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Dynamics of Dark-Bright Solitons in Cigar-Shaped Bose-Einstein Condensates
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We explore the stability and dynamics of dark-bright solitons in two-component elongated Bose-
Einstein condensates by developing effective 1D vector equations as well as solving the corresponding
3D Gross-Pitaevskii equations. A strong dependence of the oscillation frequency and of the stabil-
ity of the dark-bright (DB) soliton on the atom number of its components is found. Spontaneous
symmetry breaking leads to oscillatory dynamics in the transverse degrees of freedom for a large
occupation of the component supporting the dark soliton. Moreover, the interactions of two DB
solitons are investigated with special emphasis on the importance of their relative phases. Exper-
imental results showcasing dark-bright soliton dynamics and collisions in a BEC consisting of two
hyperfine states of 87Rb confined in an elongated optical dipole trap are presented.

Introduction. Multi-component systems of nonlinear
waves are a fascinating topic with a rich and diverse his-
tory spanning a variety of areas, including Bose-Einstein
condensates (BECs) in atomic physics [1], optical fibers
and crystals in nonlinear optics [2], and integrable sys-
tems in mathematical physics [3]. Of particular interest
are the so-called “symbiotic solitons”, namely structures
that would not otherwise exist in one-component set-
tings, but can be supported by the interaction between
the optical or atomic species components. A prototypical
example of such a structure is the dark-bright (DB) soli-
ton in self-defocusing, two-component systems, whereby
the dark soliton (density dip) which typically arises in
self-defocusing media [1–4] creates, through nonlinear-
ity, a trapping mechanism that localizes a density hump
(bright soliton) in the second component.

Dark-bright solitons were experimentally created in
photorefractive crystals [5], while their interactions were
partially monitored in [6]. Upon realization of multi-
component atomic BECs [7–9], it was predicted that sim-
ilar structures would exist therein [10]. While theoreti-
cal developments along this direction were extended in
even more complex settings (such as the spinor system
of Ref. [11]), stable DB solitons were observed only re-
cently in two-component BECs [12], leading to a renewed
interest in this area. Relevant recent works include the
interaction between DB solitons [13, 14] and their higher-
dimensional generalizations [15].

In order to study DB solitons in two-component elon-
gated BECs we will use both effectively one-dimensional
(1D) mean-field models and the full 3D Gross-Pitaevskii
equation (GPE). For a single species, quasi-1D de-
scriptions rely on the non-polynomial Schrödinger equa-
tion (NPSE) [16] and the Gerbier-Muñoz-Mateo-Delgado
equation (GMDE) [17]; these models have been used in
studies of dark solitons in the dimensionality crossover

between 1D and 3D, yielding excellent quantitative agree-
ment with experimental observations [18]. However, in
multi-component settings only the NPSE equation has
been derived [19]. In the present work, we first develop
the GMDE for two-component BECs and then inves-
tigate the DB soliton statics and dynamics using the
NPSE, the GMDE and the 3D GPE. Varying the atom
number of either the dark (ND) or the bright (NB) com-
ponent, we find that in a harmonic trap the soliton os-

cillation period may change by nearly one order of mag-

nitude; most notably, the bright component is shown to
slow down the oscillation of the dark one. Our investi-
gation reveals a feature absent in the dark soliton dy-
namics in one-component BECs, namely that a single

DB soliton may become dynamically unstable. Increasing
ND and NB reveals a deviation from the effective 1D de-
scription: specifically, an increase of ND leads to a spon-

taneous breaking of the cylindrical symmetry, manifested
in a transversal oscillation of the bright component, and a
subsequent decrease of the axial DB oscillation frequency.
Moreover, we analyze the interaction between multi-DB
solitons and the role of their relative phase. Our results
pertain to the hyperfine states |1,−1〉 and |2, 0〉 of 87Rb,
as in the experiment of Ref. [12], and also for the states
|1,−1〉 and |2,−2〉 of 87Rb in an optical dipole trap. For
the latter states, we present experimental results concern-

ing the DB soliton oscillations and multi-DB soliton in-

teractions that further support our findings.
Effective 1D Theory. The macroscopic wave functions

of Bose condensed atoms in two different internal states
obey the following vector GPEs [1]:

ı~
∂ψk

∂t
=

(

−~
2∇2

2M
+U + gkk|ψk|2 + g12|ψ3−k|2

)

ψk, (1)

where ψk(r) are the macroscopic wave functions (k =
1, 2), normalized to ND and NB for the dark and bright
soliton components, respectively, gij = 4π~2aij/M are
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the effective nonlinear coefficients due to the s-wave scat-
tering for i, j = 1, 2, and U(r) is the confining potential.
For a highly anisotropic trap, we first factorize the wave
function as ψk(r, t) = φk(r⊥;x)fk(x, t) [16, 17], we sub-
stitute in Eq. (1), multiply by φ⋆k(r⊥;x) and, finally, in-
tegrate over the transverse directions; this leads to the
following effective 1D model:

[

ı~
∂

∂t
+

~
2

2M

∂2

∂x2
− V (x)

]

fk = µ⊥k[fk]fk, (2)

where V (x) = Mω2
xx

2/2 is the axial potential and the
transverse chemical potential µ⊥k = µ⊥k[fk(x, t)] is a
functional of fk:

µ⊥k[fk] =

∫

d2r⊥φ
⋆
k

(

− ~
2

2M
∇⊥

2 +
1

2
Mω2

⊥r
2
⊥

+ gkk|φk|2|fk|2 + g12|φ3−k|2|f3−k|2
)

φk, (3)

where (ωx, ω⊥) are the trap frequencies along the lon-
gitudinal (axial) and transverse directions, and we have
assumed that the derivatives of φk do not depend on the
axial variable x. For an effectively 1D system, we assume
that the transverse wave function remains in its Gaus-
sian ground-state, φk = 1

π
√
σk

exp(− r2
⊥

2σ2

k

). To account for

axial effects, we allow the width σk to be a variational
parameter, σk = σk[fk(x, t)]; this yields:

µ⊥k =
~
2

2M
σ−2
k +

M

2
ω2
⊥σ

2
k +

gkk|fk|2
2π

σ−2
k +

g12|f3−k|2
π(σ2

1 + σ2
2)
.

There are two different approaches to determine σk: one
can minimize the chemical potential µ⊥k with respect to
σk for given fk(x, t) or, alternatively, one can use the
Euler-Lagrange equations from the Lagrangian associ-
ated to Eq. (2), minimizing the total energy [19]. These
two approaches lead to the following expression for σk,

σ4
k =

~
2

ω2
⊥M

2
+
gkk|fk|2
AπMω2

⊥
+

2g12|f3−k|2
πMω2

⊥(σ
2
1 + σ2

2)
2
σ4
k, (4)

where parameter A = 1 corresponds to the GMDE sys-
tem andA = 2 for the NPSE system. Notice that Eqs. (2)
and (4) constitute a set of coupled nonlinear equations
which have to be solved consistently in order to obtain
fk(x, t) and σk[fk(x, t)].
Using the above approach, we will investigate the

trapped dynamics of a DB soliton in a quasi-1D con-
densate. For the 1D case without a trap in the axial
direction (V (x) = 0), and assuming that all scattering
lengths are equal, there exists an analytical DB soliton
solution of Eqs. (1) [10]; this can be expressed in the fol-
lowing dimensionless form (in units so that ~ =M = 1),

ψD = ı
√
µ sinα+

√
µ cosα tanh(κ(x− q(t))), (5)

ψB =

√

NBκ

2
eı(φ+ωBt+xκ tanα)sech(κ(x− q(t))). (6)

FIG. 1: (Color online) Iso-level contours at 2/5 of the maximal
density (dark/bright soliton depicted in blue/red) of a DB
soliton as a result of 3D GPE simulations (ND = 93 367,
NB = 7926). The transverse cut (y =const.) shows the atom
density with the scale depicted by the colorbar.

Here, ψD is the dark soliton (on top of a constant back-
ground with chemical potential µ = µD), with an in-
verse width κ =

√

µ cos2 α+ (NB/4)2 − NB/4, position
q(t) = q(0) + tκ tanα and phase angle α, whereas ψB is
the bright soliton that is symbiotically supported by the
dark one with the same width and position. In the realis-
tic case of the hyperfine states |1,−1〉 and |2, 0〉 of 87Rb,
the scattering lengths are different (a11 = 100.86a0,
a22 = 94.57a0 and a12 = 98.98a0). Nevertheless, in
the quasi-1D setting (with the trap), we have found
that there exists a stationary DB state [cf. Eqs. (5)-
(6) with α = 0] located at the trap center. We iden-
tify this state, f stat

k , using a fixed-point algorithm, and
then perform a Bogoliubov-de-Gennes (BdG) analysis
to determine its linear stability by using the ansatz
fk = f stat

k + (uk(x) exp(ıωt) + v⋆k(x) exp(−ıω⋆t)) . The
eigenfrequencies ω and amplitudes (uk,vk) of the ensuing
BdG linearization operator encode the dynamical sta-
bility of the system: for vanishing imaginary part ωi

of ω = ωr + ıωi, the system is dynamically stable and
ωi 6= 0 implies dynamical instability. We also note that
the eigenfrequency of the anomalous (negative energy)
mode of the spectrum (see below) coincides with the os-
cillation frequency of the DB soliton, similarly to dark
solitons in one-species BECs [18].

Results. We have chosen a cylindrical trap with fre-
quencies ω⊥ = 2π×133 Hz and ωx = 2π×5.9 Hz, similar
to the ones used in the experiment of Ref. [12]. In Fig. 1
we show iso-level contours of a DB soliton resulting from
numerical integration of the 3D GPE, while in Fig. 2 we
compare the oscillation period (frequency) derived by the
effective 1D model against results of the 3D GPE. The
top panel illustrates the dependence of the period of the
DB soliton on the number of atoms (ND, NB) of the two
components. It is clear that variation of the number of
atoms, especially in the bright component by a factor
of 2, may lead to a significant (approximately two-fold)
variation of the DB soliton frequency. The agreement
between 1D and 3D generally becomes worse when NB is
increased and, to a lesser extent, when ND is increased.
Notice that the NPSE model yields generally more accu-
rate predictions than the GMDE one.

The bottom panels of Fig. 2 show the DB soliton spec-
trum. When the anomalous mode collides with a mode
of positive energy, the DB soliton becomes dynamically
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FIG. 2: (Color online) Top: DB soliton oscillation period
vs. ND and NB for fixed µD indicated by the numbers in the
panel. Circles (blue) and squares (black) depict the results
from the BdG analysis of the GMDE and NPSE, respectively;
small (red) dots represent results of the 3D GPE. Bottom:
BdG analysis of GMDE (left) and NPSE (right) [real ωr and
imaginary ωi parts of the eigenfrequencies]: Anomalous mode
(green), dynamically unstable mode (red), analytical 1D re-
sult of Ref. [10] (gray), and 3D GPE results (black points).

unstable, i.e., the amplitude of its oscillation increases.
Such collisions are present in the DB soliton spectrum,
and denote a critical difference in comparison with the
case of dark solitons in single-species BECs. Further-
more, as observed in the right-most panel of Fig. 2 and
also corroborated by our 3D GPE simulations, this oscil-
latory instability disappears for sufficiently large ND.
From Fig. 2, we infer that for progressively larger

atomic populations, a departure from the quasi-1D be-
havior emerges and a larger (smaller) oscillation fre-
quency is obtained, if ND (NB) is increased.
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FIG. 3: (Color online) An oscillating DB soliton with period
T = 827 ms in the 3D GPE approach. Left panel: Transversal
(y = z = 0) cut of the density at t = 0 (thick lines) and t =
T/2 (thin lines). Solid (dashed) line depicts the density for
the dark (bright) component. Middle/right panels: Contour
plots showing the evolution of the (y, z)-integrated density of
the dark and bright solitons.

According to Fig. 2, the atom numbers used in Ref. [12]
(up to NB ∼ 8000 and ND ∼ 92000) are out of the realm
of validity of the effective 1D equations; thus, in this
case, the 3D GPE has to be applied. Figure 3 illustrates
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FIG. 4: (Color online) (a) Transverse oscillations of the DB
soliton for (ND, NB) = (88 181, 1 058). Top subpanel: initial
condition. Bottom subpanel: a snapshot of the oscillating
DB soliton at t = 620 ms. (b) Transverse (top) and longi-
tudinal (bottom) oscillations for the bright soliton. The thin
(red) and thick (black) solid lines are sinusoidal fits to the
longitudinal oscillations (circles) yielding periods T = 306 ms
(for t < 200 ms) and T = 365 ms (for t > 200 ms), respec-
tively. Bottom row of panels: Interaction of two DB solitons
[top (bottom) subpanels depicting the bright (dark) compo-
nent]. (c) In-phase (i.e. repulsive among bright) solitons close
to their equilibrium position. (d) Out-of-phase (i.e. attrac-
tive among bright) solitons starting at the same location as
in panel c). (e) Multiple collisions of in-phase solitons.

the oscillating DB soliton for trap frequencies and atom
numbers comparable to those used in Ref. [12]. This 3D
simulation results in an oscillating DB period of about
827 ms that is comparable with the period observed in
Ref. [12] (slightly larger than 1 s). Possible sources for the
discrepancy between the numerical and experimental os-
cillation periods include (i) high sensitivity of the period
on the ND to NB ratio, (ii) sensitivity of the dynam-
ics to uncertainties in the measured scattering lengths,
and, perhaps more importantly, (ii) our numerics con-
firm that the oscillations are not harmonic and tend to
have increasing periods for higher oscillating amplitudes.

The departure from the effective 1D description can be
noticed, e.g., in panels (a) and (b) of Fig. 4. It is clear
both from the oscillation snapshots (Fig. 4(a)) and from
the evolution of the bright soliton center in the transverse
direction (Fig. 4(b) top panel), that the DB soliton starts
exploiting the transverse degrees of freedom shortly af-
ter release. Up to t < 200 ms the soliton is at rest with
respect to the transverse direction. For t > 200 ms an os-
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FIG. 5: (Color online) (a) Experimental images showing
the oscillation of the DB soliton at the in-trap evolution
times indicated. (b) In-trap DB soliton oscillation. Tri-
angles (red) and squares (blue) correspond to, respectively,
(NB , ND) ≈ (680, 27 000) and (NB , ND) ≈ (9 000, 650 000).
Solid lines correspond to fitted harmonic oscillations with fre-
quencies 0.39 Hz and 0.27 Hz respectively. (c) Oscillation
frequency vs. NB for different number of atoms in the dark
component: squares (red): ND ≈ 30 000, triangles (green):
ND ≈ 200 000, and circles (blue): ND ≈ 430 000. (d) Experi-
mental expansion images showing the oscillation and collision
(in circled regions) of two DB solitons. Images in (a) and
(d) are taken after 7 ms and 8 ms of free expansion for the
bright and dark component, respectively. The components
are vertically overlapped prior to expansion.

cillation of the soliton occurs in the transversal direction
leading at the same time to a reduction of the oscillation
frequency in the axial direction (cf. thick (black) solid
line in the bottom panel of Fig. 4b).
We also showcase 3D GPE simulations, cf. bottom row

of panels in Fig. 4, depicting the interaction between
two DB solitons [14]. Panel (c) shows a stationary DB
pair with in-phase, i.e. mutually repulsive, bright soliton
components (also, the dark ones always repel) that is
balanced by the pull of the harmonic trap. Panel (d) de-
picts the evolution of the same initial DB pair as in panel
(c), but with out-of-phase, i.e. mutually attractive, bright
solitons, which yields an oscillatory dynamics. Panel (e)
depicts the oscillations and collisions for in-phase bright
solitons that were released at larger distances from the
trap center and thus cannot avoid colliding despite their
mutual repulsion. It is noteworthy that the DB collisions
are apparently nearly elastic as the DB solitons retain
their shape even after multiple collisions.
Finally, we present experimental data corroborating

some principal points of our analysis (Fig. 5). Nonlinear
effects in the counterflow of two BEC components are ex-
ploited to generate individual DB solitons [20]. The dark
and bright component are formed by 87Rb atoms in the
|1,−1〉 and |2,−2〉 state, respectively, for which a11 =
100.4 a0, a22 = 98.98 a0, and a12 = 98.98 a0 [21]. The
atoms are held in an elongated optical dipole trap with
trapping frequencies ωx,y,z = 2π × {1.3, 163, 116} Hz.

While the lack of exact cylindrical symmetry as well as
the large atom number in the experiment preclude a di-
rect comparison with our analytic results, the experiment
clearly shows the anticipated decrease of oscillation fre-
quency with increasing number of atoms in the bright
and decreasing number of atoms in the dark component.
Experimental results of the collision between two DB soli-
tons are presented in Fig. 5(d), confirming their near-
elastic nature.

Conclusions. We characterized the effectively 1D dy-
namics of DB solitons and showcased their potential dy-
namical instability. We demonstrated experimentally
and theoretically the tunability of the oscillation fre-
quency of a DB soliton. A spontaneous breaking of the
cylindrical symmetry resulting in a reduction of the DB
oscillation frequency was predicted, along with (also ob-
served) near-elastic collisions, as well as a strong phase
dependence of the collisional dynamics of DB solitons.
Future directions include a detailed effective particle-
based understanding of the DB soliton interactions, as
well as a generalization of this picture towards the pre-
cession and interactions of vortex-bright solitons.
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