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Parametric Quantum Resonances for Bose-Einstein Condensates

P. G. Kevrekidis1, A. R. Bishop2 and K.Ø. Rasmussen2

1Department of Physics and Astronomy, Rutgers University 136 Frelinghuysen Rd., Piscataway, NJ 08854-8019,
2 Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545

(February 1, 2008)

We generalize recent work on parametric resonances for nonlinear Schrödinger (NLS) type equa-
tions to the case of three dimensional Bose-Einstein condensates at zero temperatures. We show the
possibility of such resonances in the three-dimensional case, using a moment method and numerical
simulations.
PACS numbers: 03.75.Fi, 03.65.Ge, 05.30.Jp, 47.20.Ky.

I. INTRODUCTION

There has been a blossoming of literature on the fea-
tures of systems exhibiting Bose-Einstein condensation
(BEC), triggered by its recent experimental realization
[1]. Intially experiments with 103 to 106 atoms of ru-
bidium or sodium (later experiments have used lithium
and eventually (spin-polarized) hydrogen), in harmonic
or cigar shaped traps have demonstrated condensation to
a “pseudo-macroscopic” level of occupancy of the ground
state for nK temperatures. Time of flight measurements,
velocity distributions as well as spatial profiles have con-
vincingly supported the physical picture of an abrupt
transition in the behavior of the Bose gas, which has
been interpreted as the signature of BEC.

Following these experiments, many theoretical studies
were launched to characterize different aspects of Bose
condensates such as hydrodynamic modes [2], collective
excitations [3], the behavior of ideal quantum fluids [4,5],
the fraction of noncondensate vs. condensate atoms [6,7],
or the generation and stability of vortices [8]. In turn,
experimental studies have progressed to address some of
the theoretical predictions [9] and open up new questions.

Here, we concern ourselves with one aspect of these
quantum fluids, namely parametric driving. For the pur-
pose of this report, we will restrict ourselves to the frame-
work of the mean-field or Hartree-Fock approximation.
This approximation is rigorously justifiable only at T = 0
but it is expected [6] that the contribution of the non-
condensate to the density is quite small. It is well-known
that at this mean-field level the condensate wavefunc-
tion is governed by the Gross-Pitaevskii (GP) [10] equa-
tion. An issue addressed after the original experiments
achieving the condensation was the study of collective
excitations [3,11]. In these papers these excitations were
induced by a harmonic trap weakly modulated in time
with appropriate types of symmetry. More recently, it
was demonstrated that extended parametric resonances
can occur [12] in a two-dimensional (2d) NLS equation
with a harmonic trap. This result may or may not (for
reasons to be explained below) be relevant for two di-
mensional studies of Bose gases. However, this naturally
raises the question of whether a similar result can be de-

duced for the 3d case which is certainly of direct relevance
to experimental studies.

The main question we will address is whether weak har-
monic modulation of trapped 3d condensates can cause
an anomalously large response in their wavefunction.
Our answer, which will be in the affirmative, will be moti-
vated by mathematical analysis using a moment method
and verified by numerical simulation. We will briefly dis-
cuss the implications of these results and the suggestion
of relevant experiments.

II. MOMENT METHODS

Considering a spherical trap, the dimensionless GP
equation for the dynamics of the BEC condensate is [13]

iut = −
1

ζ4
∇2u+

(

λ(t)r2 + ν|u|2
)

u. (1)

Here, the subscript t denotes time derivative and ζ =
(8πN |a|/a⊥)1/5 is a dimensionless parameter arising
from the number N of particles, the s-wave scattering
length a and from a⊥ characterizing the strength of the
trap (see, Ref. [13]). In Eq.(1) λ(t) is a dimensionless
function allowing for time dependence of the trap and
ν = sign(a), generalizes the equation to describe attrac-
tive (a < 0) as well as repulsive (a > 0) interactions.
Since, we restrict ourselves to spherical symmetry we
only include the radial contribution in the Laplace op-
erator. Although we are mainly interested in the full
three-dimensional (3d) case we will in general consider
the d-dimensional version of Eq.(1) so that

∇2 =
1

rd−1

∂

∂r

(

rd−1 ∂

∂r

)

. (2)

Similarly to Ref. [12], we define the following quantities

I
(d)
2,a =

∫

∞

0

ra|u|2rd−1dr, (3)

I
(d)
3,a = i

∫ ∞

0

ra(uur
⋆ − c.c.)rd−1dr, (4)

I
(d)
4,a =

∫ ∞

0

ra

∣

∣

∣

∣

∂u

∂r

∣

∣

∣

∣

2

rd−1dr, (5)
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I
(d)
5,a =

∫

∞

0

ra|u|4rd−1dr, (6)

where (d) indexes the dimension. This type of nonlin-
ear Schrödinger (NLS) equation (1) has two conserved
quantities: as a result of the phase invariance the norm

corresponding to I
(d)
2,0 is conserved in any dimension d.

Also, since Eq.(1) is a Hamiltonian system arising from

H =

∫

∞

0

[

ζ−4|∇u|2 +
ν

2
|u|4 + λ(t)r2|u|2

]

rd−1dr (7)

this quantity is conserved. It is useful to note that the
Hamiltonian (or more appropriately energy functional),
H , can be expressed in terms of the moments Eqs.(3)-(6)

H = ζ−4I
(d)
4,0 +

ν

2
I
(d)
5,0 + λ(t)I

(d)
2,2 . (8)

The relevance of the moments Eqs.(3)-(6), is based on
their time evolution and in the following we will derive
the relations governing this dynamics. The physical ra-
tionale behind such an approach lies in the fact that the
resulting equations can yield predictive diagnostics for

the dynamics of the BEC. In particular, I
(d)
2,2 will essen-

tially yield the width of the spatial profile of the wave-
function. If a condensation phenomenon is to take place
even when starting from a spatially uniform distribution
(at temperatures T < Tc), the width must evolve towards
a constant non-zero value.

Using Eq.(1) and its complex conjugate one can derive

İ
(d)
2,a = ζ−4aI

(d)
3,a−1, (9)

İ
(d)
3,a = −4λ(t)I

(d)
2,a+1 + 4aζ−4I

(d)
4,a−1

− (a+ d− 1)(a− 1)(a− 3 + d)ζ−4I
(d)
2,a−3 (10)

+ ν(a+ d− 1)I
(d)
5,a−1.

In deriving these we assume u to vanish as r → ∞.
Unfortunately, it is in general impossible to close this

hierarchy of equations because the time derivative cou-

ples to the next order e.g. İ
(d)
2,a couples to I

(d)
3,a−1 and

İ
(d)
3,a couples to I

(d)
5,a−1 and I

(d)
4,a−1, and so on. However,

combining Eqs. (9) and (10) provides some insight

Ï
(d)
2,a = ζ−4a

[

−4λ(t)I
(d)
2,a + 4(a− 1)ζ−4I

(d)
4,a−2

− (a+ d− 2)(a− 2)(a− 4 + d)ζ−4I
(d)
2,a−4 (11)

+ ν(a+ d− 1)I
(d)
5,a−2 ] .

First, this confirms that the norm I
(d)
2,0 is conserved in any

dimension. Secondly, this relation clearly suggests a = 2

as good choice since the term involving I
(d)
2,a−4 then van-

ishes irrespective of dimension. Also, this choice allows
the use of Eq.(8) to reduce the expression (12) to

Ï
(d)
2,2 = 8ζ−4H − 16ζ−4λ(t)I

(d)
2,2 + 2ν(d− 2)I

(d)
5,0 , (12)

which corresponds to the relation commonly referred to
as the virial theorem [14] for the nonlinear Schödinger
without a trap, λ(t) ≡ 0.

Clearly, the 2d case is special as the structure of
Eq.(12) is such that a closed time evolution can be pre-
scribed. In addition, for time dependent modulation of
the trap amplitude, we find (as was observed for this
problem in Ref. [15] and again in Ref. [12]) a Hill type
equation which establishes parametric resonances for the
behavior of the width (or amplitude) of the wavefunc-
tion. Important as this conclusion about the 2d behavior
may be for general NLS-GP equations, it is not clear
that it is relevant to BEC. Since BEC is not possible
in spatial dimensions less that three (d < 3) [5] where
a Kosterlitz-Thouless topological transition seems to be
occurring instead [5,16], the applicability of the GP equa-
tion for d < 3 is controversial. Our search for condensate
instabilities is therefore most compelling in three dimen-
sions where no such reservations exist.

Although Eq.(12) is not closed in 3d, it is easily seen
that the following inequalities hold for d ≥ 2

Ï
(d)
2,2 + 16ζ−4λ(t)I

(d)
2,2 ≤ 8ζ−4H for ν < 0, (13)

Ï
(d)
2,2 + 16ζ−4λ(t)I

(d)
2,2 ≥ 8ζ−4H for ν > 0, (14)

where the equality applies to the two-dimensional case
only (and in fact for the noninteracting 3d case ν = 0).
The value of these inequalities lies in the predictions
about the 3d case [17]. Since we can resolve, or at least
very well characterize, the 2d behavior, we are now able
to extend this to quantitative predictions about of the
3d behavior. For the attractive case ν < 0 the possi-

bility of collapse occurs as I
(d)
2,2 can become zero in fi-

nite time. In 2d and due to Eq.(14) also in 3d, a suf-
ficient condition for collapse is H < 0, although, de-
pending on the initial configurations, collapse can be
achieved even for H > 0. A more complete discus-
sion is given in Ref. [18]. For the more realistic case
(in BEC contexts) of repulsive interaction ν > 0 we see
for example that the parametric resonances that were
demonstrated in the two-dimensional case [12] will also
be present in the three-dimensional case. So, for instance,
for d = 3 and λ(t) = λ2

0(1 + ǫ cos(ωt)) will exhibit res-
onance around λ0 = nω/2, n = 1, 2, 3.. where the ex-
tent of the first resonance is determined by the inequality
|1−ω2/(4λ2

0)| < ǫ/2 [19]. However, additional resonances
may be possible in 3d due to the nonlinear driving result-
ing from the repulsive interaction. Some understanding
of the influence of the last term in Eq.(12) on the dynam-
ics can be gained by assuming that the wavefunction can
be approximated as

2
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FIG. 1. (a) evolution (actually r2|u(r, t)|2| is plotted for
clarity) of the condensate wavefunction both in space (r) and
in time (t) for part of the domain (close to r = 0) and (b)

the evolution if of I
(3)
2,2 . Parameters are λ0 = 1, ω = 1, (i.e.

second resonance) and ǫ = 0.05.

u =

√

I
(3)
2,0

σ1
B−3/2ψ(r/B), (15)

where σ1 =
∫

∞

0
r2ψ(r)dr is a shape-dependent constant.

Thus, assuming adiabatically the wavefunction does not
alter its shape ψ significantly as a result of the dynamics,
u as defined in Eq. (15) automatically satisfies the norm
conservation. Utilizing this in Eq.(12) yields

d2B2

dt2
− λ(t)B2 = Q1 + νQ2B

−3, (16)

where Q1 and Q2 are constants determined by the shape
ψ and the initial value of B. Clearly, the last term in
Eq.(16) will only influence the dynamics whenB becomes

small. In the repulsive ν > 0 case however B will gen-
erally not become small since there is no collapse. This
simple analysis suggests that the parametric forcing of
the experimentally realizable 3d case will result in a res-
onance picture analogous to that previously reported for
the 2d problem. Our numerical simulations of the full
Eq.(1) with λ(t) as given above verifies the validity of
this prediction. A typical example for λ0 = 1, ω = 1,
(i.e. n = 2) and ǫ = 0.05 is given in Fig.1. The re-
sponse of the wavefunction (whose initial condition had
maxx|ψ(x, t = 0)|2 = 1), corresponding to the parametric
resonance, can be observed directly from the wave func-
tion Fig. 1(a) but even more clearly in the time evolution

of I
(3)
2,2 , as shown in Fig. 1(b).

III. CONCLUSION AND FUTURE CHALLENGES

In this paper, we have presented and extended the for-
malism of the moment method, used in Refs. [12] and [20]
for the 2d GP equations, to the more relevant 3d case.
We have commented on the special nature of the two-
dimensional problem where the moment equations form
a closed set of equations. We have also added a note of
caution in considering the results of the GP analysis for
d < 3. It might well be that, analogous to mean-field
analysis in statistical physics systems, the “critical di-
mension” for this system is, indeed, dc = 3 and for lower
dimensionalities the predictions of the mean-field theory
are unreliable. A satisfactory self-consistent first prin-
ciples description of an interacting boson gas for d < 3
presents a very challenging theoretical problem, and it re-
mains an unresolved issue whether a transition is present
(and if it is, what is its nature).

On the other hand, we have used the moment methods
and have derived results for GP functionals in all dimen-
sions of physical interest. Considering, in particular, the
3d case, where the validity of the GP approximation is
clear, we have obtained a non-closed set of equations for
the moments of the wavefunction. We have demonstrated
that for a parametric time-disturbance of the trap am-
plitude, parametric resonances are possible. To date the
experiments that have used parametric modulation have
not observed such phenomena. These experiments have
been performed in cigar-shaped traps (where the analysis
is considerably more complicated even in the 2d problem
[12]). No fine tuning of frequencies and amplitudes was
explored since the aim of the studies was to excite collec-
tive modes rather than to observe parametric resonances.
Hence, we propose an experiment in a spherical trap us-
ing weak harmonic modulation of the condensate. Given
the current experimental advances (see e.g. Ref. [21] for
a review), such an experiment seems feasible. Such a
study would, apart from the validation of the theoreti-
cal prediction, also explore how such resonances might

3



destabilize the condensate.
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