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Determination of lead in wine and rum samples by flow injection-hydride
generation-atomic absorption spectrometry
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a b s t r a c t

A method for direct determination of lead in wine and rum samples was developed, using a flow injection 
hydride generation system coupled to an atomic absorption spectrometer with flame-quartz atomizer 
(FI-HG-AAS). Lead hyride (PbH4) was generated using potassium ferricyanide (K3Fe(CN)6), as oxidant and 
sodium tetrahydroborate (NaBH4) as reductant. Samples were acidified to 0.40% (v/v) HCl for wine and to 
0.30% (v/v) HCl for rum, which were then mixed on-line with 3% (m/v) K3Fe(CN)6 solution in 0.03% (v/v) 
HCl prior to reaction with 0.2% (m/v) alkaline NaBH4 solution. Lead contents of a rum and two different red 
wine samples were determined by FI-HG-AAS agreed with those obtained by ICP-MS. The analytical figures 
of merit of method developed were determined. The calibration curve was linear up to 8.0 �g L−1 Pb with 
a regression coefficient of 0.998. The relative error was lower than 4.58%. The relative standard deviation 
(n = 7) was better than 12%. A detection limit of 0.16 �g L−1 was achieved for a sample volume of 170 �L.

1. Introduction

Due to the increasing global environmental pollution, system-
atic monitoring of toxic heavy metals in food and beverages is very
important to protect the public health against the dietary exposure
to these metals. Lead (Pb) is a widely known toxic heavy metal
whose toxic properties are well-documented [1,2]. An excess of
ingested lead is a real health hazard affecting both the nervous sys-
tem and the biosynthesis of hemoglobin [1]. In response to this
health concern, the threshold limit value of Pb in wine has been
reduced progressively by the International Organization of Vine
and Wine (OIV), and is at present 200 �g/L [3]. Nevertheless, the
permissible level of Pb in wine varies between 200 and 300 �g L−1

in different countries, which are below the detection limits of con-
ventional flame atomic absorption spectrometry (FAAS). The use
of FAAS for determination of lead requires either preconcentra-
tion or hydride generation procedure. Hydride generation is one of
the most popular analytical methods for the determination of trace
or ultratrace levels of several hydride-forming elements, including
lead in combination with various atomic spectrometry techniques
[4]. Because, it improves transfer efficiency of the gaseous lead
hydride (plumbane) into the quartz tube atomizer that in turn
allows lower detection limits to be achieved for the determina-
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tion of Pb. In addition, hydride generation can readily separate the
species of interest from the undesirable matrix components.

Little work has been done on lead hydride generation in com-
parison with other hydride forming elements, such as arsenic,
selenium and antimony; most likely due to the low yield and ther-
mal instability of plumbane (PbH4) [4,5]. Generation of lead hydride
depends largely on the experimental conditions used, therefore,
previous studies have mainly focused on the nature of the acids
and oxidizing agents, and their roles in the generation of plumbane.
Most common oxidizing agents used in presence of various acids
include hydrogen peroxide [6–9], ammonium or sodium perox-
odisulphate [6,10,11], potassium dichromate [6,8,11] and potassium
ferricyanide [11,12]. Depending on the type of oxidizing agent, it
was reported that the use of acidic oxidizing media increased the
reaction rate and sensitivity via efficient oxidation of Pb(II) to an
unstable intermediate, Pb(IV), to form plumbane, PbH4, [5,6,13,14].
Better sensitivity was reported by using potassium ferricyanide,
K3Fe(CN)6), a relatively mild oxidant [15–20]. Lead hydride gen-
eration with a mixture of potassium ferricyanide and hydrochloric
or nitric acid has been successfully applied to the determination of
Pb in various samples, including soil and sediments [18,19], calcium
matrices [20,21], urine [17], dialysis concentrates [15], geochemical
deposits and paint [22].

The generation of lead hydride is also an attractive method for
analysis of non-aqueous solutions for Pb. The hydride generation
has been used for determination of Pb in gasoline [23] and in chloro-
form extracts of lead pyrrolidine-1-carbodithioate from particulate
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matter [24]. A great deal of effort has been spent to develop a
robust and reliable method for analysis of alcoholic beverages, such
as wine. Wine is a complex sample containing a variety of inor-
ganic as well as organic substances in an ethanol-aqueous solution.
There are few studies of lead hydride generation in wines those that
include the batch mode generation of lead hydride with or without
mineralization of the samples [9,25–29].

In this paper, we desribed a method developed to achieve direct
determination of Pb from alcoholic drinks by hydride generation
FAAS using flow injection technique which, compared to batch
or off-line methods, affords better precision and freedom from
interferences in hydride generation. The effects of various parame-
ters, such as sample acidity, potassium ferricyanide concentration
and flow rate, argon stripping gas flow rate, were discussed on
the generation of plumbane. The results obtained from wine and
rum samples were compared with those from an ICP-MS reference
method [30].

2. Experimental

2.1. Reagents

All reagents were of analytical-reagent grade. High-purity
deionized water (18 M� cm) was used throughout the experiments.
A stock solution of 1000 mg L−1 of lead (Aldrich) was used to
prepare standard and test solutions. Sodium borohydride solu-
tion (NaBH4, 0.2%, m/v) was freshly prepared daily by dissolving
the appropriate amount of NaBH4 (98% pure, Alfa) in 0.05% (m/v)
sodium hydroxide solution. Potassium ferricyanide solution (3%,
m/v) was prepared freshly by dissolving the appropriate amount
of K3Fe(CN)6 (Aldrich) in 0.03% (v/v) HCl solution (Fisher Scien-
tific).

2.2. Apparatus

A PerkinElmer (Norwalk, CT, USA) Model 1100 B atomic absorp-
tion spectrometer with deuterium background correction was
used. An intensitron (PerkinElmer) lead hollow cathode lamp,
operated at 7 mA, was used at 283.3 nm with a 0.7-nm spectral
bandpass. Data were recorded by an Epson Model LQ-850 printer.
For ICP-MS determinations of Pb in wine samples, a PerkinElmer
SCIEX Elan 5000 ICP-MS instrument was used.

A T-shaped quartz tube (PerkinElmer) was used as the atom-
ization cell that was mounted on an acetylene/air flame. An
air-acetylene flame was employed with gas flow rates of 10.0 and
1.5 L min−1 for air and acetylene, respectively. The efficiency of the
atomization within a quartz tube was dependent on the physi-
cal state of the quartz surface [14,18]. Further, transfer of aqueous
components and reagents from the gas–liquid separator to the inte-

rior of the tube reduced the sensitivity gradually; therefore, the
quartz tube was soaked in 40 (v/v) hydrofluoric acid for 15 min each
day.

The schematic diagram of the flow injection manifold built on
a PerkinElmer FIAS 200 unit is shown in Fig. 1. Pump 1 was used
for the sample solution with a flow rate of 5.4 mL min−1 (pump
tube i.d., 1.52 mm, color code; blue-yellow). Pump 2 delivered the
carrier (deionized water) at 5.4 mL min−1 (color code of pump
tube; blue-yellow), the potassium ferricyanide solution (oxidant)
at 11.4 mL min−1 (color code of pump tube; purple-purple) and
the sodium borohydride solution at 5.4 mL min−1 (color code of
pump tube; blue-yellow). All connecting tubes were made up of
0.8 mm i.d. PTFE tubing. A PerkinElmer gas–liquid separator with
glass beads (PerkinElmer part no. B019-3772) was used. The chem-
fold was also from PerkinElmer. The flow rate of argon gas as carrier
was 22 mL min−1, unless stated otherwise. The size of the sample
loop was 170 �L.

2.3. Procedure

Red wine (Italian and Californian) and rum samples purchased
from a local store were analysed for Pb content directly after dilut-
ing with water and acidifiying with concentrated hydrochloric
acid. One milliliter of Italian red wine was taken from the bot-
tled wine using an Eppendorf micropipet and transferred into a
10 mL volumetric flask. The sample was acidified by adding 40 �L
of concentrated HCl and then diluted to the mark with the deionized
water. The same procedure was applied to 1.5 mL of a Californian
red wine. For the determination of Pb in rum from Trinidad, 10 mL
of rum sample from the bottled solution was acidified with 30 �L of
concentrated HCl. The Pb content of the samples was determined
by FI-HG-AAS method optimized in this study. External calibration
was performed with aqueous standards that ranged from 0.0 to
8.0 �g L−1 Pb prepared in 0.30% (v/v) HCl solution.

2.4. Method development and optimization

There were a number of considerations for the optimization
study: detection limit (LOD), signal to noise ratio (S/N) and through-
put. One goal was to obtain sufficient detection capability to allow
the measurement of lead at concentrations of around 1 �g L−1, this
meant that a detection limit of about 0.1 �g L−1 was desirable. For
measurements to be useful, it was considered that a relative stan-
dard deviation (RSD) of about 10% was acceptable, and that the
basewidth of the peak should not be wider than 3.0 s. This lat-
ter parameter was considered of minor importance in comparison
with those of LOD and S/N. The optimization strategy adopted, for
reasons discussed below, was the single-cycle alternating variable
search with peak height as the figure of merit to be maximized.

Fig. 1. Schematic diagram of the flow injection manifold for the determination of Pb by hydride generation AAS. S: sample, SL: sample loop; MC: mixing coil, CF: chemfold,
GLS: gas–liquid separator, W: waste, QT: quartz T-atomizer.



Conditions which produced double peaks or other distorted peak
shapes were considered sub-optimal as were conditions which pro-
duced relative standard deviation of greater than 10%.

The relevant parameters include manifold design, sample vol-
ume, flow rates and concentrations of the various reagents and
carrier streams, lengths of tubing between confluence points, argon
gas flow rate, gas–liquid separator design, dimensions of transfer
tubing, atomizer design and temperature. The starting conditions
were selected on the basis of a previous work [12].

A three-line manifold was chosen in which the sample was
injected into a carrier, merged with oxidant, then with hydride gen-
eration reagent and with finally argon stripping gas. This design
avoided the need for addition of oxidant to the sample before
injection into the manifold. The minimum dilution in the manifold
would be obtained by a design in which a large volume was injected.
Residence times can be controlled by variation of both tube dimen-
sions and flow rates. Reagent concentrations in the manifold are
controlled by concentrations in the reservoirs and the flow rates
of the streams which merge at the confluence points. Some fea-
tures of the gas–liquid separation can be controlled by the flow
rate of argon, which also influences the transfer to the atomizer
and dilution in the gas phase.

2.5. Initial optimization of conditions

A 4 �g L−1 Pb test solution in 0.3% (v/v) HCl was used to opti-
mize the flow rate of argon stripping gas, the volume of sample,
the length of mixing coil and the length of reaction coil. Solutions
of K3Fe(CN)6 (3% m/v) and NaBH4 (0.2% m/v) used in these exper-
iments were prepared in 0.03% (v/v) HCl and 0.05% (m/v) NaOH,
respectively.

Initially, a flow rate was set to 4.2 mL min−1 for all solutions. The
argon carrier gas flow rate was varied from 10 to 100 mL min−1 to
examine the effect on the peak height absorbance of Pb. The oxi-
dation of Pb(II) to Pb(IV) by K3Fe(CN)6 occurs within the mixing
coil, and thus, the length of mixing coil (0.8 mm i.d. PTFE tubing)
was evaluated between 25 and 75 cm to find the optimum length
that ensures quantitative oxidation of lead. The length of the reac-
tion coil (0.8 mm i.d. PTFE) was also varied between 15 and 30 cm
to affect the generation of plumbane (PbH4). Finally, the volume of
sample loop was varied from 100 to 400 �L to affect the sensitivity
and peak height signal shape.

The height of the absorbance signal was strongly dependent
on the flow rates of the carrier including sample and potassium
ferricyanide (oxidant) solutions. Thus, in the second stage of the
optimization, the flow rates of these solutions were optimized by
varying from 4.2 to 11.4 mL min−1 for carrier and 4.2–12.6 mL min−1

for potassium ferricyanide. The flow rate of the reductant (NaBH4)
was also examined for efficient generation of plumbane. Acidity of
the sample solution was another critical factor that influenced the
generation lead hydride [12]. Thus, the effect of hydrochloric acid
concentration was studied from 0 to 1% (v/v) HCl for sample solu-
tions prepared in water and ethanol, and for 0.3% (m/v) K3Fe(CN)6
solution. The concentration of K3Fe(CN)6 required to convert Pb(II)
to Pb(IV) was optimized by increasing the concentration from 1 to
10% (m/v) in 0.03% HCl solution. Sodium borohyride concentration
was adopted as 0.2% (m/v) from a previous work [12].

The temperature of the atomization cell affects the complete
atomization of Pb from plumbane, which is controlled by the acety-
lene/air composition of the flame [5]. To optimize the atomization
temperature, the flow rate of acetylene was varied between 2.0
and 3.5 L min−1 by maintaining the air-flow at 8 L min−1; the peak
height absorbance of Pb from atomization of PbH4 was monitored
for maximum sensitivity. Then, the flow rate of air was investigated
in range of 8–12 L min−1 at the optimum acetylene flow rate. This

optimization was also carried out with sample solutions prepared
in ethanol.

2.6. Interferences

Ethanol, potassium tartrate, dextrose or sugar and tartaric acid
are the major components of alcoholic beverages (e.g., wine and
rum). The performance of the procedure due to the interferences
caused by these species was investigated for each individual com-
ponent separately. Individual components were deemed not to
cause interference if the absorbance was within ±5% of that from
Pb in aqueous solution. The tolerance limits to the interferents,
expressed as the maximum concentration with no significant dele-
terious effect, were also determined.

2.7. Method validation

The accuracy of the method was validated by the analysis of
wine and rum samples spiked with Pb. To do this, 1.5 mL of Califor-
nian wine and 1 mL of Italian wine were first acidified with 40 �L of
concentrated HCl. The Californian wine samples were spiked with
either 20, 40 or 60 �L of 1 �g mL−1 Pb solution, while those of Ital-
ian wine were spiked with either 10, 20, 30 or 40 �L of 1 �g mL−1

Pb solution. The solutions were diluted to 10 mL with water yield-
ing Pb spikes either 2.0, 4.0, and 6.0 �g L−1 for the Californian wine,
and 1.0, 2.0, 3.0 or 4.0 �g L−1 for the Italian wine. In the case of rum,
10 mL of rum sample was first acidified with 30 �L of concentrated
HCl and then spiked with either 10, 20, 40 and 60 �L of 1 �g mL−1

Pb solution that introduced either 1.0, 2.0, 4.0 or 6.0 �g L−1 Pb to the
rum sample. After these simple pre-treatments, samples were ana-
lyzed for Pb by the hydride generation AAS. Calibration was made
by external standards ranging from 0.0 to 8.0 �g L−1 Pb prepared in
0.30% (v/v) HCl.

The results of the hydride generation method were also verified
by the analysis of the samples using the reference method by ICP-
MS [30]. The reference method was based on the dilution of the
wine and rum solutions at one-to-two ratio (1:2) with deionized
water. Calibration standards were prepared in water and ethanol.
Ethanol content was about 5–6% (v/v) for matrix matching of the
alcohol content of the 1:2 diluted wine samples. For the rum, the
content of alcohol was about 20% (v/v).

3. Results and discussion

3.1. Effects of argon flow rate, mixing coil, reaction coil and
sample volume

The effect of argon stripping gas flow rate on the peak height
absorbance was evaluated by varying from 10 to 100 mL min−1.
Maximum absorbance was obtained between 20 and 25 mL min−1.
The flow rate was maintained at 22 mL min−1 throughout the study.
While the low absorbance at lower argon flow rates was thought to
occur due to the decomposition of relatively unstable PbH4 before
reaching the atomizer, that at higher flow rates was most likely due
to the deposition of the salts on the inner surface of quartz tube.
Above 60 mL min−1, there was a substantial bubble formation in
the gas–liquid separator that resulted in the transfer of the liquid
droplets to the atomizer tube.

The optimum length of the mixing coil was chosen as 60 cm to
ensure complete mixing and in turn oxidation of Pb(II) to Pb(IV)
by K3Fe(CN)6 solution. However, it should be noted that the peak
height absorbances obtained with 25–70 cm long mixing coils were
virtually the same. Conversely, the length of the reaction coil on
the chemfold had no significant effect over the range (15–30 cm)
investigated, indicating that all Pb(IV) was fully converted to PbH4.



Table 1
The effect of the flow rates of carrier and 3% (m/v) K3Fe(CN)6 solutions on the
absorbance of Pb (Pb: 4 �g L−1, flow rate of NaBH4: 5.4 mL min−1)

Step Flow rate (mL min−1) Relative absorbance

Carrier K3Fe(CN)6

1 4.2 4.2 0.50
2 5.0 5.0 0.65
3 5.0 11.4 0.91
4 11.4 11.4 1.00
5 11.4 12.6 0.94

A 20 cm long PTFE tubing (0.8 mm i.d.) was used as reaction coil
thereafter. Similarly, no significant variations were observed in the
peak height absorbance when the volume of sample (e.g., volume
of sample loop) increased from 100 to 200 �L. Absorbance peaks
broadened above 200 �L and double peaks were observed with fur-
ther increases in the sample volume. To avoid these problems, the
volume of the sample loop was adjusted to 170 �L. Flow rates of the
solutions were optimized using the volume of the sample loop.

3.2. Effect of carrier, oxidant and reductant flow rates

The dilution/dispersion of the sample within the reagent and
carrier streams reduces the analytical signal (e.g., absorbance) in
a flow injection system. In hydride generation, the dilution within
the gas–liquid separator also adds to the reduction in the sensitiv-
ity. The flow rates of the solutions are therefore as critical as that
of argon stripping gas to transport PbH4 to the gas–liquid separa-
tor with minimum dilution/dispersion following the reactions with
K3Fe(CN)6 and NaBH4. The results summarizing the effects of the
flow rates of the solutions on the peak height absorbance are given
in Table 1. The absorbance of Pb increased with increasing flow
rates of both carrier stream and the K3Fe(CN)6 solution. Compari-
son of the absorbances obtained in Steps 1, 2 and 4, which all had
the same degree of dilution (1:1) suggests that there was a sub-
stantial dispersion of the sample at lower flow rates. The flow rate
of K3Fe(CN)6 solution had the highest influence on the signal as
it could clearly be seen from the comparison of the absorbances
obtained in Steps 2 and 3. Despite a dilution greater than two-fold,
the absorbance at Step 3 was higher by about 30% than that at Step
2. Comparison of the absorbances at Steps 3 and 4 also supports
this finding; absorbance at Step 3 was lower by only 10% than that
at Step 4. Another implication of the latter is that increasing or
decreasing the flow rate of the carrier was not very influential on
the absorbance signal provided that flow rate of K3Fe(CN)6 solution
was at the optimum value. As for the concentration of K3Fe(CN)6,
the optimum value was around 3% (m/v) that afforded a complete
oxidation of Pb(II) to Pb(IV). Unlike K3Fe(CN)6, the flow rate of the
sodium borohydride (NaBH4) solution did not provide any signifi-
cant improvement in the absorbance when it was varied between
4.2 and 11.4 mL min−1. Similarly, its concentration was sufficient at
0.2% (m/v); maximum concentration examined was 2.0% (m/v). The
flow rate of NaBH4 was set to 5.4 mL min−1 and the concentration
was kept at 0.2% (m/v) to minimize contamination from NaBH4.

3.3. Effects of sample acidity and atomization temperature

The efficiency of generation of PbH4 is highly dependent of the
acidity of the sample and oxidant solutions (K3Fe(CN)6), which in
turn determines the acidity of the reaction medium. The results for
the effect of the initial acidity (HCl %) of the sample and potassium
ferricyanide are illustrated in Fig. 2. The optimum concentration
of HCl was about 0.30% (v/v) for samples prepared in water and
ethanol, while that for K3Fe(CN)6 was 0.03% (v/v) HCl. Double peaks

Fig. 2. Variation of Pb absorbance with the concentration of HCl (�) in water, (©)
in ethanol, (�) in 3% (m/v) K3Fe(CN)6.

formed for sample solutions when the acidity of K3Fe(CN)6 solution
increased to 0.30% (v/v) HCl (same acidity with sample solution). As
the concentration of HCl in the sample solution increased to 0.40%
(v/v) HCl, the absorbance peaks first became flat-top and broadened
that consequently resulted in the loss of peak height sensitivity. Fur-
ther increase in HCl concentration to 0.50% (v/v) had the same effect
as that observed with K3Fe(CN)6 in 0.30% (v/v HCl); double peaks
formed. The peaks separated from each other as the acid concen-
tration increased, which was not investigated in our study. There
was not any significant difference in the peak height absorbance
whether the carrier stream was deionized water or 0.30% (v/v) HCl.
The same behavior was observed for solutions prepared in ethanol,
thus, water was used throughout as the carrier.

The peak height absorbance of Pb from aqueous solutions was
not affected from the variations in acetylene flow rate between 2
and 3.5 L min−1 when air-flow rate was 8 L min−1. However, carbon
deposition on the inner surface of the quartz tube was observed
when acetylene flow rate was greater than 2.5 L min−1. Changing
the air-flow rate from 8 to 12 L min−1 did not affect the absorbance
at all. The optimum flow rates of the flame gases were adjusted
to 2.5 and 10 L min−1 for acetylene and air, respectively. For solu-
tions prepared in ethanol, the composition of acetylene—air was
reoptimized as 1.5–10 L min−1 (highly oxidizing) to avoid the high
background originated from the organics components of the sam-
ples.

3.4. Effects of major components in wine

The major components of wine and rum are ethanol, potassium
tartrate, dextrose or sugar, and tartaric acid. No significant effects
were observed from ethanol (up to almost 100%), potassium tar-
trate (up to 1%, m/v) and dextrose (up to 5%, m/v) on the generation
of lead hydride and consequently the absorbance. The results for
ethanol were different from that reported by Cacho et al. [25], who
observed interference from ethanol using H2O2 as oxidizing agent
in analysis of wine samples for lead. This was probably due to the
differences in the performance of the oxidizing agents, K3Fe(CN)6
and H2O2, used to convert P(II) to Pb(IV). Flame fuel/air ratio may
have also contributed to the interference from ethanol reported
by Cacho et al. [25], as it necessitates a highly oxidizing flame to
overcome the high background. In the presence of tartaric acid,
the peak height absorbance of Pb reduced due to the tartaric acid
concentration exceeded 0.4% (m/v) in the sample solution. The
reduction in the signal profile was similar to that observed with HCl
concentration greater than 0.4% (v/v). When compared with potas-
sium tartrate, the suppression or decrease in hydride generation



Table 2
The results for tests of addition/recovery for lead spiked into rum and diluted wine
samples (n = 3)

Sample Pb Concentration (�g L−1) Recovery (%)

Added Found

Californian red wine (1.5:10 diluted) 0.0 0.69 –
2.0 2.65 98
4.0 4.85 104
6.0 7.11 107

Italian red wine (1:10 diluted) 0.0 2.47 –
1.0 3.47 100
2.0 4.67 110
3.0 5.59 104
4.0 6.51 101

Rum (no dilution) 0.0 1.22 –
1.0 2.26 104
2.0 3.18 98
4.0 5.03 95
6.0 7.18 99

efficiency with tartaric acid was attributed to the increased acidity
of the sample solution as also reported in a previous work [25].

3.5. Analytical figures of merits

In the presence of the matrices, the recoveries of Pb from wine
and rum samples spiked with Pb were found to test of accuracy of
the proposed method. Recoveries obtained by external calibration
from the spiked wine samples varied between 98 and 110%, and
that for the rum were between 95 and 104% (Table 2).

The peak height absorbance signal was linear up to 8.0 �g L−1

Pb with a regression coefficient of 0.998. The characteristic con-
centration (0.0044 absorbance) was 0.56 �g L−1 Pb. The detection
limit was 0.16 �g L−1 Pb, which was calculated as three times the
standard deviation of the absorbance of blank solutions (n = 10).

3.6. Determination of Pb in red wine and rum

Red wine has a complex matrix because of the presence of the
organic components whose effects were discussed above. Another
major hurdle in the analysis of red wine by hydride generation was
the foaming within the gas–liquid separator. When the red wine
was diluted with water at least 1:7 ratio, the bubbling/foaming was
eliminated. Because the sample acidity was very critical for efficient
generation of PbH4, the effect of acidity for the diluted samples was
reexamined between 0.20 and 0.50% (v/v) HCl. The best peak height
absorbance was achieved at 0.40% (v/v) HCl. The absorbance was
lower at lower acidity, and peak broadening and splitting occurred
above 0.40% (v/v) HCl. For rum, no dilution was made and 10 mL
of bottled rum was acidified to 0.30% (v/v) HCl by adding 30 �L of
concentrated HCl.

The results from the analysis of diluted red wine samples acidi-
fied to 0.40% (v/v) HCl and rum sample in 0.30% (v/v) HCl are given
in Table 3. The content of lead obtained by FI-HG-AAS was verified
by analyzing the diluted wine and rum samples by ICP-MS using the
reference method [30]. There was no significant difference between

Table 3
Determination of Pb in wine and rum samples by FI-HG-AAS and ICP-MS (P = 0.95)

Sample Pb concentration (�g L−1) Error (%)

HG-AAS (n = 7) ICP-MS (n = 4)

Californian red wine 4.79 ± 0.43 4.99 ± 0.10 −4.01
Italian red wine 25.8 ± 1.5 25.2 ± 2.8 +2.38
Rum 1.25 ± 0.14 1.31 ± 0.20 −4.58

the Pb concentrations of the wine and rum samples, determined by
FI-HG-AAS and ICP-MS at 95% confidence level. The relative errors
were in range of −4.58% and +2.38%. The relative standard devia-
tions were 6.1% for Italian wine (n = 7), 9.6% for Californian wine
(n = 7) and 12.0% for the rum (n = 3).

4. Conclusion

A flow injection hydride method is described for determination
of Pb in wine and rum samples by FAAS. The method is simple, fast
and provides accurate results. Sample pretreatment, except dilu-
tion, is not necessary. Possible background interferences from the
organics and ethanol can easily be eliminated by adjusting acety-
lene/air flow rates in the flame heated the quartz tube.

The method described was used to determine lead in a limited
number of alcoholic beverages. Therefore, the application of the
method in analysis of other alcoholic beverages requires special
consideration because of different complex matrices, changed from
sample to sample. It is concluded that the method can be used for
routine analysis of high alcohol (e.g., ethanol) content beverages for
Pb.
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