potential and kinetic energy terms, as happens in SSE).

In its original formulation, the CTWL approach did not solve problems (b) - (e), and was tested only on a simple
single-particle Hamiltonian22. In the present article, we present a complete description of the CTWL approach to the
statistics of arbitrary many-particle system with discrete Hilbert space. We demonstrate that it enables one to solve
problem (e) in a physically intuitive way by formulating the local update procedures in terms of the motion of two
worldline discontinuities (in what follows we call them “worms”) in space and time, i.e., in terms of a calculation of
the Green’s function. During one MC step (consisting of Nβ/t operations) the whole histogram for G(i, τ) is updated,
which means that G is calculated as efficiently as, say, the total energy, and is not affected by point (g). Since
G(i = [MxLx, MyLy, . . .], nβ) with integer Mx, My, . . . and n describes a system with n extra particles and winding
numbers {M}, we are working in the grand canonical ensemble. This solves problems (b) and (c).

Closer examination of the loop building rules15,19 for the Heisenberg Hamiltonian shows their remarkable similarity
to the evolution of an extra worldline segment. The crucial difference is that only closed loops are considered by the
LCU algorithm, while our scheme considers all the intermediate configurations as well, and utilizes them for the Green’s
function calculation. Working in the extended configuration space, which includes discontinuous worldlines, we use
local Metropolis-type23 updates only. However, when discontinuities annihilate, and we return to the configuration
space of closed worldlines, the net result of the update is of global character. Since CTWL with “worm” updates
effectively mimics single-loop LCU, we may hope that it possesses all the remarkable features inherent in LCU, and
in particular that it solves, or at least softens, the problem (d).

To summarize, we propose a method which is exact, complete (allows calculation of any correlation function), and
universal (applies to arbitrary quantum systems with discrete Hilbert space, and enables one to write a unified code,
that is simultaneously applicable to lattice bosons and arbitrary spins, with arbitrarily long-range interactions and
disorder). The sign problem now becomes the only stumbling block on the way of making quantum MC an “ideal”
computational tool for studying complex systems.

This paper is organized as follows. In Section II we formulate the general principles of the continuous-time worldline
approach. In Section III we introduce the update procedures that we find to be the most effective and sufficient for
simulation of the quantum statistics of many-particle systems. In Section IV we demonstrate the advantages of the
new method by presenting some of results that cannot be obtained by any other MC approach: the Green’s function
and the critical index of the 1D boson Hubbard model at the quantum critical point, and the low-energy properties
of the strongly-disordered Bose glass phase. In Section V (and Appendix A) we discuss the feasibility of increasing
the efficiency of our method in the case of long-range interactions, and consider the feasibility of generalizing of the
method to continuous systems.

II. GENERAL PRINCIPLES

Let H0 and V be the diagonal and off-diagonal parts of the Hamiltonian H in a chosen representation corresponding
to the full set {α} of eigenstates of H0, with H0 | α 〉 = Eα | α 〉. The statistical operator can then ordinarily be
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related to the Matsubara evolution operator σ in the interaction picture, i.e., we write e−βH = e−βH0σ, with

σ = 1 −
∫ β

0

dτ V (τ) + . . . + (−1)m

∫ β

0

dτm · · ·
∫ τ2

0

dτ1 V (τm) · · ·V (τ1) + . . . , (2.1)

where V (τ) = eτH0V e−τH0 . Without loss of generality and in accordance with typical forms of Hamiltonians of
interest, V can be written as a sum of elementary terms Qs, whose action on any function from the set {α} results in
another function from this set:

V =
∑

s

Qs , Qs | α 〉 = −qγα(s) | γ 〉 (γ = γ(s, α)) . (2.2)

Since V is Hermitian, for any s in the sum (2.2) there exists an s′ such that Qs′ = Q†
s. We rewrite Eq. (2.1) in

components (below Eαγ ≡ Eα − Eγ):

σαγ = δαγ +
∑

s

∫ β

0

dτ qαγ(s)eτEαγ + . . .

+
∑

s1,...,sm

∫ β

0

dτm · · ·
∫ τ2

0

dτ1 qαν(sm)eτmEαν · · · qλγ(s1)e
τ1Eλγ + . . . . (2.3)

Note that there is no additional summation over the indices of the intermediate complete sets (labeled by Greek
letters), since these are defined in a unique way by configurations of (s1, s2, . . . , sm).

We confine ourselves to the case of finite-range interaction, which is defined by the requirement that for each term
s1 of elementary operators {Qs} there exists only a finite number of terms s2 for which the condition

[ Qs1
(τ1), Qs2

(τ2) ] = 0 (2.4)

is not met. In the case of finite-range interaction, the structure of the series (2.3) is drastically simplified, the
simplification being of crucial importance for practical realization of our algorithm. From (2.4) it follows that up
to an irrelevant change in the indexing of energies and matrix elements, one can ignore the chronological order of
Qs1

(τ1) and Qs2
(τ2) in the evolution operator. This suggests representing a general term of the series (2.3) in the

following form. First, we introduce the notion of a “kink of type s,” which is characterized by a time τ , a matrix
element qαγ(s), and a diagonal-energy difference Eαγ . The former two we will refer to as parameters of the kink. It
is essential that (i) to obtain parameters of a kink one need not know explicitly the whole state | α 〉, or | γ 〉 – local
information is enough; (ii) to specify a particular structure of a term in Eq. (2.3), including the chronological order
of all noncommuting operators, it is enough to specify for each kink its associated neighbors, i.e., the noncommuting
kinks nearest in time.

Now our goal is to describe in general terms a stochastic process that directly evaluates Eq. (2.3). For simplicity, we
assume that all qαβ(s) are positive real numbers. (In many particular alternative cases, a straightforward generalization
is possible, but usually at the expense of convergence.) Summations and integrations in Eq. (2.3) then can be
regarded, up to a normalizing factor, as an averaging over the statistics of different configurations of kinks, each
configuration being defined by a certain number of kinks of certain types, their associations and particular positions
in imaginary time. The Monte Carlo process should examine these statistics by generating different kink configurations
in accordance with their weights. The global process will consist of a number of elementary subprocesses, each being
responsible for certain modifications of a particular type.

An update procedure of a general type should involve subprocesses of creation and annihilation of kinks. Clearly,
the qualitative difference between discrete- and continuous-time QMC schemes is associated with processes of just
this kind. To introduce the general principles of construction of subprocesses that change the total number of kinks,
we consider some particular (but still rather rich) class of elementary transformations (which seems to be sufficient
for all practical purposes). By an elementary transformation we mean a subprocess which either only creates or only
annihilates a certain number of kinks. The set of elementary subprocesses can be decomposed into self-balanced
creation - annihilation pairs. Our task then is to specify the structure of creation and annihilation subprocesses, and
to derive the balance equation that would guarantee that the statistics generated by each pair of subprocesses does
really correspond to that introduced by Eq. (2.3).

Let some subprocess create n kinks of given type s1, s2, . . . , sn, the temporal positions of the kinks being specified
by the n-dimensional vector ~τ = {τ1, τ2, . . . , τn}. In the most general case, the creation procedure involves two steps.

First, one suggests to create n new kinks at ~τ ∈ Γ, where Γ is a certain region in the n-dimensional space of times
τ1, τ2, . . . , τn. The probability density W (~τ ) of choosing a given ~τ is, generally speaking, arbitrary, provided W (~τ ) is
nonzero at every physically meaningful configuration of kinks.
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In the second step, one either accepts (with probability Pacc(~τ )) or rejects the suggested modification.
The annihilation procedure is much simpler. The n kinks of given type s1, s2, . . . , sn and with ~τ ∈ Γ are either

removed (with probability Prem(~τ )) or remain untouched.
The equation of balance for the given pair of subprocesses reads

A0 pc W (~τ)Pacc(~τ ) d~τ − dAn(~τ ) pa Prem(~τ ) = 0 . (2.5)

Here A0 (An(~τ )) is the probability (probability density) of finding a configuration without the specified n kinks (with
the specified n kinks at the given ~τ ). We have also introduced the probabilities pc and pa of addressing the creation and
annihilation subprocedures. In the next section we will see how it can turn out quite naturally that these probabilities
do not coincide.

The statistical interpretation of Eq. (2.3) implies

dAn(~τ )

A0
= d~τ

n
∏

j=1

q(sj) e∆Ejτj , (2.6)

where q(sj) ≡ qαjβj
(sj) and ∆Ej ≡ Eαj

− Eβj
. Combining (2.5) and (2.6) we obtain the necessary and sufficient

condition for the pair of subprocesses to be self-balanced:

W (~τ )Pacc(~τ )

Prem(~τ )
= R(~τ ) , R(~τ ) =

pa

pc

n
∏

j=1

q(sj)e
∆Ejτj . (2.7)

Given W (~τ ), the condition (2.7) is satisfied, e.g., by the following obvious choice of Pacc and Prem:

Pacc(~τ ) =

{

R(~τ)/W (~τ ) , if R(~τ) < W (~τ ) ,
1 , otherwise ,

(2.8)

Prem(~τ) =

{

W (~τ)/R(~τ ) , if R(~τ) > W (~τ ) ,
1 , otherwise .

(2.9)

From (2.8) it can be seen that there is a certain reason for choosing W (~τ ) ∝ R(~τ ), as in this case Pacc becomes
independent of ~τ , and the accept - reject decision can be made before suggesting a particular configuration, thus
saving computational time. However, if the structure of the function R(~τ) is complicated, the numerical generation

of the corresponding distribution will be very expensive. In this case it is better to take W (~τ ) ∝ R̃(~τ ), where R̃(~τ ) is
some “coarse-grained” approximation to R(~τ ) with a simple form.

We do not consider here a general theory of subprocesses that do not change the number of kinks, since it is basically
the well-known theory of taking multidimensional integrals by standard Monte Carlo procedures. Particular examples
of such subprocesses can be found in Ref.22 and in the next section.

The foregoing approach does not involve any explicit truncation of the series (2.3). One might wonder, however,
what the effect of implicit truncation in the practical realization of the process would be, due to the finite size of the
computer memory. To this end we note that even for simulations of many-particle systems, where the typical number
of kinks Nkink (that is, the typical number of terms in the series (2.3)) that contribute to the final result is really large,
and one might expect the memory/accuracy problem, the effect can be easily made absolutely negligible. Indeed,
from the Central Limit Theorem, it follows that the number of kinks in significant configurations has a Gaussian

distribution with the peak at N̄kink and a half-width of order
√

N̄kink (cf. Ref.9). If one just reserves at least twice as
much memory as necessary to describe the configuration with N̄kink elements, then during a computation spanning the
age of the Universe, the system will not fluctuate to states which cannot be fit into memory. The implicit truncation
error thus can be made astronomically small.

III. UPDATE PROCEDURES

A. Kink motion

Let us first consider update procedures that are straightforward generalizations of those known in the discrete-time
worldline algorithm, and work with closed trajectories only. The simplest process involves transformations that do
not change the number of kinks, but change their types, time positions, and temporal ordering,22
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〈α| Qa1
(τa1

)Qa2
(τa2

) . . . Qan
(τan

) |γ〉 −→ 〈α| Qb1(τb1)Qb2(τb2) . . . Qbn
(τbn

) |γ〉 . (3.1)

The number of operators involved in the transformation, their types, and time positions are not constrained, except
that the two configurations have nonzero weight. Obviously, one could suggest many different realizations of Eq. (3.1),
and some might work more efficiently than others, depending on the system. Here we describe the procedure called
“kink motion”; other procedures have too much in common to be described separately, and allow trivial modifications.

To move a kink, we first select it at random from the list of existing kinks and decide on the time interval to be
considered. Suppose that we have chosen a transition described by (Qo, τo). We then find kinks of the same type that
are nearest in time (both to the left and to the right of τo), i.e., Qo or Q†

o, and consider their times τ1 < τo and τ2 > τo

as the boundaries of the time “window” transformed by this procedure (in certain configurations at high temperature,
it may happen that (τ1, τ2) = (0, β) ). It is allowed to have any number of kinks of different types Qa 6= Qo, Q

†
o within

(τ1, τ2). Thus the typical initial configuration has the form

. . .

∣

∣

∣

∣

τ1

Qa1
(τa1

)Qa2
(τa2

) . . . Qo(τo) . . . Qan
(τan

)

∣

∣

∣

∣

τ2

. . . , (3.2)

(as explained above, one has to consider only those kinks which do not commute with Qo).
The second step is to analyze all possible configurations obtained from (3.2) by removing Qo from point τo and

inserting it at arbitrary τ ′ ∈ (τ1, τ2). We keep the time positions and the chronological ordering of all the other
operators Qa1

, Qa1
, . . . , Qan

untouched. The new position of the selected kink Qo in time is decided according to the
statistical weight of the final configuration as defined by Eq. (2.3). This is done in complete analogy with the classical
MC procedure of taking multidimensional integrals.

The acceptance rate of the kink motion procedure is unity, since the differential measure of the initial configuration
is zero. In this way, all noncommuting kinks in the Hamiltonian (except kink - antikink pairs, which are dealt with in
the next subsection) can change places. In dimensions d > 1, the kink motion procedure must be supplemented with a
“local loop” procedure, which generates small loops in real space, e.g., by replacing Qi→i+g1

(τ1)Qi+g1→i+g1+g2
(τ2) −→

Qi→i+g2
(τ3)Qi+g2→i+g1+g2

(τ4), where g1, g2 are the nearest neighbor indices.

B. Creation and annihilation of kink - antikink pairs

In this subsection we make use of the general theory of Sec. II and explain how the elementary procedure of
creation and annihilation of kink - antikink pairs is organized in practice. An important new principle realized in our
algorithm is the possibility of selecting different update procedures with certain probabilities (see also Appendix A).
These probabilities, pa and pc, are at our disposal, and if necessary, can be used to “fine tune” the efficiency of the
MC process as a whole. The most natural starting point for the update is to address at random some configuration
fragment. It can be characterized by the kink Qo(τo), or by the system state |α(io)〉 between the two adjacent kinks
that change this state (in computer memory, all |α(io)〉 between kinks are assigned labels; the configuration itself is
described as a linked graph by specifying nearest-neighbor associations (in space and time) between the labels). We
choose the latter variant and address site labels. Thus the probability of applying an update procedure to a given
fragment is ∝ 1/Nlab, where Nlab is the total number of labels characterizing the initial configuration. By inserting
(deleting) n extra kinks, we increase (decrease) Nlab by

∑n
j=1 mQj

where mQj
gives the number of states changed

by the kink Qj . Thus the ratio pa/pc in Eq. (2.7) is proportional to Nlab/(Nlab +
∑n

j=1 mQj
) when addressing the

creation of n kinks, and (Nlab −
∑n

j=1 mQj
)/Nlab when addressing the annihilation procedure.

To fix the values of pa and pc, we count the number of possible kink - antikink processes that can be applied to
a given fragment. This number is denoted by Nproc. The simplest choice is then to assign equal weight, 1/Nproc,
to all possibilities. For example, if we consider a model with the nearest-neighbor hopping in 1D, then there are
three possibilities for the site state |α(i)〉: to insert Qi→i+1Qi+1→i or Qi→i−1Qi−1→i and to delete a pair of kinks
that change this state to the left and to the right in time, provided they form a kink - antikink pair (i.e., are of the
Qi±1→iQi→i±1 type). In this case mQj

= 2 as well, and we finally have

pa

pc
=

Nlab

Nlab + 4
(creation) ;

pa

pc
=

Nlab − 4

Nlab
(annihilation) . (3.3)

Obviously, in the thermodynamic limit and at low temperature, these ratios are very close to unity. Again, this is
only a particular example; other choices may prove to be more efficient under certain conditions.

Once the configuration fragment and update procedure are selected, we proceed along the lines described in Sec. II.
Here we would like to comment on the choice of probability density W (~τ ). It would be perfect from the acceptance
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rate point of view to take W (~τ ) ∝ R(~τ ). However, this can turn out to be a very expensive procedure. To illustrate
the point, consider a configuration fragment of length τl,r = τr − τl. Due to the large interaction radius between
particles, an effective field acting on updated states can change many times during τl,r. If the number of time slices
thus induced on the interval (τl, τr) is Nτl,r

≫ 1, then complete parametrization of the R(~τ) function will require
calculation of the Nτl,r

(Nτl,r
+ 1)/2 partial probabilities, according to the number of ways one can distribute two

kinks among Nτl,r
time subintervals.

The solution of the problem lies in choosing W (~τ ) = W (E,~τ), where W (E,~τ ) is an analytic function with the same
properties as W (~τ ), controlled by a parameter E that is used to minimize the variance of |W (E,~τ )−R(~τ )|. The most
obvious physical choice of E is the mean field potential acting on the updated states during τl,r from the rest of the
system

e−Eτl,r = R(τl, τr) , (3.4)

W (E,~τ) =
e−E(τ2−τ1)

I
, I =

∫ τr

τl

dτ2

∫ τ2

τl

dτ1e
−E(τ2−τ1) . (3.5)

One immediately recognizes in W (E,~τ ) the statistics of the kink - antikink pair in the biased two-level system22,
which, through the mean-field definition of the bias energy E, most closely approximates the local statistics of kink -
antikink pairs in a real system.

The procedures described in the last two subsections represent a direct generalization of local procedures already
known in the discrete-time worldline method. Their continuous-time versions are, however, only specific realizations
of a much wider class of possible procedures, thus making the overall CTWL scheme more flexible.

C. Creation - annihilation, jump, and reconnection procedures for worldline discontinuities

Up to now, we have considered procedures for working with closed worldlines. These are sufficient to simulate
quantum statistics in the canonical ensemble and in the M = 0 sector. To overcome this essential drawback, and to
calculate the Green’s function, one usually introduces an extra worldline segment and simulates quantum statistics in
the presence of two worldline discontinuities at points (i1, τ1) and (i2, τ2). This process is highly inefficient, because
one has to probe all degrees of freedom in the configuration (numbering roughly ∼ Ldβ) to collect statistics for only
two extra degrees of freedom. In practice, this method was never used to calculate Green’s function in large systems,
e.g., with Ldβ ∼ 104. The solution we find for this problem is in considering the two worldline discontinuities to be
real dynamic variables in the Hamiltonian, which are allowed to move through the configuration both in space and
time. It turns out that this motion can be arranged to be ergodic, and probes all possible system states. One can
even completely ignore all the other update procedures, such as moving other kinks and working with kink - antikink
pairs, probably at the expense of being less efficient, but still remaining accurate, complete, and universal. Below
we describe the details of update procedures with worldline discontinuities (“worms”), which were first introduced in
Ref.22.

We start with the general expression for the Matsubara Green’s function (see, e.g., Ref.30) in the interaction picture

G(i, j, τ1, τ2) = −eβΩTr

[

e−βH0Tτ

(

ai(τ1)a
†
j(τ2)σ

)

]

, (3.6)

where Tτ is the τ -ordering operator, which was explicitly written before in defining the Matsubara evolution operator
σ in Eq. (2.1); Ω is the grand canonical potential. To be specific, we assume here that Ho is diagonal in the site
representation; in the general case, one might imagine that the index i refers to some parametrization of eigenstates
of Ho. Since we now work in the grand canonical ensemble, the Hamiltonian contains an extra term

− µN ≡ −µ
∑

i

ni , (3.7)

where µ is the chemical potential. Formally, the only difference between the statistics given by Eq. (2.3) and the

Green’s function (3.6) is that we have two extra kinks, ai(τ1) and a†
j(τ2). Hence one has the possibility of calculating

the Green’s function in a unified process, together with standard thermodynamic averages (“energy,” for the sake
of brevity). To this end, it is necessary just to work in an extended configuration space, where two classes of
configurations are present: (i) with continuous worldlines, and (ii) with two worldline discontinuities, corresponding
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to the kinks ai(τ1) and a†
j(τ2). (Clearly, configurations of class (i) contribute to “energy,” while those of the class

(ii) contribute to the Green’s function.) The transitions between the two classes are performed by the processes of

creation and annihilation of the kinks ai(τ1) and a†
j(τ2), in accordance with the general balance principles Eq. (2.7).

For computational purposes, it is reasonable to redefine the Green’s function by a trivial scaling transformation

ai → η∗ai , a†
j → ηa†

j , where the constant η is adjusted to produce the optimal acceptance (rejection) probability.
Alternatively, one can arrive at the above scheme by the standard trick of introducing a source to the configuration

action S (the notation η for the source is chosen deliberately):
∫ β

0

dτV (τ) −→
∫ β

0

dτV (τ) +
∑

i

∫ β

0

dτ( η∗
i (τ) ai(τ) + ηi(τ) a†

i (τ)) , (3.8)

and defining the Green’s function as a functional derivative of the generating functional (the partition function with
the source)

G(i, j, τ1, τ2) = − 1

Z

δ2Z

δηi(τ1)δη∗
j (τ2)

∣

∣

∣

∣

η,η∗→0

. (3.9)

The numerical procedure equivalent to the variational derivative in the limit η → 0 means that only configurations
with (i) zero and (ii) two worldline discontinuities are included in the statistics. Confining ourselves to just these
configurations, we do not have to deal any longer with infinitesimally small η , and can choose η to be a certain
finite constant. (This is crucial for any realistic computational process, since η → 0 clearly means that the time of
accumulation of statistics goes to infinity.) Indeed, a particular value of η just defines the relative weights of classes
(i) and (ii), thus changing the relative norm of the Green’s function with respect to “energy” by the known factor
of | η |2. (Incidentally, one may pay no attention at all to the normalizing statistics for the Green’s function, as the
norm can ultimately be fixed by the condition G(i, i, τ, τ + 0) = −density.)

A typical configuration with two “worms” is shown in Fig. 1 (“live” picture taken from the computer). To update
it we apply the following transformations:

• Creation and annihilation of two worldline discontinuities

We delete a pair, ai(τ1)a
†
i (τ2) or a†

i (τ1)ai(τ2), when discontinuities happen to meet at the same site i and there
are no other kinks between them that can change the state of i. The only difference between this and the kink -
antikink procedure is that now we transform only a single-site state, thus mQ = 1. The annihilation procedure
addresses the pair of worms, but the creation procedure (which makes sense only when there are no worms)
addresses the randomly selected configuration fragment label. The ratio of probabilities pa/pc to address update
procedures that transform the same configuration fragment back and forth is now

pa

pc
= Nlab (creation) ;

pa

pc
= Nlab − 2 (annihilation) . (3.10)

This ratio is macroscopically large, which is obviously unpleasant for the computational process. However, we
have R(τ) ∼| η |2, with the freedom of choosing η. By setting | η |2∼ 1/〈Nlab〉, where 〈Nlab〉 is the average
number of labels in the configuration, we obtain an update procedure that is not based on small parameters (in
practice, any rough estimate like (Ldβ) for 〈Nlab〉 is sufficient). The rest is done in exactly the same manner as
described in Sec. III B.

• Jump

This update procedure is illustrated in Fig. 2. We select one of the worldline discontinuities and suggest shifting
it in space by inserting an ordinary kink (hopping operator) to the left (in time) of the annihilation operator
and to the right of the creation operator. As a result, the worm “jumps” to another site. The number of kinks
changes by one in this procedure, but pa/pc is unity, because we address it upon the availability of worms, and
not according to the number of labels. Also, since we are dealing with only one extra kink here, the structure
of the R(τ) function (see Sec. II) is much simpler, and we choose W (τ) = R(τ)/

∫

dτR(τ). The integral is over
the time interval of the updated fragment. The opposite procedure is called an “anti - jump.”

• Reconnection

Formally, this update procedure, which is shown in Fig. 3, is technically identical to the “jump,” but now an
extra kink is inserted to the right of the annihilation operator and to the left of the creation operator. We still
distinguish between them, because in the jump procedure the corresponding particle trajectories do not exchange
places, while they do so in the reconnection update. Figure 3 makes it clear that we have effectively reconnected
worldline segments of different trajectories. Note that in fermionic systems, any reconnection/antireconnection
procedure results in a change of the configuration sign.
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• Shift in time

The motion of worldline discontinuities in time is essentially the kink motion process (see Sec. III A). Suppose
that we have decided to shift an annihilation kink Qo = ai. The only difference from the scheme (3.2) is in
the definition of the updated time interval. Its boundaries (τ1, τ2) now correspond to the time positions of the
nearest left and right neighbors (kinks) of any type that operate on the same state i. Of course other possibilities
are allowed as well, if one has some physical arguments in favor of, say, extending the time window farther to
the next-nearest kink, or a kink of a special type.

The update procedures thus defined comprise an ergodic stochastic process that operates on the entire configuration
space of the system. All configurations, including those with nonzero winding numbers and different number of
particles, are accounted for. Extra particles are inserted/removed from the system when a†j(τ2) makes a complete
loop in time (relative to ai(τ1)), i.e., when τ2 − τ1 changes by multiples of β. Winding numbers are introduced when
j − i changes by multiples of L. The key point of our approach is that each local update makes a contribution to the
G(i, τ) histogram, except rare cases in which there are no worms in the configuration; these configurations contribute
to the “diagonal” (or conventional) statistics of closed worldlines. Contrary to the standard calculation, we do not
adjust all degrees of freedom to the current positions of worms, but rather probe and update the whole configuration
through their motion. This almost trivial modification results in a factor of (Ldβ) acceleration of the scheme!

It is instructive to draw an analogy between the motion of worldline discontinuities and the loop cluster update
rules. As is easily seen, the basic elements of the single-loop LCU method known as “optional decay” and “forced
transition”19 correspond to a particular evolution of the worldline discontinuities (“optional decay” corresponds to
the “jump” procedure, and “forced continuation” to the “antireconnection” procedure). A closed loop is obtained
after annihilating the pair a and a†. Notice, however, that in our scheme (i) not only closed loops, but also all
intermediate configurations are physically meaningful and are included into the statistics; (ii) nothing is based on the
special structure of the system Hamiltonian; (iii) the update is always local (it is known that acceptance rates for
large loops become very small when an external magnetic field in the Z-direction is applied to the Heisenberg system
(magnetic field is equivalent to a finite chemical potential in bosonic language); this problem is simply absent in local
schemes).

The statistics of discontinuities in space and time is given by G(i, τ), i.e., it is defined by the Hamiltonian. In
general, the optimal update scheme depends on the quantity being calculated, and thus one might wish to control
the statistics of worldline discontinuities “at will.” This can be easily achieved by introducing a fictitious spacetime
dependent potential acting between the “worm” ends, so that their relative positions are now distributed according
to the function

G(i, τ) Q(i, τ) ,

where Q(i, τ) is arbitrary. In this way, one can change the typical size and shape of the loops generated by the “worm”
algorithm.

The scope of the present paper is such that we are unable to discuss here many important details concerning the
practical implementation of our algorithm (optimal triple-linked storage, particular forms of Eqs. (2.8)-(2.9) for each
subprocess, optimal management of subprocesses, etc.). Readers interested in these issues are encouraged to take
advantage of our FORTRAN code with comments. The code is written for the 1D boson Hubbard model24.

IV. ILLUSTRATIVE RESULTS

To demonstrate the advantages of the CTWL algorithm, we have calculated properties of the 1D boson Hubbard
model (Eq. (1.1) with Uij = U0 δij) for various coupling constants U0 and particle densities ρ.

Comparison with the exact diagonalization results for small systems has demonstrated the lack of any detectable
systematic error. In particular, for a system with eight lattice sites and six bosons, and on-site repulsion U = 0.5, the
exact diagonalization result for the ground-state energy is EG = −10.49209, while long-run Monte Carlo simulations
yield EG = −10.4922(2), i.e., a result with relative accuracy better than 10−4.

It is well known that a commensurate system with ρ = 1 undergoes a superfluid – Mott-insulator transition of
the Berezinskii - Kosterlitz - Thouless type25,26 when the on-site interaction is strong enough (for the most accurate
estimate of the transition point U0 = 1.645t, see Ref.27). In the superfluid phase, including the critical point, one can
utilize knowledge of the long-wavelength behavior of the system. As explained by Haldane29, the energy associated
with extra particles and nonzero winding numbers is quadratic in M and N − N (for simplicity, in what follows
we count particle numbers from the commensurate value: N → N − L and N → N − L). This means that the
corresponding probability distribution in M and N is a Gaussian, i.e.,
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W (N, M) ∝ exp

[

− L

2βΛs(0)
M2 − β

2Lκ(0)
(N − N)2

]

∝ exp

[

− πK(0)

2

(

L

cβ
M2 − cβ

L
(N − N)2

) ]

. (4.1)

The zero argument of the superfluid stiffness Λs and compressibility κ denotes values at T = 0. Here K−1 = π
√

Λsκ
is the index that controls the asymptotic behavior of the correlation functions, and c is the speed of sound.

At the critical point, K(L), κ(L) and Λs(L) are system-size dependent quantities, with K(L → ∞) → 1/2. Since
the speed of sound is unrenormalizable in a homogeneous system, it is sufficient to study scaling equations for the
critical index only. In fact, the solution of the renormalization group (RG) equations for K(L) can be “visualized”
by considering the logarithmic derivative of the Green’s function, since its index is just K/2:

K(l) = −2
d lnG(r)

d ln r
; l = ln r . (4.2)

Here we have introduced the variable r2 = x2 + (ct)2, which by conformal invariance describes asymptotic decay of G
both in space and time.

Expressions (4.1) and (4.2) allow for a comprehensive test of the new algorithm. It is also tempting to consider a
large system right at the quantum critical point and to evaluate its properties under the most unfavorable conditions
for the standard worldline method. To calculate the critical index and the speed of sound, we considered a ring with
100 lattice sites and β = 100/t. The critical parameters of the Hamiltonian are U0 = 1.645t and µ = 1.94t27. We
had no problems in accumulating sufficient statistics of winding numbers and N for this system (the corresponding
calculation is virtually impossible using the standard worldline algorithm). Simple manipulations with the exponents
in (4.1) result in the following expressions:

N =
N2 − rN

2(N2 + rN )
; rN =

ln[W (0, N)/W (0, 0)]

ln[W (0,−N)/W (0, 0)]
;

κ(0) =
β

L

N2

pN
; pN = − ln

[

W (0, N)W (0,−N)

W 2(0, 0)

]

;

Λs(0) =
L

β

M2

gM
; gM = − ln

[

W (0, M)W (0,−M)

W 2(0, 0)

]

. (4.3)

If one is interested in evaluating directly K(0) then

K(0) =
(pNgM )1/2

π|NM | . (4.4)

The choice of N and M here is arbitrary, but for numeric reasons, the optimal N and M correspond to values
where (pN , gM ) ∼ 1. The advantage of working with nonzero winding numbers in the grand canonical ensemble is
obvious: in a single MC calculation, one collects all the necessary information about the parameters in the effective
long-wavelength action, which is very convenient in determining quantum critical points from K = Kc. For the
aforementioned system we found c/t = 2.4(1), and K(l = ln(100)) = 0.47(1).

One note is in order here. The Gaussian distribution (4.1) implies that the system is in the superfluid phase. In the
general case one has to define the compressibility as κ = dρ/dµ, where by definition ρ = N/L. The superfluid stiffness

Λs is defined as the coefficient relating persistent current and gauge phase when ϕ → 0; this yields28 Λs = M2L/β.
Finally, we used our method to evaluate the Green’s function G(i, τ) and to extract the critical index of the

Berezinskii - Kosterlitz - Thouless transition from its asymptotic behavior; one can then check the consistency of
all calculations. Since the CTWL simulation yields a two-dimensional histogram for G(i, τ), much more accurate
results for K(l) are obtained by computing logarithmic derivatives along different directions in the (x, τ) plane with
subsequent angular averaging. The speed of sound, which is necessary for such a calculation, is extracted from the
asymmetry between x and τ in the asymptotic decay of G. For the Green’s function calculation, we considered a
ring with 450 lattice sites and β = 200/t. In Fig. 4, we show the short-range behavior of the Green’s function in the
τ -direction, with the characteristic jump at τ = 0. The dashed curve is a linear interpolation between the calculated
points. In Fig. 5, we present the full-scale behavior of G(x, τ) by plotting it as a function of r = (x2+(ct)2)1/2 along the
time and x = cτ directions. In accordance with conformal invariance, for large r the two curves are indistinguishable
to within the statistical errors. The speed of sound obtained from the Green’s function is c/t = 2.4(1), and analysis
of the logarithmic derivative (4.2) yields K(l = ln(100)) = 0.46(2).
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It is worth noting that our calculations for W (N, M) and G were performed on a Pentium-90 PC. None of these
results (e.g., for L > 100) can be obtained by other methods, even with the use of supercomputers.

The strong on-site disorder at low temperatures is a severe trial for most Monte Carlo schemes. Cluster methods
suffer from inefficient global Metropolis updates here, while standard canonical-ensemble algorithms suffer from slowing
down due to one-particle local minima in the effective action (the lowest single-particle states are well localized, and
probing different configurations requires deep sub-barrier motion). The unique feature of our “worm” update method
– the possibility of locally seeding an extra world line at any point in the spacetime continuum – obviates these
problems.

To demonstrate the efficiency of our method, we present the results of just one nontrivial calculation – the depen-
dence of the average particle number on the chemical potential in the Bose glass (BG) phase of the 1D disordered
Hubbard model, Fig. 6. We consider a system with L = 60 sites at β = 150, U = 3t. Disorder is introduced by
randomly distributing the on-site potential

∑

i ǫini between −∆ and ∆, with ∆ = 6t. The curve 〈N〉(µ) allows
precise determination of the low-energy quasiparticle spectrum of the system to order 0.01t, which is equivalent to the
calculation of the total system energy to a relative accuracy of order 10−4. The entire plot of 〈N〉(µ) was obtained in
a few days of CPU time on a PentiumPRO-200 processor.

To obtain further evidence of the effectiveness of our method in more familiar problems, the reader is referred to
a calculation of the superfluid – Bose glass – Mott insulator phase diagram for the 1-D disordered boson Hubbard
model31.

V. CONCLUDING REMARKS

Although the CTWL algorithm developed here is quite general, some aspects deserve special discussion. What if
the interaction radius ro is large? All of the procedures update configuration fragments with the typical duration
τr − τl ∼ 1/t. Since the method is exact, we trace all the kinks within the interaction radius, because they contribute
to the function R(~τ). This means that the interval (τl, τr) is further split into Nτl,r

∼ rd
oz ≫ 1 subintervals (z is the

coordination number), and each subinterval requires special consideration. If ro is as large as the system size, then
the whole scheme is in trouble, becoming a “victim of exactness.”

The idea of solving such a problem is demonstrated by the stochastic series expansion method1,9,10. One might well
wonder why continuous-time schemes, which contain as an essential ingredient an evaluation of time integrals, work
as efficiently as SSE, which has all these integrals being evaluated exactly right at the start? Also, why is keeping the
potential energy U in the τ -exponent not at all an advantage if U ∼ t? The point is that the MC process is exact
only for asymptotically long computation times, and there is no reason to calculate anything more precisely than the
unavoidable statistical error, especially if the corresponding calculation becomes the bottleneck for the whole scheme.
Evaluating time integrals in CTWL or reproducing exponents by expanding in power series in U ∼ t are just two
cases that illustrate this point.

Suppose that all particles in the system interact with one another, so that formally ro = L, but
∫

d~r ρ(~r)U(~r) =

F (L) 6= ∞. We divide the interaction Hamiltonian into two parts, H
(1)
int (r < rt) + H

(2)
int (r > rt), by introducing the

truncation radius
∫

|r|>rt

d~r ρ U(~r) = t . (5.1)

We then write Ho = H
(1)
int and combine H

(2)
int with V (see Sec. II), i.e., the long-range part of the interaction Hamiltonian

is now considered to consist of diagonal kinks. Because of the definition (5.1), the total number of kinks within the
time interval ∼ 1/t remains finite and independent of system size.

The case of a divergent integral
∫

d~r ρ(~r)U(~r) = F (L) → ∞ is more subtle, since the number of diagonal kinks
within the time interval ∼ 1/t, given by F (L), is now large (if F (L) is a logarithmic function of L, we do not regard
this problem as serious). On the other hand, for long-range interactions the so called “mean-field approximation”
becomes more accurate. Since the mean-field potential is easy to account for analytically (and numerically), one now
has to deal with fluctuations, and these quite often satisfy the condition

∣

∣

∣

∣

∫

d~r (ρ(~r) − ρ) U(~r)

∣

∣

∣

∣

= δF (L) 6= ∞ . (5.2)

In Appendix A we explain how to organize the Monte Carlo process using the mean-field approximation for the
configuration weight. The net result is that even for long-range potentials, the calculation time can remain independent
of system size.
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In this paper we have concentrated on the Green’s function calculation by restricting the number of worldline
discontinuities to 0 or 2. Of course the scheme can be trivially extended to include the case with a larger number of
discontinuities, if one is interested in the two- or n-particle Green’s function or n-point vertex. More generally, our
scheme makes it possible to work with Hamiltonians that do not conserve the number of particles, i.e., when there
are sources with finite strength in the bare Hamiltonian.

Although in this paper we consider a system with discrete Hilbert space in detail, the principles of update in
continuous time developed here are much more general. Mathematically, we construct an exact method (in the
statistical limit) of averaging over a distribution represented as a series of integrals with an ever-increasing number
of variables, but with essential similarity among the terms of the series, allowing their local comparison (weighting).
We may call such structures integrals with a variable number of variables – VNV integrals. Physically, we sum a
perturbative expansion in the interaction picture for some observable of a large but essentially finite-size system.
(For a system with discrete Hilbert space, the only continuous variables in this expansion are the times of virtual
transitions.) But perturbative expansions for continuous systems also have the structure of VNV integrals, with
additional integrations over some continuous variables. Thus (apart from the fact that for spatially continuous
systems one cannot expand the kinetic part of the Hamiltonian and must use the potential energy as a perturbation),
there is no qualitative difference between perturbative expansions for continuous and discrete systems. The general
method of evaluating VNV integrals is given by Eqs. (2.5) and (2.7) – (2.9), where the vector ~τ now stands for any
set of continuous variables, and the function R(~τ ) is defined straightforwardly, given the particular form of the series.
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APPENDIX A: LONG-RANGE POTENTIALS

Suppose that we are dealing with the case F (L) → ∞, but finite δF (L). The idea is to organize the Monte
Carlo process in such a way, that in most updates we simply ignore fluctuations, and account for distant particles
by replacing them with a homogeneous density distribution. Obviously, for the scheme to remain accurate, in some
updates we have to consider deviations from the mean-field distribution. The goal is to address the procedure dealing
with distant fluctuations with the small probability which is at least inversely proportional to the number of operations
in this procedure.

Consider again the balance equation for the given pair of subprocesses, but now including the possibility of com-
pleting the same update procedure in a number of ways:

A0 pc W (~τ )

j∗
∑

j=0

γ(j) P (j)
acc(~τ ) d~τ − dAn(~τ ) pa

j∗
∑

j=0

γ(j) P (j)
rem(~τ ) = 0 . (A1)

Here γ(j) is the probability of using the j-th version of the update procedure. We require
∑j∗

j=0 γ(j) = 1 and
γ0 ≫ γ1 . . . ≫ γj∗ . We also assume that the procedure j∗ corresponds to the exact treatment of all fluctuations.
Other quantities have exactly the same meaning as in (2.5). The self-balance condition now reads (compare Eq. (2.7))

W (~τ )

j∗
∑

j=0

γ(j) P (j)
acc(~τ ) = R(~τ )

j∗
∑

j=0

γ(j) P (j)
rem(~τ ) . (A2)

To satisfy (A2) we suggest the following scheme. Let R(j)(~τ ) be the distribution corresponding to the exact
treatment of fluctuations up to the distance r(j) with r(0) ≪ r(1) ≪ . . . ≪ r(j∗) = L, and the mean-field treatment of
more distant (r > r(j)) particles. We can write then

R(j) = R(0) + δR(1) + . . . δR(j) , R(j∗) ≡ R . (A3)

If δF is finite and r(0) is sufficiently large, then all δR(j) are small. We then choose γ(0) ≈ 1 and
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P (0)
acc(~τ ) =

{

R(0)(~τ )/W (~τ) , if R(0)(~τ ) < W (~τ ) ,
1 , otherwise ,

(A4)

P (0)
rem(~τ ) =

{

W (~τ)/R(0)(~τ ) , if R(0)(~τ ) > W (~τ ) ,
1 , otherwise ,

(A5)

and solve the self-balance condition deductively by requiring

W (~τ )

k
∑

j=0

γ(j) P (j)
acc(~τ ) = R(k)(~τ )

k
∑

j=0

γ(j) P (j)
rem(~τ ) , (A6)

or equivalently

γ(k)
[

W P (k)
acc − R(k) P (k)

rem

]

= δR(k)
k−1
∑

j=0

γ(j) P (j)
rem . (A7)

The final answer can be written

P (k)
acc =







[

δR(k)
∑k−1

j=0 γ(j) P
(j)
rem

]

/
[

γ(k)W (~τ )
]

, if δR(k) > 0 ,

0 , otherwise ,

(A8)

P (k)
rem =







−
[

δR(k)
∑k−1

j=0 γ(j) P
(j)
rem

]

/
[

γ(k)R(k)(~τ )
]

, if δR(k) < 0 ,

0 , otherwise .

(A9)

Since all δR(k) are assumed to be small, it is possible to keep γ(k) ≪ 1 (for k = 1, 2, . . . j∗), but large enough to avoid

situations with P
(k)
acc > 1 or P

(k)
rem > 1.

FIGURE 1.

A typical 8-site configuration with two worldline discontinuities marked by filled circles. The width of the solid line
is proportional to the site occupation number, and dashed lines are empty sites.

FIGURE 2.

Jump procedure for the annihilation operator. a) Initial configuration fragment; b) suggested variation (in the
antijump procedure, (b) is the initial configuration and (a) is the suggested variation).

FIGURE 3.

Reconnection procedure for the annihilation operator. a) Initial configuration fragment; b) suggested variation (in
the antireconnection procedure, (b) is the initial configuration and (a) is the suggested variation).

FIGURE 4.

Short-time behavior of the Green’s function G(0, τ) of the commensurate 1-D Hubbard model at the quantum critical
point.

FIGURE 5.

Long-range behavior of G(i, τ), demonstrating conformal invariance.

FIGURE 6.

Number of particles vs. chemical potential in a large Bose-glass cluster at macroscopically low temperature.
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