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Several procedures, involving various solvents and ultrasound, were evaluated for the extraction of four

arsenic species, arsenite (As(III)), arsenate (As(V)), monomethylarsonate (MMA) and dimethylarsinate

(DMA), from a silt loam soil to which species had been added at a concentration of 20 mg kg�1. The

best extraction was by a two-stage procedure: shaking for 24 h in the presence of 0.1 mol l�1 phosphoric

acid followed by shaking for 24 h in 1.0 mol l�1 sodium hydroxide solution. The arsenic species in the

extracts were separated by high performance ion-exchange liquid chromatography, derivatized to
hydrides by reaction with tetrahydroborate(III) in a multi-mode sample introduction system (MSIS)

and quantified by ICP-OES. Detection limits in solution ranged from 0.4 (As(III) and DMA) to 1
(MMA and As(V)) mg l�1, corresponding to 10 and 25 mg kg�1 in a 0.2 g soil sample and 5 ml of

extractant. The most significant change over time was that As(III) was converted to As(V). When each

species was added individually, arsenic was 100% recovered over a period of several months. When all

four species were added together, the recovery was 89%. As the precipitation of humic acids was slow,

the sodium hydroxide extract could be acidified and analyzed without loss of analyte species.

Introduction

Soil, a complex heterogeneous mixture of minerals, organic

solids, aqueous and gaseous components, is the medium in which

not only plants grow, but also dead organisms are degraded and

recycled. The mineral fraction contains weathered rock frag-

ments consisting of phyllosilicates (silicate minerals are the

largest and most important mineral class), clay minerals, oxides

(mainly of aluminium, iron, and manganese) and various

carbonates. The organic matter is made up of living organisms,

dead plant material and colloidal humus formed by the action of

micro-organisms on plant litter. Water and air usually fill the

pores created when the solid components cluster together.1

About 99% of the arsenic (the 20th most abundant element in

the earth’s crust2) in the environment is associated with rocks and

minerals; arsenopyrite (FeAsS) being the most abundant arsenic-

containing mineral.3 Other important minerals that can contain

arsenic include arsenolite (As2O3), olivenite (Cu2OHAsO4),

cobaltite (CoAsS), and proustite (Ag3AsS3).3 The concentrations

of arsenic in the earth’s crust, shale, sedimentary rocks, and

igneous rocks are 1.8, 13, 1.7–400, and 1.3–3.0 mg g�1,

respectively.4 The background concentration of arsenic in soils,

which depends on the rock type, ranges from 1–40 mg kg�1 with

most soils being in the lower half of this range.5 The predominant

forms of arsenic in soil are the inorganic forms of As(III) and

As(V),6,7 though methylated arsenic compounds, such as MMA

and DMA, can be formed by microorganisms under favorable

conditions.8–11 Arsenic compounds that function as herbicides,

fungicides or insecticides (such as cacodylic acid and lead arse-

nate) may be found in soils as the result of topical applications to

plants, the leaching of arsenic compounds from timber pressure-

treated with chromated copper arsenate (CCA) or irrigation with

arsenic-contaminated ground water. Soils may also contain

arsenic compounds that come from mine wastes, industrial

wastes, chemical warfare agents or the application of manure

that contains veterinary drug residues. Arsenic compounds from

the combustion of fossil fuels can be deposited from the atmo-

sphere.12 Arsenic concentrations in such contaminated soils can

range from a few hundred to several thousand mg kg�1.7

As the bioavailability and toxicity of arsenic compounds vary

dramatically, the assessment of arsenic transport, environmental

impact and human health risk should be based on measurement

of arsenic speciation as well as total arsenic concentration.13 In

addition, studies of the transformation of arsenic compounds

need to be supported by reliable measurements of arsenic species.

There is a sustained, increasing interest in the chemical

measurement aspects of arsenic speciation as evidenced by

publication rate. The vast majority of the published papers

describe the coupling of HPLC with ICP-OES or ICP-MS. Since

the first such publication in 1984,14 almost 600 such publications

have appeared; since 2002, over 50 papers per year have been

published. Developments can be followed in the regular annual

review literature,15 and have been recently reviewed.16–19 About
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80% of these publications report on the development or use of

a method in which ICP-MS is used as the detector, from which it

is clear that ICP-MS has one or two drawbacks as an element-

specific detector for HPLC: the instrument is not able to handle

a wide range of mobile-phase compositions and some efforts

have to be made to prevent the interference from chlorine, which

produces an isobaric overlap, in quadrupole instruments, at m/z

75 due to the formation of 40Ar35Cl+ in the spectrometer.

Detection by the more robust ICP-OES does not suffer from

these problems, but the detection capability is inherently poorer

than that of ICP-MS. For many analyses, this may not be the

limiting factor, as the arsenic species are present in relatively high

concentrations. There are smaller numbers of papers describing

the use of AFS detection, almost all of which involve hydride

generation, as the hydrogen diffusion flame atomizers typically

used cannot tolerate the introduction of solution aerosol.20–22

There is also considerable interest in the determination of

arsenic and arsenic species in soil.23 Procedures may be divided

into those based on selective, sequential extraction that are

designed to estimate how much arsenic may be available for

uptake by plants and those designed to extract all species so that

they can be separated and quantified. While these latter proce-

dures are, in principle, more useful there are considerable diffi-

culties with ensuring that (a) all of the relevant species are

extracted, and (b) there is no interconversion. Many studies of

arsenic in the environment are concerned with following the fate

of compounds that have been added from external sources, for

which it is reasonable to assume that the species are bound to the

surfaces of soil particles (either mineral or organic). Thus the

sample pretreatment needed is to transfer (without change, other

than protonation or deprotonation) the surface-bound species

into solution. Experiments with model systems may be

confounded by the gradual conversion of arsenic species into

refractory minerals.24 Various combinations of nitric acid,

hydrogen peroxide and hydrofluoric acid are suitable for total

arsenic determinations but convert all species to As(V). Milder

procedures involve leaching with dilute mineral acids25–28 (phos-

phoric, hydrochloric, perchloric or nitric), water, or solutions of

ammonium acetate, acetic acid, ammonium chloride, citric acid,

ammonium oxalate, sodium carbonate, sodium bicarbonate or

sodium hydroxide.25,27–30 Mixtures of phosphate with either

ethylenediaminetetraacetic acid, hydroxylamine hydrochloride,

or sodium diethyldithiocarbamate have been evaluated.30

Karthikeyan and Hirata31 reviewed procedures for arsenic

speciation in soil samples. Low recoveries (20–70%) were

observed and, although the most effective extractant would

appear to be phosphoric acid with low power microwave heating,

As(III) is partially oxidized to As(V).31 Procedures have involved

sonication,27,32,33 microwave assisted extraction,34–36 or sequential

extraction.35,37 To date, there does not appear to be a satisfactory

procedure for the extraction of arsenic species from soils as part

of an analytical method. The situation may be different if the

goal is washing for remediation purposes.12

We have evaluated several procedures, including the use of

mechanical shaking, sonication and sequential extraction with

a variety of solvents for the extraction of four species, As(III),

As(V), DMA, and MMA, from soils for subsequent determina-

tion by HPLC-ICP-AES. We have devised a two-stage sequential

procedure to extract these species quantitatively from spiked soil

samples over a period of several months with minimal conversion

during the extraction. We think this procedure is significantly

better than any previously reported for the extraction of these

species from soils. We have also developed an ion-exchange

HPLC separation procedure for these four compounds in the

extracts, that gives separations with a resolution of 1.4 or better

in under 10 min, in which the multimode sample introduction

system (MSIS),38 in HG mode, functioned as the interface

between the chromatographic separation and the spectrometer.

To our knowledge, this is the first time that the use of the MSIS

as a chromatographic interface has been reported.

Experimental

Instrumentation

The HPLC detector was an inductively coupled plasma optical

emission spectrometer Optima 4300 DV (PerkinElmer Instru-

ments, Shelton, CT, USA). Analytes were introduced into the

spectrometer as hydrides with the multimode sample introduction

system (MSIS) (PerkinElmer Instruments, Shelton, CT, USA).

The chromatographic system consisted of a liquid chromatog-

raphy pump (Finnigan SpectraSYSTEM P2000 Binary Gradient

Pump) and an autosampler with a built-in injector valve (Finnigan

SpectraSYSTEM AS3000 Autosampler), both were supplied by

the ThermoElectron Corporation, Waltham, MA, USA. The

column used was an Alltech Anion HC column (4.6 � 100 mm)

(Alltech Associates, Inc., Deerfield, IL, USA) packed with a poly-

styrene divinylbenzene-based anion-exchanger, having a quater-

nary amine functional group, capable of operating over a pH

range of 2–12, of particle size 12 mm, and capacity 0.3 meq g�1.

The outlet of the column was connected to a T-junction at

which concentrated hydrochloric acid, delivered by a peristaltic

pump (Ismatec SA-MS-Reglo peristaltic pumps, Cole Parmer),

was merged. Connecting tubing was made of polyether ether

ketone (PEEK) or Teflon. The HPLC-ICP-OES system is shown

schematically in Fig. 1. All mobile phases, standards and samples

were filtered through 0.45 mm polyethersulfone membrane filters

(Whatman Inc, USA) and degassed in an ultrasound bath

(Fisher scientific, USA) prior to analysis.

The pH during the pH adjustment of the solutions was

monitored with a Fisher Scientific model 915 meter. An ultra-

sonic probe (Sonics and Materials Inc. Danbury, CT, USA), Lab

Quake shaker rotisserie (Barnstead-Thermolyne, USA),

conventional microwave oven (Model MU3050W from Sam-

sung) and a MDS 4100 microwave oven (CEM Corporation,

USA) with PTFE vessels were used during sample preparation.

Data from the spectrometer were collected with WinLab32

software (PerkinElmer Instruments, Shelton, CT, USA), pro-

cessed with OriginPro 7.5 (OriginLab Corporation, North-

ampton, MA) and plotted with Microsoft Excel software.

Reagents and samples

All solutions were prepared in 18 MU cm deionized water from

a Barnstead E-pure system (Barnstead, USA). Phosphoric acid

(EM Science, Germany) and ammonium hydroxide (EMD

Chemicals, USA) were used for pH adjustment. Phosphate

buffer was prepared from ammonium dihydrogen phosphate

(AnalaR, BDH Chemicals, UK), and phosphoric acid (EM

http://dx.doi.org/10.1039/b820300h


Science, Germany). Solid reagents, sodium hydroxide, ammo-

nium carbonate, ammonium bicarbonate, and ammonium

acetate were obtained from Mallinckrodt, USA. Solutions of

sodium tetrahydroborate (Alfa-Aesar, Ward Hill, MA) were

freshly prepared daily by dissolving the appropriate amount of

NaBH4 in 0.1% (w/v) sodium hydroxide. The daily working

standards for arsenic species were made from stock solutions

(1000 mg l�1) prepared from sodium arsenite (NaAsO2) (Aldrich,

USA), sodium arsenate (Na3AsO4$7H2O) (Fisher Scientific,

USA), disodium methyl arsenate [(CH3)AsO3Na2$6H2O]

(ChemService, USA) and cacodylic acid [(CH3)2AsO(OH)]

(Aldrich, USA) by dissolving the accurately weighed solid

material in deionized water. These stock solutions were kept at

4 �C in the dark.

The soil was obtained from the Department of Plant, Soil and

Insect Science, University of Massachusetts, Amherst, USA. The

soil was a silt loam with 35.5% sand, 59.8% silt and 4.7% clay. It

had an average pH of 6.8 and contained 1.3% organic matter.

The full characterization is provided in the ESI‡.

Optimizing the MSIS hydride generation interface

All HG-ICP-OES parameters including, plasma viewing

distance, RF power, nebulizer (argon gas) flow rate, sodium

tetrahydroborate concentration and flow rate, on-line hydro-

chloric acid flow rate used for HG were optimized by a single-

cycle alternating variable search method for a 0.1 mg l�1 As(III)

standard solution at a flow rate of 1 ml min�1. Starting conditions

were based on the preliminary studies of the MSIS hydride

generation method, and the figure of merit to be maximized was

net signal.38

Separation of arsenic species with Alltech Anion HC column

The column was regenerated before use and as necessary

according to the manufacturer’s recommendation by passing 100

ml of a solution containing 50 mmol l�1 disodium EDTA

adjusted to pH 10 with NaOH at flow rate 1 ml min�1, rinsing

with 100 ml deionized water, followed by 50 ml of 50 mmol l�1

sulfuric acid in 10% methanol at 1 ml min�1, rinsing with 100 ml

deionized water and then finally with mobile phase A (10 mmol

l�1 ammonium dihydrogen phosphate at pH 5.8) for 15 min.

The chromatographic conditions previously developed28 for

the PRP-X100 column were selected. The mobile phase was at

flow rate 1.0 ml min�1 with isocratic elution. Different concen-

trations of either individual species or mixtures of As(III), As(V),

DMA, and MMA standards in deionized water were utilized for

the development of separation conditions that gave good base-

line separation. Concentrations of ammonium dihydrogen

phosphate from 2 to 100 mmol l�1 were evaluated as a mobile

phase with isocratic and gradient separation modes. Sodium

hydroxide over the concentration range from 2 to 100 mmol l�1

was also evaluated as a mobile phase in isocratic mode.

Several gradient elution modes involving 10 mmol l�1 ammo-

nium dihydrogen phosphate solution and water were evaluated,

and the program that had the shortest analysis time with good

resolution was chosen as optimal.

Under optimum conditions, shown in Table 1, calibration data

for arsenic species containing 0.0, 0.1, 0.5, and 1.0 mg l�1 of

a mixture of As(III), DMA, MMA, and As(V) standards were

obtained. The detection limits of each species were calculated as

the concentrations that give signals equal to three times the

standard deviations of the blanks. Quantification was based on

peak area measurement. Column efficiency (number of theoret-

ical plates based on the peak that eluted between 8 and 10 min),

detection limits and resolutions obtained were compared with

those for other arsenic speciation techniques developed previ-

ously.

Fig. 1 Schematic diagram of the HPLC-HG-ICP-OES system. The sample loop size was 100 ml, MSIS is the multimode sample introduction system.

The column was an Alltech Anion HC column.

Table 1 Optimum parameters used for HPLC-HG-ICP-OES

HPLC-MSIS-HG-ICP-OES

RF power/W 1400
Plasma view distance �4
Nebulizer Flow rate/l min�1 0.55
NaBH4 concentration (w/v %) 1.5
NaBH4 flow rate/ml min�1 1.5
HCl flow rate/ml min�1 0.1
Arsenic wavelength/nm 228.812
HPLC All HPLC systems were operated at

ambient temperature
Sample loop size/ml 100
Anion-exchange HPLC
Column Alltech Anion HC
Mobile phase A: 10 mmol l�1 ammonium dihydrogen

phosphate (pH 5.8), B: deionized
water

Gradient program
Time/min 0 (0% A–100% B) flow rate 1 ml min�1

3 (0% A–100% B) flow rate 1 ml min�1

8 (100% A–0% B) flow rate 1 ml min�1

8.2 (100% A–0% B) flow rate 2 ml min�1

10 (100% A–0% B) flow rate 2 ml min�1

11 (0% A–100% B) flow rate 1 ml min�1

http://dx.doi.org/10.1039/b820300h


Preparation of arsenic-spiked soil

Soil was sterilized by placing 500 g in a plastic container con-

taining 500 ml deionized water in a conventional microwave oven

and heated at full power for 10 min. The soil was transferred into

an aluminium baking dish and dried in an oven for one week at

70 �C. The soil was ground, passed through a 250 mm sieve and

50 g was weighed into five 400 ml beakers to which 200 ml of

deionized water was added. To four of the beakers was added,

with continuous stirring, 1.0 ml of a solution containing 1000 mg

l�1 (as As) of sodium arsenite, sodium arsenate, disodium methyl

arsenate and cacodylic acid to produce soils containing 20 mg

kg�1 as arsenic. To the fifth was added 1 ml each solution to

produce a soil containing 80 mg kg�1 arsenic in total. The soils

were dried at 70 �C for one week (Garcia-Manyes et al. repor-

ted26 that soils heated at 100 �C did not lose arsenic). The dried

soils were kept at room temperature in sealed 100 ml poly-

propylene containers in the dark until needed.

Extraction of arsenic species

The most promising of the previously reported extractants,25,27–30

solutions of ammonium acetate, ammonium bicarbonate,

ammonium carbonate, phosphoric acid, and sodium hydroxide

were prepared at different concentrations (0.10, 0.50 and 1 mol

l�1) and evaluated, together with water, for the extraction of

arsenic species. Accurately weighed 0.2 g arsenic-spiked soil

samples were transferred to 15 ml centrifuge tubes to which was

added 5 ml of the extractant solution followed by shaking for 24

h, centrifugation at 7000 rpm for 10 min, filtration from a 5 ml

syringe through a 0.45 mm filter and determination of total

arsenic by ICP-OES. Calibration curves were generated from

seven standards (0.0, 0.05, 0.1, 0.3, 0.7, 1.0, and 2.0 mg l�1)

prepared for each species. Standards were matrix matched with

respect to solvent composition. The two solvents that gave the

highest extractions, phosphoric acid and sodium hydroxide were

chosen for further investigation.

Sequential extraction method

Preliminary experiments were performed by shaking or with the

help of an ultrasonic probe for different concentrations of

phosphoric acid and sodium hydroxide. The soil spiked with

As(III) was used, as the goal was to evaluate the stability of

As(III) as well as the extraction efficiencies. The results of

sequential extraction by 0.10 mol l�1 H3PO4 and 0.1 mol l�1

NaOH with sonication, sonication in an ice bath, or shaking

were compared and the methods that gave the highest extrac-

tion efficiency with minimum As(III) oxidation were evaluated

for all soil samples.

For sequential extraction, accurately weighed 0.2 g arsenic-

spiked soil samples were transferred to 15 ml centrifuge tubes to

which was added 5 ml of the 0.10 mol l�1 phosphoric acid solu-

tion followed by shaking for 24 h, centrifugation at 7000 rpm for

10 min, filtration from a 5 ml syringe through a 0.45 mm filter and

the filtrate injected into an HPLC column for speciation analysis.

Calibration curves were generated at four different concentra-

tions (0.00, 0.10, 0.50 and 1.0 mg l�1) prepared in 0.10 mol l�1

phosphoric acid. To the remaining soil, 5 ml of 0.10 mol l�1

sodium hydroxide was added and the tube shaken for 24 h then

centrifuged for 10 min at 7000 rpm. The solution was filtered

through a 0.45 mm filter, and the filtrate adjusted to pH 2.5 with

10% phosphoric acid. The resulting solution was injected into an

HPLC column for arsenic speciation analysis. As a dark brown

precipitate formed slowly following adjustment of the pH of the

sodium hydroxide extracts to 2.5, this solution was analyzed

immediately after the pH adjustments. Calibration curves of each

species were generated for four different concentrations (0.00,

0.10, 0.50 and 1.0 mg l�1) prepared in 0.10 mol l�1 sodium

hydroxide subsequently adjusted to pH 2.5 with phosphoric acid.

Three replicate extractions were made. The total arsenic

concentration in the soil based on the sum of the arsenic present

in the extracts was compared with the known concentration

Stability of arsenic species during the extraction

As there is evidence that ultrasound speeds up the extraction

considerably compared with methods involving mechanical

shaking,27,33 the effect of sonication on the oxidation of As(III)

was evaluated for 1.0 mg l�1 As(III) standards prepared in water,

10 mmol l�1 phosphoric acid, and 10 mmol l�1 sodium hydroxide.

The probe was introduced into the solution and sonication was

applied for between 1–15 min at 70% power. The peak height

signals for As(III) and As(V), obtained by HPLC-HG-ICP-OES,

were recorded.

Solutions containing 1.0 mg l�1 As(III), DMA, MMA, As(V), or

a mixture of each species prepared in 0.10 mol l�1 phosphoric

acid or 0.1 mol l�1 sodium hydroxide experiments were shaken,

for 24 h. Species were determined for all solutions by HPLC-HG-

ICP-OES.

Fig. 2 (a) Chromatograms of standard solutions, (b) peak area cali-

bration plots for each species.

http://dx.doi.org/10.1039/b820300h


Table 2 Comparison of detection limits and number of theoretical plates obtained by the method developed and those of previously published arsenic
speciation techniques

Techniques Reference Column Na

LOD/mg l�1

As(III) DMA MMA As(V)

HPLC-HG-AAS 39 Hamilton PRP-X 100 (250 � 4.1 mm, 10 mm) 4138 2.4 2.3 2.4 2.6
HPLC-HG-AFS 40 Hamilton PRP-X 100 (125 � 4 mm, 5 mm) NFb 0.9 1.4 0.8 1.0
HPLC-ICP-MS 27 Hamilton PRP-X 100 (150 � 4.1 mm,10 mm) 1418 0.1 0.12 0.13 0.15
HPLC-ICP-MS 41 Dionex Ion Pac AS7 (250 � 4 mm, 10 mm) 2317 0.19 0.16 0.29 0.52
HPLC-HG-ICP-OES This work Alltech Anion HC (100 � 4.6mm, 12 mm) 4010 0.36 0.41 0.9 1.1

a N: Number of theoretical plates. b NF: No figure.

Fig. 3 Efficiencies of different solvents for extracting arsenic species from soil containing 20 mg kg�1 (a) As(III), (b) As(V), (c) MMA, (d) DMA and (e)

a mixture of all four species. Error bars � one standard deviation (n ¼ 3).

http://dx.doi.org/10.1039/b820300h


Results and discussion

Optimizing the MSIS hydride generation interface

The optimum values are given in Table 1. Further details of the

effects of the individual parameters are provided in the supple-

mentary material.

Separation of arsenic species with Alltech Anion HC column

The optimum conditions chosen are given in Table 1 and the

chromatograms and calibration plots are shown in Fig. 2. The

variation in sensitivity, due to the variation in hydride generation

efficiency, can be clearly seen. The chromatographic figures of

merit and comparisons with other published HPLC procedures

are shown in Table 2. It can be seen that although the MSIS

device does cause some peak broadening, the efficiency of the

separation is better than several previously reported systems with

conventional nebulizer introduction. Resolutions between the

peaks for As(III) and DMA, DMA and MMA, and MMA and

As(V) were 1.4, 2.9, and 3.6, respectively.

Extraction of arsenic species

The extraction efficiencies of each solvent are shown in Fig. 3,

from which it can be seen that phosphoric acid solution was the

most effective extractant, giving almost 100% removal for all

arsenic species, except MMA, when a concentration of 1.0 mol

l�1 was used. Even 0.10 mol l�1, H3PO4 removed more than 80%

arsenic. The dissociation constants for phosphoric acid (pKa

2.12, 7.2 and 12.4) are similar to those of arsenic acid (pKa 2.2,

6.97 and 11.53). Therefore, similar charged species of arsenate

and phosphate will be competing for the sorption sites on the soil

components. Melamed et al.42 found that As(V) mobility was

greatly enhanced by treatment with increasing amounts of

phosphate due to competitive oxyanion adsorption. Similarly, it

has been found that phosphate substantially suppresses As(V)

adsorption by the soil.43,44 Wenzel et al.45 suggested that because

of the smaller size of phosphate, compared to that of arsenate,

and its higher charge density, the phosphate will bind more

strongly than arsenate and therefore, will replace the anionic

forms of arsenic species in the soil. Sodium hydroxide solutions

showed the second highest extraction efficiency for inorganic

arsenic species; about the same as that of ammonium bicar-

bonate solutions for the extraction of MMA and poorer effi-

ciency for the extraction of DMA than that of sodium

bicarbonate. Since phosphoric acid and sodium hydroxide

solutions exhibited the highest extraction efficiencies averaged

over all arsenic species, they were selected for further studies and

for the sequential extraction method.

Arsenic(III) in soil by sequential extraction

The effects of solvent type, concentration, and sequence on the

extraction of As(III) and oxidation to As(V) from soil containing

only As(III) are shown in Table 3. Even when solution was cooled

in an ice bath, As(V) was detected. Sequential extraction by 0.10

mol l�1 H3PO4 and 0.10 mol l�1 NaOH with 24 h shaking gave the

highest recovery for total arsenic. Therefore, sequential extrac-

tion by 0.10 mol l�1 H3PO4 and 0.10 mol l�1 NaOH with 24 h

shaking was further evaluated for all spiked-soil samples.

Stability of arsenic species during extraction

The effect of sonication on the stability of As(III). The chro-

matograms, provided in the ESI‡, clearly show that the As(V)

signal increased with time for all matrices indicating that soni-

cation caused oxidation of As(III). After 15 min sonication in 10

mmol l�1 sodium hydroxide solution over half the As(III) had

been oxidized to As(V). It was noted that after 2 min sonication,

the vessel was warm to the touch and that the temperature

increased with the duration of the experiment. It was concluded

that the presence of As(V) in the soil extracts was due predomi-

nantly to oxidation during the sample pretreatment and so

sonication was abandoned in favor of mechanical shaking.

Stability over 24 h

To study the oxidation, or other species interconversion, during

the extraction procedure, solutions containing 1.0 mg l�1 of each

species prepared in 0.10 mol l�1 H3PO4 or in 0.10 mol l�1 NaOH

were shaken overnight and analyzed. The recoveries are

Table 3 The effect of solvent type, concentration, and sequence on the extraction of arsenic from soil containing 20 mg kg�1 As(III). Concentrations are
in mg kg�1 as elemental arsenic in the original soil

Solvent Technique Time

As(V) As(III)
As(III) + As(V)

Conc. Total Conc. Total Total

10 mM H3PO4 Sonication 5 min 2.36 2.60 6.69 10.2 12.8
10 mM NaOH Sonication 5 min 0.24 3.57
100 mM H3PO4 Sonication 5 min 2.14 2.14 9.95 11.94 14.1
100 mM NaOH Sonication 5 min 0.00 1.99
100 mM NaOH Sonication 5 min 0.30 0.99 11.0 14.8 15.8
100 mM H3PO4 Sonication 5 min 0.69 3.84
100 mM H3PO4 Sonication in ice bath 5 min 2.91 2.91 8.21 12.4 15.3
100 mM NaOH Sonication in ice bath 5 min 0.00 4.21
100 mM NaOH Sonication in ice bath 5 min 0.00 0.00 6.86 10.33 10.33
100 mM H3PO4 Sonication in ice bath 5 min 0.00 3.47
100 mM H3PO4 Shaking 24 h 1.43 1.43 15.2 18.25 19.7
100 mM NaOH Shaking 24 h 0.00 3.04
100 mM NaOH Shaking 24 h 0.00 0.00 13.7 16.27 16.27
100 mM H3PO4 Shaking 24 h 0.00 2.56
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summarized in Table 4. It can be seen that no As(V) was observed

when a standard of As(III) in H3PO4 was analyzed. However,

a small amount of As(V) was detected when a standard of As(III)

in NaOH was analyzed, corresponding to 5% of As(III) conver-

sion to As(V). For the MMA standard in NaOH about 3%

conversion to As(III) was observed.

Sequential extraction of all species

The chromatograms of the extracts are shown in Fig. 4 with

peaks identified based on retention time matching with those of

standards. It should be born in mind that the sensitivities for each

compound are different due to the different efficiencies of

Fig. 4 Chromatograms for arsenic speciation by HPLC-HG-ICP-OES of sequential extracts of (a) mixed species–soil, (b) As(III)–soil, (c) DMA–soil,

(d) MMA–soil, and (e) As(V)–soil; 1. 0.10 mol l�1 H3PO4; 2. 0.10 mol l�1 NaOH.

Table 4 Stabilities of 1.0 mg l�1 As(III), DMA, MMA, and As(V) prepared in 0.10 mol l�1 H3PO4 and 0.10 mol l�1 NaOH, shaken for 24 h and analyzed
by HPLC-HG-ICP-OES

Species and solvent

Concentration measured as a percentage of the original concentration (mean � std dev, n ¼ 3)

As(III) DMA MMA As(V)

As(III) in H3PO4 99.5 � 1.3 — — —
As(III) in NaOH 93.7 � 1.6 — — 4.6 � 0.8
DMA in H3PO4 — 103.1 � 2.2 — 1.6 � 0.3
DMA in NaOH — 106.2 � 2.2 —
MMA in H3PO4 — — 110.2 � 8.2 —
MMA in NaOH 3.3 � 0.9 — 105.1 � 4.8 —
As(V) in H3PO4 — — — 93.6 � 4.7
As(V) in NaOH — — — 104.8 � 4.8
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hydride generation, which is highest for As(III). The results are

summarized in Table 5. Recoveries for total arsenic between 88%

and 110% were obtained. About 75% of the As(III) was oxidized

to As(V) in both the soil containing As(III) and the soil containing

the mixtures. The fraction of arsenic extracted by H3PO4

constituted between 88% and 93% of the total extracts for DMA,

MMA and As(V). However, phosphoric acid only extracted

about 53% of the As(III) for which NaOH solution was still

needed for complete extraction. The results indicate that some

demethylation of the DMA and MMA species had occurred,

though in the case of the DMA there was no detectable MMA,

only As(V).

Conclusion

Sequential extraction with 0.10 mol l�1 H3PO4 and 0.10 mol l�1

NaOH by shaking for 24 h is an efficient procedure for extracting

arsenic species from a soil to which the arsenic species have been

added and are surface bound. The method oxidizes about 5% of

the total As(III) concentration present in the sample, for which

a correction could be made. In this study of a sterile soil stored in

the dark, about 75% of the As(III) was oxidized to As(V) over

a period of several weeks. Although sonication may accelerate

the extraction of total arsenic, it is not suitable for arsenic

speciation as it also accelerates the oxidization of As(III) to As(V).

The procedure has not been evaluated for a soil with higher

organic content, for which there may be problems due to the

higher concentration of humic material in the alkaline extract. It

is possible that the procedure has broader applicability, such as

to the determination of arsenic species in foodstuffs, especially

rice. These possibilities are the subject of on-going further work.
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