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Ground-state Properties of Small-Size Nonlinear Dynamical Lattices

P. Buonsante,1 P. G. Kevrekidis,2 V. Penna,1 and A. Vezzani3

1Dipartimento di Fisica, Politecnico di Torino, Corso Duca degli Abruzzi 24, I-10129 Torino, Italy
2Department of Mathematics and Statistics, University of Massachusetts, Amherst MA 01003-4515, USA

3Dipartimento di Fisica and CNR-INFM, Università degli Studi di Parma,
Parco Area delle Scienze 7/a, I-43100 Parma, Italy

We investigate the ground state of a system of interacting particles in small nonlinear lattices with
M ≥ 3 sites, using as a prototypical example the discrete nonlinear Schrödinger equation that has
been recently used extensively in the contexts of nonlinear optics of waveguide arrays, and Bose-
Einstein condensates in optical lattices. We find that, in the presence of attractive interactions,
the dynamical scenario relevant to the ground state and the lowest-energy modes of such few-site
nonlinear lattices reveals a variety of nontrivial features that are absent in the large/infinite lattice
limits: the single-pulse solution and the uniform solution are found to coexist in a finite range of the
lattice intersite coupling where, depending on the latter, one of them represents the ground state; in
addition, the single-pulse mode does not even exist beyond a critical parametric threshold. Finally,
the onset of the ground state (modulational) instability appears to be intimately connected with
a non-standard (“double transcritical”) type of bifurcation that, to the best of our knowledge, has
not been reported previously in other physical systems.

PACS numbers: 05.45.-a, 03.75.Lm, 42.65.Tg

I. INTRODUCTION

In the past few years, there has been a tremendous
increase in the number of studies of lattice dynamical
systems, especially in the context of differential-difference
equations, where the evolution variable is continuum and
the spatial dependence is inherently or effectively posed
on a lattice [1]. Such settings appear to be ubiquitous in
very diverse physical contexts ranging from the spatial
dynamics of optical beams in coupled waveguide arrays
in nonlinear optics [2] to the dynamical behavior of Bose-
Einstein condensates (BECs) in optical lattices in soft-
condensed matter physics [3], and even the DNA double
strand in biophysics [4], among others.

One of the principal foci of this research effort is the
analysis of the features of the localized, solitary wave so-
lutions of such lattices. Discrete solitons [5], and various
more exotic structures such as dipole solitons, soliton-
trains, soliton-necklaces and vector solitons were recently
observed in optical contexts such as photorefractive ma-
terials [6]. At the same time, experimental developments
in the physics of BECs closely follow with prominent re-
cent results, including the observation of bright, dark and
gap solitons in quasi-one-dimensional settings [7].

Another trend that has recently been followed is to
study small lattices, such as those pertaining to double
or triple-well potentials. The aim there is to better under-
stand the underlying physics of such simpler dynamical
systems and subsequently explore how much of the rel-
evant phenomenology may persist in the infinite lattice
limit. It is interesting to note that few-site lattices were
among the first ones to be explored thoroughly, start-
ing with the pioneering work of [8]. Since then, a vari-
ety of theoretical works also examined features relevant
especially to double-well (such as symmetry-breaking
[9]), triple-well (such as oscillatory instabilities [10] and

chaotic behavior [11], among others), or even multi- (but
few-) well potentials (such as synchronization [12]). Most
of the above studies were done in the prototypical nonlin-
ear envelope wave equation that is equally applicable to
each of the above mentioned physical settings (in appro-
priate parameter regimes), namely the discrete nonlinear
Schrödinger equation (DNLS).

In that vein, recent experiments in both optical media
[13] and in BECs [14] have revealed a host of interesting
phenomena such as symmetry breaking in double-well
potentials, and constructive (destructive) interference of
in (out-of-) phase pulses in triple-well media, among oth-
ers. More generally, few-site lattices such as those we
are going to address in what follows appear to be within
the reach of state-of-art technology in optically trapped
BECs. Actually, Ref. [15] reports on the analysis of the
evolution of the density distribution and relative phase
of a boson Josephson junction. Such a two-site system
was realized by isolating a single “edge” of an optical lat-
tice via an additional confining potential. Likewise, sin-
gle “plaquettes” of suitable two-dimensional — possibly
quasiperiodic — lattices [16] can be used to create few-
site closed rings. A further interesting proposal is based
on transverse electromagnetic modes of laser beams [17].

Our main focus here is on the ground-state properties
of a system of interacting particles, hopping in a few-site
lattice, described by the DNLS equation. We empha-
size that this is an important issue for any low- (virtu-
ally zero-) temperature system, in particular for ultra-
cold bosons. In this respect, on lattices, the mean-field
description in terms of the DNLS equations, which re-
sults from a variational approach to the quantum ground-
state, proved to be quite satisfactory with both repul-
sive [18] and attractive interactions [19, 20]. Naturally,
a great deal of the relevant phenomenology has been an-
alyzed. However, we hope to illustrate that there some

http://arXiv.org/abs/cond-mat/0604372v1
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of the properties of low energy states are still unexplored
and yet are particularly intriguing in simple and inter-
esting systems such as the few-site lattices. As is well
known, in the case of attractive, “focusing” interaction,
the ground state of the homogeneous systems under in-
vestigation exhibits a delocalization transition [1] driven
by the effective intersite coupling ǫ. The threshold for
localization is in general identified with the occurrence
of modulational instability in the uniform ground state
characterizing the system at large values of ǫ. Here we
show that this identification applies only to sufficiently
large lattices. Conversely, on small lattices, these two
thresholds are distinct, the delocalization transition oc-
curring at a larger value of ǫ. As we will illustrate, this
feature can be understood in terms of the complex inter-
play of three low-energy solutions to the DNLS equations
governing the system. These are the uniform state and
two localized solutions that, for reasons that will become
clear shortly, we refer to as single-pulse and two-pulse

state, respectively. These two localized solutions emerge
as excited states from a saddle-node bifurcation point be-
low some threshold in ǫ. As this parameter is further low-
ered below the delocalization threshold, the symmetry-
breaking single-pulse state becomes the ground state of
the system, but this does not influence the stability prop-
erties of the uniform state. As we will show, this feature
can be in principle exploited to access metastable states
of the system. Lowering ǫ further eventually results in
the uniform-state modulational instability, caused by a
bifurcation involving the uniform state and the two-pulse
state. As we discuss in Section V, this critical point,
which we dub double transcritical bifurcation, exhibits
non-standard features which, to the best of our knowl-
edge, have not been observed previously.

The layout of the paper is the following. In section
II we introduce the model and recall the known results
about its ground state. In Section III we show that in-
teresting insight in the bifurcations involving the uni-
form state can be gained through a simple perturbative
approach. In Section IV this analytical insight is fully
developed for the case of the three-site lattice. Section V
contains the numerical results for lattices comprising of
M = 3, 4, 5 sites. In particular, we discuss the non trivial
features of the double transcritical bifurcation related to
the uniform-state modulational instability, and illustrate
how the known situation for large lattices is recovered for
M ≥ 6. Our conclusions are given in Sec. VI.

II. SETUP

In the following, we consider the standard DNLS equa-
tion on a M -site one-dimensional closed lattice,

iżn = −T∆2zn − Γ|zn|2zn, (1)

where ∆2zn = (zn+1 + zn−1 − 2zn) is the discrete Lapla-
cian, and periodic boundary conditions are implemented

by identifying sites n = 1 and n = M + 1. This equation
is derived from the Hamiltonian

H =

M
∑

n=1

T |zn+1 − zn|2 −
Γ

2
|zn|4 (2)

making use of the standard Poisson brackets {zn, zm} =
iδnm [1]. We recall that Hamiltonian (2) is the semiclas-
sical counterpart of the Bose-Hubbard model standardly
adopted for describing ultracold bosonic atoms trapped
in optical lattices [21, 22]. In more detail, Eq. (2) is ob-
tained by approximating the quantum states with suit-
able coherent states and subsequently implementing a
standard variational method. Direct comparison shows
that Hamiltonian (2) provides a description of the ground
state properties of the fully quantum model that is sat-
isfactory in many respects, both in the case of repulsive
[18] and attractive interactions [19]. We also recall that
in this framework T and Γ — denoting the intersite cou-
pling across adjacent sites and the boson-boson interac-
tion, respectively — are directly related to experimental
parameters that can be varied over a wide range of val-
ues [22, 23]. As to zn, it is a macroscopic complex vari-
able describing the bosonic population, |zn|2, and phase,
arg(zn), at lattice site n. It is easy to prove that the

total population N =
∑M

n=1 |zn|2 is conserved along the
dynamics [24].

As we mention in Sec. I, we focus on the case of at-
tractive interactions, Γ > 0. Before proceeding with our
discussion, we observe that the only independent parame-
ter in Eq. (1) other than the lattice size M is the effective
(rescaled) intersite coupling, ǫ = T/(ΓN). Actually, Eq.
(1) can be recast in the form

iu̇n = −ǫ∆2un − |un|2un, (3)

where un = zn/
√

N and the dot now denotes the deriva-
tive with respect to the rescaled time variable t′ = ΓNt.

We are interested in the ground state of the Hamilto-
nian (2), i.e. in the state vn minimizing

E =
H

ΓN2
=

M
∑

n=1

ǫ|vn+1 − vn|2 −
1

2
|vn|4 (4)

Therefore vn satisfies the equation

G(vn; ǫ) = Λvn − ǫ∆2vn − |vn|2vn = 0. (5)

where the eigenvalue Λ is a Lagrange multiplier taking
into account the constraint

∑

n |vn|2 =
∑

n |un|2 = 1
stemming from the norm conservation. We note that the
solutions to the nonlinear eigenvalue problem Eq. (5)
correspond to the standing wave solutions to Eq. (3) of

the form un = vneiΛt′ .
Let us now recall some well known facts about this

ground state. For small values of the intersite coupling
ǫ, the ground state of the system is known to break the
translational invariance of H . Actually for vanishing ǫ’s,
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i.e., in the so-called anticontinuum limit, it is easy to
check that the ground state is completely localized at a
single lattice site n0, un = δn n0

. As the intersite coupling
is increased, the width of the localization peak increases
while maintaining its single-pulse profile, i.e. remain-
ing mirror-symmetric with respect to the central site n0,
un0+k = un0−k. Hence we refer to this solution of Eq. (5)
as single-pulse state. Note that the localization peak of
the single pulse state can be centered at any lattice site,
so that the symmetry breaking ground-state is M -fold
degenerate.

Conversely, for sufficiently large values of ǫ, the trans-
lational symmetry is recovered, the ground state being
the uniform (i.e. delocalized) state vn = v = M−1/2, of
energy E = 1/(2M). The (finite) critical value of the
intersite coupling at which the inversion in the nature
of the ground state occurs is referred to as delocaliza-
tion threshold. This critical value is usually identified
with the threshold below which the uniform state be-
comes modulationally unstable [20],

ǫ1(M) =
1

2M

1

sin2
(

π
M

) . (6)

In the following we will show that this identification is
correct only for M ≥ 6, whereas on smaller lattices
the delocalization threshold occurs at a critical value
ǫ2 > ǫ1(M). Furthermore we will show that the thresh-
old for modulational instability corresponds to a non-
standard bifurcation involving the uniform state and a
low-energy localized solution to Eq. (5). We will refer to
the latter as two-pulse state since, unlike the single-pulse
state, its localization peak features a maximum at two
adjacent sites, reducing to un = (δn m + δn m+1)/

√
2 in

the anticontinuum limit.

III. PERTURBATIVE APPROACH

In this section we focus on the possible bifurcations
involving the uniform state vn = 1/

√
M , which is

the ground-state of the system for sufficiently large ǫ’s.
Hence we look for nonuniform solutions to Eq. (5) that
become uniform as the intersite coupling ǫ approaches a
finite value. Adopting a simple perturbative approach,
we introduce a linear parameter τ such that ǫ = αǫ +βǫτ
and assume that states of the form vn = v + τ(pn + iqn)
satisfy Eq. (5) with Λ = v2 + βΛτ . After some simple
manipulations one gets

βΛv − αǫ∆2pn − 2v2pn = 0 (7)

αǫ∆2qn = 0 (8)

According to Eq. (8), the imaginary part of the perturba-
tion is uniform, qn = q. Hence, it can be absorbed in the
unperturbed uniform state as a phase factor, v → |v|eiθ,
with θ = arcsin(τq/|v|). As to the real part, it is easy to
prove that the coefficient βΛ appearing in Eq. (7) must
vanish, which suggests that spatially modulated solutions

branch-off tangentially from the uniform state. This is
obtained summing Eq. (7) over n and making use of the
constraint

∑

n pn = 0 stemming at linear order from the
normalization for the perturbed solution,

∑

n |vn|2 = 1.
Hence Eq. (7) is formally equivalent to the eigenvalue
equation for the discrete Laplacian operator

∆2pn = λpn, λ = −2v2

αǫ
= − 2

Mαǫ
(9)

On a M -site homogeneous one-dimensional lattice such
as that under investigation, the Laplacian features M
eigenvalues of the form λk = −4 sin2(πk/M), with
k = 0, . . . , M − 1. These define a set of critical values

for the intersite coupling, α
(k)
ǫ = [2M sin2(πk/M)]−1,

where nonuniform solutions become uniform. The rel-
evant perturbative modulations have the form p

(k)
n ∝

sin(2πkn/M + ϕ), where ϕ is a phase that ensures that
two solutions corresponding to the same k are inde-
pendent. Note that k = 0 must be discarded, since
it corresponds to a vanishing perturbation, and that

α
(k)
ǫ = α

(−k)
ǫ = α

(M−k)
ǫ . Hence, according to this pic-

ture, one expects ⌊(M − 1)/2⌋ distinct critical values,
where ⌊x⌋ denotes the largest integer smaller than x.

We now observe that α
(k+1)
ǫ < α

(k)
ǫ , and that the

largest critical value α
(1)
ǫ coincides with the known

threshold for modulational instability reported in Eq.
(6). This means that modulational instability occurs in
correspondence to a bifurcation point where nonuniform
solutions merge with the uniform state. Note that, for
suitable choice of the phase ϕ, these nonuniform solu-

tions un = v + τp
(1)
n may have either a single-pulse or

a two-pulse character. Explicit analytic results for the
three-site lattice and numeric results for larger lattices,
reported respectively in Secs. IV and V, will confirm
this scenario. These results will also evidence the non-
trivial character of the bifurcation point corresponding
to the onset of modulational instability. As to the re-
maining critical points, it can be proved that they cor-
respond to bifurcations involving nonuniform solutions
that in the anticontinuum limit ǫ → 0 reduce to the
form un = P−1/2

∑P
r=1 δn nr

, where nr denotes differ-
ent lattice sites. Since these bifurcations occur when the
uniform state is unstable, and therefore not the ground
state of the system, their detailed study goes beyond the
purpose of this paper.

IV. ANALYTICAL RESULTS FOR M = 3

We now turn to the analytically tractable case of the
three-site lattice. As illustrated in the previous sections,
the uniform, single- and two-pulse solutions to Eq. (5)
are expected to play a significant role in relation to the
ground state of the system. In this simple case, all of
these three states correspond to a triplet (v1, v2, v3) with
v1 = v3. Hence they can be described by a unique pa-
rameter v = v1/v2. Clearly v equals 1 for the uniform
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state, whereas it varies in the intervals [0, 1] and [1,∞]
for the single- and two-pulse state, respectively.

Plugging this form into Eqs. (5) and (4) and making
use of the normalization constraint, after some algebra
one gets the parametric description

ǫ =
v(1 + v)

(1 + 2v)(1 + 2v2)
,

E = −1 − 2v + 4v2 + 4v3 − 2v4 + 4v5

2(1 + 2v)(1 + 2v2)2
,

(10)

Note that for v = 1, i.e. when the two-site branch meets
the uniform branch, the first of Eqs. (10) coincides with
Eq. (6) describing the critical threshold for modulational
instability, i.e. ǫ = ǫ1(3) = 2/9. Of course in this situ-
ation the two solutions (uniform and two-site) have the
same energy E = −1/6. The parametric function in (10)
crosses the same value of the energy at a second point,
ǫ = ǫ2 = 0.25 > ǫ1(3), corresponding to a single-pulse
solution. Actually both of the functions in Eq. (10) fea-
ture a maximum at the same value of v, corresponding to
ǫ = ǫ3 ≈ 0.2537 > ǫ2, while v → ∞ corresponds to ǫ = 0
and E = −0.25. This means that for ǫ1 < ǫ < ǫ3 there
are, in fact, two single pulse branches with different en-
ergies for a given ǫ. The most energetic of them emerges
from the two-pulse (and uniform) branch at ǫ1, whereas
the least energetic exists also in the interval [0, ǫ1], where
it is the ground state of the system. As to the stability
properties, it can be shown analytically that the low-
energy single-pulse branch is always stable, while the
high-energy single-pulse and the two-pulse branch are al-
ways unstable. As mentioned above, the uniform branch
is unstable below and stable above ǫ = ǫ1(3). The situa-
tion for M = 3 is corroborated by numerical bifurcation
results (that are detailed below) in Fig. 1. Interestingly,
the right panel highlights the presence of an inversion in
the nature of the ground state at ǫ = ǫ2 which appears to
coincide with the single-pulse solution (uniform solution)
for ǫ < ǫ2 (ǫ > ǫ2).

V. NUMERICAL TECHNIQUES AND RESULTS

A numerical study of the single- and two-pulse solu-
tion can be efficiently performed by means of Keller’s
pseudo-arclength continuation method [25]. This allows
us to trace the relevant branches of solutions past fold
points. Given a solution (vn

(0), ǫ(0)) of the equation

G(vn; ǫ) = 0 and a ‘direction’ vector (v̄
(0)
n , ǭ(0)), one can

derive (v
(1)
n , ǫ(1)) by solving the system of equations

G1 ≡ G(v
(1)
n , ǫ(1)) = 0,

(v
(1)
n − v

(0)
n ) ∗ v̄

(0)
n + (ǫ(1) − ǫ(0))ǭ(0) − ∆s = 0,

(11)

where ∆s is a pre-selected arclength parameter (we typ-
ically used ∆s = 0.001). The parenthetic superscript
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FIG. 1: Energy E of the branches considered as a function of ǫ

for a three-site lattice, as provided by Eq. (10) and confirmed
by the numeric analysis in Sec. V. Thin solid: stable single
pulse; thin dashed: unstable two-pulse (becomes single-pulse-
like for ǫ > ǫ1); thick: unstable (dashed) and stable (solid)
portions of the uniform branch. The right panel is a blowup of
the left one, and clearly illustrates the relevant critical points.
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−0.5

−0.45

−0.4
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FIG. 2: Energy E of the solution branches considered as a
function of ǫ for a four-site lattice, as resulting from the nu-
meric analysis in Sec. V. The line styles and colors have the
same meaning as in Fig. 1. The right panel is a blowup of
the left one, and clearly illustrate the relevant critical points.

denotes the iteration step index. Subsequently, one can
use Newton’s method to solve the system in equation

(11). The next (normalized) ‘direction’ vector (v̄
(1)
n , ǭ(1)),

is then computed by solving

(

∂
∂vn

G1
∂
∂ǫG1

v̄
(0)
n ǭ(0)

)

(

v̄
(1)
n

ǭ(1)

)

=

(

0
1

)

, (12)

and the process is then iterated. In this setting, there
is a natural starting point of this iteration process at
ǫ = 0, where the equation (5) becomes algebraic. In that
limit, the “single pulse” branch is given by vn = δn,n0

,
with support over the site n0, and the “two-site” pulse by
vn = (δn,n0

+δn,n0+1)/
√

2. These branches are initialized
with the above exact profile in this anti-continuum limit
of ǫ = 0, and subsequent continuation of the solutions
allows their path-following, as the parameter ǫ is varied.
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FIG. 3: Squared eigenvalues λ
2 of the M = 3 (left) and M = 4

(right) case, as a function of ǫ. Thick (thin) lines refer to
the uniform (two-site pulse) branch. Note that for M = 4
an additional eigenvalue for the uniform state exists and is
shown.
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FIG. 4: Location of the critical points discussed in the text,
with increasing lattice size M . Circles, stars and plus symbols
denote ǫ1, ǫ2 and ǫ3, respectively. The line joining the circles
shows the theoretical prediction of Eq. (6). The other lines
are mere guides to the eye.

For each step, once these solutions are obtained, their
numerical linear stability is performed by using:

un = eiΛt
[

vn + δ
(

ane−λt + bneλ∗t
)]

, (13)

where δ is a formal linearization parameter. This results
into a linear (matrix) eigenvalue problem for (λ, {an, b⋆

n})
that we also solve.

The analytical description obtained above for the M =
3 case is confirmed by our numerical results, and re-
mains qualitatively the same for M = 4 and M = 5.
The situation for M = 4 is illustrated in figure 2 and 3.
Figure 2 shows the behaviour of the energy as a func-
tion of ǫ. As in Fig. 1, the right panel is a zoom into
the most interesting region. Solid lines denote stable
branches, whereas dashed lines denote unstable branches,
as specified in the captions. The evident analogies be-
tween the three- and four-site lattices (also present for
M = 5, not shown) can be summarized as follows. At the
critical point where the modulational instability arises,

ǫ = ǫ1(M), the two-pulse branch “collides” with the uni-
form branch, and “emerges” from it as a (higher-energy)
single site-branch. This eventually collides with the low-
energy single-site branch at ǫ = ǫ3(M). The latter origi-
nates from the single-pulse solution at ǫ = 0, and is the
ground state of the system until it crosses the uniform
branch at ǫ = ǫ2(M) < ǫ3(M). Note however that this
crossing is not a collision in the bifurcation sense, since
the configurations of the two branches remain different at
this point. They merely have the same energy for fixed
norm.

Also, the collision occurring at ǫ1(M) appears to be
definitely non-standard, from a bifurcation theory point
of view. This is not only because of the “tangency” of
the two branches at the critical point, but also due to the
fact that, contrary to what would be expected from such
an apparent transcritical bifurcation, the branches do not
exchange their stability, but rather the two-pulse branch
remains linearly unstable (before, as well as after the col-
lision). Further insight in the non-standard nature of the
bifurcation at ǫ1(M) is gained from Fig. 3, showing, for
both M = 3 and M = 4, the crucial squared eigenvalues
of the two-site and uniform branches, as resulting from
our numerical analysis. More specifically, the principal
(i.e., maximal) eigenvalue responsible for the instability
of the uniform mode turns out to be a double eigenvalue.
This double eigenvalue approaches λ = 0, as ǫ → ǫ1 (re-
call that stabilization implies that this real eigenvalue
pair should become imaginary as ǫ crosses ǫ1, hence its
square should change sign). For the two-site branch, an
imaginary eigenvalue (for ǫ < ǫ1, shown by green line in
the figures) tends to zero (and becomes real for ǫ > ǫ1).
However, in order for the multiplicity to be preserved
(given the double eigenvalue of the uniform state), an ad-
ditional eigenvalue should cross zero at this critical point
(this time, coming from the real side, namely the blue
line in Fig. 3). As a result, along the former eigendirec-
tion, indeed there is a transcritical exchange of stability,
however, the latter eigendirection enforces an additional
change of stability for the two-site branch. This results
in a novel and non-standard scenario that we call the
“double transcritical” bifurcation resulting in one of the
branches being unstable before and unstable after the crit-
ical point.

Concerning the ground-state properties of such small-
size lattices, the above analysis and numerics confirm an
important feature made visible by the analytical study
of the case M = 3, that is the presence of a critical value
of ǫ where the inversion in the nature of the ground state
takes place. This feature, in fact, does not always occur
at the critical point for the modulational instability of
the uniform state, ǫ1, but rather at the crossing point ǫ2
previously discussed. That is to say, there is an interval
I1 = [ǫ1, ǫ2] where the ground state is localized despite
that the uniform state is modulationally stable. Likewise,
there is an interval I2 = [ǫ2, ǫ3] where the ground state
is uniform, and the single-pulse state is an excited (i.e.,
higher energy for the same norm) stable state. A further
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feature worth emphasizing is that the latter terminates
at a finite value, ǫ = ǫ3, due to its collision with the
high-energy single-pulse branch discussed above. This is
perhaps contrary to the common intuition based on the
infinite lattice [26], where the single-pulse branch exists
up to the continuum limit, ǫ → ∞.

Finally, Fig. 4 shows the location of the critical points
ǫ1, ǫ2 and ǫ3 with increasing lattice sizes M . This indi-
cates how to reconcile the above picture with the infinite
lattice limit [27], where the uniform state is always mod-
ulationally unstable, the single-pulse state is always the
ground state, and the latter collides with the two-pulse
branch only at ǫ → ∞. More specifically, Fig. 4 shows
that the picture offered above with the relevant regimes
persists for 3-, 4- and 5-site lattices, while for lattices
with 6 or more sites the three critical points marking the
boundaries of intervals I1 and I2 collapse to the single
value ǫ1(M) described by Eq. (6). That is to say, for
M ≥ 6 the two intervals shrink to a single point, and the
change in the nature of the ground state occurs at the
critical point for the modulational instability of the uni-
form state. Furthermore, for sufficiently large M ’s, the
latter is basically linear in the lattice size ǫ1(M) ≈ M/2π,
so that the above discussed picture is recovered in the
thermodynamic limit M → ∞.

VI. CONCLUSIONS

We have illustrated that dynamical lattices (and, in
particular, small ones) still harbor a variety of surprises.
They can host previously unraveled bifurcations (such
as the “double transcritical” one elucidated above); they
may feature ground state inversions, as well as coexis-
tence of stability between uniform and localized states.
They may even be unable to sustain localized solutions
for sufficiently strong tunneling. All these numerically
observed traits can also be captured analytically.

Among the various features we have discussed in sec-
tion V, the inversion effect characterizing the ground
state of small lattices appears to be particularly inter-
esting. For M = 3, 4, 5 both the uniform state and the
single-pulse state are stable solutions of the model within
the interval ǫ1 ≤ ǫ ≤ ǫ3. Such an interval is absent for
M ≥ 6. The unexpected feature that we have evidenced
is that at the intermediate value ǫ2 of such an interval
a change in the nature of the ground state between the
uniform and the single-pulse state takes place. This in-
version is driven by the parameter ǫ. An interesting con-
sequence of this feature is that, at least in principle, by
adiabatically decreasing ǫ across ǫ2 the system can re-
main in the uniform state without decaying in the proper
(single-pulse) ground state. A similar effect can be en-
acted when adiabatically increasing ǫ over ǫ2. In this
case the single-pulse state (the ground state for ǫ < ǫ2)
survives for ǫ > ǫ2 once more leaving the system in an
excited state.

As discussed above, current experimental technology
furnishing two-site lattices [14] makes forthcoming the
realization of M > 2 small lattices. Given the experi-
mental tractability of both optical waveguide arrays [2]
and BECs in optical lattices [3] , the features we have
shown to distinguish few-site lattices should have directly
measurable implications in nonlinear optics, as well as
soft condensed matter physics. They also generate fur-
ther intriguing questions, such as e.g. the origin of the
“criticality” of the 6-site lattice which are particularly
worthwhile to address in future studies.
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