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ASYMPTOTIC BEHAVIOR OF SMALL SOLUTIONS FOR THE

DISCRETE NONLINEAR SCHRÖDINGER AND KLEIN-GORDON

EQUATIONS

A. STEFANOV AND P.G. KEVREKIDIS

Abstract. We show decay estimates for the propagator of the discrete Schrödinger
and Klein-Gordon equations in the form ‖U(t)f‖l∞ ≤ C(1 + |t|)−d/3‖f‖l1 . This
implies a corresponding (restricted) set of Strichartz estimates. Applications of
the latter include the existence of excitation thresholds for certain regimes of the
parameters and the decay of small initial data for relevant lp norms. The analytical
decay estimates are corroborated with numerical results.

1. Introduction

A sequence of (time evolving) harmonic oscillators which interact only with their
immediate neighbors is described by the discrete Schrödinger equation

∣

∣

∣

∣

iu′n(t) + h−2(un+h(t) + un−h(t)− 2un(t)) + Fn(t) = 0 k ∈ hZ
{uk(0)} ∈ l2

where h is the distance between the oscillators and hZ is the lattice of points {hn :
n− integer} . More generally,

∆discrete = h−2
d
∑

j=1

(un+hej
+ un−hej

− 2un)

and the equation describing the system is given by

iu′n(t) + ∆discreteu+ Fn(t) = 0, n ∈ hZd,

As h→ 0, one obtains the continuous model.

For Fn(t) = ±|u|2σu, the above equation becomes the discrete nonlinear Schrödinger
equation. The latter is one of the prototypical differential-difference models that is
both physically relevant and mathematically tractable. Perhaps, the most direct im-
plementation of this equation can be identified in one-dimensional arrays of coupled
optical waveguides [1, 2]. These may be multi-core structures created in a slab of a
semiconductor material (such as AlGaAs), or virtual ones, induced by a set of laser
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beams illuminating a photorefractive crystal. In this experimental implementation,
there are about forty lattice sites (guiding cores), and the localized, solitary wave
structures that this model is well known to support [3, 4] may propagate over tens
of diffraction lengths.

Photonic lattices [5, 6] have recently provided another application of the discrete
nonlinear Schrödinger class of models. In this case, the refractive index of a nonlinear
medium changes periodically due to a grid of strong beams, while a weaker probe
beam is used to monitor the localized waves. This has created a large volume of
recent activity in the direction of understanding discrete solitons in such photonic
lattices.

Finally, besides its applications in nonlinear optics, the discrete nonlinear Schrödinger
equation is a relevant model for Bose-Einstein condensates trapped in strong optical
lattices (formed by the interference patterns of laser beams) [7, 8]. In this context,
the model can be derived systematically by using the Wannier function expansions
of [9].

These applications render the discrete nonlinear Schrödinger equation a particu-
larly relevant dynamical lattice for a variety of physical applications.

Another example of a differential-difference equation that arises in many physical
contexts consists of the nonlinear Klein-Gordon models. Perhaps the simplest possible
implementation of such a lattice arises for an array of coupled torsion pendula under
the effect of gravity [10]. However, such models are also relevant in condensed matter
physics (e.g., describing the fluxon dynamics in arrays of superconducting Josephson-
junctions) [11], as well as biophysics (e.g., describing the local denaturation of the
DNA double strand [12]). It is also interesting to note that nonlinear Klein-Gordon
models are intimately related to their Schrödinger siblings since the latter are the
natural envelope wave reduction of the former [13].

The Klein-Gordon model is of the form

(1)

∣

∣

∣

∣

∣

∣

∂2
t un(t)−∆du+ un + Fn(t) = 0
un(0) = fn ∈ l2(Zd),
∂tun(0) = gn ∈ l2(Zd)

where we take h = 1 and the nonlinearity will in general be assumed to be of the
form Fn = ±|u|2σu.

In this work, we examine such Schrödinger and Klein-Gordon models as follows:
in section 2, we give a priori energy and decay estimates for the free propagation
in these lattices, which we subsequently prove by means of Strichartz estimates in
section 3. In sections 4 and 5, we use these estimates to examine solutions in the
presence of nonlinearity for the Schrödinger and Klein-Gordon cases respectively.
As an application, we show the existence of energy thresholds for the appearance of
localized solutions (for appropriate regimes of the parameters) and illustrate the decay
of various lattice norms, complementing the analysis with numerical simulations. A
number of technical details are worked out in the appendix.
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2. Free Evolution: Decay and Energy Estimates

2.1. Schrödinger equation.

Theorem 1. For the free discrete Schrödinger equation
∣

∣

∣

∣

iu′n(t) + ∆du = 0
un(0) ∈ l2(Zd)

one has

‖{un(t)}‖l2 = ‖{un(0)}‖l2 energy identity(2)

‖{un(t)}‖l∞ ≤ C
h2d/3

|t|d/3
‖{un(0)}‖l1 decay estimate(3)

Moreover, for the inhomogeneous equation
∣

∣

∣

∣

iu′n(t) + ∆discreteun + Fn(t) = 0
un(0) ∈ l2

one has the Strichartz estimates with (q, r) ≥ 2, 1/q + d/(3r) ≤ d/6 and
(q, r, d) 6= (2,∞, 3). That is

h2/q





∞
∫

0

(

∑

n∈hZd

|un(t)|r
)q/r

dt





1/q

≤ C

(

∑

n∈hZd

|un(0)|2
)1/2

+

+ Ch2+2/q̃′





∞
∫

0

(

∑

n∈hZd

|Fn(t)|r̃′
)q̃′/r̃′

dt





1/q̃′

Remark Note that the decay rate (and consequently the Strichartz estimates) is
smaller than the usual t−d/2 that one has for the continuous analogue.

In the Klein-Gordon case, similarly to the Schrödinger models, we discuss various
relevant estimates for the free evolution. We have the following analogue of Theorem
1:

Theorem 2. For the solutions of the one-dimensional1 homogeneous discrete Klein-
Gordon equation (1), one has the a priori decay and energy estimates

‖{un(t)}‖l2 ≤ C(‖fn‖l2 + ‖gn‖l2), energy estimate(4)

‖{un(t)}‖l∞ . t−1/3(‖fn‖l1 + ‖gn‖l1) decay estimate(5)

1At this stage, we have encountered some technical difficulties, when trying to extend the result
to dimensions higher than one. In fact, the proof of the energy estimate (4) goes through in all
dimensions, whereas the decay estimate (5) boils down to the exact rate of decay of an explicit d
dimensional integral, see (10). While numerically, one can see that the relevant integral has the
right rate of decay, its rigorous justification remains open.
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Figure 1. Log-log plot of the temporal evolution of the L∞ norm
in a linear one dimensional Schrödinger lattice. The intial condition
contains one site excited with u0 = 10. The dashed line shows the best
fit (for times 50 ≤ t ≤ 90) ∼ t−0.335.

For the solutions of the inhomogeneous equation, one has the Strichartz estimates
with (q, r) ≥ 2, 1/q + 1/(3r) ≤ 1/6. That is





∞
∫

0

(

∑

n∈Z
|un(t)|r

)q/r

dt





1/q

≤ C

(

∑

n∈Z
|fn|2 + |gn|2

)1/2

+

+ C





∞
∫

0

(

∑

n∈Z
|Fn(t)|r̃′

)q̃′/r̃′

dt





1/q̃′

3. Strichartz estimates for the Schrödinger and Klein-Gordon

equations

In this section, we present the proof of Theorem 1.

Proof. (Theorem 1) By rescaling in time, it suffices to consider the case h = 1. Next,
associate {un} ←→ f(k) =

∑

n∈Zd

une
2πin·k. Then,

∆discrete =

d
∑

j=1

(Sj + S∗
j − 2Id)

where Sj is the shift operator in the direction of ej . On the spaces of trigonometric
polynomials,

∆df =
d
∑

j=1

(e2πikj + e−2πikj − 2)f(x) =

[

−4
d
∑

j=1

sin2(πkj)

]

f(k).
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Figure 2. Log-log plot of the temporal evolution of the L∞ norm in
a linear one dimensional Klein-Gordon lattice. The intial condition
contains one site excited with u0 = 10. The dashed line shows the best
fit (for times 20 ≤ t ≤ 90) ∼ t−0.3335.

Since ‖{un}‖l2 = ‖f‖L2([0,1]d), it is easy to see that U(t)u0 = e−4it
∑d

j=1 sin2(πkj)f(k) is

an isometry in l2.

For the decay estimate (3), write U(t)u0 = e−4it
∑d

j=1 sin2(πkj)
(
∑

un(0)e2πik·n), whence

(6) un(t) =
∑

m∈Zd

um(0)

∫

[0,1]d

e−4it
∑d

j=1 sin2(πkj)e2πi(m−n)·kdk.

Thus, (3), reduces to showing

sup
m,n∈Zd

∣

∣

∣

∣

∣

∣

∣

∫

[0,1]d

e−4it
∑d

j=1 sin2(πkj)e2πi(m−n)·kdk

∣

∣

∣

∣

∣

∣

∣

≤ Cmin(1, |t|−d/3).

Since the integrals split into 1 D integrals, it suffices to show (after elementary change
of variables)

sup
s∈R1

∣

∣

∣

∣

∣

∣

1
∫

0

e−it(sin2(x)−sx)dx

∣

∣

∣

∣

∣

∣

≤ Cmin(1, |t|−1/3).

The estimate by 1 is trivial by taking absolute values, while the estimate by |t|−1/3

follows from the Van der Corput lemma, see [14], p. 332. Indeed, we have to verify
that the phase function ϕ(x) = sin2(x)− sx satisfies
max(|ϕ′(x)|, |ϕ′′(x)|, |ϕ′′′(x)|) ≥ 1, which is verified since (ϕ′′)2(x) + (ϕ′′′)2(x) =
4(cos2(2x) + sin2(2x)) = 4.
Note that if s = 1, we may have max(|ϕ′(x)|, |ϕ′′(x))| << 1 for x ∼ π/4, indicating
that this is the sharp rate of decay, at least as far as the Van der Corput lemma is
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concerned.
Corroborating this estimate in a direct numerical simulation, we have considered a
linear one-dimensional lattice with h = 1. The result is shown in Fig. 1 for the tem-
poral evolution of the L∞ norm. The best fit of the numerical result in the log-log plot
of the figure very closely follows the theoretical prediction since the corresponding
decay exponent is found to be ≈ 0.335.

The Strichartz estimates follow from the abstract Strichartz estimate by Keel and
Tao, [15], which states that energy and decay estimates imply Strichartz estimates.
The last statement is also implicit in the earlier work of Ginibre and Velo, [16]. �

The proof of the Strichartz estimate for the discrete Klein-Gordon equation (DKG)
follows closely the proof for the Schrödinger case. There are however some distinctive
differences, which we try to highlight in the argument.

Proof. (Theorem 2) Let us consider the homogeneous equation first.
The energy estimate is derived in all dimensions. Let {un} be a solution and multiply
both sides of the (DKG) by ∂tun(t) and sum in n. We have

∂t

∑

n

(∂tun)
2 −

∑

n

(∆dun)∂tun + ∂t

∑

n

u2
n = 0

By the summation by parts formula, (e.g. (2.4) in [17], it is not hard to see that

−
∑

n

(∆dun)∂tun = ∂t

d
∑

r=1

∑

n

|un − un+er |2/2.

Thus,

∂t(
∑

n

(∂tun)2 +

d
∑

r=1

∑

n

|un − un+er |2 +
∑

n

u2
n) = 0,

implying that

∑

n

u2
n(t) ≤ (

∑

n

(∂tun)2 +

d
∑

r=1

∑

n

|un − un+er |2 +
∑

n

u2
n) =

= (
∑

n

g2
n +

d
∑

r=1

∑

n

|fn − fn+er |2 +
∑

n

f 2
n) ≤ C(

∑

n

g2
n +

∑

n

f 2
n),

which is (4).
We have already introduced and studied the action of ∆disc (where for simplicity
∆disc = ∆1 is the discrete Laplacian in 1 D), see (6). Following the same idea,
consider {un} ←→ f =

∑

n une
2πn·k. Then, from Duhamel’s formula for the wave

equation (and also by straightforward verification), the solution to the inhomogeneous
equation is given by

un(t) = cos(t
√

1−∆disc)fn +
sin(t
√

1−∆disc)√
1−∆disc

gn +

t
∫

0

sin((t− s)
√

1−∆disc)√
1−∆disc

Fn(s)ds.



DISCRETE SCHRÖDINGER/KLEIN-GORDON EQUATION 7

where sin(x), cos(x) are expressed via the Euler’s formula in terms of eitx and a
(continuous) function of

√
1−∆disc is the operator given by

(h(
√

1−∆disc)u)n(t) =
∑

m∈Z
um(0)

1
∫

0

h(1 + 4 sin2(πk))e2πi(m−n)kdk.

We have the following technical lemma, whose proof is postponed for the appendix.

Lemma 1. The operator h(
√

1−∆disc) : lp → lp for all 1 ≤ p ≤ ∞ for all sufficiently
smooth functions h.

By the abtract result of Keel and Tao, the energy estimate (4) and Lemma 1,
matters reduce to establishing the decay estimate

(7)
∥

∥

∥
eit

√
1−∆discu

∥

∥

∥

l∞
≤ Ct−1/3‖un‖l1 .

Indeed, for Duhamel’s term, we have by the above mentioned result of Keel and Tao
∥

∥

∥

∥

∥

∥

t
∫

0

sin((t− s)
√

1−∆disc)√
1−∆disc

Fn(s)ds

∥

∥

∥

∥

∥

∥

Lq lr

.
∥

∥(1−∆disc)
−1/2F

∥

∥

Lq′ lr′
. ‖F‖Lq′ lr′ ,

where the last inequality follows from Lemma 1.
As in the proof of (6), one needs to show

(8) sup
m∈Z

1
∫

0

eit
√

1+4 sin2(πk)e−2πimkdk ≤ Ct−1/3,

which by an elementary change of variables would follow from

(9) sup
s∈R1

1
∫

0

eit(
√

1+sin2(x)−sx)dx ≤ Ct−1/3,

Thus, the phase function is ψ(x) =
√

1 + sin2(x)− sx and let us denote the function

ϕ(x) =
√

1 + sin2(x). Denote α = arccos(2−
√

2).
We have that the solutions to ψ′′(x) = 0 in [0, 2π] are x = α, π−α, π+α, 2π−α. As
we know by the Van der Corput lemma, the worst rate of decay occurs, when some
consecutive derivatives (starting from ψ′) vanish at a point. In our case, we have
that only for s = ϕ′(α), ϕ′(π−α), ϕ′(π+α), ϕ′(2π−α), one has ψ′(x) = ψ′′(x) = 0 (
at the points x = α, π−α, π+ α, 2π−α). It is easy to check that for these values of
s, one has max(ψ′(x), ψ′′(x), ψ′′′(x)) ≥ 1/2, which guarantees by the Van der Corput
lemma a decay of at least t−1/3.

�

Remark The proof of the higher dimensional analogue of such result would involve
showing that

(10) sup
s∈Rd

∫

[0,1]d

e
it(
√

1+
∑d

j=1 sin2(xj)−〈s,x〉)
dx ≤ Ct−d/3,
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Clearly, this integral does not reduce to the one dimensional case as in the Schrödinger
case, which makes it harder object to study. Numerical simulations seem to confirm
the validity of (10) since in a two dimensional numerical experiment for a DKG lat-
tice, the best fit to the decay was found to be ∼ t−0.675.

4. Applications to the discrete Schrödinger equation

Consider

(11)

∣

∣

∣

∣

i∂tun + ∆du± |un|2σun = 0
uk(0) ∈ l2

4.1. Global solutions for small data in the regime σ ≥ 3/d. For (11), we
establish the global existence of small solutions, provided ‖{un(0)}‖l2 << 1 and
σ ≥ 3/d.

Theorem 3. Let σ ≥ 3/d. There exists an ε = ε(d) > 0 and a constant C = C(d), so
that whenever ‖{un(0)}‖l2 ≤ ε, a unique global solution to (11) exists, which satisfies

‖{un(t)}‖Lq lr ≤ Cε,

for all Strichartz admissible pairs (q, r). In particular, ‖un(t)‖lr → 0 as t → ∞ for
every r > 2.

Proof. We perform an iteration procedure for the equation

un(t) = Λun = eit∆dun(0)± i
t
∫

0

ei(t−s)∆d |un|2σun(s)ds

in the (metric) space X = {u : sup
(q,r)−admissible

‖u‖Lqlr < 2C‖un(0)‖l2}, where C is the

constant in the Strichartz inequality, that is, we are seeking a fixed point of the map
Λ. Clearly, by the Strichartz estimates with (q, r) and q̃′ = 1, r̃′ = 2, we have

sup
(q,r)−admissible

‖Λun(t)‖Lq lr ≤ C‖un(0)‖l2 + C1

∥

∥|un|2σ+1
∥

∥

L1l2
≤

≤ C‖un(0)‖l2 + C1‖un‖2σ+1
L2σ+1l2(2σ+1) ≤ C‖un(0)‖l2 + C1‖un‖2σ+1

X ≤
≤ C‖un(0)‖l2 + C1(2Cε)

2σ+1.

In the above sequence of inequalities, we have used that since σ ≥ 3/d,
(2σ + 1, 2(2σ + 1)) is a Strichartz admissible pair and therefore controllable by the
norm in X. Thus, for an appropriate absolute ε > 0, one has

sup
(q,r)−admissible

‖Λun(t)‖Lq lr ≤ 2C‖un(0)‖l2 ,

that is Λ : X → X.
Similarly one verifies that

‖Λ(un(t)− vn(t))‖Lq lr . ‖un − vn‖L2σ+1l2(2σ+1)(‖un‖2σ
L2σ+1l2(2σ+1) + ‖vn‖2σ

L2σ+1l2(2σ+1)) .

. ‖un − vn‖L2σ+1l2(2σ+1)‖un(0)‖2σ
l2 .
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which by the smallness of ‖un(0)‖l2 implies that the map Λ : X → X is a contraction.
This shows the existence of a global solution of u = Λu and by construction ‖u‖Lq lr <
2C‖u0‖l2. �

4.2. Decay of small solutions and the Weinstein conjecture. M. Weinstein
has proved that for σ ≥ 2/d, one has an energy excitation treshold, [17], i.e., that
there exists ε = ε(d), so that every standing wave solution {eiΛtφn} must satisfy
‖φ‖l2 ≥ ε. In the same paper, he has also conjectured that for sufficiently small
solutions, one has limt→∞ ‖u(t)‖lp = 0 for all p ≤ ∞.

In the next theorem, we give conditions under which small solutions will actually
decay like the free solution in the corresponding lp norms. This of course is a statement
implying the Weinstein conjecture and is similar to a result that he has established
for the continuous equation in an earlier paper2 [18], see also the excellent expository
paper [19].

Theorem 4. Let σ > 2/d and d ≤ 2. There exists an ε, so that whenever
‖un(0)‖l(8+2d)/(d+7) ≤ ε, one has for all p : 2 ≤ p ≤ (8 + 2d)/(d+ 1),

(12) ‖{un(t)}‖lp ≤ Ct−d(p−2)/(3p)‖un(0)‖p′.
which is the generic rate of decay for the free solutions (see (13) below). In particular,
no standing wave solutions are possible under the smallness assumptions outlined
above.

Proof. By interpolation between (2) and (3), we obtain

(13)
∥

∥{eit∆dun(0)}
∥

∥

lp
≤ C < t >−d(p−2)/(3p) ‖{un(0)}‖lp′ .

valid for all 2 ≤ p ≤ ∞.
Note that from (13), we deduce that for every p ≥ 2,

∥

∥{eit∆dun(0)}
∥

∥

lp
. t−d(p−2)/(3p).

We would like to establish an a priori bound (which simultaneously implies exis-
tence) for the solution {un}, that is we want to place it in

X = {{un} : ‖{un(t)}‖lp ≤ 2Ct−d(p−2)/(3p)‖{un(0)}‖lp′}.
where C is the constant in the Strichartz inequality. We have by the decay estimate
(13)

‖{Λun(t)}‖lp ≤ C < t >−d(p−2)/(3p) ‖un(0)‖lp′ +

+ C1

t
∫

0

1

< t− s >d(p−2)/(3p)
‖un(s)‖2σ+1

l(2σ+1)p′ds.

2Weinstein’s result makes significant use of the pseudoconformal invariance of the continuous
equation, which is unfortunately not present for the discrete problem. In particular, for the decay-
ing result, he imposes the condition ‖xu0‖L2 < ∞ on the initial data. In our results, it suffices

to assume somewhat less - in the one dimensional case:
∥

∥|n|3/10un

∥

∥

l2,1(Z)
<< 1 and in the two

dimensional case, one has to impose
∥

∥|n|1/2un

∥

∥

l2,1(Z2)
<< 1, see the precise statement of Theorem

4 for conditions in terms of the lp spaces.
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Figure 3. Log-log plot of the temporal evolution of the l4 (bottom
panel), l5 (middle panel) and l6 (top panel) norms in a nonlinear one
dimensional Schrödinger lattice. The intial condition contains one site
excited with u0 = 1. The dashed line shows the best fits (for times
20 ≤ t ≤ 90) that are given respectively by ||un||l4 ∼ t−0.221, ||un||l5 ∼
t−0.257 and ||un||l6 ∼ t−0.277.

Since (2σ + 1)p′ > (4/d + 1)(8 + 2d)/(d + 7) ≥ (8 + 2d)/(d + 1) = p for d ≤ 2, we
have by the inclusion lp →֒ l(2σ+1)p′

‖{Λun(t)}‖lp ≤ C < t >−d(p−2)/(3p) ‖un(0)‖lp′ +

+ C1

t
∫

0

1

< t− s >d(p−2)/(3p)
‖un(s)‖2σ+1

lp ds ≤

≤ C < t >−d(p−2)/(3p) ‖un(0)‖lp′ +

+ C2‖un(0)‖2σ+1
lp′

t
∫

0

1

< t− s >d(p−2)/(3p)

1

< s >d(p−2)(2σ+1)/(3p)
ds.

Note that d(p − 2)(2σ + 1)/(3p) > d(p − 2)(4/d + 1)/(3p) > 1, and therefore the
integral term above is controlled by a constant times t−d(p−2)/(3p). As a consequence,

‖{Λun(t)}‖lp ≤ 2C < t >−d(p−2)/(3p) ‖un(0)‖lp′ ,
provided C3‖un(0)‖2σ

lp′ ≤ C3ε
2σ < C.

The contractivity of the map Λ : X → X follows in the same manner, given that
ε << 1. A fixed point argument shows that a solution exists together with the
estimate ‖{un(t)}‖lp . t−d(p−2)/(3p). �

The numerical simulations performed in a d = 1, σ = 3 lattice, with an initial
condition of a single excited site with u0 = 1 showed (see Fig. 3) that the actual
decay rate is larger than that predicted by Theorem 4. In particular, for p = 4 and
p = 5, the theorem predicts decay rates of t−1/6 and t−1/5 respectively, while the
numerical simulations show decay rates of t−0.221 and t−0.257 respectively. For the
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Figure 4. Same as the previous figure but for the nonlinear Klein-
Gordon lattice. The dashed line shows the best fits (for times 20 ≤
t ≤ 90) that are given respectively by ||un||l4 ∼ t−0.226, ||un||l5 ∼ t−0.267

and ||un||l6 ∼ t−0.292.

case of p = 6, the decay rate is faster and given by t−0.277 (cf. with the theoretical
prediction of t−2/9).

5. Applications to the discrete Klein-Gordon equation

For the discrete Klein-Gordon equation, as mentioned above we consider nonlin-
earities of the form |u|2σu. We can deduce essentially the same results as in the case
for the discrete nonlinear Schrödinger equation. We state them without proofs, since
they follow by exactly the same proofs as in the Schrödinger case (by the exact same
decay and Strichartrz estimates).

Theorem 5. Let σ ≥ 3. There exists an ε > 0 and a constant C, so that when-
ever ‖{un(0)}‖l2 , ‖{∂tun(0)}‖l2 ≤ ε there exists a unique global solution to the one-
dimensional discrete Klein-Gordon equation with a nonlinearity |u|2σu, satisfying

‖{un(t)}‖Lq lr ≤ Cε,

for all Strichartz admissible pairs (q, r). In particular, ‖un(t)‖lr → 0 as t → ∞ for
every r > 2.

In the next theorem, we establish the Weinstein excitation threshold conjecture in
the Klein-Gordon case.

Theorem 6. Let σ > 2. There exists an ε, so that whenever ‖un(0)‖l5/4 ≤ ε,
‖∂tun(0)‖l5/4 ≤ ε, one has for all p : 2 ≤ p ≤ 5,

(14) ‖{un(t)}‖lp ≤ Ct−(p−2)/(3p)‖un(0)‖p′.

In particular, there are no small standing wave solutions to the discrete Klein-Gordon
equation.
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The numerical results, in this case as well, show a faster decay than theoreti-
cally predicted. Furthermore, the decay is slightly faster in this model for the same
norms in comparison with the corresponding cases for the Schrödinger equation.
More specifically, in the Klein-Gordon model, ||un||l4 ∼ t−0.226, ||un||l5 ∼ t−0.267 and
||un||l6 ∼ t−0.292. It is worth noting, however, that when we consider multiple sites
excited by the initial condition, then we obtain decay rates which are much closer to
the ones theoretically predicted above. More specifically, if we excite 2 nodes (rather
than a single one), with 3 sites betwen them, then the decay rates are t−0.207, t−245

and t−0.270 which are considerably closer to the theoretically predicted exponents of
1/6, 1/5 and 2/9 respectively.

6. Appendix

Proof. (Lemma 1) we present the proof in the d dimensional case.
We use the representation of h(

√
1−∆d) to conclude that it suffices to show that for

every N , there exists CN , so that

(15) |bm| := |
∫

[0,1]d

h(1 + 4

d
∑

j=1

sin2(πkj))e
2πim·kdk| ≤ CN < m >−N .

Indeed, if we had (15), then by the expression (h(
√

1−∆d)u)n =
∑

m bn−mum, we
conclude

∥

∥

∥
h(
√

1−∆d)u
∥

∥

∥

lp
. ‖b‖l1‖u‖lp ≤ Cd

∥

∥< · >−d+2
∥

∥

l1
‖u‖lp.

For the proof of (15), use integration by parts and the fact that boundary terms

disappear (due to the fact that h(1+4
d
∑

j=1

sin2(πkj)) is one-periodic in every variable

kj). We get

bm =
c

mj

∫

[0,1]d
h′(1 + 4

d
∑

j=1

sin2(πkj)) sin(2πkj)e
2πm·kdk.

Clearly, one keeps integrating by parts to obtain arbitrary large rate of decay in all
variables mj . The lemma is proven. �
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