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INTRODUCTION

Members of the Hedgehog (Hh) family of intercellular
signaling molecules control a variety of developmental
processes, ranging from segment patterning in Drosophila to
forebrain development in humans (reviewed by Ingham and
McMahon, 2001). Hedgehog signals are transduced by binding
and antagonizing the membrane protein Patched (Ptc), leading
to the activation of the membrane protein Smoothened (Smo).
In Drosophila, all Hh signaling is mediated by post-
translational modulation of Cubitus interruptus (Ci) activity. Ci
is a transcription factor of the Gli family that can be both an
activator and a repressor of Hh target genes. In the absence of
Hh signaling, proteolytic cleavage results in a Ci isoform that
is a transcriptional repressor, consisting of an N-terminal
repressor domain and the zinc finger DNA binding domain
(Aza-Blanc et al., 1997; Wang and Holmgren, 1999). Upon
activation of Hh signaling, cleavage is inhibited and a full-

length activator form of the molecule predominates (Aza-Blanc
et al., 1997; Wang and Holmgren, 1999). Because of the dual
function of Ci, Cinull mutants do not have the same phenotype
as hh mutants (see Methot and Basler, 2001). hh mutants
display a loss of expression of all Hh target genes, whereas loss
of Ci leads to both the inappropriate derepression of some Hh
target genes and the loss of expression of other Hh-regulated
genes.

In vertebrates, additional complexity in Gli function is
caused by the presence of at least three gligenes, gli1, gli2,
and gli3. The functions of the different gligenes have been
analyzed using mouse mutants and mis- and overexpression in
Xenopus, Drosophilaand cultured cells (reviewed by Ingham
and McMahon, 2001; Koebernick and Pieler, 2002; Ruiz i
Altaba et al., 2002). While the in vivo relevance of some of
these studies remains to be established, current evidence
suggests the following roles for Gli proteins. Gli1 appears to
be an activator of Hh target genes, but in contrast to Ci,
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Gli proteins regulate the transcription of Hedgehog (Hh)
target genes. Genetic studies in mouse have shown that Gli1
is not essential for embryogenesis, whereas Gli2 acts as an
activator of Hh target genes. In contrast, misexpression
studies in Xenopusand cultured cells have suggested that
Gli1 can act as an activator of Hh-regulated genes, whereas
Gli2 might function as a repressor of a subset of Hh targets.
To clarify the roles of gli genes during vertebrate
development, we have analyzed the requirements for gli1
and gli2 during zebrafish embryogenesis. We report that
detour (dtr) mutations encode loss-of-function alleles of
gli1. In contrast to mouse Gli1 mutants, dtr mutants
and embryos injected with gli1 antisense morpholino
oligonucleotides display defects in the activation of Hh
target genes in the ventral neuroectoderm. Mutations in

you-too (yot) encode C-terminally truncated Gli2. We find
that these truncated proteins act as dominant repressors of
Hh signaling, in part by blocking Gli1 function. In contrast,
blocking Gli2 function by eliminating full-length Gli2
results in minor Hh signaling defects and uncovers a
repressor function of Gli2 in the telencephalon. In addition,
we find that Gli1 and Gli2 have activator functions during
somite and neural development. These results reveal
divergent requirements for Gli1 and Gli2 in mouse and
zebrafish and indicate that zebrafish Gli1 is an activator of
Hh-regulated genes, while zebrafish Gli2 has minor roles as
a repressor or activator of Hh targets.

Key words: Forebrain patterning, Hedgehog signaling, Adaxial cells,
floor plate, cyclopamine, Morpholino
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Gli1 activity is not regulated post-translationally but
transcriptionally by Hh-mediated gene activation (Epstein et
al., 1996; Marigo et al., 1996a; Hynes et al., 1997; Lee et al.,
1997; Dai et al., 1999). Both N- and C-terminal domains of
Gli1 are necessary for its activation function (Ding et al., 1999;
Ruiz i Altaba, 1999). Despite its apparent activator function,
Gli1 is not essential for normal mouse development (Park et
al., 2000; Bai and Joyner, 2001; Bai et al., 2002). In contrast,
mouse Gli2 mutations are perinatal lethal and result in the
down-regulation of Hh target genes (Ding et al., 1998; Matise
et al., 1998), supporting the idea that Gli2 is a Hh-dependent
activator. The C-terminal region of Gli2 appears to be essential
for its activation function because C-terminally truncated Gli2
inhibits Hh target genes (Ruiz i Altaba, 1999; Sasaki et al.,
1999). Since a C-terminally truncated form of Gli2 might be
generated by proteolytic processing, it has been suggested that
Gli2 also has repressor activity (Ruiz i Altaba, 1999; Sasaki
et al., 1999; von Mering and Basler, 1999; Aza-Blanc et al.,
2000). Similarly, Gli3 appears to be processed to a C-
terminally truncated repressor of Hh target genes (Ruiz i
Altaba, 1999; Sasaki et al., 1999; Shin et al., 1999; Aza-Blanc
et al., 2000; Wang et al., 2000). Accordingly, Gli3 mouse
mutants display ectopic activation of Hh targets (Masuya et al.,
1995; Ruiz i Altaba, 1998; Litingtung and Chiang, 2000; Tole
et al., 2000). Hh signaling is thought to repress Gli3
transcription and Gli3 processing (Marigo et al., 1996a; Ruiz
i Altaba, 1998; Dai et al., 1999; von Mering and Basler, 1999;
Aza-Blanc et al., 2000; Wang et al., 2000). The full-length
form of Gli3 has been postulated to act as an activator of Hh
targets (Dai et al., 1999; Sasaki et al., 1999; Borycki et al.,
2000; Litingtung and Chiang, 2000), but direct in vivo
evidence is currently not available to support this hypothesis.

Misexpression and cell culture studies give insights into
potential Gli functions, but the exact requirement for vertebrate
Hedgehog signaling and Gli genes has been studied in most
detail during neural patterning in mouse mutants. Sonic
hedgehog is expressed in the notochord and floor plate
(Echelard et al., 1993; Krauss et al., 1993; Roelink et al., 1994;
Ekker et al., 1995) and is essential for the induction of floor
plate, motor neurons and most classes of ventral interneurons
in the spinal cord (Chiang et al., 1996; Ericson et al., 1996).
Gli2 is required to mediate some aspects of Hh signaling in
the ventral neural tube. Whereas motor neurons and most
interneurons develop normally in Gli2mutants, the floor plate
does not form (Ding et al., 1998; Matise et al., 1998). In
contrast, Gli1 mutant mice have an apparently normal spinal
cord, indicating that Gli1 is not essential for interpreting Hh
signals in the ventral CNS (Park et al., 2000). Double mutant
analysis suggests, however, that Gli1 can contribute to Hh
signaling since Gli1–/–;Gli2–/+ mice show ventral patterning
defects not found in Gli2–/+ mice (Park et al., 2000). Moreover,
expression of low levels of Gli1 in place of Gli2 can rescue
Gli2 mutants (Bai and Joyner, 2001). Taken together, these
results support the idea that Gli1 and Gli2 are positive
mediators of Hh signaling. In contrast, Gli3 appears to be
involved in the repression of Hh targets in the dorsal CNS
(Litingtung and Chiang, 2000; Tole et al., 2000).

While mutant data indicate that Gli1 and Gli2 are activators
and Gli3 is a repressor of Hh targets, seemingly contradictory
results are surprisingly common in the analysis of Gli function.
For instance, mis-expression studies in Xenopushave led to the

suggestion that Gli1 specifies floor plate development in the
neural tube while Gli2 restricts floor plate specification, but
induces motoneuron development and patterns the mesoderm
(Lee et al., 1997; Marine et al., 1997; Ruiz i Altaba, 1998; Ruiz
i Altaba, 1999; Mullor et al., 2001). These proposals contradict
the observations that mouse Gli2mutants lack floor plate, but
do not display defects in early mesoderm patterning, and that
Gli1 is not required for ventral patterning (Ding et al., 1998;
Matise et al., 1998; Park et al., 2000). These results might
reflect the shortcomings of misexpression approaches or
complications due to redundancy, but they might also be
indicative of context-dependent differences in Gli function. For
instance, depending on cell type or species, the requirements
and activities of Gligenes might differ. 

Genetic studies of Hh signaling in zebrafish complement
mutant analysis in the mouse and provide an approach to test
the conservation and divergence of Gli function in vertebrates.
Loss of zebrafish Hh signaling leads to ventral spinal cord
defects, deficiencies in ventral forebrain specification, absence
of an optic chiasm due to retinal axon guidance defects,
absence of slow muscle fiber types, malformations of the dorsal
aorta, ventral curvature of the body and defects in pectoral fin
development (Brand et al., 1996; Chen et al., 1996; Karlstrom
et al., 1996; van Eeden et al., 1996b; van Eeden et al., 1996a;
Schauerte et al., 1998; Karlstrom et al., 1999; Lewis et al.,
1999; Barresi et al., 2000; Odenthal et al., 2000; Chen et al.,
2001; Varga et al., 2001). Forward genetic screens have
identified mutations that cause all or some of these phenotypes
and affect components of the Hh signaling cascade. These
include sonic-you (syu), which disrupts shh(Schauerte et
al., 1998), slow-muscle-omitted(smu), which inactivates
smoothened(smo) (Chen et al., 2001; Varga et al., 2001) and
you-too(yot), which encodes C-terminally truncated forms of
Gli2 (Karlstrom et al., 1999). Moreover, several molecularly
uncharacterized mutants have a subset of hhloss-of-function
phenotypes, suggesting that they might encode additional
components or mediators of Hh signaling. For instance, the
detour(dtr) mutant was originally isolated because of errors in
retinal axon guidance (Karlstrom et al., 1996) and ventral
curvature of the body (Brand et al., 1996). Axons that normally
cross the midline of the diencephalon fail to do so in dtr
mutants, and no optic chiasm forms (Karlstrom et al., 1996).
In addition, lateral floor plate cells are absent, suggesting
defects in Hh signaling similar to those seen in syu/shh,
smu/smoand yot/gli2 (Odenthal et al., 2000). Cranial motor
neurons also fail to differentiate in dtrmutant embryos
(Chandrasekhar et al., 1999). Unlikesyu/shh, smu/smoand
yot/gli2, dtr does not appear to affect somite patterning,
differentiation of slow muscle fibers, or formation of the dorsal
aorta. Here we identify the dtrlocus as gli1and analyze the
roles ofgli1 andgli2 during zebrafish development. Our results
reveal contrasting requirements forgli genes in mouse and
zebrafish and suggest that gli1 is an essential activator of Hh-
regulated genes, whereas gli2has minor roles in activating or
repressing Hh targets.

MATERIALS AND METHODS

Mutant and mapping strains
Three alleles of dtr(dtrtm276, dtrte370 and dtrts269) were identified

R. O. Karlstrom and others
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previously in mutant screens (Brand et al., 1996; Karlstrom et al.,
1996; van Eeden et al., 1996b). For mapping, dtrts269was crossed to
two polymorphic lines, the WIK line (Rauch et al., 1997) and the TL
line. In situ and antibody analyses were performed with the stronger
(dtrts269) allele. Other mutant strains used were smooth muscle omitted
(smub641) and you-too(yotty119, yotty17). 

Genetic mapping and linkage analysis
We determined the position of dtr on the zebrafish genetic map using
centromere linkage analysis (Johnson et al., 1996; Postlethwait and
Talbot, 1997). Gynogenetic diploid embryos were obtained from
heterozygous females by early pressure treatment of eggs fertilized
with inactivated sperm. Mutant and wild-type progeny were identified
by visual inspection on day 1 or day 2. DNA prepared from
individuals or from pools of eight mutant or wild-type individuals was
assayed by PCR using polymorphic markers (simple sequence length
polymorphisms) (Knapik et al., 1998). This identified a genetic
marker (z3581) on LG6 that was linked to dtr. Finer mapping, using
embryos obtained from pairwise matings of heterozygous dtr parents
in a WIK background, identified two other closely linked markers
(z4910, z4950). The detailed genetic map in the region of the gli1
locus can be viewed online using the zebrafish information network
(ZFIN) at http://zfin.org.

Cloning the zebrafish gli genes
Genomic clones were obtained by screening a gridded genomic
bacterial artificial chromosome (BAC) library (Genome Systems)
using radiolabeled probes for a mouse Gli2 cDNA at low stringency
hybridization conditions. BAC DNA was prepared for positive clones
and the BAC ends were sequenced using T7 and SP6 vector primers.
SP6 end sequence of clone 152g22 showed homology to mouse Gli1.
PCR primers based on sequence from the T7 end of clone 152g22
amplified a simple sequence length polymorphism (SSLP) detectable
upon electrophoresis through 2% agarose gels. This SSLP was used
to map the BAC end to LG6 and detect linkage to the dtr locus (0
recombinants in 83 meioses). A partial cDNA clone encoding gli1 was
isolated from a 15- to 19-hour embryonic cDNA library (generously
provided by Bruce Appel and Judith Eisen, University of Oregon,
Eugene) using a radio-labeled PCR probe generated to sequence from
the SP6 end of BAC 152g22. 5′ and 3′RACE reactions (Invitrogen)
identified cDNA fragments encoding the 3′ and 5′ portions of
zebrafish gli1. These fragments were cloned into the pTOPO vector
(Invitrogen) and their sequences assembled into the full gli1 coding
region (GenBank accession no. AY173030).

Sequencing mutant alleles
RT-PCR and cycle sequencing were used to sequence the three ENU-
induced dtr alleles. RNA was isolated from the following pools of
40 embryos: (1)dtrts269 wild-type siblings; (2) dtrts269 mutants; (3)
dtrte370 mutants; and (4) dtrtm276 mutants. First-strand cDNA was
made using Superscript reverse transcriptase (GIBCO). Fragments
(500-1000 bp) were amplified from first strand cDNA by PCR using
primers based on the deduced gli1 cDNA sequence. DNA fragments
were then gel purified and cycle sequenced (Stratagene Cyclist).
Sequences were compared between pools and to the gli1 cDNA
sequence. The fragments containing the dtr point mutations were also
subcloned using the TA cloning system (Invitrogen). DNA from two
separately isolated clones was purified, and the mutant sequence was
verified.

PCR genotyping dtr/gli1 and yot/gli2 fish
Embryos or fin clippings were placed in 50 µl lysis buffer (10 mM
Tris pH 7.5, 50 mM KCl, 0.3% Tween 20, 0.3% NP40, 1 mM EDTA)
and incubated for 10 minutes at 98°C. Tissue was then digested by
adding Proteinase K (Roche) to 2 mg/ml and incubating 2 hours to
overnight at 55°C. Proteinase K was then inactivated by incubation at
98°C for 10 minutes. For genotyping dtrts26 fish, a mutant-specific

reverse primer designed for the dtrts269allele (ts269Mu.rv: 5′-TGGG-
ATCATGTTGCCCA) was used with a forward primer (dtr8.fw:
5′-GTCTAAAGGCTAAATATGCAGC) to amplify a mutant-specific
560 bp product from homozygous mutants and heterozygotes. A wild-
type reverse primer (ts269Wt.rv: 5′-TGGGATCATGTTGCCCG)
served as an amplification control. To genotype yotty17 fish, two
primers flanking the mutation site (yot33.fw: 5′-CCACCTAGC-
ATATCAGAGAAC, yot28.rv: 5′-CTTGCTCACCGATATTCTGAC)
were used to amplify a 589 bp product which was then digested using
the NlaIV restriction enzyme. The yotty17mutation eliminates a NlaIV
restriction site in the amplified region, resulting in the appearance of
a mutant-specific 363 bp band that can be visualized on an agarose
gel.

In situ hybridization and antibody labeling
In situ labeling was performed as described previously (Schier et al.,
1997). A 1.4 kb gli1probe was synthesized using the 3′ RACE
containing plasmid (dtr3′RACE.pCRII) linearized with BamHI using
the T7 promoter. Other probes used were zebrafish gli2 (Karlstrom et
al., 1999), lim3(Glasgow et al., 1997), myoD(Weinberg et al., 1996),
nk2.2 (Barth and Wilson, 1995), shh (Krauss et al., 1993), ptc1
(Concordet et al., 1996) and pax6(Krauss et al., 1991).

mRNA and morpholino antisense oligonucleotide
injections
Embryos were pressure injected with 500 pl-1 nl of solution at the 1-
to 4-cell stage. Embryos were injected in their chorions and held in
agarose troughs (Westerfield, 1993). Injected, control injected and
uninjected embryos were grown to ~80% epiboly at 28°C, then
shifted to 22°C and grown to the 20-somite stage, fixed in 4%
paraformaldehyde and processed for in situ hybridization. For
morpholino antisense oligonucleotide (MO) injections, embryos were
injected with from 1-15 ng of MO diluted in 1× Danio solution
(Westerfield, 1993). zfgli1(5′-CCGACACACCCGCTACACCCAC-
AGT) and zfgli2MO (5′-GGATGATGTAAAGTTCGTCAGTTGC),
and a random control MO (5′-CCTCTTACCTCAGTTACAAT-
TTATA) were synthesized by Gene Tools (Eugene, OR) and kept as
25 mg/ml stocks in 1× Danio solution. Specificity of these MOs
is demonstrated by (1) the suppression of the yot/gli2 repressor
phenotype by the gli2 MO and (2) phenocopy of the dtr phenotype
by the gli1 MO in wild-type embryos. Synthetic mRNA was made
using the Message Machine kit (Ambion) and diluted in water to 1
mg/ml. shhmRNA was synthesized from a pT7TS plasmid containing
shh (Ekker et al., 1995). Control, β-gal-encoding mRNA was
synthesized from a pT7TS plasmid containing the lacZ gene.

Cell culture analysis of transcriptional activity
The rat neural stem cell line MNS70 (Nakagawa et al., 1996) was co-
transfected with different plasmid constructs containing a gli gene in
the pcDNA3.1-His cloning vector (Invitrogen) in combination with a
reporter plasmid containing luciferase inserted downstream of 8×Gli
binding sites (Sasaki et al., 1997). Full-length gli1 and gli2inserts were
subcloned into the pcDNA vector from pBluescript (Stratagene).
Mutant constructs were made by swapping the appropriate, mutation-
containing DNA fragment, which was generated by RT-PCR from
cDNA made from mutant embryos. One day before transfection,
MNS70 cells were plated onto poly-D-lysine coated six-well plates at
the concentration of 2×105 cells per well. Four hours before
transfection, cells were re-fed with fresh medium. 1 µg (total) of
plasmid DNA (0.4 µg of effector [0.2 µg each of two effectors indicated
in figure], 0.5 µg of reporter and 0.1 µg of reference [SV-β-gal]) was
transfected to a well by mixing with 6 µl of Fugene 6 transfection
reagent (Roche) according to the manufacture’s protocol. Cell lysates
were prepared 48 hours after transfection and assayed for luciferase and
β-galactosidase activities as previously described (Sasaki et al., 1997).
For western analysis, epitope-tagged proteins were detected using an
Omni-probe antibody (Santa Cruz Biotechnology).
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Cyclopamine treatments 
2-4 cell embryos were treated with 100 µM cyclopamine (Toronto
Chemical) (Incardona et al., 1998) by adding 10 µl of a 10 mM stock
solution (in 95% ethanol) to 1 ml of egg water (0.3 g/l Instant Ocean
Salt, 1 mg/l Methylene Blue). Control embryos were treated
simultaneously with an equal volume (10 µl) of 95% ethanol
(cyclopamine carrier) in 1 ml egg water. Treatments were carried out
in 12-well plates (40 embryos/well) at 28.5°C. Embryos were grown
to the 4-somite stage, dechorionated using 0.2 mg/ml (final) pronase
(Sigma) in egg water, fixed with 4% paraformaldehyde, dehydrated in
methanol, and processed for in situ hybridization.

RESULTS

detour (dtr ) mutations disrupt Hedgehog signaling
Previous studies established that dtr, syu/shh and yot/gli2
mutants share CNS and body shape phenotypes (Brand et al.,
1996; Karlstrom et al., 1996; Schauerte et al., 1998; Odenthal
et al., 2000) (see Fig. 1). This suggested that the dtr locus
might encode a component of the Hh signaling pathway. To
further test the relationship of Hh signaling and dtr, we
carried out a detailed analysis of the dtrphenotype, focusing

on the forebrain. Since previous studies of axon guidance
defects in the three dtralleles indicated that dtrts269 and
dtrte370are more severe than dtrtm276 (R. O. K., unpublished
results), we focused our analysis on dtrts269. In addition to the
previously described ventral curvature of the body (Brand et
al., 1996), lack of lateral floor plate (Odenthal et al., 2000)
and abnormal ipsilateral projection of retinal axons
(Karlstrom et al., 1996), we found that the expression of
patched 1(ptc1), an indicator of Hh signaling (see Goodrich
and Scott, 1998), is reduced (Fig. 1F). Moreover, we found
that expression of nk2.2, a Hh-induced marker for ventral
neuroectoderm, is absent in the spinal cord and some regions
of the ventral forebrain and midbrain and is reduced in the
anterior pituitary anlage (Fig. 1J). The reduction of nk2.2
expression in dtrmutants resembles, but is not as severe as
that seen in syu/shh(Sbrogna et al., 2003), smu/smo(Chen et
al., 2001; Varga et al., 2001) or yot/gli2mutants (Fig. 1K)
(Karlstrom et al., 1999). The pax6gene has been shown to
be negatively regulated by Shh in zebrafish (Ekker et al.,
1995; Macdonald et al., 1995). Consistent with a reduction
of Hh signaling, pax6expression is expanded in dtrmutant
embryos (Fig. 1N). Taken together, the dtrforebrain

R. O. Karlstrom and others

Fig. 1.dtr–/–, yot–/– anddtr–/+;yot–/+ embryos have defects in body axis formation and expression of Hh target genes in the brain.
(A-D) Examination of live 36-hour embryos reveals curled body axes in dtr–/–, yot–/– and dtr–/+;yot–/+ mutant embryos. U-shaped somites,
indicative of defects in slow muscle cell differentiation, are seen only in yot–/– and dtr–/+;yot–/+ embryos, dtr–/– embryos have wild-type somites
(insets). (E-H) patched 1(ptc1) expression is generally reduced in all three genotypes. In situ labeling was performed simultaneously and embryos
were developed for the same amount of time in E, F and G. Inset in H shows wild-type sibling developed in same tube as this transheterozygote.
(I-L) In all gli mutant embryos, nk2.2expression is reduced or absent from the anterior pituitary anlage (arrowheads), as well as from different
regions of the ventral midbrain and ventral hindbrain. (M-P) Expression of pax6,a gene known to be repressed by Hh signaling, is variably
expanded in the MDB (arrowhead) and hindbrain (arrows). Expression of pax6is expanded across the MDB expression domain of shh (not
shown),ptc (E), andnk2.2 (I). All panels show lateral views, anterior to the left. Eyes were removed in E-P. Gene expression is indicated on the
left. Di, diencephalon; HB, hindbrain; MB, midbrain; MDB, mid-diencephalon boundary; MHB, midbrain-hindbrain boundary; te, telencephalon.



1553Zebrafish dtr locus encodes Gli1

phenotypes are similar to, but weaker than those seen in
syu/shh, smu/smoand yot/gli2 mutants. 

As an additional test for the role of dtr in Hh signaling,
we analyzed the effect of Shh overexpression on nk2.2
transcription in wild-type, dtrand yotembryos. While nk2.2
was strongly expanded in wild-type embryos injected with
Shh-encoding mRNA (Fig. 2D), the dtr and yotmutations
strongly reduced ectopic activation of nk2.2(Fig. 2E,F). These
results indicate that dtr, like yot, acts downstream of Hh
signals. 

detour mutations disrupt zebrafish gli1
To determine if the dtrlocus might encode a component of
the Hh signaling pathway, we sought to clone the dtr gene.
We mapped dtr to linkage group 6 (LG6) of the zebrafish
genetic map. In parallel, we isolated gli-containing genomic
clones and mapped several of these on the zebrafish genetic
map. One clone (BAC 152g22) mapped to LG6 near the dtr
locus and was tightly linked to dtr (0 recombinants in 83
meioses). Sequence obtained from the SP6 end of BAC
152g22 showed high sequence similarity to vertebrate Gli1
genes. We then isolated and sequenced a zebrafish gli
cDNA corresponding to the glisequence in BAC 152g22.
Subsequent sequence analysis of this cDNA and a 5′ RACE
PCR product identified a full-length open reading frame of
1371 amino acids that is closely related to mouse Gli1
(Fig. 3). Sequence analysis revealed point mutations in gli1
in all three dtr alleles (Fig. 3B). Two of the identified
point mutations (dtrte370 and dtrts269) introduce premature
stop codons that are predicted to result in C-terminally
truncated Gli1 proteins. The third point mutation (dtrtm276)
affects a conserved tyrosine residue in the DNA binding

region of Gli1 known to contact target DNA (Pavletich and
Pabo, 1993).

To test how the zebrafish dtrmutations affect Gli1 protein
function, we used a cell culture assay for Gli transcriptional
activity (Sasaki et al., 1997; Sasaki et al., 1999). We found that
wild-type zebrafish Gli1 acted as an activator of a Gli-
responsive reporter construct (Fig. 4). This activity was similar
to, albeit weaker, than that of mouse Gli1. Co-transfection of
zebrafish Gli1 with Shh resulted in roughly additive activation
of the reporter, indicating that Shh did not significantly alter
Gli1 activity in these cells (Fig. 4). The Gli1 proteins encoded
by the three dtralleles did not activate the reporter construct
and did not interfere with activation mediated by wild-type
Gli1 (Fig. 4, compare zfGli1, zfGli1 + dtr mutations, and
zfGli1 + pJT4 vector). Consistent with the different allele
strengths, dtrtm276, but not dtrte370 and dtrts269, enhanced
reporter gene activation by wild-type Gli1. Interestingly,
despite its defective DNA binding domain, dtrtm276 increased
Gli1 activity as effectively as did wild-type Gli1. These results
indicate that the dtrmutations are complete or partial loss-of-
function alleles of gli1.

As an additional test to determine whether mutations in gli1
are responsible for the dtr phenotype, we knocked down Gli1
activity using an antisense morpholino oligonucleotide (MO)
designed to interfere with gli1translation. We found that
injection of gli1 MOs into wild-type embryos phenocopied dtr
spinal cord and forebrain defects. gli1 MO injection eliminated
nk2.2expression regionally in the forebrain in the same pattern
as seen in dtrmutants, and eliminated spinal cord nk2.2
expression (Fig. 5B,C, Table 1). fkd4, a marker of medial and
lateral floor plate cells in the spinal cord (Odenthal et al.,
2000), was reduced similarly in dtr mutant and gli1 MO-

Fig. 2. Zebrafish glimutations block
Hh signaling. (A) Wild-type
expression of the Hh target gene
nk2.2is unaffected by injection of
lacZmRNA. (B,C) nk2.2expression
is regionally absent in dtrand
yot/gli2mutant embryos (arrows).
(D) Injection of shhmRNA leads to
an expansion of nk2.2throughout
the CNS in wild-type embryos
(arrowheads). (E,F) Over expression
of shhdoes not activatenk2.2
expression in defective regions of
dtr and yot/gli2mutants (arrows),
but nk2.2expression is expanded in
unaffected regions (arrowheads). All panels show lateral views of 20-somite (19 hour) embryos, anterior to the left, eyes removed. di;
diencephalon; HB, hindbrain; MB, midbrain; MDB, mid-diencephalon boundary; MHB, midbrain-hindbrain boundary; te, telencephalon.

Table 1. gli1 MO injection into wild-type embryos phenocopies dtr nk2.2defects
gli MO injected Very strong dtr phenocopy Partial phenocopy wt nk2.2 Total

Control (6-13 ng) 0 0 0 150 (100%) 150
0.2-1 ng 0 0 44 (43%) 58 (57%) 102
2 ng 0 32 (60%) 14 (26%) 7 (13%) 53
3 ng 38 (26%) 48 (33%) 33 (23%) 17 (12%) 146
5-7 ng 37 (52%) 21 (30%) 13 (18%) 0 71
11 ng 37 (76%) 12 (24%) 0 0 49

Very strong: nk2.2extremely reduced in malformed embryos. 
Partial phenocopy: nk2.2 reduced but not absent.
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zfGli2        1  METTSPTSTEKKELKPSVLDGSSFTDLPKKPSPTTASRAPHLFSTFHTPI PI DMRHHEGRYHYEPHPLHPMHGPH

zfGli1         1        MPVDMQPHQGLYHYDNTSNQPSRGLAPSVRSPYSSEASSVCVALSGGQSVNSREMYNPSMAPGACMEPY
mGli1          1                                                             " F""MTP" Q__VNS"
zfGli2       76 G LAGSPVI S" I SLI RLSP" AAA"GES" FNPPH" Y" NPHMEHYLR""H SSPTLSMISAA" GLSPAELTHEHLK" RS

zfGli1        7 0 MRAPHAPPPHSMMGHRGMPPPEGMSGAPYCNQ_NMMTSHHNLPHNQHTSELMASGDASCFSTPRSMLKLSKKRAL
mGli1         1 4 SEPCCLR" L"" Q_" VPS"GT_""L ""L " F" H" A" F" SGSQGYGAARE""S CTEGSLFPPPPP"""S V""T """""
zfGli2      1 51 LFGLPP"" " GA__NPSEYYHLI ASHRS"" GDL_L" Q" G____AAAA" LPDY" SPV" M" R" PS""L TPRV" R”  """

zfGli1       1 44 SI SPLSDASVDLQTVI RTSPNSLVAFVN_SRCGPNNPSSYGHLSVGTMSPSLGFS___SSI NY____SRPQGNI Y
mGli1         87 """"""""" L"""""""""" S"""""I " _""" TSPG_G""""""I """"""""" P___PQMSH____QKGTSPP"
zfGli2      21 9 """"V """" I """" M""""""""""Y I " N"" SSSAAS""""""""" AI """ FT" PHPI TPVA" HQLL" QQR" LNA

zfGli1       211 SHPVPSCI GAPARLPPHNPRLHTPAKHTHLKTEPVLGSVMDSI NI KGLEDHSEGDVASPSS__________T GTQ
mGli1        153 G__LQP" V___PHDSTRGSMMLY" QSRGP_RAI CQ" K" EL" MMVG" CR""P L""" MS""N " __________""""
zfGli2      29 4 FGHT" PLLQPSPA" SSRQQT" VAA"ALNNTTSSSTSS" TA" TSTESSQNAGGDPA" S" TVNPMIFKRSKVK" EAE

zfGli1       276 DPLLG______ LLEGRDDLDKEE_KPEPEAI YETNCHWESCSKEFDTQEQLVHHINNEHI HGEKKEFVCHWKDCS
mGli1        21 2 " H""" ______ M" D""E ""E R""_ """""S V"""D " R" DG""Q """ S""""""""" S""""""R ""S """"GG ""
zfGli2      3 69 G " HPI SPGSQDH""L " EE""" D" C" Q""""V """"""""G " A"" Y"""D """""" S" D""""""""""" R" VE""
                                ****
zfGli1       3 44 REQRPFKAQYMLVVHMRRHTGEKPHKCTFEGCNKAYSRLENLKTHLRSHTGEKPYVCEHEGCNKAFSNASDRAKH
mGli1        28 0 ""L """"""""""""""""""""""""""""" R" S"""""""""""""""""""" M"" Q"""S """"""""""""
zfGli2      444 """ K"""""""""""""""""""""""""""" S""""""""""""""""""""""""""""""""""""""""""
                                   **D *
zfGli1       4 19 QNRTHSNEKPYI CKI PGCTKRYTDPSSLRKHVKTVHGPEAHI TKKHRGDTGPRPPGLTTAGQSSELL________
mGli1        355 """"""""""" V""L """""""""""""""""""""""D ""V ""R """" _""L " RAQPLSTVEPKRE________
zfGli2      5 19 """"""""""" V""""""""""""""""""""""""""""" V"""Q """ AP" K" HPPKGN" ENEAHTKHVRGRTD

zfGli1       4 86 ____I EKEERNREDC___KLLAPDNTLKSQPSPGGQSSCSSERSPLGSANNNDSGVEMNLNAAGSLEDLTTQEDS
mGli1        4 21 ____ R" _GGSG"" ES___R" TV" ESAM_P" Q"""A """""" DH"" A"""A " T"""""" A_GN""" T"""SSLD EG
zfGli2      5 94 GSGEANSTT" GV"""Q HV" TI KTE"" VMY" S""""""""""" P""""""T """""""" AMHSG"""G ""S ALD" T

zfGli1       554  GNAGVSESSATI SSGG__MCMSVQALKRLENLKI DKLKQI RRPTPPGRNAGNKLPALSATGEMMSMCAPSPLLSN
mGli1        486 PCVSATGL" T_______________ " R"""""R L" Q" H" L" PI GSR" LKLPSLTH" GAPVSRRLGPPVSL_____
zfGli2      669  PVVDSTG" PG" SAGV" LQLRKNRAG" LQ""H I " KE"""T V" DSCSWANAPPQVRNTKLPPI P" I DSLLDAPNMGT
                                          ****           ****       ****
zfGli1       6 32 RRVMELSAPDMGGVTGMSCPPN___DRRGSGTSSLSSAYTVSRRSSMVSPYLSSRRSSDVSHCQSVMGGEVPGDP
mGli1        541 _________________________ """S " SS"" M"""""""""""L A"" LP_______________ T" TP" ___
zfGli2      7 44 QMSVPPTQHLGDLSSYEMTMLNQLHE""D " S"" TM""""_ I """""G I "" CY"""""" EA” QFGVRNNNVSSADS

zfGli1       6 99 LSPQNSQRAGLCQN______ SGGLPGLPSLTPAQQYSLKAKYAAATG_GPPPTPLPNMDQAGTPARHVGFLR___
mGli1        573 ____________________ EN" ASS""G """"" H" M" R" R"" S" R" S" T""" AAHSLM_RMAGLSVPPWRSRTE
zfGli2      8 18 YD" I STDLSRRSSEASQCGGT""""S " _LN""""H """"""""""""_ " A""""""""" RMSLKTRMAMYND___
                                                         ****
zfGli1       764  ECQGQPLPPFLQQGG_TRRHSANAEYGTGVI YPHQAPGNNTRRASDPVRSAA_DPQGLPKVQRFNSLSNVSLMS_
mGli1        6 27 YPGYNPNAGV______________________________ """""""A " _""_ " HPAPAR""""K ""G C" HTPPS
zfGli2      889  SQDSSAHLHHA" GVV_NS" RCSDTG""A PGMM""EV" A" LP"""""""" RTTL""L S""R """""" I ""M N" SRL

zfGli1       8 36 ____ RRN_ALQQCG_SDAALSRHMYSPRPPSITENVMMEAMGMDGNTEGRQQGNMI PGGDRSYMGYQHNPHQASQ
mGli1        670           VATGRNF" PHHPTSV"""Q """""""" A" DTR" LQEDPEVGT__________ SVMGNGLNPYMDFS
zfGli2      9 63 PAYD""A FNM" NNTW""G S" H"" PF" Q""""" S""I L"" N" AT"" GDQQGDDLVLPDDMVQYLRSQNGNSNHDSG

zfGli1       9 05 LSPGQESLGCI DQVYQSQMQGQYQREESCSTGVMGQADI ANNLLQQAEYGMSTCQLSPSGPHYPSQGDGSGPWGQ
mGli1        7 26 STDTLGYGGQEGTAAEPYEARGPGS_LQLQPGPPTNYGPGHCAQQVAYPDPPENWQEFPSHAGVYPSNKAPGAAY
zfGli2     1 038 I SVNGGHALEFHGNMTSQQQQFYGQRRMGMAGI NGSHVEPVPEQI ADPQGMNKNNMPVQWNEVSSGSADAVSRVP

zfGli1       9 80 TNQLHSPGMQYQGAG_MQGQHYTQQGI YDPTSNPNLQRVTVKPEQFHPSMGGSSSCQNTKALHQNRHNANMQTYP
mGli1        800 SQCPRLEHYGQVQVKPEQ" CPVGSDSTGLAPCLNAHPSEGSPGP" PLF" HHPQLPQPQYPQSVPYPQPPHGYLST
zfGli2     1113  KQQQQQLRGNLTVVQ_QKQNFGSY" GFGSNQQIVPMSQNLASLQ" AY" QRNI QRMNTVQQFRQSI SNPCQNI GEQ

zfGli1      1 054 LQGQGI MNRSSSASCDFHHSQMGTQPNQGGSFQSGTGI NLALAESRRSQTPMHQMKEMMVRNYVQSQQALLWEQQ
mGli1        875 EPRLGLNFNPSSSHSTG____________________________________" L" AQL" C"""""""E """" GR
zfGli2     118 7 VNR" DLSYNSNQRLI CNSMGPPNGRMV" NQEL" NYRSNLMHMNNINQQNYVPLTQTAFQNAGRGLI QPRPPSEPK

zfGli1      112 9 QEQSVSEKPDGMDMGQTQMMQHSPQHQQANQNLYPGNTYQGYPNQNLMSPQQNRVPGSVKEQMQSSCYGPDMI PR
mGli1        914 NRGRAPNQELPYQSPKFLGGYQVSQSPAKTPAAARRYGSGFAPASANHKSRSYPAPSPCHETFTVGVNRPSHRAA
zfGli2     1 262 PLNRQHSGSGMVQPNGCSLSNVNSSEASPKRPGEV" QHSN" NGTMYYSGEI HMLDNGI DYGSPM"P" TNQAPVAS

zfGli1      1 204 PPQVRKSLSRQNSLSQQAGGAYLGSPPHLSPVHSTASPRRGVRLPPVQQQQQQQQQHSENFNNNNNPMYYSGQMH
mGli1        989 APPRLLPP___________________________________________________________________
zfGli2          ___________________________________________________________________________

zfGli1      1 279 MHHDLEKTPEGPCLAQQHLTSSDPTTKPTSI SYPDPAPMSNALEHLDLENAQI DFTSII DDQEPSSYSPI NAPI G
mGli1        997  LSPCYGPLKVGDTNPSCGHPEVGRLGAGPPLYP" PEGQVC"""D S" D" D" T" L"" V""L " EARL" PP________
zfGli2     1 335  __________________________ VSTMASPGVNQVTSTVDSTQS" DHT"""" D" AML" DGDHSSLMSGTLSP

zfGli1      1 354 ____HNQCSSQTSSRLTTPQNSI TLPSGLSNMAI GDMSSMLTSLAGENKYLNTLS 1404  
mGli1       1064 ___________ LSHEQGDSSKNTPS" S" PP""" V" N""VL" G""P ""T QF""SSA  1107
zfGli2     1 385 GLLQSI SQNSSRLTTPRNSVTLASV" A" I G""""""""S """A ""E " S" F""MMA 1439
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injected embryos (Fig. 5D-F). Taken together, these results
establish that dtrdisrupts gli1and demonstrate that Gli1 is
essential for zebrafish development.

Regulation of gli1 expression
Although the gli1loss-of-function phenotype in zebrafish is in
marked contrast to the apparently normal phenotype of mouse
gli1 mutants, the regulation of gli1 gene expression appears
conserved (Fig. 6). Similar to mouse and frog Gli1 (Hui et al.,
1994; Hynes et al., 1997; Lee et al., 1997; Platt et al., 1997),
zebrafish gli1 is expressed in tissues responding to Hh

signaling, including the ventral CNS, presomitic mesoderm,
posterior fin buds and later in endodermal tissue (see Fig. 6 for
details). As in other species, this expression closely parallels
the expression of the Hh target gene ptc1 (Concordet et al.,
1996; Goodrich et al., 1996; Marigo et al., 1996b; Platt et al.,
1997).

Ectopic Hh signaling is sufficient to activate Gli1expression
in mouse, chick and frog (Epstein et al., 1996; Marigo et al.,
1996a; Hynes et al., 1997; Lee et al., 1997; Ruiz i Altaba, 1998).
Similarly, we find that gli1 transcription is activated throughout
the CNS by ectopic Shh expression (Fig. 7B). These results

Fig. 3.Sequence of zebrafish Gli1 and identification of point
mutations in the three dtralleles. (A) The deduced amino acid
sequence of zebrafish Gli1 (zfGli1) aligned with mouse Gli1 (mGli1)
and zebrafish Gli2 (zfGli2). The entire coding region of gli1 was
sequenced in each of the three ENU-induced dtr alleles (dtrtm276,
dtrte370and dtrts269) and point mutations were found for each allele
(boxes). The altered amino acid in dtrtm276is shown above the box
while nonsense mutations are indicated by red hexagons. Gli2
mutations found in you-tooare from Karlstrom et al. (Karlstrom et
al., 1999). The five zinc finger regions are indicated by lines and
potential sites for phosphorylation by protein kinase A (PKA) are
indicated by asterisks. A putative VP-16 activator-like domain is
indicated by a blue box. Colored sections indicate regions of
homology schematized in C. (B) Sequencing ferograms showing
point mutations in the three dtr alleles. In dtrtm276U 1633 is mutated
to G, changing tyrosine 440 (UAC: Y) into an aspartic acid (GAC:
D). In dtrts269 C 2956 is mutated to U, changing glutamine 881
(CAG: Q) into a stop codon (UAG). Indtrte370C 3073 is mutated to

U, changing glutamine 920 (CAG: Q) into a stop codon (UAG).
(C) Schematic representation of zebrafish and mouse Gli1 and Gli2
protein sequences showing the positions of the stop codons
(arrowheads) in the zebrafish mutant alleles. The position
corresponding to the site of cleavage that results in a repressor form
of Ci is shown by an arrow. Red boxes indicate regions shared among
all three sequences, green boxes indicate sequences shared in mouse
and zebrafish Gli1 (with percentage amino acid identity indicated),
while gray boxes show sequences shared between zebrafish and
mouse Gli2 (with percentage amino acid identity indicated). The zinc
finger region is marked by ZnFn. Blue box shows region of
homology to the VP-16 activator domain, asterisks indicate potential
PKA phosphorylation sites. (D) Cladogram showing similarity of
mouse (m), frog (Xn) and zebrafish (zf) Gli sequences. Tree is based
on ClustalW alignment of amino acid sequences. A search of
zebrafish EST databases and genomic trace sequences using mouse
Gli1 sequence did not reveal a sequence more similar than the
zebrafish Gli1 sequence shown above.

Fig. 4. Activity of Gli1, Gli2 and mutant Gli
proteins in MNS70 cells. (A) Schematic of
effector and reporter genes co-transfected into
MNS70 cells. Different gli constructs were
expressed under the control of a CMV promoter.
Luciferase activity is induced in a reporter
containing 8×Gli protein binding sites from the
mouse HNF3βfloor plate enhancer (see Sasaki et
al., 1999). (B) pcDNA constructs encoding mouse
Gli1 (mGli1) and mouse Gli2 (mGli2) both
activate the luciferase reporter. A pcDNA
construct encoding full-length zebrafish Gli1
(zfGli1) activates luciferase activity, while
pcDNA constructs encoding zebrafish Gli2
(zfGli2) or the dtr/gli1(tm276, te370, ts269) or
yot/gli2 (ty119, ty17) mutations show no
activation. When co-transfected with full-length
gli1, dtrtm276(but not dtrte370or dtrts269) enhances
reporter gene activation by wild-type Gli1. In
contrast, co-transfection of gli1 with constructs
encoding full-length Gli2 or the C-terminally
truncated yotalleles result in the elimination of
Gli1 mediated transcriptional activation.
Transfection with a pJT4 plasmid encoding Shh
activates luciferase activity. Co-transfection with
pcDNA-zfgli1and pJT4-shhhas a roughly
additive effect on luciferase activity. Co-
transfection of pcDNA-gli2 with pJT4-shh
reduces the luciferase activity induced by Shh
alone. Averaged results of 2 experiments with
standard errors. Relative luciferase activities are
indicated by bars while protein schematics at top show the sites of the mutations encoded by each gli mutant construct. (C) Western analysis
showing Gli proteins produced in cell culture. Asterisks indicate bands of predicted size for each transfected construct.
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indicate that Hh signaling is sufficient to induce gli1gene
expression. To test if Hh signaling is required for gli1
transcription in zebrafish, as it is in mouse (Bai et al., 2002),
we examined the expression of gli1in the smoothenedmutant
slow-muscle-omitted (smu)(Chen et al., 2001; Varga et al.,
2001). smu/smomutations severely block Hh signaling (Barresi
et al., 2000). gli1expression is strongly, but not completely,
reduced in smu/smomutant embryos (Fig. 7B,C), indicating
that Hh signaling is required for the full activation of gli1
transcription. To determine whether gli1expression present in
smu/smomutant embryos is due to Hh signaling that results
from maternal Smoothened function, we treated embryos with
the alkaloid cyclopamine from the 2-cell stage throughout
embryogenesis. Cyclopamine is thought to completely block
Hh signaling at the level of Smoothened (Taipale et al., 2000).
Low levels of gli1 expression seen in cyclopamine-treated
embryos were identical to those seen in smu/smomutants,
suggesting that Smoothened-mediated Hh signaling is not
necessary to initiate weak gli1expression (Fig. 7E-G). These
data suggest that low level gli1expression is independent of Hh
signaling, and that gli1transcription becomes fully activated by
Hh signals to mediate its effect on Hh target genes. 

Zebrafish yot alleles encode dominant repressor
forms of Gli2
The finding that gli1 is essential in zebrafish, but not in mouse,
prompted us to extend our studies to determine the role of gli2
in zebrafish. We first tested the activity of the previously

identified yot/gli2 mutations. The two available yot/gli2alleles
contain point mutations that introduce premature stop codons
in the C-terminus of the protein (Karlstrom et al., 1999). We
speculated that these yot/gli2alleles might encode repressors
of Hh signaling, because of the weak dominant muscle
phenotype seen inyot–/+ embryos (van Eeden et al., 1996b) and
the similarities between these truncated proteins and cleaved
Gli proteins known to act as repressors of Hh signaling (Ruiz
i Altaba, 1999; Sasaki et al., 1999; Shin et al., 1999; von
Mering and Basler, 1999; Aza-Blanc et al., 2000). In support
of this hypothesis, co-transfection of the C-terminal yot/gli2
truncations with gli1abolished Gli1-mediated transcriptional
activation in cell culture (Fig. 4B). In contrast, transfection of
wild-type gli2 only partially blocks transcriptional activation
by Gli1 or Shh (Fig. 4B). The yot repressor hypothesis also
predicts that the yot/gli2phenotype can be partially rescued,
rather than phenocopied, by blocking the generation of the
mutant proteins. Indeed, injection of gli2 MOs into yot–/–

embryos effectively rescued nk2.2expression and partially
suppressed defects in myoDexpression (Fig. 8, Table 2; see
below). These data provide evidence that the C-terminally
truncated Gli2 proteins encoded by yotty17 and yotty119 are
potent repressors of Hh target genes. 

Based on the repressive effects of C-terminally truncated
Gli2 on Gli1-mediated activation in vitro, it is conceivable that
yot also interferes, at least in part, with Gli1 function in vivo.
This model predicts that yot/gli2and dtr/gli1might genetically
interact. Indeed, we found that yot–/+; dtr–/+ embryos display

R. O. Karlstrom and others

Fig. 5. gli1knockdown phenocopies
dtr/gli1. (A) Expression of nk2.2is
unaffected by injection of a control
morpholino (MO). (B) dtr/gli1 mutations
eliminate nk2.2expression in some regions
of the brain (arrow and arrowhead).
(C) Injection of a gli1MO into wild-type
embryos leads to a loss ofnk2.2expression
identical to that seen in dtr/gli1mutant
embryos (compare arrows, see also Table
1). (D) Expression of fkd4in the medial and
lateral floor plate is unaffected by control
MO injections. (E) fkd4expression is
extremely reduced in dtr/gli1mutants
(compare bracket and arrow to those in D).
(F) fkd4expression is similarly reduced in lateral floor plate cells after gli1 MO injection (compare bracket and arrow to those in D). (d′, e′, and
f′ ) show cross sections through the trunk at the level of the yolk plug. nc; notochord

Table 2. gli2 MO injections into yot–/+ × yot–/+ crosses*
yot–/– phenotype yot–/+ phenotype Wild-type 

gli2 MO injected (ò nk2.2, no myoD) (wt nk2.2, òmyoD) (nk2.2, myoD) Total

Uninjected siblings* 62 (23%) 141 (51%) 73 (26%)) 276 
1 ng 3 (5%) 15 (24%) 45 (71%) 63
3-7 ng 0 18 (23%) 61 (77%) 79
10-15 ng 0 25 (14%) 148 (86%) 173

nk2.1breduced in di. Partial nk2.1brescue wt nk2.1b

Uninjected 26 (30%) 0 60 (70%) 86
6 ng 0 8 (21%) 30 (79%) 38**
10 ng 0 1 (2%) 39 (98%) 40**

ò: reduced; di: diencephalon.
*Expected genotypes: 25% yot–/–, 50% yot–/+, 25% homozygous wild type.
**All gli2 MO-injected embryos showed expanded nk2.1bin the telencephalon.
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phenotypes indicative of Hh signaling defects. Double
heterozygotes have somite defects and curved body axes (Fig.
1D), reduction of nk2.2and ptc1expression (Fig. 1H,L) and
expansion of pax6expression (Fig. 1P). These phenotypes are
more severe than in dtr/gli1 embryos, but less severe than in
yot/gli2 embryos. Taken together, these results indicate that C-
terminally truncated Gli2 proteins interfere with Hh signaling,
in part by antagonizing Gli1.

Minor roles for full-length Gli2 in the activation of Hh
target genes
Whereas the C-terminal truncation alleles of gli2provide

information about the effect of dominant repressors on Hh
signaling in vivo, they do not address the requirement for Gli2
during embryonic development. Therefore, we characterized
the phenotypes generated by injecting gli2 MOs into wild-type
embryos. Surprisingly, knock down of Gli2 in wild-type
embryos did not lead to significant defects in most structures
affected by Hh signaling. In particular, ventral CNS (ptc1,
nk2.2, fkd4) and somite (myoD) markers were expressed
normally (Fig. 8A,D,G). In some embryos, ptc1 and fkd4
expression was slightly expanded (Fig. 8A and data not shown).

Previous studies have suggested that full-length Gli2 is a Hh-
dependent activator of Hh target genes (Ding et al., 1998;

Fig. 6. Developmental expression of
zebrafish gli1. (A) 80% epiboly. Transcripts
for gli1 are first detected in the anterior
neural plate (arrowhead) and in pre-somitic
mesoderm (arrows). (B) 2-somite stage. In
the trunk, both gli1 (left panel) and gli2
(right panel) are expressed in adaxial cells
(arrowheads) adjacent to the notochord. gli1,
like gli2, is also expressed in paraxial
mesoderm, with gli2expression extending
more laterally (arrows). (C) 5-somite stage.
gli1 is expressed throughout the anterior
neural plate (white arrowhead), in adaxial
cells that give rise to slow muscle fibers
(black arrowheads), as well as in the tailbud
(out of focus). Some patchy expression is
present in the developing spinal cord
(arrow). (D) 10-somite stage, dorsal view
(left) and cross section (right) of the trunk.
gli1 expression continues in adaxial cells
(arrowheads) and spreads laterally into
developing somites (asterisk). gli1is
expressed ventrally in the spinal cord (larger
arrow) but not in floor plate cells adjacent to
the notochord (smaller arrow). (E-J) Lateral
views of the brain, eyes have been removed.
(E) 10-somite stage. gli1is expressed
throughout the ventral forebrain, midbrain,
hindbrain, and spinal cord (not shown).
(F) 20-somite stage. In the brain, gli1is
expressed in ventral regions in a pattern
similar to that of ptc1(see Fig. 3). In the
forebrain, gli1is primarily expressed in the
diencephalon, but expression also extends
into the ventral telencephalon dorsal to the
optic recess (black dot). Expression is now
absent in the ventral-most diencephalon,
with the exception of a large patch in the
posterior part of the developing
hypothalamus (arrow). (G,H) 24 hours and
30 hours. gli1expression continues in the
ventral CNS, including in the pre- and post-
optic areas on either side of the optic recess (black dot) and in the patch in the posterior hypothalamus (arrow). (I) Expression in the trunk at 30
hours. gli1is strongly expressed in the spinal cord (arrows) and is more weakly expressed in somites. Cross section through trunk (right) shows
spinal cord gli1expression (larger arrow) is absent from dorsal cells and ventral floor plate cells (smaller arrow). (J) 36 hours. By 36 hours, gli1
is expressed predominantly along the diencephalon/telencephalon border and in the ventral hypothalamus, including the region of the anterior
pituitary anlage (arrowhead). gli1is also expressed in a small patch in the telencephalon (arrow) and in endoderm (white arrow).
(K) Expression in the fin bud at 36 hours. Both gli1 (left) and gli2(right) are expressed in the pectoral fin buds (arrowheads). gli1 expression is
more limited than gli2, being predominantly in the posterior and distal mesenchyme, while gli2 is expressed throughout the fin mesenchyme
(compare arrowheads). (A-D) and (K) are dorsal views, (E-J) are lateral views. Anterior is to the left in all panels except (A) and (K), where
anterior is up. di; diencephalon, FB; forebrain, HB; hindbrain, hy; hypothalamus, MB; midbrain, MDB; mid-diencephalon boundary, MHB;
midbrain-hindbrain boundary, nc; notochord, te; telencephalon.
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Matise et al., 1998; Ruiz i Altaba, 1998; Ruiz i Altaba, 1999;
Aza-Blanc et al., 2000; Bai and Joyner, 2001), and that the C
terminus of Gli2 is required for this activity (Ruiz i Altaba,
1999; Sasaki et al., 1999). gli2 MO injection into wild-type
embryos might still allow for some, albeit reduced, generation
of full-length Gli2. We therefore analyzed in more detail
embryos that produce no full-length Gli2 and express reduced
levels of C-terminally truncated Gli2 by injecting gli2 MO into
yot/gli2mutants. Intriguingly, Hh targets in the nervous system
such as ptc1(Fig. 8C),nk2.2(Fig. 8F) and fkd4(not shown)
are robustly expressed. These results suggest that full-length

Gli2 is not required for Hh signaling in the zebrafish spinal
cord.

The limited requirement for full-length Gli2 might be due to
redundancy with other gligenes. To test if Gli2 and Gli1 have
overlapping roles, we injected gli2 MOs into dtr/gli1mutants
(Fig. 8). Like dtr/gli1mutants, these embryos display defects
in nk2.2 expression in the brain and floor plate (Fig. 8K).
Interestingly, a tegmental patch of nk2.2expression that
remains in dtr/gli1mutants is eliminated by injection of gli2
MOs, suggesting Gli2 may act as an activator of Hh signaling
in this region (Fig. 8K). In addition, myoD expression in
adaxial cells is slightly but consistently reduced in gli2 MO;
dtr/gli1 embryos (Fig. 8M), revealing overlapping roles of Gli1
and Gli2. Taken together, these data suggest that Gli2 plays a
minor role in activating Hh target genes and is partially
redundant with Gli1.

Gli2 acts as a repressor of telencephalic nk2.1b
expression
Previous studies (Ruiz i Altaba, 1998; Sasaki et al., 1999; von
Mering and Basler, 1999; Aza-Blanc et al., 2000) and our cell
culture and in vivo data (Figs 4 and 8) indicate that Gli2 can
act as a repressor of Hh target genes. In support of this, we
found that in gli2 MO-injected embryos, expression of nk2.1b
was expanded dorsally in the telencephalon and ventrally in
the ventral diencephalon (Fig. 9A,B). This contrasts with the
dramatic reduction in nk2.1bexpression seen upon loss of Hh
signaling in smu/smomutants (Fig. 9E). The expansion of
nk2.1b expression caused by loss of Gli2 function is Gli1-
independent, since gli2MO injection into dtr/gli1mutants leads
to an expansion of nk2.1bin the ventral telencephalon (Fig. 9H).
This suggests that one role of Hh signaling might be to
overcome Gli2-mediated repression of nk2.1b. In this scenario,
blocking Gli2 function should partially suppress the loss of
nk2.1bin smu/smomutants. Indeed, injection of gli2MO into
smu/smomutants partially restored nk2.1bexpression in the
ventral telencephalon (Fig. 9F). These results suggest that Gli2
acts as a Hh-independent repressor of some Hh target genes.

DISCUSSION 

Essential role for gli1 in zebrafish Hh signaling and
embryogenesis 
Our studies have identified a novel zebrafish gli gene that is
orthologous to Gli1, based on three lines of evidence. First,
zebrafish gli1 shares highest sequence similarity with frog and
mouse Gli1. Second, both zebrafish and mouse Gli1 act as
transcriptional activators in a cell culture assay. Third, both
genes are expressed in regions in which the Hh signaling
pathway has been activated. Moreover, Hh signaling is not only
sufficient but also necessary for normal gli1transcription in
zebrafish and mouse (Bai et al., 2002). Interestingly, very weak
expression of gli1is still detected in the absence of Hh
signaling in zebrafish, while no Gli1 gene expression has been
detected in mouse Smomutants.

Our analyses reveal that gli1is disrupted in dtrmutants and
indicate that dtrte370and dtrts269 encode strong or complete loss-
of-function versions of Gli1. The dtrte370and dtrts269 alleles
lack a C-terminal activation domain and are inactive in cell
culture, consistent with results obtained upon overexpression
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Fig. 7. Hh signaling regulates gli1 expression. (A,B) Over expression
of shhin wild type expands gli1 expression dorsally throughout the
embryo (compare arrowheads). (C,D) gli1expression is extremely
reduced in Hh signaling-defective smu/smomutant embryos relative
to wild-type siblings, especially in the diencephalon (arrows). Some
gli1 expression remains in the ventral spinal cord and hindbrain
(arrowheads). (E) Dorsal view of wild-type gli1expression in a 4-
somite stage embryo; treated with ethanol (cyclopamine carrier).
(F) In 4-somite stage smu/smomutants, gli1expression is reduced in
adaxial cells (arrowhead) and is less affected in the developing brain
(arrows). (G) Similarly, cyclopamine treatment of wild-type or
smu/smoembryos reduces but does not eliminate gli1 expression. All
40 cyclopamine-treated embryos from a smu-/+ incross showed the
same gli1labeling pattern, indicating that the smu/smomutation
blocks Hh signaling as completely as cyclopamine, and that maternal
smu/smofunction is not responsible for low level gli1 expression in
smu/smomutant embryos.
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of C-terminally truncated Gli1 in frog (Ruiz i Altaba, 1999).
In vivo, dtrts269 mutants are impaired in the upregulation of
nk2.2expression in response to ectopic Hh signaling in most
regions of the CNS. In contrast to truncated zebrafish Gli2,
truncated zebrafish Gli1 does not appear to act as a dominant
repressor of Hh signaling; dtr–/+ embryos do not display any
obvious phenotypes and truncated Gli1 does not interfere with
gene activation by wild-type Gli1 in cell culture. Moreover,
gli1 MO injection phenocopies dtrte370 and dtrts269 mutants.
Taken together, these results suggest that these mutants and
gli1 MO embryos lack all or most Gli1 activity. 

The third point mutation (dtrtm276) affects a conserved

tyrosine residue in the DNA binding region of Gli1 known to
contact target DNA (Pavletich and Pabo, 1993). On its own,
this protein does not activate reporter gene expression in
cultured cells, consistent with a potential defect in DNA
binding. Interestingly, however, dtrtm276activates transcription
in the presence of wild-type Gli1. It is conceivable that the
mutant protein forms a complex with the wild-type protein,
thus being recruited to DNA and providing a transcriptional
activation domain.

Together with previous studies (Brand et al., 1996;
Karlstrom et al., 1996; Chandrasekhar et al., 1999; Odenthal
et al., 2000), our results reveal that loss of gli1 function leads

Fig. 8. gli2 MO injection rescues nk2.2and myoD
expression defects in yot/gli2mutants and reveals
a weak activator role for Gli2. (A)gli2 MO
injection expands ptc1expression ventrally in the
diencephalon (arrowheads) and causes a minor
but consistent overall expansion of ptc1
expression (compare to inset). (B) yot/gli2
mutants have significantly reduced ptc1
expression. (C) gli2MO injections rescue the ptc1
defects seen in yot/gli2mutants and expand ptc1
expression ventrally (arrowhead). (D) Injection of
gli2MOs into wild-type embryos has no effect on
nk2.2expression. (E,F) Injection of a gli2MOs
into yot–/– mutant embryos can completely rescue
yot-induced defects in nk2.2 expression (compare
arrows). (G) gli2MO injection does not affect
myoDexpression in adaxial cells (arrowheads).
(H,I) gli2MO injections partially rescue yot-
induced defects in adaxial myoDexpression
(compare arrowheads). (J-M) Injection of 3-10 ng
of gli2MO into embryos from a cross between dtr–/+ heterozygous parents
(25% dtr–/–mutants expected) resulted in an additional loss of nk2.2
expression in the tegmentum (compare arrows in J,K) and a reduction in
adaxial myoD expression (compare arrowheads in L,M) in 60/206 embryos
(29%), all of which were dtr–/– mutants as judged by forebrain and hindbrain
nk2.2expression defects. This suggests Gli2 may activate Hh signaling in a
small area of the ventral midbrain and in adaxial cells. Control MO injections
had no effect on nk2.2expression in 85/85 embryos from a similar dtr–/+ ×
dtr–/+ cross, with 25 embryos (29%) showing the dtr–/– nk2.2defects (J) and
60 embryos (71%) showing wild-type nk2.2expression as expected for dtr–/+

and dtr+/+ embryos. (A-F,J, and K) are lateral views of the head, eyes
removed. (G-I,L, and M) are dorsal views of the tail region. All embryos are at the 20 somite (19 hour) stage. For yot/gli2, embryo genotypes
were inferred by myoD expression in adaxial cells, then were verified by PCR (not shown, see Materials and Methods). D and G, E and H, F and
I, J and L and K and M show the same individual labeled simultaneously with nk2.2and myoD.

Table 3. Comparison of defects in glimutant and MO-injected embryos

ptc1 nk2.2 nk2.1b fkd4 myoD
vent. CNS forebrain di. tel. lateral floorplate adaxial cells

dtr/gli1–/– ò òò ò wt òò wt
gli1 MO ò òò ò wt òò wt

(like dtr)
yot/gli2–/– ò òò ò wt òò òò
gli2 MO wt/ñ wt wt/ñ ñ wt/ñ wt
gli2 MO→yot–/– wt/ñ wt wt ñ wt/ñ ò

(rescue) (rescue) (rescue) (rescue) (rescue)
gli2 MO→dtr–/– nd òò ò ñ nd ò

(like dtr) (like dtr)
yot–/+;dtr–/+ ò òò* nd nd ò ò

ò: reduced; òò: strongly reduced; ñ: increased/expanded; di: diencephalon; tel: telencephalon; mb: midbrain; nd: not determined; vent: ventral; wt: wild type.
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to ventral CNS patterning defects in zebrafish (summarized in
Table 3). dtr/gli1mutants lack the lateral floor plate and show
reduced expression of markers for anterior pituitary and ventral
diencephalon. These neural patterning defects are similar
to, but weaker than those seen in smu/smomutants or
cyclopamine-treated embryos. For example, smu/smomutant
embryos show a more severe loss of ventral diencephalon and
strong to complete reduction of ptc1, nk2.2, and nk2.1b
expression (Chen et al., 2001; Varga et al., 2001). In addition,
dtr/gli1 mutants appear normal with respect to somite
development, pectoral fin formation and dorsal aorta
differentiation, whereas smu/smomutants show severe defects
in these structures. These data indicate that gli1 is necessary
for ventral CNS patterning, but that it is required in only a
subset of cells responding to Hh signals.

Roles of Gli2 in zebrafish embryogenesis 
Our results suggest that zebrafish Gli2 does not play a major
role in the activation of Hh target genes in the CNS. For
instance, floor plate marker expression is normal (or slightly
expanded) and motor neurons develop ingli2 MO-injected
embryos (Table 3 and data not shown). It is conceivable that
gli2 MO injection reduces Gli2 protein levels insufficiently,
allowing enough Gli2 activator to be made to mediate floor
plate development. However, gli2 MO injection into yot/gli2
mutants also allows for floor plate development, rescuing floor
plate defects caused by the truncated Gli2 proteins (Table 3).
In this case, no full-length Gli2 (the putative activator form of
Gli2) can be generated. 

The phenotypic similarity between gli2MO; dtr/gli1 and
dtr/gli1 mutants also suggests a limited role for Gli2. Some
overlapping functions of Gli1 and Gli2 are indicated by the
reduction in myoDexpression in somitic mesoderm and nk2.2
in the tegmentum in gli2MO; dtr/gli1embryos. Overlapping
roles of gli1 and gli2 are also evident in the loss of engrailed-
expressing muscle cells upon reduction of both Gli1 and Gli2
(C. Wolff, S. Roy and P. Ingham, personal communication).
These results suggest that Gli2 contributes as a positive
mediator of Hh signaling to the activation of some Hh target
genes. In contrast, telencephalic nk2.1bis expanded in gli2 MO
embryos and expressed at reduced levels in smu/smomutants.
Blocking both Gli2 and Smo partially suppresses the smu/smo
phenotype, indicating that Hh signaling relieves Gli2-mediated
repression of nk2.1b. Importantly, neither expression nor
expansion of nk2.1bare Gli1 dependent, indicating that Hh
signaling might directly inhibit Gli2-mediated repression of
nk2.1b. Taken together, these results suggest that zebrafish Gli2
can act as a Hh-dependent activator.

C-terminal truncations of Gli2 block Hedgehog
signaling
Our results suggest that the C-terminally truncated Gli2
proteins encoded by yot/gli2 alleles encode dominant
repressors of Hh signaling. In vitro, the truncated forms of Gli2
block Gli1-mediated transcriptional activation, resembling the
activity of C-terminally truncated mouse and frog Gli2 proteins
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Fig. 9. Regulation of nk2.1bby gli2, yot/gli2, smu/smoand dtr/gli1.
(A) nk2.1bis normally expressed in the anterior/ventral
telencephalon (arrowhead) and in the diencephalon (bracket).
(B) gli2MO injection into wild-type embryos leads to a dorsal
expansion of telencephalic nk2.1bexpression (arrowhead), as well as
an increase in expression in the hypothalamus (compare brackets).
This expansion was seen in 70/72 wild-type embryos injected with
10 ng of gli 2MO. (C) yot–/– embryos have reduced nk2.1b
expression in the diencephalon adjacent to the first ventricle (arrow).
(D) gli2 MO injection into yot–/– embryos rescues the diencephalic
nk2.1bexpression defect (compare arrows in C and D, Table 2), and
also leads to expanded expression in the telencephalon (compare
arrowheads). (E) nk2.1bexpression is extremely reduced in smu/smo
mutants, with small patches of expression remaining in the
diencephalon and telencephalon (arrowhead). (F) Injection of 10 ng
of gli2 MO into embryos from a cross of two smu+/– parents resulted
in telencephalic nk2.1bexpansion (arrowhead) in 89/89 embryos,
including 18 smu–/– embryos (20%) and 71 wild-type and
heterozygous siblings (80%). This shows that Gli2 repression of this
Hh target gene is independent of Hh signaling. No nk2.1bexpansion
was detected in 49/49 embryos injected with 10 ng of control MO.
(G) dtr–/– embryos have reduced nk2.1bexpression in the
diencephalon adjacent to the first ventricle (arrow) similar to the
yot/gli2phenotype. (H) gli2 MO injection does not rescue
diencephalic nk2.1bexpression in dtr/gli1mutants, but does expand
nk2.1bexpression in the telencephalon (arrowhead). Injection of 3-7
ng of gli2 MO resulted in telencephalic nk2.1bexpansion in 64/64
embryos, including 6 embryos (10%) that were clearly homozygous
dtr–/– mutants based on diencephalic nk2.1bdefects. The remaining
58 siblings (90%) also had expanded telencephalic nk2.1b
expression. All panels show 30-hour embryos, lateral views of the
forebrain, eyes removed, anterior to the left. All panel pairs show
sibling embryos from the same experiment. Dot shows the optic
recess, the anterior edge of the border between the diencephalon (di)
and telencephalon (te).
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(Ruiz i Altaba, 1999; Sasaki et al., 1999). In vivo, yot/gli2
mutations reduce Hh signaling (Karlstrom et al., 1999).
Expression of Hh target genes such as ptc1 and nk2.2is
reduced and several structures that depend on Hh signaling
(lateral floor plate, horizontal myoseptum, pectoral fins, dorsal
aorta) do not form. Injection of gli2 MO into yot/gli2embryos
rescues most of the mutant phenotypes, demonstrating the
antimorphic nature of the yot/gli2alleles. In addition, yot/gli2
heterozygotes have subtle defects in somite patterning (van
Eeden et al., 1996b; Karlstrom et al., 1999). These results
suggest that zebrafish yot/gli2 mutations turn Gli2 into a
constitutive repressor of Hh-regulated genes. Precedence for
this scenario has been provided by human GLI3 mutations that
result in C-terminally truncated repressor forms of GLI3 (Kang
et al., 1997; Radhakrishna et al., 1997; Shin et al., 1999) and
by the fact that truncated Gli proteins can act as dominant
repressors in cell culture (Sasaki et al., 1999) or when
ectopically expressed in embryos (Ruiz i Altaba, 1999).

Interestingly, embryos that are heterozygous for both
dtr/gli1 and yot/gli2 have a phenotype that is intermediate
between the two homozygous mutant phenotypes (Fig. 1). This
result indicates that truncated Gli2 blocks Gli1-mediated
activation of Hh targets and uncovers roles for gli1 during
somite development not revealed in dtr/gli1mutants. Gli1
cannot be the only factor antagonized by yot, since yot/gli2
mutants have a more severe phenotype than dtr/gli1 mutants.

The finding that truncated Gli2 acts as an in vivo repressor
of Hh target genes has potential medical implications. Previous
studies have shown that decreased Hh signaling can result in
congenital defects such as holoprosencephaly (reviewed by
Wallis and Muenke, 2000). Our results in zebrafish suggest that
C-terminal truncations of Gli2 are candidates for the molecular
basis of some cases of holoprosencephaly. In addition, C-
terminally truncated Gli2 could be employed to repress the
ectopic expression of Hh target genes in human cancers such
as Basal Cell Carcinoma or medulloblastoma (reviewed by
Ruiz i Altaba et al., 2002).

Species-specific roles of Gli genes
Vertebrate Gli function has been studied predominantly in
Xenopususing gain-of-function approaches and in mouse
using loss-of-function strategies. Our loss-of-function study in
zebrafish suggests that gli genes might not have identical roles
in all vertebrates. 

Comparison to Xenopus
Based on mis- and overexpression studies, multiple roles for
Xenopus Gli genes have been proposed. Gli1 has been
considered to activate floor plate and motor neuron
differentiation in the spinal cord and induce ventral cell types
in the forebrain (Lee et al., 1997; Ruiz i Altaba, 1998; Ruiz i
Altaba, 1999). Our results reveal an essential role for zebrafish
Gli1 during lateral floor plate induction (Fig. 5) (Odenthal et
al., 2000), but do not indicate a requirement in motor neuron
induction (Brand et al., 1996) or telencephalic nk2.1bforebrain
expression (Fig. 8). XenopusGli2 has been proposed to restrict
floor plate development, repress nk2.1bexpression in the
forebrain, promote motor neuron formation and pattern
mesoderm (Marine et al., 1997; Ruiz i Altaba, 1998; Ruiz i
Altaba, 1999; Brewster et al., 2000; Mullor et al., 2001). Our
studies reveal only a minor and variable role for zebrafish Gli2

in the repression of floor plate markers. Although our results
provide evidence for an essential role of zebrafish Gli2 in
nk2.1brepression, this activity of Gli2 is not simply achieved
by repressing Gli1, as proposed in Xenopus. In addition, we
have found no evidence for a requirement of Gli2 in motor
neuron induction or early mesoderm patterning. The apparent
differences between zebrafish and Xenopus gligene function
might be due to species-specific roles. Alternatively, they might
reflect the difficulty of comparing results gained in studies that
test the requirement for gene function using loss-of-function
approaches with studies that assign potential gene functions
using gain-of-function strategies. Further clarification of the
potential differences in zebrafish and XenopusGli function will
require loss-of-function approaches in frog and gain-of-
function studies in zebrafish.

Comparison to mouse
Our analyses in zebrafish suggest surprisingly divergent
requirements for Gli1 and Gli2 in zebrafish and mouse. Genetic
studies in mouse have shown that Gli1 is dispensable for
development, whereas Gli2 is a major mediator of Hh signaling
during neural development (Matise et al., 1998; Park et al.,
2000; Bai and Joyner, 2001). Two lines of evidence suggest
that mouse Gli2 acts predominantly as a transcriptional
activator of Hh target genes. First, replacing Gli2 with Gli1 in
a knock-in approach results in normal development (Bai and
Joyner, 2001). Second, Shh;Gli2double mutants have the same
phenotype as Shh mutants (Bai and Joyner, 2001). These
results suggest that Shh signaling requires Gli2 to activate Hh-
regulated genes and does not de-repress Hh target genes by
counteracting a putative Gli2 repressor form. In clear contrast
to these conclusions, zebrafish Gli1 is an essential activator of
Hh target genes during neural development, while Gli2 appears
to have only minor activator roles and acts as a repressor of the
Hh target gene nk2.1bin the telencephalon. It is unlikely that
these differences are simply the result of allele variations.
In the case of Gli1, strong (dtrts269; dtrte370; gli1 MO) or even
partial (dtrtm276) loss of Gli1 function results in nervous system
defects not seen in mouse Gli1null alleles. In the case of Gli2,
loss of a putative activator form of Gli2 or partial reduction of
Gli2 activity does not result in the CNS phenotypes attributed
to the loss of an activator form of Gli2 in mouse. 

The differences between orthologous gli genes are surprising
in light of the overall conservation of sequence, expression,
regulation and transcriptional activity in cell culture. Both
overlapping functions of gli genes and subtle differences in
Gli activity or expression might underlie the divergent
requirements. In the case of gli2, it is possible that another gli
gene compensates for reduction in Gli2 activity. For instance,
Gli2 and Gli3 have partially overlapping roles in mouse
foregut, tooth and skeletal development (Mo et al., 1997;
Motoyama et al., 1998). It is thus possible that another Gli
protein masks the role of Gli2 in zebrafish development. gli2
MO injection into dtr/gli1 mutants leads to only a minor
enhancement of the dtr/gli1mutant phenotype, suggesting that
a gli gene other than gli1might compensate for reduction in
Gli2 activity. 

We speculate that one of the major roles of Gli1 is to act as
an amplifier of vertebrate Hh signaling. In this model, Gli1
activity is required in zebrafish, but not in mouse, because Hh
target genes are insufficiently activated by initial Hh signaling
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in zebrafish. This model is based on the kinetics of gli gene
activation. It has been shown that Gli1 is a transcriptional target
of Hh signaling (Epstein et al., 1996; Marigo et al., 1996a;
Lee et al., 1997; Dai et al., 1999) and thus acts as a delayed
activator of Hh targets. In contrast, Gli2 and Gli3 protein
activity can be post-translationally regulated (Ruiz i Altaba,
1999; Sasaki et al., 1999; von Mering and Basler, 1999; Aza-
Blanc et al., 2000; Wang et al., 2000; Bai et al., 2002) and in
the case of Gli3 has been shown to be directly modulated by
Hh signaling (von Mering and Basler, 1999; Aza-Blanc et al.,
2000; Wang et al., 2000). Hence, Hh signaling is thought to be
initially mediated by Gli2 and Gli3, leading to the activation
of downstream genes such as Gli1 and Ptc1 (Ingham
and McMahon, 2001). Subsequently, Hh signaling can be
maintained or amplified by Gli1. In some contexts, this
amplification might be essential for full activation of Hh target
genes. This model suggests that in the zebrafish CNS, the
initial activation of Hh target genes by Gli2, Gli3 or other Gli
proteins might be quite weak or short lived, requiring further
enhancement by Gli1. In contrast, in the mouse CNS, Hh-
mediated modulation of Gli2 and Gli3 activity is sufficient for
Hh target gene activation. Interestingly, in Gli1–/–;Gli2–/+ mice,
reduction of the levels of Gli2 leads to a requirement for Gli1
in Hh target gene activation (Park et al., 2000; Bai et al., 2002).
According to the Gli1 amplifier model, Gli1 becomes essential
because initial Hh-mediated signaling by Gli2 is weaker in
Gli2–/+ than wild-type embryos. In this scenario, Gli2–/+ mouse
embryos resemble zebrafish wild-type embryos, requiring Gli1
for full Hh target gene activation. It is conceivable that direct
mediators of Hh signaling are less potent or expressed at lower
levels in zebrafish than mouse or negative regulators might be
more active or more highly expressed in zebrafish than mouse.
In both cases, Gli1-mediated amplification would be required
to allow full Hh target gene activation in zebrafish. 
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