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Summary

To understand how auxin regulates root growth, we quantified cell division and elemental elongation, and

examined actin organization in the primary root of Arabidopsis thaliana. In treatments for 48 h that inhibited

root elongation rate by 50%, we find that auxins and auxin-transport inhibitors can be divided into two

classes based on their effects on cell division, elongation and actin organization. Indole acetic acid (IAA),

1-naphthalene acetic acid (NAA) and tri-iodobenzoic acid (TIBA) inhibit root growth primarily through reducing

the length of the growth zone rather than the maximal rate of elemental elongation and they do not reduce cell

production rate. These three compounds have little effect on the extent of filamentous actin, as imaged in

living cells or by chemical fixation and immuno-cytochemistry, but tend to increase actin bundling. In contrast,

2,4-dichlorophenoxy-acetic acid (2,4-D) and naphthylphthalamic acid (NPA) inhibit root growth primarily by

reducing cell production rate. These compounds remove actin and slow down cytoplasmic streaming, but do

not lead to mislocalization of the auxin-efflux proteins, PIN1 or PIN2. The effects of 2,4-D and NPA were

mimicked by the actin inhibitor, latrunculin B. The effects of these compounds on actin were also elicited by a 2

h treatment at higher concentration but were not seen in two mutants, eir1-1 and aux1-7, with deficient auxin

transport. Our results show that IAA regulates the size of the root elongation zone whereas 2,4-D affects cell

production and actin-dependent processes; and, further, that elemental elongation and localization of PINs are

appreciably independent of actin.

Keywords: cell division, cytoplasmic streaming, elemental elongation, PIN1, PIN2.

Introduction

Growth is the target of the first hormone discovered in

plants – a compound named auxin from the Greek auxein,

meaning to grow. Today, auxin is perhaps the best under-

stood of the plant hormones and the one most resembling

the canonical concept of a messenger, synthesized in one

place and acting at another. Recently, molecular studies

have advanced our understanding of auxin perception and

its regulation of gene expression (Badescu and Napier, 2006;

Woodward and Bartel, 2005). However, the pace has been

slower for understanding the steps after transcription that

engage the machinery of growth.

Although it promotes shoot growth, auxin inhibits root

growth. Many studies on auxin, both physiological and

genetic, report root length. Although easy to assay, root

length as a parameter hides considerable complexity

because the length of the root is specified by both cell

expansion and division (Beemster and Baskin, 1998; Green,

1976). Furthermore, within an organ growth zone, division

and expansion depend not only on the rate at which each

process happens in each cell, but also on the numbers of

cells dividing and elongating at any one moment. Although

auxin has been known for the better part of a century to

inhibit root growth, we are generally unaware of the

contributions from division and elongation, let alone able

to connect the hormone to specific, regulatory steps, such as

controlling the length of the elongation zone.

Whereas growth was the original auxin target, an emer-

ging one is the actin cytoskeleton. Many years ago, indole

acetic acid (IAA) was reported to stimulate cytoplasmic

streaming (Sweeney and Thimann, 1938), a process that



depends on actin. More recently, auxin responses have been

found to be defective in transgenic plants expressing

dominant-negative or constitutively active Rop GTPases

(Yang, 2002), proteins that have been implicated as up-

stream regulators of actin polymerization (Xu and Scheres,

2005a). Auxin has been argued to promote elongation of rice

coleoptiles by reorganizing filamentous actin from coarse

bundles to fine strands (Holweg et al., 2004; Wang and Nick,

1998). Furthermore, expression of an actin isoform in

Arabidopsis, ACT7, is auxin-sensitive, so much so that

callus formation is impaired when expression of the isoform

is reduced (Kandasamy et al., 2001). Finally, it has been

hypothesized that the asymmetric localization of carriers

required for the polar transport of auxin is based on dynamic

vesicle traffic guided by actin filaments (Blakeslee et al.,

2005; Muday and Murphy, 2002).

Although the best understood roles for actin are in

organelle motility and cytokinesis (Sano et al., 2005; Smith,

1999; Williamson, 1993), actin also appears to play a direct

role in growth. In pollen tubes, growth can be stopped at

lower concentrations of actin inhibitors than stop streaming

(Vidali et al., 2001), and growth is correlated with the

presence in the tip of a complex, actin-rich structure, the

cortical fringe (Lovy-Wheeler et al., 2005). These findings

imply that actin supports tip growth with more than tracks

for vesicle delivery. Trichomes and pavement cells of leaf

epidermis require the actin cytoskeleton to generate their

complex shapes, probably via mechanisms in addition to

targeted secretion (Smith and Oppenheimer, 2005). Finally,

widespread growth alterations have been reported follow-

ing interference with actin function (e.g. Ketelaar et al.,

2004).

Therefore, actin has been demonstrated to be important

for growth and auxin responses; nevertheless, few of these

observations have dealt with specific growth components,

and, for the most part, the mechanistic basis for these effects

remains obscure. To elucidate the role of actin in growth and

auxin responsiveness, we chose to study primary root

growth in Arabidopsis. In roots, elemental elongation rate

is an order of magnitude faster than in stems or leaves, and

the Arabidopsis root is thin and lacks chlorophyll, making it

ideal for imaging.

The objective of the work reported here was to determine

which growth components are affected by auxin, and to

what extent these auxin responses are mediated by actin. In

our experiments, seedlings were treated with concentra-

tions of auxins, or other compounds, that reduce root

elongation rate by approximately 50% and assayed after

48 h. In this way, steady-state responses are attained and

treatments are comparable; also, the likelihood of non-

specific effects is minimized, and the auxin treatments may

resemble a developmental modification of root growth

rather than its termination. To delineate growth compo-

nents, we characterized root growth kinematically. To assess

actin, we used imaging of living cells as well as chemical

fixation followed by antibody staining.

Results

Comparison of elongation and cell division in response to

auxins

The native auxin, indole acetic acid (IAA), is susceptible to

photolysis from blue and ultraviolet light; therefore, all

experiments reported here used plants grown in yellow

light, which prolongs the lifetime of IAA in growth media

(Stasinopoulos and Hangarter, 1990). To characterize the

mechanism of inhibition of root elongation by auxin, we

pursued a kinematic approach. First, we evaluated the time

course of root elongation rate (Figure 1a–c). Seedlings were

grown for 4 days, transplanted onto medium with auxins as

indicated, and root elongation rate measured each day for

3 days. The elongation rate of control roots increased each

day, an acceleration caused almost exclusively by increasing

cell production (Beemster and Baskin, 1998). The synthetic

auxin, 2,4-dichlorophenoxy-acetic acid (2,4-D), led to a

steady-state root elongation rate over the 3 days at 30 nM,

whereas none of the tested concentrations of IAA or of an-

other synthetic auxin, 1-naphthalene acetic acid (NAA),

produced steady-state kinetics. On day 3, the sensitivity of

root elongation to IAA and 2,4-D was essentially equal,

whereas the sensitivity to NAA was lower (Figure 1d). For

further work, we used 30 nM IAA, 30 nM 2,4-D and 100 nM

NAA, these being the concentrations that reduce elongation

rate by about 50%, and (except where noted) examined their

effects after 2 days of treatment.

To evaluate the impact of auxin on cell division and

elongation, we measured root elongation rate and the

length of newly mature cortical cells. The ratio of mature

cell length to elongation rate gives the time required to

produce one cortical cell (per cell file); the inverse of this

time gives the rate at which the file produces cells (Silk et al.,

1989). This rate of cell production represents the output of

the meristem (for that file of cortical cells), reflecting both

the number of dividing cells and their rates of division. All

the auxins reduced cell length significantly, suggesting that

they reduced cellular elongation (Table 1). IAA and NAA

reduced cell length proportionally to their reduction of

elongation rate, indicating that these auxins did not affect

cell production rate. In contrast, 2,4-D reduced cell length to

a lesser extent than its effect on elongation rate and thus

reduced cell production rate substantially.

The effect of these auxins on cell division was also

investigated by means of expression of a cell-cycle reporter,

Cyc1B;1-GUS, constructed so that the glucuronidase is

present chiefly during M phase (Colón-Carmona et al.,

1999). Preliminary experiments showed that the line har-

boring this construct responded to the auxins indistinguish-



ably from the wild type (data not shown). The pattern of GUS

expression in seedlings treated with 30 nM IAA appeared

identical to that in controls, whereas fewer cells were stained

in seedlings treated with 30 nM 2,4-D (Figure 2). Counts of

blue-stained cells gave a significant difference from the

control only for the 2,4-D treatment (not shown). The

kinematic data (Table 1) and the GUS staining concur in

showing that 2,4-D targets cell division whereas IAA and

NAA do not.

Because the relationship between mature cell length and

elongation is indirect, we quantified elongation spatially,

taking advantage of software, RootflowRT, developed for

this purpose (van der Weele et al., 2003). RootflowRT

quantifies the spatial profile of velocity, specifically calcula-

ting the component of velocity parallel to the midline of the

root (or when the root is bent, parallel to the local tangent of

the midline). The derivative of the velocity profile is the

profile of elemental elongation rate (Silk, 1992). The ele-

mental elongation rate characterizes the deformation of

subcellular (i.e. elemental) regions of cell wall and therefore

is close to the physical processes of expansion.

In a root, the velocity profile can be divided into three

regions: a region where velocity increases gradually with

position, corresponding approximately to the meristem; a

region where velocity increases steeply with position, cor-

responding to the elongation zone; and a region where

velocity becomes constant, at a value that equals the rate of

root elongation, corresponding to the mature zone (Fig-

ure 3). The three regions are separated by two transitions,

with the transition between meristem and elongation zone

generally being more abrupt than the one between the

elongation and mature zone. To compare profiles among

roots and treatments, we fitted a function to the data

(Figure 3, thin red line). Parameters of the fitted function

include the x-axis coordinates of the midpoints for the two

transitions, and a value that measures their abruptness.

Additionally, the spatial derivative of the fitted function

yields the profile of elemental elongation rate. The function

has been described fully elsewhere (Peters and Baskin,

2006).

The velocity profiles for the auxins resembled that of the

control, except, as expected, the final velocity was reduced

by about one-half. Along with reduced velocity, all of the

auxins reduced the length of the growth zone by roughly

50% (Table 2). Neither IAA nor 2,4-D reduced the maximal

rate of elemental elongation, while NAA reduced the rate by

25% (Figure 3, thick blue lines, and Table 2).

Almost always, the length of the elongation zone and

the rate of cell production are well correlated (Beemster

and Baskin, 1998; Beemster et al., 2002); it is therefore

unusual that IAA cut in half the length of the elongation

zone without reducing cell production rate. A possibility is

that IAA shrank the length of cells leaving the meristem by

50%; but, as seen below, such a reduction was not

apparent. Because the zone of elongation in an IAA-treated

root was shortened but cell production and maximal

elemental elongation rate were undiminished, cells resided

within that zone for less time than in controls; a decrease

in residence time also occurred for NAA- and 2,4-D-treated

Figure 1. Effect of auxins on Arabidopsis primary root elongation.

(a–c) Time courses.

(d) Dose–response curves for the third day of treatment. Symbols show the

means � SEM for three replicate experiments. Four-day-old seedlings were

transplanted onto treatment plates at time 0.



roots, although the decrease is smaller than for IAA

treatment because the decrease in cell production rate on

2,4-D, and in elemental elongation rate on NAA, tend to

increase residence time. The time spent by a cell in the

elongation zone might be regulated specifically by auxin.

In support of this, the transition to zero growth at the base

of the elongation zone tended to be sharper in IAA-treated

roots compared with that of controls (Table 2). Alternat-

ively, auxin could regulate the position where elongation

ends. The concept of auxin controlling the length of the

elongation zone, whether through spatial or temporal

means, contrasts the usual view of auxin as inhibiting (in

roots) the mechanism of expansion.

Effect of auxin on the actin cytoskeleton

To understand the underlying mechanism of auxin-induced

inhibition of growth and division, we investigated actin

organization. Seedlings were treated to inhibit root elonga-

tion by approximately 50% and actin imaged after 2 days,

the same conditions as used for the analyses of growth

reported above. First, we imaged actin by chemical fixation

followed by staining with an anti-actin antibody. IAA and

NAA tended to increase the intensity of fluorescence, in both

meristem and elongation zone (Figure 4a–f); however, this

response was subtle. In contrast, 2,4-D led to the widespread

loss of detectable filaments (Figure 4g,h). This was accom-

panied by increased non-filamentous background, present

throughout the cell in the meristem and often concentrated

at end walls in the elongation zone.

To confirm these results, we imaged actin in living cells,

by means of a transgenic line expressing a GFP-tagged

actin-binding domain from fimbrin (ABD2–GFP) (Wang

et al., 2004). Preliminary experiments showed that this line

responded to the auxins with reductions in root elongation

rate equivalent to those of the wild type. On IAA or NAA,

fluorescence from the reporter tended to increase, and the

filaments often appeared to be thicker and more bundled

(Figure 5a–f), but, as with chemical fixation, this increase

Table 1 Effect of auxins on cell length and
cell production in the Arabidopsis primary
root Treatment

Elongation rate
(mm day)1) Cell length (lm)

Cell production rate
(cells day)1)

Control 9.19 � 0.15 (100) 180 � 4.2 (100) 50.7 � 1.4 (100)
30 nM IAA 3.67 � 0.10 (40) 71 � 2.2 (40) 51.9 � 0.5 (102)
100 nM NAA 5.69 � 0.10 (62) 113 � 1.4 (62) 50.6 � 0.7 (100)
30 nM 2,4-D 4.10 � 0.30 (44) 137 � 4.6 (76) 33.5 � 1.5 (66)

Data are means � SEM of three replicate experiments. Values in parentheses are the percentage
of control for each column. Seedlings were exposed to the treatments for 3 days and the
measurements reflect the behavior over the third day of treatment.

Figure 2. Effect of auxins on expression of a reporter for M-phase, CycB1;1-

Gus, in the primary root tip.

Images are representative of 7–10 roots treated as for Figure 1 and examined

on the third day of treatment. Bar = 100 lm.

(a) (b) (c)

Figure 3. High-resolution analysis of elongation in Arabidopsis roots exposed to auxins.

(a) Control. (b) 30 nM IAA. (c) 30 nM 2,4-D. Velocity profiles (jagged black line) were obtained with RootflowRT and fitted with a modified logistic function (thin red 
line). The fitted function was differentiated to give the elemental elongation rate (thick blue line, right-hand y axis). Treatments were as for Figure 1 and roots were 
examined after 48 h. Data are for single representative roots.



was subtle. On 2,4-D, although some actin filaments

remained, their extent was reduced, and the remnant

filaments often appeared to emanate from a central focus

not typical of controls (Figure 5g,h). Furthermore, cells in

2,4-D-treated roots, but not those in other treatments,

contained bright, punctate structures. Images from

both methods indicate that 2,4-D disrupts the actin cyto-

skeleton.

Effects of latrunculin B on root growth and actin organiza-

tion

The unexpected finding that 2,4-D disrupted the actin cyto-

skeleton led us to compare the 2,4-D effect with that of a

bona fide actin inhibitor, latrunculin B. To enable meaning-

ful comparison with the auxins, we first determined that root

elongation was reduced by about 50% on 17 nM latrunculin

on the third day of treatment (Figure 6a). This concentration

was sufficient to remove a considerable amount of actin

(Figure 6e,f). In some cells, radial foci of actin filaments

appeared (Figure 6e), whereas in others there was a more

general loss of polymerized actin (Figure 6f). These effects of

latrunculin resemble those of 2,4-D, except that latrunculin

rarely generated puncta.

We next assessed the effects of 17 nM latrunculin on

elongation and division. Latrunculin reduced cell production

rate strongly and maximal elongation modestly (Figure 6b,c

and Table 3). Note that, in these experiments, the average

reduction in root elongation rate was 70%, a greater level of

inhibition than the 50% obtained above for the auxins.

Overall, latrunculin affected elongation and division simi-

larly to 2,4-D, which suggests that the disruption of actin

caused by 2,4-D is sufficient to account for its effect on cell

production and hence on root growth.

(a) 

(b) 

(c) 

(d)

(e) 

(f) 

(g) 

(h)

Figure 4. Effects of auxins on filamentous actin: chemical fixation.

(a, b) Control. (c, d) 30 nM IAA. (e, f) 100 nM NAA. (g, h) 30 nM 2,4-D. The top row shows the elongation zone, the bottom row shows the meristem. The images are

representative of at least three fixation runs, with 3–5 roots per treatment in each run. Roots were fixed after 2 days of treatment and actin was localized using

immuno-cytochemistry and imaged using confocal fluorescence microscopy. Images are projections of 10–12 optical sections. Bar = 25 lm.

Table 2 Effects of auxins on selected root growth parameters obtained from high-resolution spatial analysis of growth

Treatment
Final velocity
(lm sec)1)

Growth zone
length (mm)

Maximal elemental
elongation rate (% h)1)

Transition
ratio

Control 0.147 � 0.019 (100) 1.87 � 0.24 (100) 55 � 5.7 (100) 3.1 � 1.6
30 nM IAA 0.078 � 0.014 (54) 1.01 � 0.12 (54) 56 � 7.1 (101) 1.3 � 0.9
100 nM NAA 0.062 � 0.009 (42) 0.99 � 0.09 (53) 42 � 4.0 (77) 1.2 � 1.0
Controla 0.129 � 0.024 (100) 1.92 � 0.12 (100) 47 � 7.0 (100) 4.1 � 2
30 nM 2,4-Da 0.07 � 0.014 (54) 1.09 � 0.15 (57) 46 � 5.9 (99) 3.7 � 2

aThese treatments represent a separate group of experiments.
Roots imaged after 48 h of treatment. Data are means � SD for 6–12 roots, imaged from at least three different experiments. Values in parentheses
are the percentage of control. Parameters were obtained from the customized logistic function fitted to the data as follows: ‘final velocity’ is the
position where the fitted curve reached 95% of the asymptote (and estimates overall root elongation rate), ‘growth zone length’ is the value of the
second transition (from elongation to mature zones), ‘maximal elemental elongation rate’ is the maximum of the derivative of the fitted function,
and ‘transition ratio’ is the ratio of the parameters characterizing the abruptness of the transitions, with values greater than 1 indicating that the first
transition is more abrupt than the second.



(a) 

(b) 

(c) 

(d) 

(e) 

(f) 

(g)

(h)

Figure 5. Effects of auxins on filamentous actin: ABD–GFP expression.

(a, b) Control. (c, d) 30 nM IAA. (e, f) 100 nM NAA. (g, h) 30 nM 2,4-D. The top row shows the elongation zone, the bottom row shows the meristem. The images are

representative of 3–6 separate imaging runs, with 4–6 roots per treatment in each run. Roots were imaged after 48 h of treatment. Images are projections of 10–12

optical sections. Bar in (g) = 25 lm and relates to (a, c, e, g); bar in (h) = 10 lm and relates to (b, d, f, h).

(a)

(d) (e) (f)

(b) (c)

Figure 6. Effects of an actin inhibitor, latrunculin B, on root elongation and actin appearance.

(a) Root elongation rate as a function of latrunculin concentration. Two-day-old seedlings were transplanted on to drug plates and measured on the third day of 
treatment. Data are means � SEM of three replicate plates. Control rates are lower than in Figure 1 because younger plants were used on smaller plates to conserve 
the inhibitor. The half-maximal inhibition of elongation was at about 17 nM.

(b, c) Spatial analysis of elemental elongation, as for Figure 3.

(d–f) Actin filaments imaged with ABD–GFP. (d) Control. (e, f) Treatment with 17 nM latrunculin after 48 h. Representative images from four separate imaging runs, 
with at least three roots per treatment in each run. Images are projections of 10–12 optical sections. Scale bar = 25 lm.



Actin and auxin transport

Because distinct effects of IAA and 2,4-D are often inter-

preted in terms of polar auxin transport, we investigated

to what extent altering auxin transport affected actin struc-

ture. For this, we first used two polar transport inhibitors,

naphthylphthalamic acid (NPA) and tri-iodobenzoic acid

(TIBA) (Rubery, 1987). Preliminary dose–response assays

found that the root elongation rate was inhibited by 50% at

10 lM NPA and 40 lM TIBA. At these concentrations, roots

meandered on the surface of the vertical plate, an impair-

ment in gravitropism implying that polar transport had

indeed been reduced.

At these concentrations, NPA and TIBA had contrasting

effects on actin organization. NPA reduced filamentous actin

and generated puncta (Figure 7b), resembling the effects of

2,4-D. On the other hand, TIBA tended to increase fluores-

cence intensity and to cause bundling (Figure 7c), similar to

the changes induced by IAA and NAA. Diminished actin on

treatment with NPA but not TIBA was confirmed with

chemical fixation (data not shown). Insofar as TIBA often

acts like a weak auxin, the similarity of TIBA and IAA

treatment is understandable; the distinction between TIBA

and NPA (Figure 7a–c) indicates that the disruptive effect of

2,4-D on actin is unlikely to be explained by an inhibition of

polar auxin transport.

To examine further the consequences of altered auxin

transport on actin organization, we imaged actin in two

mutants with impeded polar transport: eir1-1, which reduces

auxin efflux, and aux1-7, which reduces influx (Luschnig

et al., 1998; Rahman et al., 2001; Rashotte et al., 2003). We

crossed the ABD2–GFP line into each mutant and examined

actin by confocal microscopy in F3 plants expressing the

mutant phenotype and ABD2–GFP. The actin cytoskeleton in

aux1-7 was indistinguishable from that of controls, whereas

actin in eir1-1 tended to be modestly bundled and brighter

(Figure 7d–f), similar to the actin phenotype observed for

IAA, NAA and TIBA treatments. Taken together, these results

suggest that the disruption of actin caused by NPA and 2,4-D

is not a consequence of inhibited polar auxin transport.

To assess further the link between actin organization, cell

division and elongation, we assayed cell production rate in

the presence of NPA and TIBA. Consistent with the results

above, we found that NPA, which disrupts actin, inhibited

cell production rate, whereas TIBA reduced cell production

rate only modestly (Table 4). These results confirm distinct

actions of TIBA and NPA and substantiate the link between

disrupted actin and decreased cell production.

Table 3 Effects of latrunculin on selected growth parameters

Treatment
Root growth rate
(mm day)1)

Cell length
(lm)

Cell production rate
(cell day)1)

Maximum elemental
ratea (% h)1)

Control 7.5 � 0.17 162 � 4 46.5 � 0.5 46 � 6
17 nM latrunculin B 3.4 � 0.14 (45) 105 � 11 (65) 33.2 � 3.6 (71) 35 � 7 (76)

Data are means � SEM of three replicate plates. Values in parentheses are the percentage of control. Seedlings were exposed to the treatments for
3 days, and the measurements reflect the behavior over the third day of treatment.
aThese data were obtained from separate experiments for spatial analysis. Data are means � SD for five (control) and nine (latrunculin B) roots.

(a)

(b)

(c)

(d)

(e)

(f)

Figure 7. Effect of auxin-transport inhibitors on actin appearance.

(a) Control. (b) 10 lM NPA. (c) 40 lM TIBA. (d) Columbia. (e) aux1-7. (f) eir1-1.

(a–c) Treatment for 48 h. The results show ABD2–GFP expression, and are

representative images from two (aux1-7, eir1) to five separate imaging runs,

with 4–6 roots per treatment in each run. Images are projections of 10–12

optical sections. Bar = 25 lm.



Quantitative assessment of the extent of actin filaments

Because it was surprising that the two auxins and the two

auxin-transport inhibitors had such distinct effects on the

extent of polymerized actin, we quantified the appearance of

actin by using an image-processing method applied previ-

ously to microtubules (Tian et al., 2004) and described

briefly in Experimental procedures. Images were analyzed

representing 10–20 roots for each experimental treatment

collected on several days. The extent of polymerised actin

was lower specifically in the 2,4-D, latrunculin and NPA

treatments (Figure 8), confirming the appearance of the

images. This method responds weakly to intensity and so

cannot assess the increased fluorescence observed qualita-

tively in the IAA, NAA and TIBA treatments.

Effect of auxins on cytoplasmic streaming

The degradation of actin observed with 2,4-D or latrunculin

treatment was partial; some polymerized actin remained. To

assess the functional significance of this actin, we assayed

cytoplasmic streaming, a process known to depend on a

functional actomyosin system (Williamson, 1993). During

the third day of treatment, the root of intact seedlings was

mounted in the same treatment solution, and mature epi-

dermal cells observed with Nomarski optics. Control roots

and 30 nM IAA-treated roots streamed vigorously; however,

roots treated with either 30 nM 2,4-D or 17 nM latrunculin

streamed slowly (Movies S1–S4). These results show that

the 2,4-D and latrunculin treatments compromised actin-

based motility.

Role of actin in localizing auxin-efflux proteins, PIN1 and

PIN2

To assess further consequences of the disruption of actin

caused by 2,4-D, we examined PIN auxin-efflux proteins

because they are thought to reach their polarized locations

in the plasma membrane via actin-dependant trafficking. We

first examined the localization of PIN2 using a specific anti-

body (Boonsirichai et al., 2003). In median, longitudinal op-

tical sections, PIN2 is localized on the shoot-ward side of

epidermal cells but on the root-ward side of cortical cells

(Figure 9a). We use the terms ‘shoot-ward’ (for towards the

shoot tip) and ‘root-ward’ (for towards the root tip) because

of the conflict in the root between anatomical and develop-

mental referents implied by the terms ‘apical’ and ‘basal’.

Despite the two-day treatment, PIN2 localization was not

altered visibly with IAA, NAA, 2,4-D, NPA or latrunculin

(Figure 9). Latrunculin, but not 2,4-D, led to oblique divisions

and large inclusion bodies in epidermal cells; however,

these effects were far less prominent when roots were

treated with a different actin inhibitor, cytochalasin D (at

8 lM, a concentration that inhibits root growth by 50%; data

not shown).

Because most evidence supporting actin-based subcellu-

lar localization of PIN proteins has been obtained with PIN1,

we also examined this protein. Although PIN1 is reported to

be localized correctly in short-term treatments with actin

inhibitors (e.g. Geldner et al., 2001), some mislocalization

might be expected from the long treatments studied here,

involving as they do 30–50 cell divisions per day, per file.

Nevertheless, subcellular PIN1 localization appeared unaf-

fected by any of the treatments (Figure S1), implying actin

independence for the machinery targeting PIN1 as well as

PIN2.

The preceding experimental conditions involved a 2-day

treatment; it is therefore possible that correct localization

was restored gradually, despite the dismantled actin cyto-

skeleton. To determine whether short-term disruptions of

actin caused mislocalization of PIN2, we examined roots

after a 2 h treatment, using a pin2 mutant line complemen-

ted by the expression of a translational PIN2–GFP fusion

(Xu and Scheres, 2005b). Fluorescence from PIN2–GFP in the

Figure 8. Quantification of the extent of actin polymerization.

Bars show the mean and SD of a parameter reflecting the area occupied by

actin filaments. Images used were of ABD2–GFP fluorescence from the

elongation zone, with treatments as described for Figure 5, upper row,

Figure 6e,f and Figure 7b,c. Data are for 10–20 images per treatment, imaged

on many different days. The quantification procedure is described in

Experimental procedures.

Table 4 Effect of auxin-transport inhibitors on root cell length and
cell production

Treatment
Root growth rate
(mm day)1)

Cell length
(lm)

Cell production rate
(cells day)1)

Control 10.1 � 0.3 (100) 199 � 4 (100) 50.8 � 1.1 (100)
10 lM NPA 4.6 � 0.3 (45) 143 � 6 (72) 32.5 � 1.5 (64)
40 lM TIBA 5.6 � 0.2 (55) 123 � 1 (61) 46.0 � 1.4 (91)

Data are means � SEM of three replicate plates. Values in paren-
theses are the percentage of control for each column. Seedlings were
exposed to the treatments for 3 days and the measurements reflect
the behavior over the third day of treatment.



regulators used above had little effect on actin in 2 h. Higher

concentrations affected actin in 2 h to a similar extent as

lower concentrations given over 2 days, except that neither

2,4-D nor NPA caused punctate fluorescence (Figure 10, left-

hand panels). In this short-term exposure, disrupted actin in

the 2,4-D and NPA treatments was accompanied by appar-

ently unaltered polar localization of PIN2 (Figure 10, right-

hand panels). Taken together, the results of the 2-day and

2 h treatments imply that targeting of PIN2 is independent of

actin.

Discussion

We report here that three auxins and two auxin-transport

inhibitors can be divided into two classes based on their

effects on cell division, elongation and the actin cytoske-

leton. IAA, NAA and TIBA slow root growth primarily

through reducing the extent of the growth zone; these

compounds may bundle or increase the fluorescence of

filamentous actin. In contrast, 2,4-D and NPA inhibit root

growth primarily by reducing cell production rate; these

compounds cause depolymerization of actin and slow

down cytoplasmic streaming, but do not affect localization

of the PIN proteins (Figure 11). Given the central roles of

auxin and actin in plant development, it is reasonable to

find interactions between them. What appears surprising is

that actin provides a basis for separating responses to IAA

and 2,4-D, and also that actin function is, at least partially,

dispensable for rapid, elemental elongation as well as for

PIN targeting.

IAA and 2,4-D evoke differential responses in regulating root

growth

When auxins were used at concentrations that inhibited

overall root elongation rate by 50%, elemental elongation

tended to be unaffected: maximal elemental elongation rate

was reduced modestly by NAA and not at all by 2,4-D or IAA

(Figure 3 and Table 1). Unaffected elemental elongation

contradicts the way auxin is often assumed to act in roots:

because auxin promotes growth in stems by loosening the

cell wall, it is assumed to inhibit growth in roots by cell-wall

tightening (e.g. Liszkay et al., 2004). Tighter cell walls would

reduce elemental elongation rates, contrary to our data, and

in fact, to previous reports. In Arabidopsis exposed to 30 nM

2,4-D from germination onwards, maximal elemental elon-

Figure 9. Effects of auxins and other compounds on the localization of PIN2.

(a) Control. (b) 30 nM IAA. (c) 30 nM 2,4-D. (d) 10 lM NPA. (e) 17 nM

latrunculin B. Four-day-old seedlings were treated for 48 h before being fixed

and processed for immunofluorescence with an anti-PIN2 antibody. Left-hand

panels show survey views and right-hand panels show a higher magnifica-

tion, as indicated by the box in (a). The images are representative of three or

four separate imaging runs, with four to six roots per treatment in each run.

Images are single confocal sections. Bar = 25 lm.

(a)

(b)

(c)

(d)

(e)

meristem was bright along the side walls, tending to 
obscure the polar localization in medial views (data not 
shown); therefore, we examined epidermal cells in glancing 
view, in which polar localization was clear. Preliminary 
experiments showed that the concentrations of growth



gation rate was the same as in the controls (Beemster and

Baskin, 2000). In wheat (Triticum aestivum) treated with low

and modest concentrations of IAA, the elemental elongation

rate was transiently inhibited throughout the elongation

zone, and then, after about 1 h, recovered to values the same

as or even greater than the control (Hejnowicz, 1961). In

timothy (Phleum pratense), although high concentrations of

IAA reduced elemental elongation, low concentrations

caused only transient inhibition, similar to wheat (Goodwin,

1972). In all these reports, whether or not the maximal ele-

mental elongation rate was transiently inhibited, auxins

reliably shortened the zone of elongation. In 2,4-D-treated

roots, the growth zone is shortened at least in part because

cell division rate is decreased, thus decreasing the flux of

cells into the elongation zone (Beemster and Baskin, 2000),

whereas we found for IAA treatment that the size of the

elongation zone itself appears to be regulated. Therefore, in

roots, IAA acts over the whole growth zone to restrict its

span, rather than acting cell autonomously to limit wall

loosening.

In principle, IAA could control the span of the growth zone

either by enforcing a boundary where cells stop elongating

or by enforcing the duration that a cell spends elongating.

When IAA is applied to a limited region of the growth zone of

the maize root, the shoot-ward part of the zone responds

much less than the root-ward part (Davies et al., 1976;

Meuwly and Pilet, 1991), observations that are in accordance

with a program of temporal regulation established while

cells are in or near the meristem.

The synthetic auxin, 2,4-D, has been used for decades as a

chemical analogue of IAA because of its stability and auxin-

like action. 2,4-D and IAA are widely assumed to share the

same signal-transduction pathways and to differ only in

transport or metabolism (e.g. Taiz and Zeiger, 2006). How-

ever, distinct signal transduction paths are being uncovered.

(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Figure 10. Actin and PIN2 in seedlings treated at high concentration for 2 h.

(a, b) Control. (c, d) 1 lM IAA. (e, f) 1 lM 2,4-D. (g, h) 100 lM NPA. (i, j) 1 lM

latrunculin B. ABD2–GFP (left-hand panels) and GFP–PIN2 (right-hand panels)

in epidermis (root tip is towards the bottom of the page). Images are

representative of two imaging runs, with four to six roots per treatment.

Bar = 25 lm.

Figure 11. Schematic representation of the key results.

IAA, NAA and TIBA slow root growth primarily by reducing the length of the

elongation zone with little or no decrease in cell production. These

compounds tend to bundle actin filaments. In contrast, 2,4-D, NPA and

latrunculin slow root growth primarily by decreasing the number of dividing

cells, although they decrease cell elongation to some extent. These com-

pounds depolymerize actin filaments, but do not affect the subcellular

localization of PIN proteins.



compounds) reduced the size of the elongation zone rather

than the process of cellular expansion.

The compounds disrupting actin failed to reduce maximal

elemental elongation rate appreciably; not at all for 2,4-D

and by 20% for NPA (data not shown) and 25% for

latrunculin (Tables 2 and 3). This is surprising because all

plant cell growth is assumed to require actin. This assump-

tion is well-established for tip growth, as well as for

trichomes and the lobes of leaf epidermal cells (Hepler

et al., 2001; Smith and Oppenheimer, 2005); however, a

requirement for actin in the specific process of diffuse

expansion remains unclear.

Growth is altered when the actin cytoskeleton is disrupted

genetically (Ramachandran et al., 2000; Dong et al., 2001;

Kandasamy et al., 2001; Ketelaar et al., 2004) or by week-

long inhibitor treatment (Baluška et al., 2001); nevertheless,

in such studies, growth was usually analyzed insufficiently

to distinguish an altered intensity of the elongation process

from an altered spatial or temporal span. What’s more, in a

mutant, secondary effects may occur. For example, Nishim-

ura et al. (2003) reported that a dominant mutation in the

ACT2 isoform of actin reduces root elongation; however, the

mutation also causes cell death in trichoblasts, which could

be responsible for the decreased root elongation. Therefore,

while observations on mutants and transgenics have estab-

lished a general role for actin in plant development, they do

not contradict our finding for roots that the intensity of

diffuse growth (i.e. elemental elongation rate) has a limited

requirement for functional actin.

In stem or coleoptile segments, elongation is slowed by

actin inhibitors (Cande et al., 1973; Thimann et al., 1992),

which presumably reflects lower elongation intensity

because the segments have little if any cell division and

elongate more or less evenly over their lengths. However,

actin inhibitors are relatively more effective against growth

in stems than roots (Pope et al., 1979). Whereas a cell in a

stem elongates slowly (approximately 5% per hour) for

several days, a cell in a root elongates rapidly (approxi-

mately 50% per hour) for several hours. We suggest that the

system powering the slow but steady expansion of stem

cells requires a functional actin cytoskeleton to a greater

extent than does the explosive expansion of root cells.

Polar auxin-transport inhibitors and their interaction with

actin

For decades, TIBA and NPA have been used to inhibit polar

auxin transport, although the mechanism by which they act

is unknown (Rubery, 1987, Bennett et al., 1998). Interest-

ingly, we found that NPA and TIBA affect actin organization

differently (Figure 7). While TIBA seemed to bundle actin,

NPA disrupted actin. In cultured tobacco cells, NPA did not

affect actin (Petrásek et al., 2003); the difference between the

Arabidopsis root and the tobacco cells requires elucidation.

In Arabidopsis, 2,4-D binds the auxin receptor SCF-TIR1 with 
notably lower affinity than IAA does (Kepinski and Leyser, 
2005); moreover, sensitivity to 2,4-D is conferred by a 
protein, SMAP1, that does not confer sensitivity to IAA 
(Rahman et al., 2006). The discovery of SMAP1 supports the 
idea that native and synthetic auxins are perceived by 
mechanistically distinct pathways, albeit partially overlap-

ping. If plants perceive auxins distinctly, then it follows that 
plants may respond to them distinctly.

It has been reported for several years that auxin affects 
cell division predominantly through a G-protein pathway, 
while it affects expansion through a pathway involving an 
auxin receptor, ABP1 (Chen, 2001; Ullah et al., 2003); 
recently, 2,4-D was shown to activate the division pathway 
preferentially whereas NAA acted preferentially on expan-

sion (Campanoni and Nick, 2005). This was observed in 
tobacco tissue culture cells, making an explanation based on 
differential transport unlikely. Similar to the results on 
tobacco cells, we show here that 2,4-D mainly affects cell 
division and IAA affects elongation (Figure 3 and Table 1). 
Further, these auxins exhibit contrasting effects on the actin 
cytoskeleton, with 2,4-D disrupting it (Figures 4, 5, 8 and 10). 
High concentrations of IAA did not remove actin (Figure 10), 
implying that the difference between 2,4-D and IAA effects 
cannot be explained by the 2,4-D-treated root having a 
higher intracellular auxin concentration. Collectively, these 
results support the idea that 2,4-D and IAA response 
pathways are mechanistically distinct.

In agriculture, 2,4-D is an important herbicide even 
though its mechanism of toxicity has never been estab-

lished (Cobb, 1992; Grossmann, 2000). Intriguingly, a 
dominant negative mutation in an actin isoform induces 
cell death in trichoblasts (Nishimura et al., 2003) and 
disrupting actin causes apoptosis in pollen tubes (Thomas 
et al., 2006). If actin disruption is widely linked to apopto-

sis in higher plant cells, then this might explain the toxicity 
of 2,4-D.

The role of actin in the mechanism of auxin-induced root 
growth inhibition

That compounds depleting actin concomitantly decrease 
cell production is consistent with the known involvement of 
actin with the phragmoplast and preprophase band (Ingouff 
et al., 2005; Mineyuki, 1999; Sano et al., 2005; Smith, 1999). 
Likewise, aberrant cell division occurs in the roots of an 
Arabidopsis mutant, act7-4, that contains low levels of ACT7, 
an abundant actin isoform in the root growth zone (Gilliland 
et al., 2003). In the rice coleoptile, IAA-stimulated cell growth 
has been argued to be related to the formation of fine net-

works of actin (Holweg et al., 2004; Wang and Nick, 1998), 
and it could be that the tendency to increased actin bundling, 
seen here for IAA, NAA and TIBA, reflects the loss of such 
networks. However, for the root, IAA (and the related



In theory, TIBA and NPA should mimic the effect of IAA on

actin, insofar as the intracellular concentration of auxin in

the root increases when polar transport is blocked (Ljung

et al., 2005). This prediction appears to be met for TIBA as

well as for the eir1 mutant (Figure 7 and Tables 1 and 4) but

not for NPA. Actin-based motility might be required for polar

auxin transport, but the unaffected gravitropism in roots

treated for 2 days with 30 nM 2,4-D or 17 nM latrunculin (data

not shown) argues against this, as does the fact that cytoc-

halasin B has no effect on the rate of polar transport

(although delaying uptake) in stems or coleoptiles at a

concentration that stops cytoplasmic streaming (Cande

et al., 1973). NPA might affect actin directly, based on stud-

ies that find NPA-binding activity associated with actin

fractions (Butler et al., 1998; Cox and Muday, 1994; Hu et al.,

2000). It would be interesting to determine whether similar

fractions bind 2,4-D.

The role of actin in targeting the auxin efflux proteins, PIN1

and PIN2

Auxin is moved throughout the whole plant by plasma

membrane proteins, including the PIN family, which are in-

volved with efflux (Blakeslee et al., 2005; Petrásek et al.,

2006). PIN proteins cycle dynamically between plasma

membrane and endosomes (Murphy et al., 2005). The cyc-

ling has been hypothesized to depend on actin, based on the

ability of cytochalasin to prevent the mislocalization of PIN1

caused by brefeldin A (Geldner et al., 2001). Here, we find

that, for both long-term (2 days, Figure 9) and short-term

(2 h, Figure 10) treatments, PIN localization did not suffer in

the presence of latrunculin, cytochalasin (not shown), NPA

or 2,4-D at concentrations where actin function was disrup-

ted enough to slow cytoplasmic streaming and cell division.

Treatment with latrunculin caused PIN2 to accumulate in

bodies of unknown identity; however, this occurred only in

the epidermis with two-day treatment, to a much lesser

extent with cytochalasin, and did not prevent polar PIN2

targeting. Although some actin remained in the latrunculin,

2,4-D and NPA treatments, such remnants are the least likely

to support the kind of dynamic motility considered to drive

PIN cycling.

Observations indicating a role for actin in targeting PIN1

have involved combined treatments with an actin inhibitor

and brefeldin; treatments with an actin inhibitor alone

seldom alter the subcellular localization of PIN1 (Boutte

et al., 2006; Friml et al., 2002; Geldner et al., 2001; Kleine-

Vehn et al., 2006). In these reports, stable localization could

reflect interruption by the actin inhibitors of flow to, as well

as from, the plasma membrane; but, over a two-day

treatment, PINs would be expected to become delocalized

by diffusion, or to be aberrant in the cells produced during

the 2 days (>60 cells per cortical file; Table 1). Furthermore,

short-term treatment with cytochalasin caused rapid inter-

nalization of PIN3, a protein expressed in root cap and re-

localized rapidly during gravitropism (Friml et al., 2002).

Therefore, the evidence to date, while consistent with an

actin-based deployment mechanism for PIN3, is most

simply interpreted as showing that PIN1 and PIN2 are

targeted by an actin-independent mechanism.

Experimental procedures

Plant material, growth conditions and chemicals

All lines are in the Columbia background of Arabidopsis thaliana (L.)
Heynh. The transgenic ABD2–GFP line has been described previ-
ously by Wang et al. (2004), and the PIN2–GFP line, described by Xu
and Scheres (2005b), was the gift of B. Scheres (University of
Utrecht, The Netherlands). The eir1-1 and aux-1-7 mutations were
introduced into the ABD2–GFP line by crossing, and independent
lines homozygous for the mutation and expressing the reporter
were identified by screening for fluorescence and an agravitropic
phenotype. Surface-sterilized seeds were placed in round, 10 cm
Petri plates on modified Hoagland’s medium (Baskin and Wilson,
1997), 1% w/v sucrose and 1% w/v agar (Difco Bacto agar, BD
Laboratories; http://www.bd.com). For latrunculin B treatment,
6 cm diameter Petri plates were used. Two days after stratification
at 4�C in the dark, plates were transferred to a growth chamber at
23�C under continuous yellow light at an intensity of 100–
120 lmol m)2 sec)1. NPA was purchased from Pfaltz and Bauer
(http://www.pfaltzandbauer.com/).

Growth, cell length and cell production rate assays

Seedlings were grown vertically for 4 days after stratification. On
day 4, seedlings were transferred to medium with or without sup-
plementation and grown vertically for another 2–3 days. All auxins
and inhibitors were dissolved initially in DMSO and diluted into
molten agar just prior to gelling. The dilution was 1000-fold and
control media received an equivalent volume of DMSO. For the
short-term assay, 4-day-old seedlings were placed on liquid
Hoagland’s medium supplemented with or without growth regula-
tors and incubated for 2 h.

Root elongation rate was measured by scoring the position of the
root tip on the back of the Petri plate once per day, as described by
Baskin and Wilson (1997). Cortical cell length was measured using
Nomarski optics and a 20 x, 0.5 NA objective. To ensure newly
matured cells were scored, no cell was measured closer to the tip
than the position where root hair length was roughly half maximal.
The length of 20 mature cortical cells was measured from each root,
with eight roots used per treatment. Cell production rate was
calculated by taking the ratio of root elongation rate and average
cell length for each individual and averaging over all the roots in the
treatment. The reported experiments are based on three replicates
per treatment; all of these experiments have themselves been
repeated several times.

Imaging and spatial analysis of elongation were performed as
described previously (van der Weele et al., 2003) with minor
modifications. Briefly, a Petri plate was placed on the stand of a
horizontal microscope and the root imaged with a 10· lens through
the agar. An image sequence of nine images was obtained at 15 sec
intervals, the stage was translocated to an adjacent region of the
growth zone and another sequence was obtained, continuing for
four to eight sequences until the growth zone was spanned.



percentage of the sampled area. Skeletonizing sharply reduces the
dependence of the area on the choice of threshold. Images used were
of the elongation zone (as in Figure 5, upper row), and the sampled
area comprised all (or most) of the root in the image. Images were
excluded that had prominent central vacuoles or high cytoplasmic
background. The data set (Figure 8) reflects a majority of the elon-
gation zone images collected over the roughly two years of this
study.
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Three-day-old seedlings were transferred to Murashige and Skoog 
plates supplemented with auxins as indicated. After 48 h, 10–15 
seedlings from each treatment were processed to image GUS 
expression by incubating seedlings in staining solution (100 mM 

sodium phosphate buffer, pH 7.0, 10 mM EDTA, 0.5 mM potassium 
ferricyanide, 0.5 mM potassium ferrocyanide, 0.5% Triton X-100 and 
2 mM X-glucuronide) at 37�C for 3 h. Seedlings were washed three 
times with 100 mM sodium phosphate buffer (pH 7.0), and roots 
were examined through a compound microscope and photo-
graphed with a color digital camera.

To localize actin, we used the protocol described by Bannigan 
et al. (2006) with minor modifications. Briefly, roots were fixed in 
PIPES buffer containing paraformaldehyde, glutaraldehyde and 
calcium, permeabilized in Triton and cold methanol, successively, 
and subjected to brief cell-wall digestion with pectinase and 
pectolyase. The modifications include the addition of 400 lM 

maleimidobenzoyl-N-hydroxy succinimide (MBS) to the fixation 
buffer, extracting with Triton X-100 before cell-wall digestion, rather 
than after, and at a concentration of 1% v/v, and the use of a mouse 
monoclonal anti-(chicken gizzard) actin (C4; Chemicon, http://
www.chemicon.com/), diluted 1:1000 in PBS, 1% BSA and 0.01%
sodium azide (PBA).

To localize PINs, the protocol described above was used, except 
that glutaraldehyde and MBS were omitted, and, after the cold 
methanol treatment and rehydration in PBS, seedlings were incu-
bated in 10% v/v DMSO and 3% v/v NP-40 in PME [50mM PIPES pH7, 
2mM MgSO4 and SmM EGTA (PME)] for 1 h. After incubation, 
seedlings were rinsed PME (3 · 5 min) and blocked in 1% w/v goat 
serum in PBA, and after 1 h, the blocking solution was replaced 
carefully with primary antibody. The primary antibodies were anti-
PIN2 (1:100 dilution), the gift of P. Masson (University of Wisconsin, 
Madison, USA) or anti-PIN1 (1:100 dilution), the gift of J. Friml 
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Friml, J., Wiśniewska, J., Benková, E., Mendgen, K. and Palme, K.

(2002) Lateral relocation of auxin efflux regulator PIN3 mediates
tropism in Arabidopsis. Nature, 415, 806–809.

Geldner, N., Friml, J., Stierhof, Y.D., Jürgens, G. and Palme, K.

(2001) Auxin transport inhibitors block PIN1 cycling and vesicle
trafficking. Nature, 413, 425–428.

Gilliland, L.U., Pawloski, L.C., Kandasamy, M.K. and Meagher, R.B.

(2003) Arabidopsis actin gene ACT7 plays an essential role in
germination and root growth. Plant J. 33, 319–328.

Goodwin, R.H. (1972) Studies on roots: V. Effects of indoleacetic
acid on the standard root growth pattern of Phleum pratense. Bot.
Gaz. 133, 224–229.

Green, P.B. (1976) Growth and cell pattern formation on an axis:
critique of concepts, terminology and modes of study. Bot. Gaz.
137, 187–202.

Grossmann, K. (2000) Mode of action of auxin herbicides: a new
ending to a long, drawn out story. Trends Plant Sci. 5, 506–
508.

Hejnowicz, Z. (1961) The response of the different parts of the cell
elongation zone in root to external b-indolylacetic acid. Acta Soc.
Bot. Polon. 30, 25–42.

Hepler, P.K., Vidali, L. and Cheung, A.Y. (2001) Polarized cell growth
in higher plants. Annu. Rev. Cell Dev. Biol. 17, 159–187.

Holweg, C., Susslin, C. and Nick, P. (2004) Capturing in vivo
dynamics of the actin cytoskeleton stimulated by auxin or light.
Plant Cell Physiol. 45, 855–863.

Hu, S., Brady, S.R., Kovar, D.R., Staiger, C.J., Clark, G.B., Roux, S.J.

and Muday, G.K. (2000) Identification of plant actin-binding pro-
teins by F-actin affinity chromatography. Plant J. 24, 127–137.

Ingouff, M., Gerald, J.N.F., Guerin, C., Robert, H., Sorensen, M.B.,

Van Damme, D., Geelen, D., Blanchoin, L. and Berger, F. (2005)
Plant formin AtFH5 is an evolutionarily conserved actin nucleator
involved in cytokinesis. Nat. Cell Biol. 7, 374–380.

Kandasamy, M.K., Gilliland, L.U., McKinney, E.C. and Meagher,

R.B. (2001) One plant actin isovariant, ACT7, is induced by auxin
and required for normal callus formation. Plant Cell, 13, 1541–
1554.

Kepinski, S. and Leyser, O. (2005) The Arabidopsis F-box protein
TIR1 is an auxin receptor. Nature, 435, 446–451.

Ketelaar, T., Allwood, E.G., Anthony, R., Voigt, B., Menzel, D. and

Hussey, P.J. (2004) The actin-interacting protein AIP1 is essential
for actin organization and plant development. Curr. Biol. 14, 145–
149.

Kleine-Vehn, J., Dhonukshe, P., Swarup, R., Bennett, M. and Friml,

J. (2006) Subcellular trafficking of the Arabidopsis auxin influx
carrier AUX1 uses a novel pathway distinct from PIN1. Plant Cell,
18, 3171.

Liszkay, A., van der Zalm, E. and Schopfer, P. (2004) Production of
reactive oxygen intermediates (O2

)•, H2O2, and •OH) by maize
roots and their role in wall loosening and elongation growth.
Plant Physiol. 136, 3114–3123.

Ljung, K., Hull, A.K., Celenza, J., Yamada, M., Estelle, M., Normanly,

J. and Sandberg, G. (2005) Sites and regulation of auxin biosyn-
thesis in Arabidopsis roots. Plant Cell, 17, 1090–1104.

Lovy-Wheeler, A., Wilsen, K.L., Baskin, T.I. and Hepler, P.K. (2005)
Enhanced fixation reveals the apical cortical fringe of actin fila-
ments as a consistent feature of the pollen tube. Planta, 221, 95–
104.

Luschnig, C., Gaxiola, R.A., Grisafi, P. and Fink, G.R. (1998) EIR1, a
root-specific protein involved in auxin transport, is required for
gravitropism in Arabidopsis thaliana. Genes Dev. 12, 2175–2187.

Meuwly, P. and Pilet, P.-E. (1991) Local treatment with indole-3-
acetic acid induces differential growth responses in Zea mays L.
roots. Planta, 185, 58–64.

Mineyuki, Y. (1999) The preprophase band of microtubules: its
function as a cytokinetic apparatus in higher plants. Int. Rev. Cy-
tol. 187, 1–49.

Muday, G.K. and Murphy, A.S. (2002) An emerging model of auxin
transport regulation. Plant Cell, 14, 293–299.

Murphy, A.S., Bandyopadhyay, A., Holstein, S.E. and Peer, W.A.

(2005) Endocytotic cycling of PM proteins. Annu. Rev. Plant Biol.
56, 221–251.

Nishimura, T., Yokota, E., Wada, T., Shimmen, T. and Okada, K.

(2003) An Arabidopsis ACT2 dominant-negative mutation, which
disturbs F-actin polymerization, reveals its distinctive function in
root development. Plant Cell Physiol. 44, 1131–1140.

Peters, W.S. and Baskin, T.I. (2006) Tailor-made composite func-
tions as tools in model choice: the case of sigmoidal versus
bi-linear growth profiles. Plant Methods, 2, 12.
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