The effect of Wal-Mart Supercenters on grocery prices in New england

RJ Volpe

NLavoie

Follow this and additional works at: https://scholarworks.umass.edu/resec_faculty_pubs

Recommended Citation

Volpe, RJ and Lavoie, N, "The effect of Wal-Mart Supercenters on grocery prices in New england" (2008). Review of Agricultural Economics. 96.
10.1111/j.1467-9353.2007.00389.x

This Article is brought to you for free and open access by the Resource Economics at ScholarWorks@UMass Amherst. It has been accepted for inclusion in Resource Economics Department Faculty Publication Series by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please contact scholarworks@library.umass.edu.

The Effect of Wal-Mart Supercenters on Grocery Prices in New England

Richard J. Volpe III and Nathalie Lavoie

Abstract

The competitive price effect of Wal-Mart Supercenters on national brand and private label grocery prices in New England is examined. We use primary price data collected on several identical products from six Supercenters in Massachusetts, Connecticut, and Rhode Island and from conventional supermarkets. Taking into account demographics, store characteristics, and market conditions, we show that Wal-Mart decreases prices by 6 to 7% for national brand goods and by 3 to 8% for private label goods. Price decreases are most significant in the dry grocery and dairy departments. Moreover, Wal-Mart sets grocery prices significantly lower than its competitors.

The discount retailer Wal-Mart has been a popular topic of discussion and debate for more than a decade. Much of the recent controversy surrounding Wal-Mart in the economic literature and the popular press has focused on food retailing. Wal-Mart's meteoric rise to dominance in U.S. food retailing has motivated efforts to understand the effects of Supercenter stores on consumers, competitors, and the economy in general. The primary objective of this study is to estimate the competitive effect of Wal-Mart Supercenters on prices at conventional supermarkets, that is, the extent to which Supercenters bring about a decrease in their rivals' price. Additionally, we estimate price differences between Supercenters and conventional stores to determine the savings realized by shopping at Supercenters. We examine these two objectives separately for national brands and private labels to determine whether Supercenters impact differently the two labels.

Supercenters are Wal-Mart stores that offer entire lines of groceries in addition to all of the usual wares found at conventional Wal-Mart stores. Wal-Mart became the largest food retailer in the United States in 2003, largely through the expansion of Supercenters, and is currently the leading grocer worldwide (Progressive Grocer).

Richard J. Volpe III is a Ph.D. student, Department of Agricultural and Resource Economics, University of California, Davis.
\square Nathalie Lavoie is Assistant Professor, Department of Resource Economics, University of Massachusetts, Amherst.

By the end of 2003 there were 1,376 Supercenters in the United States, with over 1,000 more planned for construction by 2008 (Bianco and Zellner). Much of the Supercenter expansion is projected to take place in regions such as New England and California, where Wal-Mart is newer and has a smaller presence compared to the South and Midwest, where the firm originated.

Supercenters are the subject of as much, if not more, controversy than conventional Wal-Mart stores. A glance at news headlines on any given day reveals that Wal-Mart is confronting opposition from citizens and local governments in many of the locations where it chooses to erect Supercenters. The public outcry is spurred partly from Wal-Mart's low wages and substandard health care benefits to its nonunionized employees and the perception that jobs are lost when employee-unionized rivals go out of business due to Wal-Mart's entry (Daykin). For that reason, opposition in California has been particularly strong. Wal-Mart's announcement that it would open forty Supercenters in this state led to a fourmonth strike of grocery unions in 2003 to protest the cuts made in labor expenses by rival chains to compete. In 2004, residents of a suburb of Los Angeles protested and voted against the construction of a Supercenter citing low wages paid to employees and Wal-Mart's refusal to allow labor unions (Zwiebach; Hudson and McWilliams). In the U.S. Northeast and in urban areas, the outcry also stems from the store's image. The construction of a store in Miami was blocked on the grounds that "its sprawling, suburban aesthetics and low-end appeal didn't conform to the city's architectural and social vision for the project" (Hudson and McWilliams).
Despite the ongoing controversy and the growing importance of Supercenters in all aspects of food retailing, the economic literature remains relatively scarce on the economic impact of Wal-Mart Supercenters. This is partly due to the absence of a data source; Wal-Mart does not participate in any of the public data collection services.

Franklin examined the impact of Wal-Mart Supercenters on market concentration in the one hundred largest U.S. metropolitan areas in 1993 and 1999. He found that Supercenters have no significant effect on supermarket concentration. However, the market share obtained by Supercenters increases with time and is inversely proportional to the income of the local consumers in metropolitan areas.

While there is no evidence in the literature that Supercenters are responsible for the closing of supermarkets, Supercenters have been found to have a negative effect on the sales of conventional supermarkets. For example, using a supermarket's frequent-shopper data base, Singh, Hansen, and Blattberg find that the entry of a Wal-Mart Supercenter during the time period analyzed resulted in a loss of volume of 17% by that supermarket. They estimate that the volume loss amounted to a quarter of a million dollars in monthly revenues. Capps and Griffin estimated that Wal-Mart Supercenters were directly responsible for a 21% reduction in sales for a regional chain of supermarkets in the Dallas/Fort Worth area of Texas. The combined effect of Supercenters and Wal-Mart's wholesale outlet, Sam's Club Stores, on supermarkets amounts to a loss of $\$ 15$ to $\$ 17$ billion in sales from supermarkets nationwide in 2001 (USA Today, cited by Jones).

Wal-Mart Supercenters follow a different pricing strategy than most supermarkets. This may affect how supermarkets compete in price when a Supercenter is
present. All Wal-Mart stores use everyday low pricing (EDLP), meaning that all products are marked up by the same percentage regardless of the price at which they were acquired (Vance and Scott). Sales, promotions, and advertising do not play heavily into the practice of EDLP. Most supermarkets, by contrast, employ high-low pricing (HLP), whereby most products are given a high markup but a percentage of goods, changing on a regular basis, are put on promotion. In many cases, promotional items are sold at a loss to the store with the intent to increase customer traffic. Using a game theoretical approach, Jones demonstrated that EDLP is profitable for Supercenters because it creates a stark difference in prices from supermarkets. Moreover, supermarkets would be more profitable if they switched to EDLP when competing with Supercenters. Supporting this notion, many of the largest supermarket chains in the nation are gradually lowering their prices and decreasing the frequency and size of promotions at some of their locations (Adamy).
With the EDLP strategy and its countervailing market power toward manufacturers (Dobson and Waterson; Chen; Wilke), Wal-Mart sets prices lower than its competitors. According to a 2002 UBS Warburg study, Wal-Mart Supercenters' prices are, on average, 14% lower than competing supermarkets (Bianco and Zellner). Studies surveyed by Hausman and Leibtag (2005) show Wal-Mart prices to be 8 to 27% lower than large supermarket chains.
To date however, the impact of Wal-Mart Supercenters on prices at conventional supermarkets has not been explored much in the literature, with the exceptions of the studies by Woo et al. and Hausman and Leibtag (2004, 2005). Woo et al. monitored prices at conventional supermarkets both before and after the entry of a Wal-Mart Supercenter in the Athens, Georgia area. Their results showed that supermarkets lowered their prices significantly prior to the Supercenter's entry, but that prices gradually rose back to their original levels following entry. The only supermarkets showing lasting effects from the Supercenter entry were those with the highest prices at the beginning of the study.
Hausman and Leibtag (2004) used A. C. Nielsen household panel data for 19982001 to study the bias on the CPI price index of the current treatment of Wal-Mart Supercenters in the index calculations. Using the same data,Hausman and Leibtag (2005) estimate the consumer welfare impact of the entry Supercenters in the U.S. food market by estimating the compensating variation. In the context of these two studies, they also examine the price difference at superstores versus supermarkets. The price differences are examined by food categories, but using simple averages across markets. In this comparison, the authors do not isolate the competitive effect of supercenters on competing stores. They find that, overall, superstores' prices are 27% lower than traditional supermarkets. However, the compensating variation is broken into two parts: (a) a variety effect from having access to a new outlet, and (b) an indirect price effect associated with the decrease in price from existing outlet. ${ }^{1}$ They estimate the variety effect to be 20.2% of food expenditure, and the indirect price effect to be 4.8% of food expenditure. Thus, they find a substantial benefit for households who have the choice to shop at Supercenters, that is, a total welfare effect of 25% of food expenditure.
This study contributes to the literature on the economic impact of Wal-Mart Supercenters and is unique in four respects. First, we estimate both the competitive effect of Supercenters on prices of competitors and the discount realized by
shopping at a Supercenter, by grocery department. The impact of Wal-Mart is likely to vary by grocery department because retailers increasingly employ category management tools and each supermarket category is treated as a strategic business unit in pricing, merchandising, promotions, and product mix (Singh, Hansen, and Blattberg). Second, given that Wal-Mart does not participate in any of the public data collection services, we use a unique data set consisting of prices collected directly off the shelves of the stores sampled. Third, we focus on the effect of Supercenters in the states of New England (Connecticut, Massachusetts, and Rhode Island), a new region of expansion for Supercenters and also a region that is both wealthier and more densely populated than the U.S. South and Midwest, where Supercenters originated. Fourth, we conduct separate analyses for national brand and private label products. National brand products are obtained from national distributors and therefore are identical across all stores. National brand products are more heavily advertised and are more popular among higherincome shoppers. Private label products, alternatively, are produced through a form of vertical coordination and are heterogeneous across different chains. Despite having higher markups, they are universally cheaper than their national brand substitutes and appeal to lower-income shoppers. ${ }^{2}$ Examining separately national brands and private labels enables us to shed some light on the impact of Supercenters on the national brand/private label margin and on strategic efforts by supermarkets to maintain consumer loyalty.

Data

Because Wal-Mart does not participate in any public data collection services, it was necessary to gather primary price data. The data were gathered from eighteen stores throughout the states of Massachusetts, Connecticut, and Rhode Island. The selection of the eighteen stores was made by the following criteria: six of the stores are Wal-Mart Supercenters, another six are the largest supermarkets, in terms of floor size, found within five miles of each of the Supercenters. Henceforth, these stores are referred to as "competing stores." The final six stores are used as comparison stores to the six supermarkets competing with Wal-Mart Supercenters, and they will be referred to as "comparison stores." Using data from the 2000 Census as well as the 2004 Trade Dimensions Retail Data Directory, we selected stores that shared many similarities with the six competing supermarkets in terms of size, market conditions, and demographics. ${ }^{3}$
The fifty-four products sampled in this study were selected from a larger list compiled by Cotterill (1999a) and span the six major supermarket departments: grocery, dairy, frozen food, health and beauty aids (HBAs), meat, and produce. ${ }^{4}$ The products were selected in proportion to departmental shares of sales calculated by Cotterill (1999a) in order to represent a typical consumer's market basket. This explains, for example, why more goods were sampled from the grocery department than from the dairy department. In every department the selection of products was divided evenly between national brand and private label goods, with the exception of the produce department, in which only national brand goods were available. Taking into account that private label products differ across different supermarket chains, we used data from Consumer Reports to select products that do not vary much in quality among manufacturers.

Figure 1. Average total price of the national brand (30 goods) and private label (24 goods) market baskets, by store category

The prices of the products were recorded directly off the shelves of the eighteen stores. Only nonpromotional prices were recorded, which may have consequences on the magnitudes of our estimated price difference. We discuss and deal with this issue in the results section. Figure 1 reports the average price of the national brand and private label market baskets for the three store categories. Data gathering was performed within a three-week period in October 2004 to avoid any time-series trends in the data.
Figure 1 shows that for both national brand and private label products, the average price of the entire basket is lower at competing stores than at comparison stores. Moreover, Supercenters have the lowest average price for both market baskets and the average price difference between Supercenters and competing stores exceeds the average difference between competing and comparison stores.

Price Indexes and Model Formulation

To examine the impact of Wal-Mart Supercenters on the price of food products, we constructed price indexes by supermarket departments. Binkley and Connor (1998) have shown that fresh goods (red meats, milk, and produce) are priced differently than packaged goods (products in the "dry grocery" and "health and beauty" department). Departmental price indexes were constructed using expenditure-weighted relative prices. Expenditure-weighted relative prices have been used in previous work examining supermarket prices (Cotterill, 1999b; Woo et al.; Yu and Connor). Weighting prices by expenditure allows for proper accounting of the different nature of market baskets as well as respects the patterns of consumption in the United States. Formally, the indexes are given by:

$$
\begin{equation*}
V_{i j k}=\frac{\sum_{m=1}^{M_{j}} W_{m j} P_{m i j k}}{\sum_{m=1}^{M_{i}} W_{m j} P_{m i j 1}} \cdot 100 \tag{1}
\end{equation*}
$$

where $V_{i j k}$ is the price index for brand $i(i=N$ for national brand or P for private label), department j, and store $k . W_{m j}$ is the weight assigned to good m in department j and $P_{m i j k}$ is the relative price of good m of brand i in department j at store k. The relative prices $P_{m i j k}$ were obtained by standardizing each observed shelf price by the average price paid for the given product across all stores. ${ }^{5}$ Thus, the price index $V_{i j k}$ is constructed as the weighted average price of the M_{j} goods of brand i in department j of store k, divided by the same expression for store 1 (the reference store) and multiplied by one hundred. The reference store is the Supercenter in Raynham, MA, for national brand indexes and the Supercenter in Jewett City, CT, for private label indexes. These stores were chosen because across departments they have the lowest average prices.
The weight $W_{m j}$ is the expenditure on good m, found in the market basket of department j, relative to the total expenditure on all goods sampled in department j. It is calculated as

$$
\begin{equation*}
W_{m j}=\frac{\bar{P}_{m j} C_{m j}}{\sum_{m=1}^{M_{j}} \bar{P}_{m j} C_{m j}} \tag{2}
\end{equation*}
$$

where $\bar{P}_{m j}$ is the average price of good m in department j across all eighteen stores sampled for this study and $C_{m j}$ is the estimated per capita annual consumption of good m in department j in the United States in 2003 as measured by the Economic Research Service of the USDA.

Tables 1 and 2 display the descriptive statistics for the departmental price indexes. They reveal two trends in the price indexes. First, for all departments except for national brand meat, Supercenters have the lowest price indexes (least expensive) and comparison stores have the highest price indexes (most expensive). Second, the coefficient of variation statistics reveal that the Supercenters generally have the lowest price volatility while competing stores have the high-

Table 1. Summary statistics for expenditure-weighted national brand price indexes

	Grocery	Dairy	Frozen Food	HBA	Meat	Produce	
		Mean					
Supercenters	102.62	100.36	108.03	107.76	100.76	111.47	
Compete	126.67	137.10	145.97	133.25	139.26	141.52	
Compare	143.19	168.76	159.64	141.03	132.89	159.50	
		Standard Deviation					
Supercenters	1.58	0.28	8.24	5.87	1.39	5.92	
Compete	12.56	21.24	22.44	11.76	2.21	19.40	
Compare	7.60	6.35	15.91	11.72	12.60	11.23	
	Coefficient of Variation						
Supercenters	1.54%	0.03%	7.63%	5.48%	1.38%	5.31%	
Compete	9.92%	15.57%	15.37%	8.83%	1.58%	13.71%	
Compare	5.31%	3.76%	9.97%	8.31%	9.48%	7.04%	

Table 2. Summary statistics for expenditure-weighted private label price indexes

	Grocery	Dairy	Frozen Food	HBA	Meat	
		Mean				
Supercenters	102.36	100.38	103.73	119.50	134.77	
Compete	142.43	133.84	138.58	128.09	129.09	
Compare	158.64	158.43	151.93	151.58	147.68	
			Standard Deviation			
Supercenters	2.10	0.30	4.15	9.55	18.37	
Compete	14.64	21.67	33.16	12.68	18.64	
Compare	17.80	14.59	25.35	30.25	30.38	
		Coefficient of Variation				
Supercenters	2.05%	0.30%	3.99%	7.99%	13.63%	
Compete	10.28%	16.19%	23.93%	9.90%	14.44%	
Compare	11.22%	9.21%	16.69%	19.95%	20.57%	
=						

est price volatility. One possible explanation is that Supercenters reduce the ability of supermarkets to coordinate prices and promotional activities. Marion, Heimforth, and Bailey found this to be true in the context of heterogeneous competition among supermarkets and larger warehouse stores. In addition, stores competing with Wal-Mart have been found to engage in both price and nonprice strategies (Khanna and Tice). Nonprice strategies include improving service, image, or variety. Several of the competing supermarkets sampled for this study were recently renovated, with features such as gasoline stations, coffee shops, and bookstores. If competing stores use a greater number of strategic instruments to compete with Supercenters than comparison stores, we may expect competing stores to have the greatest overall price variability among the store categories.
The price indexes for all three store categories were pooled to enable a direct test of the effect of Wal-Mart Supercenters on supermarket prices. The resulting model can be expressed as

$$
\begin{align*}
V= & \beta_{0}+\beta_{1} \text { DAIRY }+\beta_{2} \text { FROZEN }+\beta_{3} \text { HBA }+\beta_{4} \text { MEAT }+\beta_{5} \text { PRODUCE } \tag{3}\\
& +\beta_{6} \text { COMPETE }+\beta_{7} \text { COMPARE }+\beta_{8} \text { COMPETEDAIRY } \\
& +\beta_{9} \text { COMPETEFROZ }+\beta_{10} \text { COMPETEHBA }+\beta_{11} \text { COMPETEMEAT } \\
& +\beta_{12} \text { COMPETEPROD }+\beta_{13} \text { COMPDAIRY }+\beta_{14} \text { COMPFROZ } \\
& +\beta_{15} \text { COMPHBA }+\beta_{16} \text { COMPMEAT }+\beta_{17} \text { COMPPROD }+\boldsymbol{\delta X}+u
\end{align*}
$$

where V represents the expenditure-weighted relative price indexes, as described above. DAIRY, FROZEN, HBA (health and beauty aids), MEAT, and PRODUCE are binary variables included to capture price differences across departments. Therefore, the reference category is grocery. COMPETE and COMPARE are binary variables that represent the different supermarket categories. COMPETE equals one if the supermarket is a store competing with the Supercenter, and zero otherwise. COMPARE equals 1 if the supermarket is a store
located further away from a Supercenter and represents a comparison store, and zero otherwise. These variables are also interacted with the departmental binaries. We expect the results to indicate that Supercenters have the lowest average prices among all store categories and that the competing stores have lower average prices than the comparison stores. Hence the coefficients for COMPETE and COMPARE are anticipated to have positive signs, and the coefficient on COMPARE is expected to be greater in magnitude than the coefficient on COMPETE, to represent this pattern for the grocery department. Given the proper mapping of coefficients, we expect similar results to be realized for all departments. ${ }^{6}$
X represents a vector of variables consisting of demographics, store characteristics, and market conditions. These variables, stressed in importance by a survey of the literature on supermarket pricing and competition (see Volpe), measure income, population density, the distance to the nearest large competitor, store size, concentration, and the percentage of minorities in the local population. We describe these variables next.
INCOME is a binary variable equal to 1 if the city or town, associated with the index value, has a median household income greater than $\$ 45,725$, that is, in the upper half of the data set. Given that consumers become less price sensitive as income increases (Hoch et al.) we expect the coefficient to be positive. The binary nature of this variable is intended to reflect the average difference in prices between areas of "high income" versus "low income" in New England. ${ }^{7}$ Income data from the 2000 Census were used to generate this variable.

POPDENS represents population density and is expected to have a negative sign, as food retailers have greater incentive to compete when consumers can easily travel among stores (Lamm; Cotterill, 1986). Data on population and land area for the cities and towns were available from the 2000 Census.
Concentration data were not available at levels disaggregated enough for this study, and therefore two proxies are used in place of the conventional measurements of industry concentration, for example, four-firm concentration ratio and the Herfindalh-Hirschman Index. DTLC is the distance, in miles, to the nearest supermarket or Supercenter. CONCENTRATED is a binary variable equal to one if the town or city associated with the price index has fewer than three large food retailers. Both of these coefficients are expected to be positive. The locations of the stores in each town or city were obtained from the Trade Dimensions 2004 Retail Data Directory and driving distances among stores were determined using the electronic service Mapquest.
SSIZE is the size of the store, in thousands of square feet. According to Binkley and Connor $(1996,1998)$, store size can affect prices in two opposite directions. Larger stores may enjoy economies of scale and thus charge lower prices. However, larger stores may also stock more items and provide more services, which contribute to the rise in costs and thus prices. Binkley and Connor (1998) argue that the second effect dominates for conventional retailers. The first effect most likely dominates for Wal-Mart. Thus, the expected sign on SSIZE is indeterminate for both national brands and private labels. ${ }^{8}$ Data on store size in square footage were available from Trade Dimensions 2004 Retail Data Directory.
BH is the percentage of blacks and Hispanics living in the associated town. Blacks and Hispanics are more sensitive to grocery prices (Hoch et al.). Thus, this
variable is expected to be negative. Demographic data were obtained from the 2000 Census.

Results

Equation (3) was estimated separately for national brand (model A) and private label (model B) price indexes for ease of interpretation and readability. The results of the generalized least squares (GLS) estimations are compiled in table 3. The models were estimated using GLS rather than ordinary least squares (OLS) because preliminary regression results indicated heteroskedasticity resulting from different variances across departments. The models have high-explanatory power, as evidenced by the models ${ }^{\prime} F$-statistics and the adjusted R^{2} values. Diagnostics revealed no multicollinearity problem among the variables in the X vector. Consistent price data were not available for private label produce and therefore price indexes were not calculated for those goods. As a result, Model A has 108 observations (six departments at eighteen stores) while Model B has ninety observations (five departments at eighteen stores).
The demographics and market conditions all have expected signs, with the exception of $B H$, which is not statistically significant. SSIZE is negative and significant for both national brands and private labels indicating that larger stores have lower prices. The likely explanation for this result is that economies of scale enable large stores, such as Supercenters and large conventional supermarkets, to be more efficient and charge lower prices. The coefficients indicate that a 1,000 square feet increase in store size results in an average decrease in price of 0.25% for national brands and a 0.88% decrease in price for private labels, when the coefficient is expressed as a percentage of the average value of the dependent variable. ${ }^{9}$
The coefficient on INCOME is positive and statistically significant for both brands. In percentage terms, the coefficients indicate that the price of national brands is 7% higher, and the average price of private labels is 24% higher in higherincome locations in New England than in lower-income locations. We posit that this price increase reflects the price premium paid for groceries in high-income areas, which may be determined in part by differences in customer service or amenities available in-store. Differences in private label quality are unlikely to be a determinant of this price difference, as private labels are identical within chains.
In general, expressed as a percentage of the average value of the dependent variable, the effects of the demographics and market conditions on price are greater in magnitude for private label products than for the national brand products, except for the effect of market concentration (CONCENTRATED). This pattern supports the findings that supermarkets have greater control over private label prices as opposed to the national brand prices set by manufacturers (Mills) and that consumers who purchase private label goods are more price sensitive than those who primarily purchase national brands (Dhar and Hoch).

Tables 4 and 5 give the expected price index value for each department and store type, holding all demographics, market conditions, and store characteristics constant and adjusted for in-store promotional activity. Column 6 in each table is of particular interest. It reports the average price difference in percentage term between competing stores and comparison stores. Those percentages represent the estimated competitive effect of the presence of Wal-Mart Supercenters on the prices at conventional supermarkets.

Table 3. Regression Results

	Model A National Brands	Model B Private Labels
Intercept	$113.476^{* * *}$	$139.961^{* *}$
	(7.430)	(14.665)
DAIRY	-2.258	-1.976
	(6.609)	(10.385)
FROZEN	5.412	1.373
	(6.023)	(10.891)
HBA	4.814	17.135*
	(4.681)	(9.467)
MEAT	-1.851	$32.404^{* * *}$
	(4.818)	(9.464)
PRODUCE	8.852	
	(5.530)	
COMPETE	18.765***	27.897***
	(5.131)	(10.722)
COMPARE	$32.041^{* * *}$	41.297***
	(5.171)	(10.796)
COMPETEDAIRY	12.684	-6.617
	(9.347)	(14.687)
COMPETEFROZ	13.888	-5.224
	(8.518)	(15.402)
COMPETEHBA	1.764	-21.472**
	(6.620)	(13.388)
COMPETEMEAT	14.444**	-45.749***
	(6.813)	(13.384)
COMPETEPROD	5.992	
	(7.821)	
COMPDAIRY	27.828***	1.763
	(9.347)	(14.687)
COMPFROZ	11.044	-8.090
	(8.518)	(15.402)
COMPHBA	-6.974	-24.194*
	(6.620)	(13.388)
COMPMEAT	-8.447	$-43.365^{* * *}$
	(6.813)	(10.428)
COMPPROD	7.461	
	(7.821)	
INCOME	8.570***	$21.743^{* * *}$
	(2.493)	(4.826)
POPDENS	-0.638	-1.581*
	(0.427)	(0.826)
DTLC	0.627	0.887
	(0.499)	(0.966)
SSIZE	-0.297***	-0.795***
	(0.094)	(0.182)
CONCENTRATED	7.561***	1.031
	(3.058)	(5.920)

Table 3. Continued

	Model A National Brands	Model B Private Labels
BH	0.020	0.168
	(0.132)	(0.256)
N	108	90
F	$20.51^{* * *}$	$6.81^{* * *}$
Adjusted R^{2}	0.81	0.57

${ }^{* * *}$: Coefficient is significant at the 0.01 level. ${ }^{* *}$: Coefficient is significant at the 0.05 level. ${ }^{*}$: Coefficient is significant at the 0.10 level. Standard errors are in parenthesis.

A decrease in average prices is attributed to the presence of Supercenters in all departments except for national brand meat. This counterintuitive finding for the national brand of meat is not statistically significant. It may be attributed to a temporary pricing anomaly during the data collection time frame or a small sample size for meat.
For both national brand and private label products, the largest competitive effect of Supercenters occurs in the dairy department with estimated decreases in prices of 17% and 12%, respectively. Among national brand products, the grocery and produce departments are also significantly affected by the presence of Supercenters. Supercenters cause a 9% decrease in the price of national brands of both grocery items and produce. Significant average price decreases are attributed to Supercenters for private label HBA and meat products. We are unable to conclude that the presence of Wal-Mart Supercenters has a statistically significant effect on the prices of frozen food items, regardless of the brand type. Finally, the grocery department for private label goods is not significantly impacted by the presence of Supercenters.
Column 4 and 5 of tables 4 and 5 depict the average price differences between the Wal-Mart Supercenters and the conventional supermarkets. These differences indicate to what extent Supercenter prices are lower than competing stores

Table 4. Expected expenditure-weighted relative price indexes by department for national brand goods (Model A) ${ }^{13}$

	$\mathbf{(1) :}$ Wal-Mart Supercenters	(2): Competing Stores	(3): Comparison Stores	(4): (1-2) \% difference	(5): (1-3) \% difference	(6): (2-3) \% difference
Grocery	113.476	132.241	145.517	$-14.19^{* * *}$	$-22.02^{* * *}$	$-9.12^{* * *}$
Dairy	111.218	142.667	171.087	$-22.04^{* * *}$	$-34.99^{* * *}$	$-16.61^{* * *}$
Frozen	118.888	151.541	161.973	$-21.55^{* * *}$	$-26.60^{* * *}$	-6.44
\quad Food						
HBA	118.290	138.819	143.357	$-14.79^{* * *}$	$-17.49^{* * *}$	-3.16
Meat	111.625	144.834	135.219	$-22.93^{* * *}$	$-17.45^{* * *}$	7.11
Produce	122.328	147.085	161.830	$-16.82^{* * *}$	$-24.41^{* * *}$	$-9.11^{* *}$

[^0]Table 5. Expected expenditure-weighted relative price indexes by department for private label goods (Model B)

	(1): Wal-Mart Supercenters	(2): Competing Stores	(3): Comparison Stores	$\begin{gathered} \text { (4): } \\ \text { (1-2) } \\ \text { \% difference } \end{gathered}$	$\begin{gathered} \text { (5): } \\ (1-3) \\ \text { \% difference } \end{gathered}$	$\begin{gathered} \text { (6): } \\ (2-3) \\ \text { \% difference } \end{gathered}$
Grocery	139.961	167.858	181.258	$-16.62^{* * *}$	-22.78***	-7.39
Dairy	137.985	159.265	181.045	$-13.36^{* * *}$	-23.78***	-12.03 **
Frozen Food	141.334	164.007	174.541	$-13.82^{* * *}$	-19.03***	-6.04
HBA	157.096	163.521	174.199	-3.93	-9.82**	-6.13**
Meat	172.365	154.513	170.297	11.55**	1.21	-9.27^{*}

${ }^{* * *}$: Difference is significant at the 0.01 level. ${ }^{* *}$: Significant at the 0.05 level. *: Significant at the 0.10 level.
(column 4) and lower than comparison stores (column 5). The differences are greater in magnitude than those calculated between competing and comparison stores. With two exceptions, Supercenters prices are significantly lower, on average, than those of conventional stores. The two exceptional cases are private label HBA products, for which the estimated difference is insignificant, and private label meat, for which Supercenters have the highest average prices among all store categories. The HBA department is unique in this study, as it comprises products that are also available at many other store types, including pharmacies and other mass merchandisers. Therefore, greater overall price competition and lower average price differences between Supercenters and competing stores, relative to other departments, is expected for the HBA department. As mentioned previously, the results for the meat department call for further investigation.
Column 4 of table 4 indicates that Supercenters price their national brand products between 14 and 23% lower than competing supermarkets. The estimated national brand price differences between Supercenters and competing stores are generally larger than the corresponding private label differences, which vary between 4 and 17% (column 4 of table 5). The largest price differences are for national brand of dairy, frozen food, and meat products, and private label grocery products. As expected, the price difference is larger between Supercenters and comparison stores. Supercenter prices are lower than comparison stores by 17 to 35% depending on the national brand department (column 5 of table 4), and by 10 to 24% for private label departments (column 5 of table 5). The largest price differences are for dairy products for both national brands and private labels.
The prices collected for this study did not include promotional activity. However, promotional activity is consistent within chains, that is, the same products sell at the same promotional price across locations. Therefore, we adjusted the expected price index values for promotional activity in order to better reflect the prices that consumers actually paid. Using promotional flyers from Stop n' Shop and Big Y throughout the month of October 2006, we calculated the average share of market basket products that are on sale in these supermarkets in any given week. In doing so, we assume that the promotional activity of these regional chains in October 2006 is indicative of the promotional activity two years prior. Additionally, we used the promotional prices, in 2004 dollars, to calculate the

Table 6. Estimated overall price discounts resulting from promotional activity ${ }^{14}$

	Competing	Comparison Stores
Stores	4.90%	
Privanal Brand	3.81%	4.93%

percentage discounts for products on promotion. Table 6 reports the estimated overall average percentage discounts for consumers' market baskets by brand and store category.
Table 7 reports the average departmental shares of sales as determined by Cotterill (1999a). These shares of sales were used to weight the average departmental price differences reported in tables 4 and 5 . The results, reported in table 8, represent the average overall competitive effects of Supercenters on prices at conventional supermarkets. They correspond to the overall average price differences between competing and comparison stores. ${ }^{10}$ The estimates were calculated in two ways. With method 1, the weighted price difference was calculated using all of the percentage differences reported in tables 4 and 5 . Method 2 utilizes only those effects that were found to be statistically significant. The overall effects incorporating promotional discounts, as shown in table 6, are also reported. These effects were obtained by adjusting the expected prices for comparison and competing stores by the overall discounts presented in table 6.

The overall competitive effect of the presence of Supercenters on supermarket prices ranges from a 6.83 to a 7.23% price decrease for national brand goods and a 3.28 to a 8.01% price decrease for private labels, using nonpromotional prices. Promotional prices lower the estimated overall effect of Supercenters. However, the impact is modest, ranging from 0.4 to 1.3% across brands and store categories.

Given that the private label estimate calculated using method 1 is statistically insignificant, our results show that the overall effect of Supercenters is greater for national brand products. National brand products are universally more expensive and more heavily promoted than their private label substitutes. Therefore this finding is in agreement with the ongoing trend of lower prices in

Table 7. Departmental shares of sales

Department	Share of Sales
Grocery	46.07%
Dairy	7.99%
Frozen food	7.05%
HBA	5.77%
Meat	14.52%
Produce	18.61%

Table 8. The estimated overall competitive effect of the presence of Supercenters, by model

	Estimated Overall Effect of Wal-Mart				
	Method 1		Method 2		
Model	Without promotions	With promotions		Without promotions	With promotions
A. National brand	$-6.83 \%^{*}$	-5.77%		$-7.23 \%^{*}$	-6.48%
B. Private label	-8.01%	-6.71%		$-3.28 \%^{*}$	-2.84%

${ }^{* * *}$: Difference is significant at the 0.01 level ${ }^{* *}$: Significant at the 0.05 level ${ }^{*}$: Significant at the 0.10 level
conventional supermarkets as a response to Wal-Mart, as noted by Adamy. Moreover, we may expect a lower competitive effect on private label prices because their heterogeneity relative to Wal-Mart private labels is such that the competition is not as strong for those goods as for national brands.
Applying the same weighting scheme to the average price differences between Supercenters and conventional supermarkets, table 9 reports the overall price differences by store category and brand type. The impact of promotional prices was also incorporated into these overall price differences. Only statistically significant price differences were included in the calculations.
On average, our results indicate that Supercenter prices are lower than prices at competing stores by 14 to 17% for national brand products and by 7 to 10% for private labels. Supercenter prices are overall lower than comparison stores by 19 to 23% for national brands and 14 to 18% for private labels. The estimated impact of promotional activity shown in table 9 is greater in magnitude than that shown in table 8. This is consistent with Supercenters exhibiting no promotional activity in contrast to supermarkets.
The extent to which Supercenter prices are lower than conventional supermarkets is consistent with the estimates available in studies surveyed by Hausman and Leibtag $(2004,2005)$, that is, between 8 and 27%. The average price differences between Supercenters and supermarkets are greater (in percentage terms) for national brand products. One likely explanation of this difference between

Table 9. The estimated overall price difference between supercenters and supermarkets

Model	Competing Stores		Comparison Stores	
	Without promotions	With promotions	Without promotions	With promotions
A. National brand	$-17.13 \%^{* * *}$	-13.84\%	-22.90\%***	-18.93\%
B. Private label	-9.90\%**	-6.80\%	-17.66***	-14.30\%

brands is the process through which the food retailers obtain their wares. National brand products are purchased from national brand manufacturers and distributors. Dobson and Waterson and Chen have argued that Wal-Mart possesses market power to countervail that of manufacturers, which drives down the prices of the products purchased from suppliers. The supermarket chains of New England such as Stop n' Shop and IGA are too small to possess such power, resulting in a cost advantage for Wal-Mart Supercenters. Private label products, alternatively, are produced through a form of vertical integration and countervailing power plays less of a role in the process by which Wal-Mart obtains its Great Value product line.

The margin between brands has been a frequently visited topic in the literature on supermarket pricing (Bergès-Sennou, Bontems, and Réquillart). With Wal-Mart Supercenters taking an increasing importance in food retailing, it becomes relevant to question their effect on the national brand/private label margin. We can shed some light on this question. According to our results, Supercenters have a greater price impact on national brands than on private labels. Combining this result with the fact that national brands are more expensive than private labels suggests that Supercenters reduce the national brand/private label margin of the supermarkets with which they compete.

Discussion and Conclusions

Wal-Mart is introducing Supercenters at a fast pace in the United States, especially in regions such as New England and California where Wal-Mart has a smaller presence. The projected introduction of a Supercenter typically creates much controversy and debate concerning the economic impacts of the new store. In this article, we examine one aspect of the impact of introducing Supercenters, that is the effect on grocery prices. More specifically, using a unique data set, we examine the competitive effect of Wal-Mart Supercenters on prices at conventional supermarkets in New England. This effect was examined for the six major supermarket departments (dairy, frozen goods, health and beauty aids (HBA), meat, produce, and dry grocery) as well as both national brand and private label goods. We also examine the extent to which Wal-Mart's grocery prices are lower than those at conventional supermarkets. Thus, this article sheds some light on the pricing strategy of Wal-Mart Supercenters and the response of supermarkets when facing direct competition from a Supercenter.
The primary findings of this study are as follows:

1) Wal-Mart Supercenters result in a decrease in grocery prices between 6 and 7% for national brand goods at conventional supermarkets competing within a radius of 5 miles from the Supercenter. The associated decrease in the price of private label goods is between 3 and 8%. These findings are in line with those in the literature, more specifically those of Hausman and Leibtag (2005) who found an indirect price effect of Wal-Mart of 5% of consumer expenditure. Given that national brand goods are more expensive, Supercenters lower the price margin between branded and unbranded goods.
2) The greatest impact of Wal-Mart Supercenters, in terms of price decreases, is in the grocery and dairy departments for both national brands and private
labels. Lower prices are also observed for national brand produce, and private label HBA. Supercenters have no statistically significant effect on goods in the frozen food department.
3) Taking into account market concentration, demographic variables, and store characteristics, Wal-Mart Supercenters price national brand and private label products significantly lower than conventional supermarkets. The estimated average price difference between Supercenters and supermarkets for national brand products ranges from 14 to 23%. The corresponding differences for private labels are lower, ranging from 7 to 18%.

The greater overall competitive effect of Supercenters on national brand than on private label prices may reflect a strategic effort by competing supermarkets to increase consumer traffic or maintain customer loyalty. Dhar and Hoch found that a common strategy for supermarkets to increase consumer traffic is to lower the price and improve promotions on national brands as well as carry a greater number and assortment of national brands. In a region such as New England, which is wealthy relative to the nation as a whole, consumer demand for national brand products is high and this strategy may be particularly effective.
The magnitude of the impact of Wal-Mart Supercenters can be conceptualized in the context of food expenditures. An average American family, with a total household income between $\$ 50,000$ and $\$ 69,999$, spends $\$ 1,300$ per person annually on food intended for at-home consumption. ${ }^{11}$ This range encompasses many of the cities and towns sampled for this study, as well as much of New England. According to our results, a family can expect to save between $\$ 37$ and $\$ 104$ per person annually by shopping exclusively at conventional supermarkets located within a 5 -mile radius from a Supercenter, allowing for the shopping basket to consist of some combination of national brand and private label products. ${ }^{12}$
The annual savings for consumers shopping entirely at Supercenters are larger. The size of the savings depends on whether the alternative supermarket directly competes with a Supercenter or not. Consumers living within 5 miles of Supercenters can achieve estimated annual savings ranging from $\$ 88$ to $\$ 223$ per person annually, if they shop at Supercenters rather than at competing supermarkets. Shoppers willing to travel from cities and towns without Supercenters can save between $\$ 186$ and $\$ 298$ per person annually on grocery expenditures by shopping at Supercenters relative to conventional supermarkets.
Note, however, that these estimated savings attributed to Supercenters may not accurately reflect consumer behavior due to the effect of promotions on the composition of the consumer's basket. Blattberg and Neslin found that promotional price cuts have striking effects on sales in the short term. For example, the authors determined that, a national brand product given a 10% price decrease and a display advertisement sees an average sales increase of 101% during the promotion. Given that consumers flock to promotional items, the estimated savings calculated above must be considered upper bounds.
The controversies surrounding Wal-Mart beg the question "Is Wal-Mart good for the economy?" This question can typically only be partially answered because so many economic factors must be considered. Wal-Mart's effects on customers, employees, competitors, and distributors must all be taken into account.

In this article, we focused on the retail price impact of Supercenters. Based on our empirical results, we conclude that Wal-Mart Supercenters have a positive welfare effect on price-sensitive consumers. Consumers who seek to purchase their groceries as inexpensively as possible benefit from the presence of Supercenters.
The results presented in this article suggest possible avenues for further research. One such exploration is the applicability of these results to the national level. Our results are in line with previous estimates of price differences between Supercenters and supermarkets (Bianco and Zellner;Hausman and Leibtag, 2005). However, in estimating the price reductions at supermarkets resulting from the presence of Supercenters we have little basis for comparison in the economic literature. New England is wealthier and more densely populated than the United States on average, and the supermarket chains visited for this study were regional chains.
Arguments can be made supporting the notion that the effect of Supercenters on conventional supermarket prices would be less pronounced in New England than in the rest of the nation on average. The market share and profits reaped by Supercenters share an inverse relationship with income and concentration (Franklin). If Supercenters obtain lower market shares or less consumer traffic in New England relative to the United States as a whole, then supermarkets may react to Supercenters' presence in two ways. They could place less weight on a price response and more weight on a product differentiation response, such as increasing the quantity and/or quality of service provided. Supermarkets could also react generally less strongly to Supercenters' presence in higher-income regions. Both of these reactions would translate into a lower effect of Supercenters on grocery prices in New England than in the United States on average. Alternatively, arguments can be made in favor of Supercenters having a higher effect relative to the United States as a whole. Our results suggest that grocery prices share positive relationships with household income and concentration. If this result holds on a national level, as found by Lamm and Cotterill (1999b) in the case of income and by Lamm, Cotterill (1986), and Yu and Connor in the case of concentration, then grocery prices may be higher on average in New England than in other regions of the United States. Thus, unless higher prices are associated with higher costs, there may be more possibilities to lower prices, which would result in greater price effects attributed to the presence of Supercenters. It would therefore be worthwhile to apply this study to regions such as the southeast, where household income is lower than the U.S. average and where Supercenters are established for the longest time, or the west coast where income is high and Wal-Mart's presence is relatively new.
In addition to the implications resulting from the regression analysis, the coefficient of variation (CV) pattern in the price indexes show that for nearly all departments and for both national brand and private label products, supermarkets competing with Supercenters have higher price variability than those located further away from the nearest Supercenter. This finding may reflect a reduction in the ability of supermarkets to coordinate promotional patterns. It may also reflect the presence of nonprice competitive strategies in addition to standard price-cutting strategy. In fact, several of the competing supermarkets visited for data collection were recently renovated, featuring amenities such as gas stations, salons, or
coffee shops. The CV pattern calls for an exploration of the strategies utilized by supermarkets when faced with competition from Supercenters. In general, more research is needed on the short-run and long-run price and nonprice response of supermarkets to the entry of Wal-Mart Supercenters. Such research would enable a better understanding of the profitability and viability of the supermarket industry in the context of the rapid proliferation of Wal-Mart Supercenters.

Acknowledgments

This article is based on Richard Volpe's master's thesis. The authors appreciate the valuable comments received from Ronald Cotterill, Daniel Lass, Richard Sexton, and participants at the 2005 AAEA annual meeting in Providence, RI. The authors would like to thank two anonymous reviewers for their useful suggestions. The authors are responsible for any remaining error. This project was funded by the Cooperative State Research, Extension, and Education Service, U.S. Department of Agriculture through the Massachusetts Agricultural Experiment Station under Project No. MAS00894.

Endnotes

${ }^{1}$ The variety effect accounts for the lower prices at supercenters relative to traditional supermarkets, as well as the value of having access to a new outlet. It is obtained by comparing the consumers' expenditure at existing and new outlets at post introduction prices with consumers' expenditure at the reservation price for the new outlet, while keeping utility constant. The reservation price is the price such that the demand for the new outlet is zero.
${ }^{2}$ For a review of the literature on national brand and private label products, see Bergès-Sennou, Bontems, and Réquillart.
${ }^{3}$ See Appendix A for information on the stores sampled and their location.
${ }^{4}$ See Appendix B for the complete market basket as well as the average price of each product at the 18 stores.
${ }^{5}$ Expressing prices in relative term eliminates the effect of package-size discrepancy across products.
${ }^{6}$ For example, the expected price index value for the dairy department at competing stores is given by $\beta_{0}+\beta_{1}+\beta_{6}+\beta_{8}$, while the expected price index for the dairy department at comparison stores is $\beta_{0}+\beta_{1}+\beta_{7}+\beta_{13}$.
${ }^{7}$ Areas falling below the median income value in the data set are not necessarily low-income areas as defined by the U.S. Census Bureau.
${ }^{8}$ Note that five of the twelve conventional retailers in our sample are relatively large supermarkets with store areas greater than 50,000 square feet. Those stores have amenities, such as a coffee shop or deli area, which are typically not found in smaller stores.
${ }^{9}$ The mean national brand departmental price index is 118.65 while the mean private label index is 90.69.
${ }^{10}$ Given that there is no private label produce, the department share of sales are adjusted accordingly for private labels. For example, the share of grocery is 56.88% for private label.
${ }^{11}$ This value is from the 2004 Bureau of Labor Statistics report Consumer Expenditures in 2004.
${ }^{12}$ The savings figures are calculated based on the range of price decrease estimates reported in table 8. The percentage price differences between competing and comparison supermarkets range from 2.84% to 8.01% across national brands and private labels, when including the results adjusted for promotional prices.
${ }^{13}$ Joint tests of significance were performed for the appropriate binary and interaction terms. For example, for national brand dairy, we tested H_{0} : COMPETE + COMPETEDAIRY $=$ COMPARE + COMPAREDAIRY.
${ }^{14}$ These values were obtained by multiplying the weighted average percentage of products on sale in any given week at Stop n' Shop and Big Y by the average percentage discount. For example, table 6 reports that the overall discount from promotions of national brand (NB) products at competing stores is 3.81%. It is computed as follows. The weighted average promotional price reduction of the NB products found in our market basket at competing stores was 24.64%. Across Stop n^{\prime} Shop and Big Y stores, a weighted average of 15.47% of NB products were on promotion in any given week. Therefore the estimated overall price reduction encountered by consumers is $.2464 * .1547=.0381$, or 3.81%. We have no data on the promotional activity of IGA stores, which constitute two of the twelve supermarkets sampled for this study. These calculations assume that IGA's promotions follow the weighted promotion average of Stop n^{\prime} Shop and Big Y.

Appendix A: Stores Sampled and their Characteristics

Store	Type	Location	Population	$\begin{gathered} \text { Median } \\ \text { Household } \\ \text { Income (\$) } \end{gathered}$	Store Size (sq. feet)
Wal-Mart	Supercenter	North Windham, CT	38,680	30,155	55,000
Super Stop n' Shop	Competing	North Windham, CT	38,680	30,155	41,000
Super Stop n' Shop	Comparison	Vernon-Rockville, CT	35,771	44,510	37,000
Wal-Mart	Supercenter	Westerly, RI	22,966	44,613	57,000
Super Stop n' Shop	Competing	Westerly, RI	22,966	44,613	47,000
Super Stop n' Shop	Comparison	Seekonk, MA	13,425	56,364	51,000
Wal-Mart	Supercenter	Jewett City, CT	3,053	45,826	63,000
Better Value IGA	Competing	Jewett City, CT	3,053	45,826	22,000
Better Value IGA	Comparison	Plainfield, CT	14,619	42,851	15,000
Wal-Mart	Supercenter	Ware, MA	9,707	36,875	55,000
Big Y	Competing	Ware, MA	9,707	36,875	29,000
$\operatorname{Big} \mathrm{Y}$	Comparison	Stafford Springs, CT	11,307	52,699	35,000
Wal-Mart	Supercenter	Waterford, CT	19,152	56,047	66,000
Super Stop n' Shop	Competing	Waterford, CT	19,152	56,047	50,000
Super Stop n^{\prime} Shop	Comparison	Fairhaven, MA	16,159	41,696	60,000
Wal-Mart	Supercenter	Raynham, MA	11,739	64,464	67,000
Super Stop n^{\prime} Shop	Competing	Raynham, MA	11,739	64,464	67,000
Stop n' Shop	Comparison	Attleboro, MA	42,068	50,807	60,000

Appendix B: The Market Basket of Products

Product	Department	Minimum Price (\$)	Maximum Price (\$)	Average Price (\$)	Standard Deviation (\$)
Coca-Cola 2-liter	Grocery	1.07	1.59	1.38	0.17
PL Cola 2-liter	Grocery	0.50	0.99	0.66	0.16
Maxwell House Coffee (13 oz.)	Grocery	1.97	3.29	2.49	0.46
PL coffee (13 oz.)	Grocery	1.67	2.69	2.03	0.37
Bumble Bee tuna (6 oz.)	Grocery	1.12	1.59	1.38	0.17
PL tuna (6 oz.)	Grocery	0.88	1.39	1.17	0.16
Cheerios (15 oz.)	Grocery	2.44	3.99	3.15	0.62
PL O-shaped cereal (15 oz .)	Grocery	1.50	2.88	2.02	0.47
Lays potato chips (12 oz.)	Grocery	1.99	2.99	2.66	0.48
PL potato chips (12 oz.)	Grocery	1.47	1.99	1.77	0.25
Kraft Mac n' Cheese (7.25 oz .)	Grocery	0.66	1.39	0.97	0.19
PL Mac n' Cheese (7.25 oz .)	Grocery	0.33	0.60	0.44	0.10
Prego pasta sauce (26 oz .)	Grocery	1.50	2.69	2.00	0.38
PL pasta sauce (26 oz.)	Grocery	1.00	1.59	1.29	0.23
Jif creamy peanut butter (28 oz.)	Grocery	2.68	3.89	3.11	0.34
PL creamy peanut butter (28 oz.)	Grocery	2.12	2.89	2.49	0.25
Del Monte sliced peaches (15.25 oz .)	Grocery	0.88	1.59	1.25	0.24
PL sliced peaches (15.25 oz .)	Grocery	0.78	1.29	0.99	0.18
Nabisco chips ahoy (16 oz.)	Grocery	2.50	4.15	3.21	0.59
PL chocolate chip cookies (16 oz.)	Grocery	0.78	2.99	1.92	0.88
Heinz ketchup (24 oz .)	Grocery	1.29	1.99	1.65	0.20
PL ketchup (24 oz.)	Grocery	0.78	1.39	1.07	0.19
Bisquik pancake mix (40 oz.)	Grocery	2.23	3.19	2.72	0.35
PL pancake mix (40 oz.)	Grocery	1.15	2.49	1.79	0.45

Table Appendix B. Continued

Product	Department	Minimum Price (\$)	Maximum Price (\$)	Average Price (\$)	Standard Deviation (\$)
Hood milk 1\% milk (gallon)	Dairy	2.96	4.15	3.51	0.44
PL 1% milk (gallon)	Dairy	2.37	3.75	2.94	0.47
Kraft American singles (16 ct.)	Dairy	1.97	3.99	2.87	0.85
PL American singles (16 ct.)	Dairy	1.77	3.35	2.47	0.65
Land o' Lakes butter (1 lb.)	Dairy	3.24	4.77	4.03	0.67
PL butter (1 lb.)	Dairy	2.50	3.99	3.08	0.55
Breyers vanilla ice cream (1/2 gal.)	Frozen	3.24	6.57	4.70	1.08
PL vanilla ice cream ($1 / 2$ gal.)	Frozen	2.50	5.49	3.41	1.02
Eggo homestyle waffles (10 ct.)	Frozen	1.50	2.37	1.85	0.32
PL homestyle waffles (10 ct.)	Frozen	1.00	1.99	1.28	0.35
Birdseye frozen broccoli (10 oz.)	Frozen	0.73	1.89	1.14	0.34
PL frozen broccoli (10 oz.)	Frozen	0.59	1.19	0.89	0.20
Q-Tips cotton swabs (500 ct.)	HBA	2.95	3.99	3.57	0.47
PL cotton swabs (500 ct.)	HBA	1.88	3.49	2.73	0.66
Dial antibacterial soap (3 ct.)	HBA	1.62	2.65	2.06	0.32
PL antibacterial soap (3 ct.)	HBA	1.47	1.99	1.58	0.19
Edge shaving gel (7 oz .)	HBA	1.78	3.89	2.65	0.50
PL shaving gel (7 oz.)	HBA	1.14	3.59	1.92	0.74
Purdue chicken drumsticks (1 lb.)	Meat	0.59	2.29	1.62	0.58
PL chicken drumsticks (1 lb.)	Meat	0.59	2.29	1.29	0.43
Perri Italian sausage (1 lb.)	Meat	2.38	3.99	3.40	0.78

Table Appendix B. Continued

Product	Department	Minimum Price (\$)	Maximum Price (\$)	Average Price (\$)	Standard Deviation (\$)
PL Italian sausage (1 lb.)	Meat	2.22	4.59	2.96	0.64
Oscar Meyer bacon (1 lb.)	Meat	4.87	5.49	4.98	0.14
PL bacon (1 lb.) Perfect orchard red delicious apples (1 lb.)	Meat	1.98	4.99	3.29	0.61
Russet red potatoes (1 lb.)	Produce	2.44	3.99	3.38	0.64
Bolthouse farms carrots (1 lb.)	Produce	0.58	1.99	0.83	0.47
Foxy lettuce head (head)	Produce	0.78	1.99	1.30	0.41
Chiquita bananas (1 lb.)	Produce	0.38	0.69	0.55	0.11
Foxy celery (1 lb.)	Produce	1.24	2.21	1.57	0.33

References

Adamy, J. "Grocery Stores Cut Out Weekly Special." Wall Street Journal (July 20, 2005): D1.
Bergès-Sennou, F., P. Bontems, and V. Réquillart. "Economics of Private Labels: A Survey of Literature." J. Agr. Food Ind. Organ. 2(1st Quarter 2004):1-23.

Bianco, A., and W. Zellner "Is Wal-Mart Too Powerful?" Business Week Online (October 6, 2003). Available at http://www.businessweek.com/magazine/content/03_04/b3852001_mz001.htm.
Binkley, J.K., and J.M. Connor. "Grocery Market Pricing and the New Competitive Environment." J. Retailing 74(Summer 1998):273-294.
_-. "Market Competition and Metropolitan-Area Grocery Prices." Report No. 44, Regional Research Project NE-165, University of Connecticut, Storrs, 1996.
Blattberg, R.C., and S.A. Neslin. "Sales Promotion: The Long and Short of It." Marketing Letters 1(December 1989):81-97.
Bureau of Labor Statistics. Consumer Expenditures in 2004. Report No. 992. (2004)
Capps, O., and J.M. Griffin. "Effect of a Mass Merchandiser on Traditional Food Retailers." J. Food Distribution Res. 29(February 1998):1-7.
Chen, Z. "Dominant Retailers and the Countervailing-Power Hypothesis." RAND J. Econ. 34(Winter 2003):612-625.

Cotterill, R.W. "An Antitrust Economic Analysis of the Proposed Acquisition of Supermarkets General Holdings Corporation by Ahold Acquisition Inc." Research Report No. 46, Food Marketing Policy Center, University of Connecticut, Storrs, 1999a.
——. "Market Power and the Demsetz Quality Critique: An Evaluation for Food Retailing." Agribusiness 15(Winter 1999b):101-118.
——. "Market Power in the Retail Food Industry: Evidence from Vermont." Rev. Econ. Statist. 68(August 1986):379-386.

Daykin, T. "Wal-Mart Proposes Milwaukee Supercenter: Plans to Expand S. 27th Store Expected to Draw Opposition." Milwaukee Journal Sentinel, September 22, 2006, Section D Business, p. 1.
Dhar, S.K., and S.J. Hoch. "Why Store Brand Penetration Varies by Retailer." Marketing Sci. 16(3)(1997):208-227.
Dobson, P., and M. Waterson. "Retailer Power: Recent Developments and Policy Implications." Economic Policy 28(April 1999):133-156.
Franklin, A.W. "The Impact of Wal-Mart Supercenters on Supermarket Concentration in U.S. Metropolitan Areas." Agribusiness 17(Winter 2001):105-114.

Hausman, J., and E. Leibtag. "Consumer Benefits from Increased Competition in Shopping Outlets: Measuring the Effect of Wal-Mart." Working Paper 11809, National Bureau of Economic Research, 2005.
. "CPI Bias from Supercenters: Does the BLS Know that Wal-Mart Exists?" Working Paper 10712, National Bureau of Economic Research, 2004.
Hoch, S.J., K. Byung-Do, A.L. Montgomery, and P.E. Rossi. "Determinants of Store-Level Price Elasticity." J. Marketing Res. 32(February 1995):17-29.
Hudson, K., and G. McWilliams. "Seeking Expansion in Urban Areas, Wal-Mart Stores Gets Cold Shoulder." Wall Street Journal (September 25, 2006), p. A1.
Jones, E. "Supermarket Pricing and Game Theory: The Presence of Wal-Mart." Paper presented at AEAA annual meeting, Denver CO, 1-4 August 2004.
Khanna, N., and S. Tice. "Strategic Responses of Incumbents to New Entry: The Effect of Ownership Structure, Capital Structure, and Focus." Rev. Finan. Stud. 13(Fall 2000):749-79.
Lamm, R.M. "Prices and Concentration in the Food Retailing Industry." J. Ind. Econ. 30(September 1981):67-78.

Marion, B.W., K. Heimforth, and F. Bailey. "Strategic Groups, Competition, and Retail Food Prices." Competitive Strategy Analysis in the Food System. R.W. Cotterill, ed., pp. 179-199. Boulder and Oxford: Westview Press, 1993.
Mills, D.E. "Why Retailers Sell Private Labels." J. Econ. Manage. Strategy 4(Fall 1995):509-28.
Progressive Grocer. "Wal-Mart Tops Planet Retail's Global Grocers List." Progressive Grocer May 24, 2005. Available at http:/ /www.againstthewal.com/new_page_9.htm\#Wal-Mart_Tops_Planet_ Retails_Global_Grocers_List_-
Singh, V.P., K.T. Hansen, and R.C. Blattberg. "Market Entry and Consumer Behavior: An Investigation of a Wal-Mart Supercenter." Marketing Sci. 25(September-October 2006):457-476.
Vance, S.S., and R.V. Scott. Wal-Mart: A History of Sam Walton's Retail Phenomenon. New York: Twayne Publishers, 1997.
Volpe, R.J. III. "The Effect of Wal-Mart Supercenters on Grocery Prices in New England." MS thesis, University of Massachusetts, Amherst, 2005.
Wilke, J.R. "How Driving Prices Lower Can Violate Antitrust Statutes." Wall Street Journal (January 27, 2004), p. A1 and A11.
Woo, B.-J., C.L. Huang, H. Epperson, and D. Cude. "Effect of a New Wal-Mart Supercenter on Local Retail Food Prices." J. Food Distribution Res. 32(March 2001):173-180.
Yu, C.-C., and J.M. Connor. "The Price-Concentration Relationship in Retailing: Retesting Newmark." Agribusiness 18(Autumn 2002):413-426.
Zwiebach, E. "Shake-Up in California." Supermarket News (August 23, 2004), pp. 15-19.

[^0]: ${ }^{* * *}$: Difference is significant at the 0.01 level ${ }^{* *}$: Significant at the 0.05 level ${ }^{*}$: Significant at the 0.10 level

