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Numerical study of the random field Ising model at zero and positive temperature

Yong Wu
Department of Physics, Virginia Tech, Blacksburg, VA 24061-0435

Jonathan Machta
Department of Physics, University of Massachusetts, Amherst, MA 01003-3720

(Dated: February 6, 2008)

In this paper the three dimensional random field Ising model is studied at both zero temperature
and positive temperature. Critical exponents are extracted at zero temperature by finite size scaling
analysis of large discontinuities in the bond energy. The heat capacity exponent α is found to be
near zero. The ground states are determined for a range of external field and disorder strength
near the zero temperature critical point and the scaling of ground state tilings of the field-disorder
plane is discussed. At positive temperature the specific heat and the susceptibility are obtained
using the Wang-Landau algorithm. It is found that sharp peaks are present in these physical
quantities for some realizations of systems sized 163 and larger. These sharp peaks result from
flipping large domains and correspond to large discontinuities in ground state bond energies. Finally,
zero temperature and positive temperature spin configurations near the critical line are found to be
highly correlated suggesting a strong version of the zero temperature fixed point hypothesis.

PACS numbers: 75.10.Nr, 05.70.Fh, 75.10.Hk

I. INTRODUCTION

The random field Ising model (RFIM) is among the
simplest non-trivial spin models with quenched disorder.
It has been intensively studied theoretically, experimen-
tally, and in computer simulations during the last thirty
years but is still not well understood. Following the
seminal discussion of Imry and Ma1 it has been proved
that the RFIM has an ordered phase at low temperature
and weak disorder when the dimension is greater than
two2,3,4. It is generally believed that the transition from
the ordered phase to the disordered phase of the RFIM is
continuous and is controlled by a zero temperature fixed
point5,6,7. Since random field fluctuations dominate over
thermal fluctuations at the transition, the hyperscaling
relation is modified as (d − θ)ν = 2 − α, where θ is the
violation of hyperscaling exponent5,6.

The phase diagram of the RFIM is sketched in Fig. 1.
Phase transitions can occur from the ferromagnetic phase
(F) to the paramagnetic phase (P) at either zero temper-
ature as a function of disorder strength ∆ at ∆ = ∆c,
or as a function of temperature T if disorder is fixed at
∆0 < ∆c. According to the zero temperature fixed point
hypothesis, the zero temperature transition and the pos-
itive temperature transitions belong to the same univer-
sality class. In this paper we use numerical methods to
study both kinds of transitions and connections between
them. One of our primary results is that, for each real-
ization of disorder, there is a strong correlation between
ground state configurations near ∆c and thermal states
near Tc for ∆0 < ∆c.

Currently, there is no controlled renormalization group
analysis of the RFIM phase transition and Monte Carlo
simulations of the RFIM at positive temperature9,10,11,12

are limited to small systems because of very long equili-
bration times5,6. According to the zero temperature fixed

FIG. 1: Phase diagram of the RFIM. We study two types of
phase transitions going from the ferromagnetic phase (F) to
the paramagnetic phase (P): The zero temperature transition
(open arrow) occurs at T = 0 and ∆ = ∆c, and positive
temperature transitions (solid arrow) occurs at a fix disorder
∆ = ∆0 < ∆c and T > 0.

point hypothesis, many properties of the RFIM phase
transition, including the values of critical exponents, can
be determined by studying the RFIM at zero tempera-
ture. The ground state of the RFIM can be found in
polynomial time13 by efficient combinatorial algorithms
so that zero temperature simulations are much faster and
allow for much larger system sizes than positive tempera-
ture simulations. Critical exponents have been obtained
from zero temperature studies14,15,16 that are mostly con-
sistent with the scaling theories5,6,7, series methods17 and
real space renormalization group approaches18,19,20.

http://arXiv.org/abs/cond-mat/0602314v1
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Much work has been done in determining the critical
exponents, and the values of many exponents are well
established. However, the value of the heat capacity ex-
ponent α is still controversial. A recent zero tempera-
ture study by Hartmann and Young14 found α ≈ −0.6
for the three dimensional Gaussian RFIM. The modi-
fied hyperscaling relation, however, predicts that α =
2 − (d − θ)ν ≈ 0, given the well-accepted values θ ≈ 1.5
and ν ≈ 1.1 − 1.4. Therefore the quite negative value
found in Ref. 14 is inconsistent with the modified hyper-
scaling relation. Some older work at zero temperature21

and Monte Carlo simulations12 also found α quite neg-
ative. On the other hand, Middleton and Fisher15 also
studied the three dimensional Gaussian RFIM at T = 0
and found α ≈ −0.1, in agreement with the modified
hyperscaling relation.

Dukovski and Machta16 studied the ground states of
the RFIM in the presence of an external field H . They
located a “finite size critical point” for each realization
of disorder, identified as the point of degeneracy of three
ground states in the the H − ∆ plane with the largest
discontinuity in magnetization. They extracted critical
exponents via finite size scaling of the discontinuities at
that point. The reason to focus on the finite size crit-
ical point was that this point can be regarded as the
most singular point on the H −∆ plane, and working at
this point may reduce the influence of the regular part
of physical quantities. The value of heat capacity expo-
nent they found was α ≈ 0, however, their results were
less accurate than those of Refs. 14 and 15 because of the
large amount of computational work needed to locate the
finite size critical point.

The work reported in this paper combines both zero
temperature and positive temperature studies. The zero
temperature studies extend the work of Ref. 16 in two di-
rections. First, for each realization of disorder we study
points along the H = 0 line with large discontinuities
in bond energy or magnetization to determine the criti-
cal exponents. Finding discontinuities along the H = 0
line requires much less computational work than find-
ing the finite size critical point while still adhering to the
idea introduced in Ref. 16 of extracting critical exponents
from the large discontinuities in each realization of disor-
der. We also find ground state spin configurations near
these large discontinuities and compare them to thermal
states near positive temperature critical points. Second,
we study the full set of ground states of the RFIM in the
critical region of the H − ∆ plane and discuss the prop-
erties of the resulting ground state tilings of this plane.

Since conventional Monte Carlo methods are not ef-
ficient for the study of the RFIM, we apply the Wang-
Landau algorithm22 to the RFIM, which enables us to ob-
tain the specific heat and the susceptibility over a broad
range of temperature with system size up to 323. We find
that some realizations display sharp peaks in the specific
heat and susceptibility. Inspired by the zero temperature
fixed point hypothesis, we relate these sharp peaks to
the large discontinuities at zero temperature. We further

study the thermal states (average spin configurations)
near the transition using the Metropolis algorithm and
compare them to the ground states near the zero temper-
ature transition. Some of this work has been previously
announced in Ref. 23.

In this paper we consider the three dimensional RFIM
with Gaussian random fields described by the Hamilto-
nian,

H = −
∑

〈i,j〉

sisj − ∆
∑

i

hisi − H
∑

i

si, (1)

where H is the uniform external field, 〈i, j〉 indicates a
sum over all nearest neighbor sites i and j on a simple
cubic lattice of linear size L with periodic boundary con-
ditions. The random fields hi are Gaussian random vari-
ables with mean zero and standard deviation one and the
strength of disorder is ∆. The normalized fields {hi} de-
fine a realization of disorder and, for a given realization
of disorder we explore spin configurations and physical
properties as a function of H , T and ∆. Some of the
physical quantities of interest include the magnetization
m, defined as

m =
1

L3

∑

i

si, (2)

and the bond energy e,

e = −
1

L3

∑

〈i,j〉

sisj . (3)

In the next section we discuss the scaling properties
of large discontinuities in the bond energy at zero tem-
perature and use numerical results for these discontinu-
ities to extract critical exponents and the critical disorder
strength. In Sec. III we obtain ground state portraits for
the RFIM and discuss their scaling properties. Section
IV presents results of positive temperature simulations
and, in Sec. V, we discuss correlations between ground
states and thermal states. The paper closes with a sum-
mary and discussion.

II. CRITICAL EXPONENTS AT ZERO

TEMPERATURE

At zero temperature, the problem of finding the ground
state of the RFIM can be mapped to the MAX-FLOW
problem in graph theory, which is solvable in polynomial
time13. We use a modified version of the push-relabel
algorithm33 to calculate the ground states24,25.

The specific heat at T = 0 is defined14 as

C =
∂[e]

∂∆
, (4)

where e is the bond energy defined in Eq. (3) and the
square brackets denote averaging over disorder realiza-
tions. At zero temperature, for each realization of nor-
malized random fields the bond energy changes discon-
tinuously as a function of the strength of disorder ∆. An
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example of a single realization is shown in Fig. 2 and
illustrates the point that the sizes of the discontinuities
vary widely. In Refs. 14 and 15 all bond energy jumps
are included in the calculation of the specific heat expo-
nent. However, small jumps are presumably part of the
analytic background rather than the singular behavior.
The smallest bond energy jump, for example, is 4 for all
system sizes. We therefore analyze large jumps in the
bond energy to focus on the critical singularity. From a
sample of N(L) disorder realizations of systems of size
L, let [δe1] be the average over the N(L) largest bond
energy jumps and let [∆1] be the average of the disorder
strength at these jumps. Each realization of disorder typ-
ically contributes one bond energy jump and one disorder
strength to these averages though some realizations con-
tribute nothing and some several values. Figure 3 shows
the specific heat decomposed into two components, com-
ponent (a) is due to the largest N(L) jumps while com-
ponent (b) arises from all other jumps. One can see that
the large jumps make a significant contribution to the full
specific heat and we will use this component to extract
critical exponents. The finite size scaling of the specific
heat is expected to obey

C ∼ Lα/νC̃((∆ − ∆c)L
1/ν) (5)

Though the two components of the specific heat shown
in Fig. 3 obviously behave differently from one another,
our primary assumption is that the finite-size scaling of
the full specific heat also applies to the component of the
specific heat from the largest bond energy jumps. Indeed
we believe that the large jumps provide better data to ob-
tain critical exponents from small systems than the full
specific heat because this component is undiluted by the
analytic background. We discuss more detailed scaling
assumptions about large jumps later in this section. Note
that the peak height for component (a) barely changes
with system size suggesting that the specific heat expo-
nent α is near zero.

Integrating Eq. (5) as applied to the component from
the largest discontinuities, we obtain a finite size scaling
ansatz for the large jumps,

[δe1] ∼ L(1−α)/ν . (6)

where α is the specific heat exponent and ν is the corre-
lation length exponent. Table I gives the average size
of the large bond energy jumps as a function of sys-
tem size L. A fit of the form given in Eq. (6) yields
(1−α)/ν = 0.842± 0.003 with goodness of fit parameter
Q ≈ 0.7 (Q ≡ Γ(d/2, χ2/2) with d the number of degrees
of freedom and Γ the incomplete gamma function).

The displacement of the average position of the large
jumps from the infinite volume limit and the standard
deviation of the positions of the large jumps are each
measures of the width of the critical region and, following
Ref. 26, we assume that they satisfy the finite size scaling
relations,

[∆1] − ∆c ∼ L−1/ν , (7)

FIG. 2: Bond energy as a function of disorder strength ∆ for
a single realization of disorder (seed 1003). Numbers 1 and 2
indicate the two biggest jumps in the bond energy.
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FIG. 3: Two components of the specific heat. (a) The contri-
bution to the specific heat from the largest N(L) bond energy
jumps, where N(L) is the number of disorder realizations for
each system size L. (b) The contribution from all other bond
energy jumps.

and
√

[(∆1 − [∆1])2] ∼ L−1/ν . (8)

where ν is the correlation length exponent and ∆c is the
infinite size critical disorder strength. Table I gives the
standard deviation of the position of the largest jump
and a fit to Eq. (8) yields 1/ν = 0.79 ± 0.01 with Q ≈
0.4. Finally, Table I gives [∆1] and, using the previously
obtained value, 1/ν = 0.79 a fit to Eq. (7) yields ∆c =
2.280± 0.003 with Q ≈ 0.2.

The second and third largest jumps also presumably
reflect the critical singularity. We repeated the foregoing
calculations for the largest kN(L) jumps, where our data
allow us to go up to k = 3. The results are listed in Table
II. We arrive at the following best estimates of the critical
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TABLE I: Data from ground state simulations for the average
largest jump, and the average and standard deviation of the
disorder strength at the largest jumps as a function of system
size L.

L [δe1] [(∆1 − [∆1])
2]1/2 [∆1]

32 0.1208(4) 0.0904(5) 2.4915(10)

48 0.0857(5) 0.0666(6) 2.4326(10)

64 0.0675(5) 0.0524(5) 2.4017(10)

96 0.0480(6) 0.0385(7) 2.3709(10)

TABLE II: Critical exponents extracted from the largest
kN(L) jumps, where N(L) is the number of realizations for
system size L. Errors are purely statistical.

k (1 − α)/ν 1/ν ∆c

1 0.841(4) 0.79(1) 2.282(2)

2 0.842(4) 0.80(1) 2.282(2)

3 0.844(3) 0.81(1) 2.283(1)

exponent and the infinite volume critical disorder,

1 − α

ν
= 0.842 ± 0.004, ν = 1.25 ± 0.02

∆c = 2.282 ± 0.002, α = −0.05 ± 0.02. (9)

where the error bars include statistical errors from all
three k values.

Our values of the (1−α)/ν and ∆c are consistent with
some previous calculations and α is found to be near
zero, which is in agreement with Ref. 15. But the value
of ν we have calculated is smaller than recent results
quoted in Refs. 14 and 15. In Table III our calculated
values of the exponents are listed in comparison with
some recent work. Our values of (1−α)/ν and 1/ν gives
(2 − α)/ν ≈ 1.64. Applying the modified hyperscaling
relation and the inequality θ ≥ d/2 − β/ν 6,8, one has
β/ν ≥ 0.14, which is inconsistent with other work. We
believe that our value of (1 − α)/ν is more reliable than
our value of 1/ν. The fit for 1/ν starts from size L = 32
and would be quite poor if the L = 16 data were included
suggesting significant finite size correction. On the other
hand, if the L = 16 data were included, the fit would still
be good for (1 − α)/ν and there would be no change in
the resulting value.

Next we take a closer look at the finite size scaling
properties of the distribution of discontinuities in the
bond energy. Bond energy jumps result from flipping
domains. Considering N(L) (N ≫ 1) realizations with
system size L, we assume that there is a renormaliza-
tion group transformation mapping them to N(L′) real-
izations with system size L′, and the flipped domains are
transformed such that the average bond energy jump [δe]
and the average disorder where jumps occur [∆] conform
to the already known scaling relations, Eqs. (6) and (7).
In order to exclude small jump that do not scale prop-
erly, we introduce a lower cut-off δemin for bond energy

TABLE III: A summary of recent estimates of ∆c, ν, (1−α)/ν
and α, either calculated by ground state (GS) or Monte Carlo
(MC) simulations.

Ref. ∆c ν (1 − α)/ν α method

This work 2.282(2) 1.25(2) 0.842(4) -0.05(2) GS

16 2.29(2) 1.1(1) 0.80(3) 0.12 GS

14 2.28(1) 1.36(1) 1.20 -0.63(7) GS

15 2.270(4) 1.37(9) 0.82(2)a -0.12(12) GS

27 2.26(1) 1.22(6) GS

28 2.29(4) 1.19(8) MC

21 2.37(5) 1.0(1) 1.55 -0.55(20) MC

aThis value was calculated from scaling of the bond energy. They
found (1−α)/ν = 0.74(2) by relating it to the fractal dimension of
the surface of spin clusters.

jumps, which should scale the same way as [δe],

δemin ∼ L(1−α)/ν . (10)

The total number of bond energy jumps larger than
the scaled lower cut-off is independent of the system
size, since the jumps in systems with different sizes
are connected by the renormalization group transforma-
tion. Defining scaled variables u = δeL−(1−α)/ν and
v = (∆ − ∆c)L

−1/ν , the number of jumps occurring in
a small neighborhood of (u, v) should also be invariant
for different system sizes. It then follows that the prob-
ability P (δe, ∆) of having a bond energy jump with size
δe, δe > δemin and position ∆ is proportional to a given
normalized probability distribution function P̃ (u, v),

P (δe, ∆) ∝ P̃ (δeL(1−α)/ν , (∆ − ∆c)L
1/ν). (11)

The normalization of P (δe, ∆) then gives

P (δe, ∆) = L(2−α)/νP̃ (δeL(1−α)/ν , (∆−∆c)L
1/ν). (12)

Letting a = δeminL
(1−α)/ν and integrating gives the scal-

ing of the specific heat due to big jumps Cb,

Cb =

∫

δemin

δeP (δe, ∆) dδe

∼ Lα/νC̃((∆ − ∆c)L
1/ν , a), (13)

where C̃(v, a) =
∫

a
uP̃ (u, v) du is some scaling function.

By integrating Eq. (12) over δe we derive the probabil-
ity distribution of the disorder strength where big bond
energy jumps occur,

Pb(∆) = L1/νQ̃((∆ − ∆c)L
1/ν , a), (14)

where Q̃(v, a) =
∫

a
P̃ (u, v) du. We then recover the scal-

ing of the average disorder strength given in Eq. (7) The
setup of a scaled lower cut-off should be equivalent to
picking the kN(L) largest jumps for each size L, where k
is some fixed number, because the total number of jumps
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TABLE IV: Number of bond energy jumps larger than the
scaled lower cut-off δemin. The cut-off satisfies that a =
δeminL(1−α)/ν is a constant.

L = 16 L = 32 L = 48 L = 64 L = 96

a = 0.05 69.3(1) 75.1(1)

a = 0.1 29.03(6) 30.89(6)

a = 0.6 3.16(1) 3.04(1) 3.01(1) 2.99(2) 3.00(3)

a = 1 1.585(5) 1.533(7) 1.53(1) 1.52(1) 1.54(2)
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FIG. 4: Data collapse of the specific heat. The cut-off is
a = δeminL(1−α)/ν = 1.0. System sizes range from 163 to 963.
The inset shows data collapse of the specific heat for system
size 163 and 323, and the cut-off is δeminL(1−α)/ν = 0.1.

is invariant under the renormalization group transfor-
mation. We test this hypothesis by fixing the constant
a = δeminL

(1−α)/ν and count how many jumps larger
than the lower cut-off there are for each system size. The
result is listed in Table IV. One can see that if the scaled
lower cut-off is not too small, the number of bond energy
jumps larger than the cut-off goes to a constant indepen-
dent of the system size L.

Figure 4 illustrates the data collapse of the specific heat
predicted by Eq. (13) for system sizes 323, 483, 643 and
963. In conventional data collapse the scaling function
C̃(x) behaves like x−α as x → ∞, but in Fig. 4 the tail
of the curve decays faster than a power law. The main
plot in Fig. 4 has the bond energy jump cut-off set as a =
δeminL

(1−α)/ν = 1. Table IV shows that for a = 1 only
a few largest jumps per realization contribute to Cb and,
since these jumps are concentrated near the critical point,
we do not expect Cb ∼ (∆ − ∆c)

−α. However, the tail
should approach x−α, if the number of jumps included is
increased, or equivalently, a is reduced. The inset in Fig.
4 shows Cb with a smaller cut-off, a = δeminL

(1−α)/ν =
0.1. With this cut-off data is available for 163 and 323

systems only. The inset illustrates that, as the cut-off
is lowered, the tail of the scaling function expands and
presumably approaches the asymptotic x−α shape.

III. GROUND STATES PICTURES AND

SCALING RELATIONS

The tiling of the H − ∆ plane by ground states is the
subject of this section. To study this tiling, we find all
ground states within a certain range of disorder ∆ and
external field H in the critical region. Since the Hamil-
tonian of the RFIM is linear with respect to the external
field H and the strength of disorder ∆, each spin config-
uration is represented by a plane in the H − ∆ − H co-
ordinate system. Ground states are spin configurations
that are locally lowest and the set of all ground states
form a convex surface in this coordinate system. Spin
configurations are ground states within regions of H and
∆ bounded by neighboring ground state planes so that
a given spin configuration is the ground state within a
polygonal region. At boundaries of these polygons, and
intersection points of boundaries, ground states are de-
generate. We are particularly interested in the degener-
ate points that are common points of three ground states.
We call these “triple points.”

The structure of the ground state energy surface can
be visualized by projecting it onto the H−∆ plane where
it becomes a tiling of the plane by polygons. The com-
putational method for finding this tiling is closely related
to the method developed in Ref. 16. In that work, the
first order line, which is a set of boundaries that sepa-
rates the two ordered phases with positive and negative
magnetization, respectively, was followed and the “finite
size critical point” was identified by finding the triple
point having the largest discontinuity in magnetization.
The finite size critical point was regarded as the most
singular point, and critical exponents were extracted via
finite size scaling of magnetization and bond energy dis-
continuities at the point. In this paper we use a method
similar to the techniques used in Ref. 29 and 16 to map
out all the ground states for any given realizations within
a certain region on the H − ∆ plane near the finite size
critical point.

Our algorithm performs a breadth-first search of
ground states. The starting point of the search is the
finite size critical point located by the algorithm of Ref.
16. For each point where more than two ground states
are degenerate we already have the ground states around
the point and the coexistence lines separating them (one
locates the point by finding ground states around it). We
then follow the lines and search for the next adjacent de-
generate point using the following method. Starting from
the given degenerate point p, we extend the coexistence
line separating ground states P1 and P2 with some pre-
selected step size until we meet a point q0 on which the
ground state Q0 is different from both P1 and P2. The
actual adjacent degenerate point is typically passed over,
because of the the fixed step size is too large. We then
locate the intersection point of P1, P2 and Q0 and name
it q1 on which the ground state is Q1. If q1 = q0 then
q0 is obviously the point we want. Otherwise we find the
intersection point of P1, P2 and Q1 and name it q2. The
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process can be repeated and the sequence {qn} will even-
tually converge to the adjacent degenerate point due to
the convexity of the ground state surface. The process of
finding adjacent degenerate points is iterated recursively
until it reaches the outside of the predefined region, or
it finds a point that has already been visited. By con-
necting degenerate points with straight lines, all ground
states within the region are identified.

Using the method described above, a ground state pic-
ture on the H − ∆ plane of a particular 323 realization
(seed 1003) was computed and is shown in Fig. 5(a). Co-
existence lines are drawn with thickness reflecting the
jump in magnetization to visualize the size of discontinu-
ity. Most of degenerate points are intersection points of
four ground states, as illustrated in Fig. 6(b). The four
ground states differ by the orientation of two separate
domains, which are typically small, as is the discontinu-
ity in physical quantities between them. More interesting
are triple points where three ground states are degener-
ate. Here a single coexistence line bifurcates into two
lines in a Y shape, as illustrated in Fig. 6(a). The state
on the top of the Y results from the break-up of a rel-
atively large domain while this domain flips as a whole
across the vertical line of the Y. A triple point has some
characteristics of a thermal first order transition where
two ordered state coexist with a disordered state.

There are several thousand lines in the ground state
picture in Fig. 5(a), but most of these lines have small
jumps in bond energy and magnetization. We believe
that only relatively large jumps contribute to the singu-
larity and, to emphasize these jumps, we simplify the pic-
ture by removing the lines representing small jumps. In
Fig. 5(b) is the same picture as Fig. 5(a) but a large num-
ber of lines with small bond energy jumps (δe < 0.03)
have been eliminated. This simplified picture reveals a
tree-like structure built from triple points. The first or-
der line separating the two ordered states is the trunk
of the tree, which bifurcates at the finite size critical
point, located at the center of the picture, into two main
branches. Above the finite size critical point the ground
states are disordered. The points labeled 1 and 2 cor-
respond to the large jumps with the same labels in Fig.
2. The inset in Fig. 5(b) shows the details of the finite
size critical point and two other triple ponts immediately
above and below it. In this paper the finite size criti-
cal point is identified as the degenerate point that maxi-
mizes the discontinuity in the bond energy, measured by
δe∗ = (|e+ − e0| + |e− − e0|)/2, where e+, e− are the
bond energies of the two ordered states, and e0 is the
bond energy of the disordered state, respectively.

We propose that the critical region of the ground state
picture can be rescaled in such a way that pictures for
various system sizes are statistically indistinguishable
from one another. The required scaling involves the
width of the pictured region WH in the H direction,
height W∆ in the ∆ direction and lower cut-off δemin

for coexistence lines retained in the picture. The scaling
of δemin should follow Eq. (10). The picture will include

(a)

(b)

FIG. 5: Ground states of a given realization (seed 1003) with
system size 323 in the H −∆ plane. (a) All the ground states
of a single realization with L = 32. The lines are coexistence
lines of two ground states. The thickness of a line is propor-
tional to the magnetization jump across the line.(b) The same
realization as in (a), but only coexistence lines with bond en-
ergy jumps δe > 0.03 are shown. Numbers 1 and 2 correspond
to the two largest jumps shown in Fig. 2. The inset in (b) is
a blow up of the region around the triple point identified as
the finite size critical point and also showing the triple points
immediately above and below it.
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(a) (b)

FIG. 6: (a) Three states are degenerate at a triple point. The
“+” and “−” sign are used to indicate the direction of spins
in a domain. The spins in the domain are all pointing up
(denoted as “++”) or all down (“−−”) in the ground states
below the triple point, while the domain breaks up (“+−”)
in the ground state on top of the triple point. (b) Four states
separated by two intersecting straight lines. The four states
differ from each other in two separate domains.

a scale invariant part of the critical region if W∆ scales
as ∆ − ∆c,

W∆ ∼ L−1/ν . (15)

The scaling of WH is expected to be the same as the
scaling of the external field H , which has been given by
Bray and Moore in their scaling theory of the RFIM7,

WH ∼ L(α+β−2)/ν (16)

In Fig. 9 the parameters of the pictures are scaled such
that δeminL(1−α)/ν, W∆L1/ν and WHL(2−α−β)/ν are all
held constant. Although different realizations have quite
different ground state patterns there is no apparent way
to distinguish between different system sizes.

In order to test the scaling of the ground state pictures
more quantitatively we measure [|dH/d∆|], the average
of the absolute value of the inverse slope of coexistence
lines near criticality (except for the first order line) as a
function of system size. The result is shown in Fig. 7.
We measure the inverse slope of coexistence lines rather
than the slope itself, because in some realizations the
slope is very large, and thus the average of d∆/dH is not
well-behaved. The slope of the best-fit line is −0.79 ±
0.04. From Eq. (15) and Eq. (16) we expect [|dH/d∆|] ∼
L(α+β−1)/ν. The measured value −0.79± 0.04 is close to
(α + β − 1)/ν, if (1 − α)/ν ≈ 0.84 as we have calculated
in Sec. II, and β ≈ 0 as generally accepted.

We then measure the strength of the external field at
the finite size critical point [|Hc|], which should have the
same scaling as WH , and show the result in Fig. 8. The
slope of the best-fit line is −1.60 ± 0.06, which is again
consistent with the expected value of (α + β − 2)/ν, if
β ≈ 0, and our measured values of exponents (1−α)/ν ≈
0.84, and 1/ν ≈ 0.8 are used.

4 5 6 7 8 9 10 20 30

0.08

0.1

0.2

0.4

 

 

[|dH/d |]

L

FIG. 7: Scaling of the average inverse slope of coexistence
lines near the finite size critical point (except for the first order
line). The slope of the best-fit line is −0.79 ± 0.04, which is
in agreement with the predicted value (α + β − 1)/ν.

4 5 6 7 8 9 10 20 30

0.01

0.1

 

 

[|Hc|]

L

FIG. 8: Scaling of the average strength of the extenal field
at the finite size critical point. The slope of the best-fit line is
−1.60 ± 0.06, which is in agreement with the predicted value
(α + β − 2)/ν.

IV. POSITIVE TEMPERATURE RESULTS

We have studied the RFIM at fixed disorder strength
of ∆0 < ∆c and zero external field for all T > 0 us-
ing the Wang-Landau algorithm22. The Wang-Landau
algorithm is a flat histogram Monte Carlo method that
also automatically determines the density of states g(E).
Thermodynamic quantities related to energy, such as the
specific heat, can then be derived from the density of
states at all temperatures. In order to get the magneti-
zation or susceptibility, we collected joint magnetization
and energy statistics. The algorithm smooths the energy
landscape and improves on the performance of the con-
ventional Metropolis algorithm. Using the method we
can determine the specific heat and susceptibility over a
broad temperature range for systems up to size 323. After
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(a) L=10 (b) L=10 (c) L=10

(d) L=20 (e) L=20 (f) L=20

(g) L=30 (h) L=30 (i) L=30

HL
2-a-b

DL
1/u

FIG. 9: Ground state pictures for different system sizes plot-
ted with scaled coordinates and lower bound for bond energy
jumps. Each figure shows the scaled ground state picture for
a single realization.

we obtain the density of states, we use the Metropolis al-
gorithm to obtain average spin configurations for selected
temperatures.

Our first observation is that for some large enough sys-
tems (≥ 163) and strong enough disorder, the specific
heat and the susceptibility display one or more sharp
peaks, as illustrated in Fig. 10. For a given realization,
the sharp peaks in the specific heat and the susceptibility
occur at the same temperatures. The sharp-peaked tran-
sitions have some first-order-like properties. For exam-
ple, the energy probability density p(E) = e−E/T g(E)/Z
displays double peaks, and the Binder cumulant B(T ) =
1 − 〈m4〉/3〈m2〉 is negative at the temperature of the
sharp peaks. The angular bracket stands for a thermal
average. The double peaked energy distribution and neg-
ative Binder cumulant are shown for a 163 system (seed
1013) in Fig. 11. These first-order-like features result

TABLE V: Number of realizations that have a double-peaked
energy probability densities at their specific heat peaks (Ndp),
and total number of realizations simulated (Ntot) as a function
of disorder strength ∆0 and system size L.

L ∆0 Ndp Ntot Ndp/Ntot

8 1.5 0 256 0%

8 2.0 0 64 0%

16 1.5 6 96 6.25%

16 2.0 21 96 21.8%

32 1.5 3 9 33.3%

32 2.0 6 9 66.6%

from the coexistence of two states that differ by flipping
a large domain as we will see more clearly later. Prelimi-
nary statistics from a small sample of realizations suggest
that the fraction of realizations showing sharp peaks in-
creases with the system size and the strength of disorder,
as shown in Table V. Here we call a transition “sharp” if
the sampling probability has two peaks at the transition
temperature.

The sharp peaks occur at different temperatures with
different height for different realizations, and they are
smoothed out by an average over realizations. We show
in Fig. 12 the average specific heat for all of the 163 sys-
tems we have simulated at ∆0 = 2.0. Though there are
21 sharp-peaked realizations out of a total of 96 simu-
lated (see Table V), the average specific heat is a smooth
curve. The difference between the average specific heat
and that of individual realizations shows that there is no
self-averaging at positive temperature, similar to what
we have already seen at zero temperature. The lack of
self-averaging has also been observed in the bimodal dis-
tribution RFIM30.

V. RELATION BETWEEN GROUND STATES

AND THERMAL STATES

The zero temperature fixed point picture of the RFIM
phase transition predicts that the behavior in the critical
region at positive temperature is determined by the com-
petition between couplings and random fields with ther-
mal fluctuations serving only to renormalize the strength
of these quantities. The results presented in this section
suggest that a strong version of the zerio temperature
scenario holds for individual realizations of normalized
random fields. We will show that the sharp peaks in the
thermodynamic quantities can be matched one to one
with the large jumps at zero temperature. Furthermore,
the spin configurations on either side of the sharp peaks
can be mapped onto the ground states on either side of
the corresponding large jumps. Similar correlations be-
tween ground states and thermal states were found in one
dimension31.

We illustrate the above statement for one 323 realiza-
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(a) 163, ∆0 = 2.0, seed:
1013
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(b) 163, ∆0 = 2.0, seed:
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(c) 163, ∆0 = 2.0, seed:
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(d) 163, ∆0 = 2.0, seed:
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(e) 323, ∆0 = 1.5, seed:
1000
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(f) 323, ∆0 = 1.5, seed:
1000
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(g) 323, ∆0 = 2.0, seed:
1003
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(h) 323, ∆0 = 2.0, seed:
1003

FIG. 10: The specific heat C and the susceptibility χ of four
realizations of the RFIM. The sharp peaks in the specific heat
and the susceptibility of a given realization occur at the same
temperatures.

-12000 -11000 -10000 -9000
0.0

0.2

0.4

0.6

0.8

1.0

1.2

 

 

p(
E)

 (1
0-3

)

E

(a) 163, ∆0 = 2.0, seed:
1013
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(b) 163, ∆0 = 2.0, seed:
1013

FIG. 11: The first-order-like properties of sharp peaks. (a)
shows the double-peaked sampling probability p(E) at the
sharp peak for the system in Fig. 10(a). (b) shows the Binder
cumulant B as a function of temperature for the same system,
which becomes negative at the sharp-peaked transition.
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FIG. 12: The average specific heat of 96 realizations of size 163

and disorder ∆0 = 2.0. Although some of these realizations
have sharp peaks, the averaged specific heat is smooth.

tion (∆0 = 2.0, seed 1003) whose specific heat and sus-
ceptibility are shown in Fig. 10(g) and 10(h), respectively.
There are two major peaks in the specific heat and the
susceptibility, and each of them are related to the two
major jumps in the bond energy and the magnetization
at zero temperature, as shown in Figs. 2 and 5(b) (labeled
as 1 and 2).

The connection between the zero temperature transi-
tions and positive temperature transitions is confirmed
by the correlation between the average spin configura-
tions near the positive temperature transition and the
ground states near the zero temperature transition. For
a single realization of random fields, we obtain the ther-
mally averaged spin configuration at a given temperature
near the peaks using the Metropolis algorithm. We start
our simulation from the ground state, and then employ
the Wang-Landau algorithm without modifying the al-
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ready obtained density of states, until the microstate falls
into an energy bin that has a significant sampling proba-
bility at the given temperature. The Metropolis updates
are then used to obtain the averaged spin configuration.

Figures 13(d), 13(e) and 13(f) show one plane through
the system with ∆0 = 2.0 and at temperatures just be-
fore peak 1 (T = 2.2), just after peak 1 (T = 2.5), and
just after peak 2 (T = 2.8), respectively. The differ-
ence between the states shows that the sharp peak cor-
responds to flipping a relatively large domain. It is evi-
dent that these three states are strongly correlated with
the ground state spin configuration before the jump 1
(∆ = 2.36), just after jump 1 (∆ = 2.41), and just after
jump 2 (∆ = 2.54), as shown in Fig. 13(a), 13(b) and
13(c), respectively. (The labels of jumps and peaks are
given in Figs. 2, 5(b) and 10(g).)

Some correlation between ground states and thermal
states persists to much smaller values of ∆0 in a regime
where the thermodynamic properties no longer display
sharp peaks. Figure 13(g), 13(h) and 13(i) show the same
realization of disorder and the same plane through the
system but with ∆0 = 0.5. Here the specific heat has
a rounded peak at T = 4.375. Figures 13(g), (h) and
(i) correspond to temperatures 4.0, 4.3 and 4.45, respec-
tively. Although there is considerable thermal “blurring”
in these pictures, evidence of the ground states is unmis-
takable.

A quantitative characterization of the correlation be-
tween ground states and thermal states can be obtained
from the correlation measure,

q(∆) =
1

L3

∑

i

[sgn(〈si|∆, 0〉〈si|∆0, T
∗〉)] (17)

where the square brackets are an average over realiza-
tions of disorder and 〈si|∆, T 〉 is the thermal average of
the spin at the ith site at disorder ∆ and temperature
T or, if T = 0, it is the ground state spin value. For
each realization, the temperature T ∗ = Tmax + 0.1 where
Tmax is the temperature of the maximum of the specific
heat. Thus, for each realization, we pick a thermal state
just above the transition temperature. Figure 14 shows
q vs. ∆ for sizes 163 and 323 and ∆0 = 1.5, with 96
realizations for size 163 and 9 for size 323. A peak in
the correlation occurs at ∆ ≈ 2.65 where q ≈ 0.75. The
value, ∆ ≈ 2.65, is about 0.15 larger than the average
∆ at the largest discontinuity in the bond energy for
system size 323. The inset in Fig. 14 shows the aver-
age correlation between thermal states of one realization
and ground states of another for size 163, which is nearly
zero as expected. A second measure, q∗ is obtained by
choosing the value ∆∗ in Eq. (17) for each ground state
realization to give the largest correlation to the thermal
state at T ∗ and then averaging over realizations. We
find that for size 323, q∗ = 0.80 ± 0.06 for ∆0 = 1.5
and q∗ = 0.85±0.05 for ∆0 = 2.0. Together, these result
provide quantitative confirmation that the thermal states
at temperatures slightly above the thermal critical point

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

FIG. 13: Spin configurations near the critical points at zero
temperature and finite temperatures for a single realization
of normalized random fields. Each panel is the same plane
of a 323 realization with black representing spin down; white,
spin up; and shades of gray, the thermally averaged spin state.
From left to right in the top two rows, panels are at ∆ (T )
before, between and after jumps (peaks) 1 and 2 in Fig. 5(b)
(Fig. 10(g)). Specifically, panels (a), (b) and (c) are ground
states at ∆ = 2.36, 2.41 and 2.54, respectively. Panels (d), (e)
and (f) are at ∆ = 2.0 and T = 2.2, 2.5 and 2.8, respectively.
Panels (g), (h) and (i) are at ∆ = 0.5 and temperatures 4.0,
4.3 and 4.45, near the peak in the specific heat at T = 4.375.

are strongly correlated with the ground states at disor-
der strength slightly higher than the zero temperature
critical point.

The correlation between thermal states and ground
states near the transition is consistent with, but not pre-
dicted by the zero temperature fixed point hypothesis34.
This hypothesis predicts that the renormalization group
flow is to a zero temperature fixed point so that the zero
temperature and positive temperature transitions are in
the same universality class. However, it does not predict
anything about the spin configurations along the critical
line for individual realizations of disorder. If the corre-
lation of spin configurations along the critical line that
we observe for small systems persists to large systems,
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FIG. 14: Disorder averaged correlation q of a thermal state
just above the transition temperature at ∆0 = 1.5 to ground
states at disorder strength ∆ for the same realization of ran-
dom fields. Solid squares for size 163 and open circles for size
323. Only a few error bars are drawn to make the figure eas-
ier to read. The inset shows the correlation of thermal states
with ground states of a different random field realization.

it will support the following strong version of the zero
temperature fixed point scenario: for a given realization
of normalized random fields, the sequence of states near
the zero temperature critical point obtained by varying
∆ for T = 0 can be mapped onto the sequence of thermal
states near the critical point obtained by varying T for
fixed values of ∆0, ∆0 < ∆c.

VI. SUMMARY

In this paper we have numerically studied the RFIM at
zero temperature and positive temperature. At zero tem-
perature we have extracted critical exponents from the
finite size scaling of the several largest jumps in the bond

energy. Our measured value of exponents (except ν) are
mostly consistent with previous values but have better
accuracy. We have found that the heat capacity expo-
nents α is near zero. We have also portrayed all ground
states within a small critical region on the H − ∆ plane
for up to 323 systems. The ground state pictures shows a
tree-like structure if small jumps are removed. Although
the ground state pictures are not self-averaging, they sat-
isfy statistical scaling relations. That is, within a scaled
region in H−∆ plane, with scaled lower limit of bond en-
ergy jumps chosen, the ground state pictures of different
system sizes are statistically similar.

We have used the Wang-Landau algorithm to study
the RFIM at positive temperature. This algorithm en-
abled us to obtain the density of states and to derive
the specific heat and susceptibility over a broad range
of temperatures for systems up to size 323. We have
observed that for some disorder realizations the transi-
tion is characterized by sharp peaks in the specific heat
and the susceptibility. The sharp-peaked transition has
some first-order-like features and the fraction of realiza-
tions that have sharp peaks increases as the system size
or the strength of disorder increases. The sharp peaks in
the thermodynamic functions result from flipping a large
domain and are related to large jumps in bond energy
and magnetization at zero temperature. More specifi-
cally, the thermal average spin configurations near the fi-
nite temperature transition are correlated to the ground
states near some corresponding large jump at zero tem-
perature. This phenomenon suggests a strong version of
the zero temperature fixed point scenario. It remains to
be seen whether the correlation between critical ground
states and thermal states persists to large systems.
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