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Rabi switch of condensate wavefunctions in a multicomponent Bose gas
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Using a time-dependent linear (Rabi) coupling between the components of a weakly interacting
multicomponent Bose-Einstein condensate (BEC), we propose a protocol for transferring the wave-
function of one component to the other. This “Rabi switch” can be generated in a binary BEC
mixture by an electromagnetic field between the two components, typically two hyperfine states.
When the wavefunction to be transfered is - at a given time - a stationary state of the multicom-
ponent Hamiltonian, then, after a time delay (depending on the Rabi frequency), it is possible to
have the same wavefunction on the other condensate. The Rabi switch can be used to transfer
also moving bright matter-wave solitons, as well as vortices and vortex lattices in two-dimensional
condensates. The efficiency of the proposed switch is shown to be 100 % when inter-species and
intra-species interaction strengths are equal. The deviations from equal interaction strengths are
analyzed within a two-mode model and the dependence of the efficiency on the interaction strengths
and on the presence of external potentials is examined in both 1D and 2D settings.

I. INTRODUCTION

The past decade has witnessed a tremendous explosion of interest in the experimental and theoretical studies of
Bose-Einstein condensates (BECs) [1, 2]. Numerous aspects of this novel and experimentally accessible form of matter
have been since then intensely studied; one of them concerns the investigation of the behavior of multicomponent
BECs, which have been experimentally studied in either mixtures of different spin states of 23Na [3, 4, 5] or 87Rb
[6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20], or even in mixtures of different atomic species such as 41K-87Rb
[21, 22] and 7Li-133Cs [23].

The dynamics of a multicomponent BEC is described, at the mean-field level, by coupled Gross-Pitaevskii (GP)
equations, taking into account the self- and cross- interactions between the species. In this framework, a number of
properties and interesting phenomena have already been extensively analyzed. Among them, one can list ground state
solutions [24, 25, 26] and small-amplitude excitations [27] of the order parameters in multicomponent BECs, as well as
the formation of domain walls [28] and various types of matter-wave soliton complexes [29], spatially periodic states [30]
and modulated amplitude waves [31]. Quantum phase transitions in Bose-Bose mixtures have been investigated both
theoretically [32, 33, 34, 35] and experimentally [22]. Moreover, several relevant works analyzed different aspects of
purely spinor (F = 1) condensates (which have been created in the experiments [3, 12]), including the formation of spin
textures [4], spin domains [36], various types of vector matter-wave solitons [37, 38, 39, 40], studies of ferromagnetic
properties [41], and so on.

An important resource for the experimental control of multicomponent BECs is the possibility to use a two-photon
transition to transfer an arbitrary fraction of atoms from one component to another, e.g., from the |1,−1〉 spin state
of 87Rb to the |2, 1〉 state. The transfer can also occur by using an electromagnetic field inducing a linear coupling,
proportional to the Rabi frequency, between the different components. In Ref. [30] it was shown that, in analogy
with systems arising in the field of nonlinear fiber optics (such as a twisted fiber with two linear polarizations, or an
elliptically deformed fiber with circular polarizations [42]), exact Rabi oscillations between two condensates can be
analytically found when inter-species coupling are equal to unity (in proper dimensionless units).

In this paper, we propose a protocol enabling the transfer of the wavefunction of a condensate to another, even
in presence of interactions. The proposed protocol requires a time-dependent Rabi frequency: this “Rabi switch” is
realized by turning-on the linear coupling for a pertinent period of time, so as to transfer the maximal fraction of the
condensate from the first to the second component. The efficiency of the switch is maximal, if all interaction strengths
(nonlinearity coefficients) are equal. If one deviates from the ideal case, the efficiency is modified: to analyze more
realistic situations, we show that it is possible to effectively describe the deviations from equal interaction strengths by
a two-mode ansatz, where the impossibility of transferring all the particles from a condensate to the other is identified
as the self-trapping of the initial condensate wavefunction. Even though in the original experiments (see e.g. [6]) the
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Rabi coupling was used to transfer ground states between two repulsive condensates, our protocol can be efficiently
used for transferring also matter-wave solitons in one-dimensional (1D) attractive condensates, as well as vortices and
even vortex lattices in two-dimensional (2D) repulsive condensates. We study the efficiency of the proposed Rabi
switch in each of these situations and we discuss the generalization of the same idea to a 3-component condensate,
where our approach would realize a “Rabi router” of matter into desired components.

The protocol proposed in this paper would allow for to copy a wavefunction from a condensate to the other in
the presence of either attractive or repulsive interactions among atoms, and this could improve the efficiency in
the experimental manipulation of matter solitons and vortices; from this point of view, it provides a matter-wave
counterpart for optical switches realized in nonlinear fiber optics, which are important tools to control optical solitons
[43].

Our presentation is structured as follows. In Section II we present the theoretical framework needed to describe
the Rabi switch in a two-component Bose gas, which is valid for attractive or repulsive interactions. In Section III
the generalization to multicomponent BECs is discussed. In Sections IV and V we provide the results of our analysis
in 1D and 2D settings, respectively; there, we also show how the external trapping potentials affect the efficiency of
the Rabi switch, and compare the findings of the two-mode model with numerical results. Finally, in Section VI we
present the conclusions and outlook of this work.

II. THE RABI SWITCH

The prototypical system we consider is a two-component Bose gas in an external trapping potential: typically the
condensates are different Zeeman levels of alkali atoms like 87Rb. Experiments with a two-component 87Rb condensate
use atom states customarily denoted by |1〉 and |2〉; in particular, the states can be |F = 2,mF = 1〉 and |2, 2〉, like,
e.g., in [10], or |1,−1〉 and |2, 1〉, like, e.g., in [8] (see also the recent work [20]). In general, the condensates |1〉 and
|2〉 have different magnetic moments: then in a magnetic trap they can be subjected to different magnetic potentials
V1 and V2, eventually centered at different positions and having the same frequencies (like in the setup described in

[8]) or different frequencies [10]. In [10], the ratio of the frequencies of V2 and V1 is
√

2. It is also possible to add a
periodic potential acting on the two-component Bose gas [11, 22].

The two Zeeman states |1〉 and |2〉 can be coupled by an electromagnetic field with frequency ωext and strength
characterized by the Rabi frequency ΩR, as schematically shown in Fig. 1. A discussion of (and references on) the
experimental manipulation of multicomponent Bose gases can be found in [44, 45] (for a recent experimental realization
of this coupling, see also [20]). The detuning is defined as ωext−ω0, where ~ω0 is the energy splitting between the two
states (e.g., in [10] ω0 ∼ 2π × 2 MHz). For concreteness we assume that the Rabi coupling can be turned on starting
at a given instant, say t0 ≥ 0; at later times, the Rabi coupling coherently transfers particles between |1〉 and |2〉 at a
Rabi frequency ΩR. When the number of components is larger than two, more coupling electromagnetic fields could
similarly be added. The transfer of particles between hyperfine levels may be also regarded as an “internal Josephson
effect”, since it is similar to the Josephson tunneling of particles between Bose condensates in a double-well potential
[46, 47]; the only difference is that in the “internal Josephson effect” the two condensates are spatially overlapping,
while the left and right part of a single-species BEC in a double-well are separated by the energy barrier. Thus, the
roles of the Rabi frequency and the detuning in the internal Josephson effect are analogous to the ones played by the
tunneling rate and the difference between zero-point energies of the two wells, respectively.

In the rotating wave approximation, the dynamics of the two-component Bose-Einstein condensates is described by
two coupled GP equations [8, 48, 49], which, in a general 3D setup and in dimensionless units, read

i
∂ψ1

∂t
=

[

−1

2
∆ + V1(~r) + g11|ψ1|2 + g12|ψ2|2

]

ψ1 + α(t)ψ2, (1)

i
∂ψ2

∂t
=

[

−1

2
∆ + V2(~r) + g12|ψ1|2 + g22|ψ2|2

]

ψ2 + α(t)ψ1, (2)

where ψj(~r, t) are the wavefunctions of the j-th condensate (j = 1, 2), Vj are the respective trapping potentials
(typically, an harmonic potential and/or an optical lattice, plus the eventual detuning, absorbed in them) and the
quantities gij , which are proportional to the scattering lengths aij of the interactions between the species i and the
species j, describe the intra- (j = i) and inter- (j 6= i) species interactions. The system (1)-(2) consists of two linearly
and nonlinearly coupled GP equations: the linear coupling is provided by the Rabi field, while the nonlinear coupling
is proportional to g12 and is due to the scattering between particles of the different species. The scattering lengths aij
for experiments with Zeeman levels of 87Rb atoms are normally quite similar: in fact, if |1〉 = |2, 1〉 and |2〉 = |1,−1〉
the scattering length ratios are a11 : a12 : a22 = 0.97 : 1.00 : 1.03, while if |1〉 = |2, 1〉 and |2〉 = |2, 2〉 they are
a11 : a12 : a22 = 1.00 : 1.00 : 0.97. Furthermore, one of the aij ’s can be varied through Feshbach resonances [1].
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|1>

|2>ΩRe
iωextt

ω0

FIG. 1: Josephson coupling of the two Zeeman levels |1〉 and |2〉 through an electromagnetic field with frequency ωext and
strength characterized by the Rabi frequency ΩR.

The term α is proportional to the Rabi frequency ΩR [50], and serves the purpose of transferring the condensate
wavefunction of |1〉 to condensate |2〉 and of controlling the time modulation of the Rabi frequency.

When the external potentials are the same (V1 = V2 = V ) and the interactions strengths are equal (g11 = g22 =
g12 = g), Eqs. (1)-(2) can be rewritten in a more compact form as:

i
∂ψ

∂t
= −1

2
∆ψ + (ψ†Gψ)ψ + V (r)ψ + α(t)Pψ, (3)

where

ψ =

(

ψ1

ψ2

)

, G = g

(

1 0
0 1

)

, P =

(

0 1
1 0

)

. (4)

As a result of the fact that G and P commute, one can decompose the solution ψ of the “inhomogeneous” problem
described by Eq. (3) as

ψ(~r, t) = U(t)φ(~r, t), (5)

where U(t) is the matrix of the homogeneous problem

U(t) = exp [−iPI(t)] =

(

cosI(t) −i sinI(t)
−i sinI(t) cosI(t)

)

, (6)

with I(t) =
∫ t

0 α(t′)dt′. Substituting Eq. (6) in Eq. (3), it is readily found that φ(~r, t) satisfies the evolution equation
[30]

i
∂φ

∂t
≡ Hφ = −1

2
∆φ+ (φ†Gφ)φ + V (~r)φ, (7)

which is identical to Eq. (3), but without the Rabi term proportional to α(t)P .
When the external potentials or the interaction strengths are different, it is formally possible, as discussed in the

Appendix A, to perform a decomposition like the one given in Eq. (5) and remove the Rabi term. However, this is
done at the price of introducing time- and space- dependent effective interaction strengths in the nonlinear terms: in
particular, for different external potentials the effective interaction strengths are both time- and space- dependent,
while when the interaction strengths are different, a nonlinear Josephson term also arises in the nonlinear terms (i.e.,

iφ̇1 is proportional to φ2 through terms proportional to products φ∗i φj). As a result, the removal of the Rabi term
is of little practical use and one has to resort to numerical or variational estimates: in the following, we will focus
on the situation of different gij ’s, and show that the efficiency of the Rabi switch for small deviations from the equal
strengths situation can be effectively described by a two-mode model.

When the Rabi frequency is fixed, oscillations of atoms between the two components have been studied [8, 10, 30,
49, 51, 52, 53] and experimentally observed [8, 10]. In the following, we consider a time-dependent Rabi frequency
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α(t): through a proper choice of a α(t), we can transfer the wavefunction of |1〉 to |2〉. More precisely, we propose
a way to perform the following operation: at a time t0, one has all the particles in |1〉 in the wavefunction ψ1(~r, t0),
and no particles in |2〉 (ψ2(~r, t0) = 0). At a time t1 we wish to have all the particles in |2〉 in the same wavefunction:
ψ2(~r, t1) = ψ1(~r, t0) (apart a phase factor). The protocol proposed in this paper allows the transfer of the wavefunction
if ψ1(~r, t0) is a stationary state (or a moving soliton, as discussed in Section IV) of the nonlinear Hamiltonian H defined
in (7). If it is not, we can however have at the time t1 all the particles in |2〉 in the wavefunction the condensate |1〉
would have had without the Rabi coupling [see Eq. (13)].

The proposed protocol works with or without nonlinearity: but with the nonlinearity on, one can transfer also
a soliton wavefunction; for instance, in 1D one can have a matter-wave soliton of the species |1〉 propagating with
velocity v, and after a time delay, the proposed Rabi switch will generate the same soliton with the same velocity
in the species |2〉. Two remarks are due: (i) the transfer mechanism has the highest possible efficiency for equal
interaction strengths, however it is very good and its efficiency is close to 1 in a wider region in the relevant parameter
space [in 1D, deviations from the integrable case of equal interaction strengths are discussed through a two-mode
ansatz]; (ii) the proposed mechanism is not copying the full many-body wavefunction of the weakly interacting Bose
gas, but only the order parameter, which is related to the one-body density matrix.

To be more specific, we assume that α(t) depends on time as

α(t) =







0, 0 ≤ t < t0,
γ, t0 ≤ t ≤ t1 = t0 + δ,
0, t > t1,

(8)

where t0 is the switch-on time and δ denotes the duration of the Rabi pulse. From Eq. (8) we readily find

I(t) =







0, 0 ≤ t ≤ t0,
γ(t− t0), t0 ≤ t ≤ t1,
γδ, t ≥ t1.

(9)

Introducing the vector field φ by the decomposition in Eq. (6), it is observed that at the time t0, i.e., before the
switch-on of the Rabi pulse, ψ(~r, t0) = φ(~r, t0), while for t0 ≤ t ≤ t1 we find that

{

ψ1(~r, t) = cos [γ(t− t0)]φ1(~r, t) − i sin [γ(t− t0)]φ2(~r, t),
ψ2(~r, t) = −i sin [γ(t− t0)]φ1(~r, t) + cos [γ(t− t0)]φ2(~r, t).

(10)

When the pulse duration is

δ =
π

2γ
, (11)

at the end of the pulse we obtain
{

ψ1(~r, t1) = −iφ2(~r, t1),
ψ2(~r, t1) = −iφ1(~r, t1).

(12)

Since, in the interval [t0, t1], φ satisfies the homogeneous coupled GP equations (7), i.e. the same equations satisfied
by the vector field ψ in the interval [0, t0], then

(

ψ2(~r, t1)
ψ1(~r, t1)

)

= −ie−iH(t1−t0)

(

ψ1(~r, t0)
ψ2(~r, t0)

)

. (13)

Notice that if, instead of Eq. (8), one allows for a different time dependence of α(t), the time t1 at which Eq. (13)
holds is given by the condition cosI(t1) = 0. For instance, with α(t) = 0 for t < t0 and t > t0 + δ, and α(t) = f(t)

for t0 ≤ t ≤ t0 + δ, the pulse duration δ such that Eq. (13) is valid is given by
∫ δ

0
dt′f(t′ − t0) = π/2.

We are interested in the situation in which no particles are in |2〉 at t0 (ψ2(~r, t0)=0); this situation may occur, e.g.,
in the case where only a single condensate has been prepared (if, eventually, particles exist in the other component,
it is possible to remove them by the suitable application of a Rabi pulse). Notice that this has been experimentally
realized e.g. in the experiments of [20] (see also references therein). In such a case, Eq. (13) implies that at the
end of the pulse one has that (apart from a phase factor) the wavefunction describing the condensate |2〉 is the same
wavefunction which the condensate |1〉 would have had in t1 in the absence of the Rabi pulse. We can quantify the
success of the described protocol in several ways: one of them will be to define the “efficiency” T as the fraction of
atoms we are able to transfer from |1〉 to |2〉, i.e.,

T =
N2(t1)

N1(t0)
, (14)
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where Ni(t) =
∫

d~r|ψi (~r, t) |2 is the number of particles in the condensate i at time t. Notice that such a definition
can even be extended in cases where the number of atoms in the second component is not zero initially by replacing
in the numerator of Eq. (14) N2(t1) → (N2(t1)−N2(t0)). Another more stringent way is to define a kind of “fidelity”
F of the wavefunction transfer, i.e., the quantity

F =

∫

d~r |ψ∗
2(~r, t1)| · |ψ1(~r, t0)|. (15)

From Eq. (13) we see that the efficiency of Rabi switch is 1 for equal interaction strengths, but the fidelity is not.
However, we can have the fidelity to be equal to 1 if ψ is a stationary state of H corresponding to the eigenvalue µ,
i.e.

Hψµ(~r) = µψµ(~r). (16)

If at time t = 0, ψ(~r, 0) = ψµ(~r), then φ(~r, t0) = e−iµt0ψµ(~r) and

{

ψ1(~r, t1) = e−iµδ [cos (γδ)ψ1(~r, t0) − i sin (γδ)ψ2(~r, t0)] ,
ψ2(~r, t1) = e−iµδ [−i sin (γδ)ψ1(~r, t0) + cos (γδ)ψ2(~r, t0)] .

(17)

When no particles are in |2〉 at t0 and the pulse duration is given by Eq. (11), one has

{

ψ1(~r, t1) = 0,
ψ2(~r, t1) = −ie−iµδψ1(~r, t0).

(18)

Equations (18) show that the wavefunctions of the two components have been exchanged up to a phase factor. This
remarkable feature allows us, again with equal interaction strengths gij , to transfer the condensate wavefunction (with
100% efficiency) from a populated hyperfine state to an empty one. In the following section we discuss how to transfer
from a condensate to the other the wavefunction of a moving matter-wave soliton.

We should further note about the latter that the nature of linear operators in the right hand-side of Eq. (3) is
irrelevant in the derivation of Eq. (5). Hence, our analysis can be used to deal with:

• repulsively interacting as well as attractively interacting systems;

• continuum, as well as discrete systems;

• homogeneous systems (in the absence of external potentials) or inhomogeneous systems (e.g., in the presence of
external harmonic trap and/or optical lattice potentials);

• one-dimensional systems or higher-dimensional ones.

In what follows, we illustrate the versatility of the Rabi switch by examining characteristic examples for each of
the above settings. We will then illustrate, how the perfect efficiency of the matter wave transfer (discussed above
for equal inter-particle interactions) is “degraded” in more realistic situations (where such interactions are no longer
equal).

III. GENERALIZATION TO MULTICOMPONENT BOSE-EINSTEIN CONDENSATES

The protocol discussed in the previous Section can be generalized for N ≥ 2 components with a suitable choice of
the time dependence of the Rabi frequencies αij transferring particles from the condensate i to the condensate j. For
instance, for N = 3 and for equal potentials (V1 = V2 = V3 ≡ V ) and interaction strengths (gij ≡ g), the relevant
system of the three coupled GP equations can be written in the form of Eq. (3), namely

i
∂ψ

∂t
= −1

2
∆ψ + (ψ†Gψ)ψ + V (r)ψ + P̃ (t)ψ (19)

with

ψ =





ψ1

ψ2

ψ3



 , G = g





1 0 0
0 1 0
0 0 1



 , P̃ =





0 α12(t) α13(t)
α12(t) 0 α23(t)
α13(t) α23(t) 0



 . (20)
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For general αij , the decomposition ψ = Uφ with

U = e−i
R

t

0
P̃ (t′)dt′ (21)

fails to recast Eq. (19) in the homogeneous form [54]; however, it still removes the Rabi term when αij(t) = α(t) for

any i, j. With ψ = Uφ and U given by Eq. (21), one finds i∂φ∂t = − 1
2∆φ+ (φ†Gφ)φ. The matrix Uij(t) (i, j = 1, 2, 3)

has diagonal elements Ujj = (1/3) [2 exp (iI) + exp (−2iI)] and off-diagonal ones Uij = Ujj − exp (iI). Once the Rabi
term has been removed, the “Rabi switch” described in the previous Section can be applied also for general N to
transfer a wavefunction from a condensate to any one of the others.

Another choice of αij allowing for the removal of the Rabi term is provided by the generalization of Eq. (8), namely

αij(t) =







0, 0 ≤ t ≤ t0,
γij , t0 ≤ t ≤ t1,
0, t ≥ t1,

(22)

with all the αij turned on/off at the same time, but with eventually different intensities. As an example, for N = 3,
one may consider γ12 = a1, γ13 = a2 and γ23 = 0: the matrix U(t), for t0 ≤ t ≤ t1, then reads

U(t) =











r1(1 + r2) a1r1
1−r2√
a2

1
+a2

2

a2r1
1−r2√
a2

1
+a2

2

a1r1
1−r2√
a2

1
+a2

2

a2

2
+a2

1
r1(1+r2)

a2

1
+a2

2

a1a2r1
(r3−1)2

a2

1
+a2

2

a2r1
1−r2√
a2

1
+a2

2

a1a2r1
(r3−1)2

a2

1
+a2

2

a2

1
+a2

2
r1(1+r2)

a2

1
+a2

2











, (23)

where

2r1 = r
−1/2
2 = r−1

3 = exp

(

−i
√

a2
1 + a2

2 (t− t0)

)

. (24)

This allows us to determine the transfer of matter from the first to the second and third component. Similar results
may be obtained in the more general case of N ≥ 2 components, i.e., “desirable” amounts of matter can be controllably
directed to different hyperfine states according to their Rabi couplings. This general “Rabi router” is quite interesting
in its own right, and it could be experimentally implemented in F = 1 spinor condensates [3, 12, 15].

IV. RESULTS FOR 1D SETTINGS

We now consider the 1D version of Eqs. (1)-(2), which is relevant to the analysis of “cigar-shaped” condensates
confined in highly anisotropic traps [1, 2], and in dimensionless units reads

i
∂ψ1

∂t
=

[

−1

2

∂2

∂x2
+ V1(x) + g11|ψ1|2 + g12|ψ2|2

]

ψ1 + α(t)ψ2, (25)

i
∂ψ2

∂t
=

[

−1

2

∂2

∂x2
+ V2(x) + g12|ψ1|2 + g22|ψ2|2

]

ψ2 + α(t)ψ1. (26)

We use wavefunctions ψi(x, t) normalized to unity, so that N1(t) + N2(t) = 1, with Ni(t) =
∫

dx|ψi(x, t)|2. When
the effect of the external potentials Vi is negligible (as, e.g., in the case of potentials varying slowly on the soliton
scale) and in absence of the Rabi coupling (α = 0), the system (25)-(26) becomes the Manakov system [55], which
is integrable for g11 = g12 = g22. In what follows we examine both attractive and repulsive interatomic interactions,
corresponding, respectively, to negative and positive values of the scattering lengths, and we will consider the effect
of the presence of the trapping potential on the wavefunction transfer.

A. Stationary bright matter-wave solitons

We consider in this subsection attractive interactions, gij < 0, in absence of external potentials. Putting ℓij = −gij ,
we first consider the ideal case where ℓ11 = ℓ12 = ℓ22 ≡ ℓ and assume that, at t = 0, all the particles of |1〉 are
described by the 1-soliton solution of the nonlinear Schrödinger equation; thus, ψ2(x, 0) = 0 and

ψ1(x, 0) =

√
ℓ/2

cosh (ℓx/2)
. (27)
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FIG. 2: Transferring a stationary bright matter-wave soliton: in (a)-(b)-(c) the density ρj = |ψj |
2 is plotted for both components

(|1〉 solid line; |2〉 dashed line) at the times t = t0, t0 + 0.4δ, t1. In (d)-(e)-(f) the density is plotted at the same times, but for
a velocity v = 1 (δ = π/2, t1 = 5).

In these units the soliton’s chemical potential is µ = −ℓ2/8; turning on the Rabi coupling γ at time t0, and then
turning it off at t1 = t0 + δ, one gets, for t0 ≤ t ≤ t1,

ψ(x, t) =

√
ℓ/2

cosh (ℓx/2)
e−iµ(t−t0)

(

cos γ(t− t0)
−i sinγ(t− t0).

)

(28)

For δ = π/(2γ) no particles are in the condensate |1〉 at t1, and the soliton wavefunction has been transferred in |2〉,
i.e., ψ2(x, t1) = −(i/2)e−iµδ

√
ℓ/ cosh (ℓx/2). The transfer of the soliton wavefunction is illustrated in Fig. 2(a)-(c).

Notice that if we choose as initial condition

(

ψ1(x, 0)
ψ2(x, 0)

)

=

√
ℓ/2

cosh (ℓx/2)

( √

N1(0)eiϕ1(0)
√

N2(0)eiϕ2(0)

)

, (29)

i.e., two bright solitons with particle numbers N1(0), N2(0) and phase difference ∆ϕ(0) = ϕ2(0) − ϕ1(0), then, at
t = t1, we obtain

N1(t1) =
(

cos (γδ)
√

N1(0) + sin (γδ) sin∆ϕ(0)
√

N2(0)
)2

+N2(0) sin2 (γδ) cos2 ∆ϕ(0). (30)

This shows that, by choosing properly the pulse duration and the initial phase difference, one can transfer a “desired”
part of the soliton wavefunction from one condensate to the other.

Let us discuss now the interesting situation of different interaction strengths:the aim there is to study the efficiency
of the Rabi switch of the soliton wavefunction and qualitatively understand the effect of the deviation from the ideal
case. To that effect, we introduce a variational two-mode ansatz and confine ourselves to the situation in which no
particles are initially in |2〉. For t0 ≤ t ≤ t1, we choose the variational vectorial wavefunction

ψV =

(

ψv1(x, t)
ψv2(x, t)

)

= e−iµt
( √

N1(t)e
iϕ1(t)Φ1(x)

√

N2(t)e
iϕ2(t)Φ2(x)

)

, (31)

where

Φi(x) =

√
ℓii/2

cosh (ℓiix/2)
. (32)

The variational parameters are the numbers of particles Ni(t) and their phases ϕi(t). The variational vector wave-
function (31) has been used in [56] to study the wavepacket dynamics for two linearly coupled nonlinear Schrödinger

equations with ℓ11 = ℓ22 and ℓ12 = 0. For general ℓij ’s, the Lagrangian L = i
2 〈ψ

†
V
∂ψV

∂t − ∂ψ†

V

∂t ψV 〉 − 〈ψ†
V H̃ψV 〉 [where

H̃ is given by Eq. (B1) and 〈〉 denotes spatial integration], is computed in Appendix B, where we show that the
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variational equations of motion for N1 − N2 and ϕ2 − ϕ1 are the equations of a (non-rigid) pendulum. The mass
M of the pendulum depends on the ℓij ’s according Eq. (B7) and for ℓ11 = ℓ12 = ℓ22 the pendulum mass is zero,
allowing for the transfer of all the particles from a species to the other. When ℓ11 6= ℓ22, a detuning term in the
pendulum equations is present [see Eq. (B8)]. In the following, we will focus for simplicity on the more illuminating
case ℓ11 = ℓ22, with a general ℓ12.

Introducing the variables

η = N1 −N2; ϕ = ϕ2 − ϕ1, (33)

one gets the equations of motion

{

η̇ = 2γ
√

1 − η2 sinϕ,
ϕ̇ = −2γ η√

1−η2
cosϕ+ ℓ11

ℓ12−ℓ11
6 η, (34)

with initial conditions η(t0) = 1 (i.e., all the particles initially in |1〉) and ϕ(t0) = 0. It is worth noticing that Eqs.
(34) are the same equations governing the tunneling of weakly-coupled BECs in a double-well potential [46, 57] (the
only difference being that γ corresponds to −K, where K > 0 is the tunneling rate, which gives the same results
for ϕ → ϕ + π). Equations (34) are formally identical to the equations for an electron in a polarizable medium,
where a polaron is formed [58]. Analytical solutions have been found for the discrete nonlinear Schrödinger equations
describing the motion of the polaron between two sites of a dimer [58, 59].

Eqs. (34) are the equations of a non-rigid pendulum [46, 57], with the effective Hamiltonian being

Heff =
M

2
η2 + 2γ

√

1 − η2 cosϕ, (35)

where the pendulum mass is given by

M = ℓ11
ℓ12 − ℓ11

6
. (36)

When ℓ11 = ℓ12, then the mass in Eq. (36) vanishes and η̈ = −4γ2η. The duration δ of the pulse needed to have a
perfect switch is such that η(t1 = t0 + δ) = −1, i.e. δ = π/(2γ) in agreement with Eq. (11). If the mass M is positive
(i.e., g12 < g11), then it is still possible to transfer all the particles from |1〉 to |2〉, provided that the mass M is smaller
than a critical value Mc. If M < Mc, then the time t1 at which η(t1) = −1 will be different from t0 + π/(2γ) (the
analytical computation of the tunneling period for a mass M 6= 0 is reported in the Appendix of [57]). This means
that for deviations from the ideal case, one can optimize the transfer by choosing a pulse duration different from Eq.
(11). This is illustrated in Fig. 3, where we compare η(t) obtained from the two-mode equations (34) with the results
of the numerical solution of the GP equations (25)-(26) for ℓ12/ℓ11 = 13: the numerical and variational results are in
good agreement for a wide range of the parameters (see the inset of Fig. 3). The computation of Mc is done according
to the method discussed in [46]: namely, one has to compute the point at which self-trapping occurs, and the result is

Mc = 4γ. (37)

For ℓ11 = 1, the critical value of ℓ12 is equal to 25. A comparison with the numerical solution of the GP equations
shows that this value is overestimated: e.g., at M = 3γ, the efficiency T at the optimal time is ∼ 0.9, while it should
be equal to 1. However, the result (37) gives a reasonable estimate of the point at which is no longer possible to
transfer with perfect efficiency all the particles from one condensate to the other, due to the self-trapping of the initial
condensate wavefunction. Finally, we observe that, for M < 0, the agreement between numerical and variational
results is still good and the critical point is Mc = −4γ. We also notice that similar results can be obtained for the
Rabi switch of N -soliton solutions.

B. Moving bright solitons and dark solitons

The proposed protocol works also for transferring moving solitons: with ℓ11 = ℓ12 = ℓ22 ≡ ℓ, one can prepare the
initial wavefunction as

ψ(x, 0) =

√
ℓ/2

cosh (ℓx/2)
eivx

( √

N1(0)eiϕ1(0)
√

N2(0)eiϕ2(0)

)

. (38)
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FIG. 3: Comparison of the population imbalance η(t) obtained from the numerical solution of the GP equations (25)-(26) [solid
line] with the results of the two-mode equations (34) [dotted line] for g12 = −1,−13 given by Eq. (36) to a mass pendulum
M = 0, 2, respectively. Inset: efficiency (solid line) and fidelity (dashed line), respectively defined according to Eqs. (14)
and (15), and obtained from the numerical solution of the GP equations. Parameters used in both plots: t0 = 0, γ = 1,
g11 = g22 = −1.

For t ≤ t0 one has (with µ = −ℓ2/8)

ψ(x, t) =

√
ℓ/2

cosh (ℓ(x− vt)/2)
ei(vx−µx−iv

2t/2)

( √

N1(0)eiϕ1(0)
√

N2(0)eiϕ2(0)

)

, (39)

so that at t1, i.e., at the end of the pulse, δ = π/(2γ), one has

ψ(x, t1) = −i
√
ℓ/2

cosh (ℓ(x− vt1)/2)
ei(vx−µx−iv

2t1/2)

( √

N2(0)eiϕ2(0)
√

N1(0)eiϕ1(0)

)

. (40)

If no particles are initially in |2〉, then one can transfer the moving soliton from a condensate to the other, as depicted
in Fig. 2(d)-(f).

When the ℓij ’s are different, one can use the same variational method discussed in the previous subsection. One
needs to consider the variational wavefunction (31), but with a time-dependence included in the functions Φ, which now

read Φi(x, t) = (1/2)eivx−iv
2t/2

√
ℓii/ cosh [ℓii(x− vt)/2]: apart form constant terms, we obtain the same Lagrangian

[c.f. Eq. (B2)] and the analysis is the same as before. In particular, the threshold for the self-trapping transition is
still given by Eq. (37).

On the other hand, when the parameters gij are positive and equal (and Vi = 0), the soliton solution is now a dark
matter-wave soliton, and one can transfer it from one condensate to the other. To examine the situation when the gij
are different and estimate the self-trapping threshold, one can also use a variational approach. Omitting the details,
when g11 = g22 one gets Mc = 4γ, with M = g11(g12 − g11)n, where n is the (asymptotic) density of the dark soliton
for very large x.

C. Effect of the trapping potential

First, we consider repulsive condensates, in the ideal situation where g11 = g12 = g22 = 1. An example of the
realization of the Rabi switch for the ground state of the system is shown in the top panels of Fig. 4: we have
considered an harmonic trapping potential of the form V (x) = (1/2)Ω2x2. In the numerical simulations of the GP
equations, we use Ω = 0.08, t0 = 10 and γ = π/10; hence, after t ≥ 15, the condensate wavefunctions have completely
switched between components. Next, we consider the attractive case with g11 = g12 = g22 = −1. In this case, as an
initial condition (for the first component) we have used a bright matter-wave soliton with the well-known sech-profile
given by Eq. (27). As shown in the middle panels of Fig. 4, the transfer of the wavefunction is complete, just as in
the repulsive case.

To better illustrate the versatility of the Rabi switch, even for N > 2, in Fig. 4 we have also considered the case
with N = 3. In accordance with the results of the analysis carried in Section III, we use a1 = a2 = (π/10)/

√
2 between
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FIG. 4: Panel (a) shows a space-time plot of the density |ψ1(x, t)|
2 for the first component (top panel) and |ψ2(x, t)|

2 for the
second component (bottom panel). Panel (b) shows the spatial profile of |ψ1(x, t = 0)|2 and |ψ2(x, t = 25)|2 in solid and dashed
lines respectively. The dash-dotted line shows the magnetic trap potential. They also show the evolution of the particle number
Ni =

R

|ψi|
2dx for each of the components in the interval of the dynamical evolution. These features are shown in panels (a)

and (b) for g11 = g12 = g22 = 1. In panels (c) and (d), they are shown for a soliton in the case of g11 = g12 = g22 = −1.
Analogous features are shown for 3-component condensates in panels (e) and (f) (the third component is shown by dotted line
in the right panel), again for the case with gij = 1 for all i, j = 1, 2, 3.

t0 = 10 and t = 15. In line with Eq. (23), at the end of this time interval, r2 = −1 and, as a result (due to the
symmetry in the choice of a1 and a2), half of the matter initially at the first component is transferred to the second
component and half to the third component, in excellent agreement with the results shown in the bottom panel of
Fig. 4.

When the gij ’s are different, the transfer will no longer be complete. As a measure of the deviation from the “ideal
switch”, we characterize the degradation of the switch in this inhomogeneous case according to the relevant quantities
introduced in Eq. (14) and (15). For repulsive condensates, we have considered the case of the ground state of 87Rb,
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FIG. 5: Panel (a) shows the initial condition: all the particles are in the ground state of the first component. The solid line
shows the harmonic trapping potential. The parameters used in the GP equations are Ω = 0.08, t0 = 0, γ = π/10, g11 = 0.97,
g12 = 1.03. In (b) we plot the population imbalance η(t) for g12 = 1 (solid line), −1 (dashed line) and −10 (dotted line). The
optimal times with the maximum transfer are respectively t1 = 5, 5.02, 6.48. In (c), (d) and (e) we show the spatial profile
ρ2(x, t1) ≡ |ψ2(x, t1)|

2 at these optimal times. In (e), where the transfer is not optimal, we plot also the the spatial profile
ρ1(x, t1) ≡ |ψ1(x, t1)|

2. In panel (f) we show the transfer efficiency function T (solid line) and the fidelity F (dashed line) vs.
the value of the inter-species interaction coefficient g12.

where the two spin states mentioned above have corresponding scattering lengths such that g11 : g22 = 0.97 : 1.03. In
this context, we have identified the ground state configuration for the first component alone and have subsequently
applied the linear coupling for γ = π/10, for various values of g12. The resulting transfer efficiency as a function
of g12 is shown in Fig. 5 (bottom right panel). The numerical result indicates that in the defocusing regime of
repulsive inter-species interactions, the transfer efficiency and fidelity remain very high (> 0.9) throughout the interval
−10 < g12 < 10. Similar results have been obtained for attractive interactions g11 = g22 = −1 and varying g22, starting
form the ground state of the first component in presence of the trap.

We also performed similar computations in the case of attractive intra- and inter- species interactions for the
solitonic initial condition (27) in the first component, which, with the trap confinement, is no longer the ground state.
We have set the intra-species interactions at g11 = g22 = −1, varying g12. Our findings are plotted in Fig. 6, showing
the robustness of our protocol in a range of values of g12 between −3 and 3, a range smaller with respect to the case in
which the initial condition is the ground state of the first component. This is due to the fact that the initial condition
is not the ground state, and to the fact that the Rabi pulse used is homogeneous in space; note that (according to
the analysis of Appendix A) a sort of space-dependent Rabi pulse would be needed to improve further the transfer
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FIG. 6: Panel (a) shows the initial condition: all the particles are in the soliton (27) of the first component. The parameters
used are Ω = 0.08, t0 = 0, γ = π/10, g11 = g12 = −1. In (b) we plot the population imbalance η(t) for g12 = −1 (solid line),
1 (dashed line) and 3 (dotted line). The optimal times for maximum transfer are respectively t1 = 5, 5.10, 5.58. In (c) and (d)
we show the spatial profile of ρ2(x, t1) ≡ |ψ2(x, t1)|

2 at these optimal times for g12 = 1 and g12 = 3. In panel (e) we show the
transfer efficiency function T (solid line) and the fidelity F (dashed line) vs. the value of the inter-species interaction coefficient
g12, and in (f) we plot the same quantities for g11 = −1, g22 = 1 and the same initial condition: the efficiency is reduced with
respect to the case g11 = g22 = −1.

efficiency. Finally, as expected, the Rabi switch is less effective in the case in which g11 and g22 have opposite signs.
The qualitative reason is that the wavefunction, being a bright soliton which is supported by a negative coupling
constant, cannot easily be transferred to an environment characterized by a positive coupling constant (which does
not support bright solitons but rather dark ones). The fidelity and the efficiency are plotted in the panel (f) of Fig.
6.

V. RESULTS FOR 2D SETTINGS

Let us now consider the 2D version of Eqs. (1)-(2), pertaining to “pancake”-shaped condensates [2]. We will focus
on the realistic case of a binary mixture of two hyperfine states of 87Rb, with g11 : g12 : g22 = 0.97 : 1 : 1.03, and
examine both ground and excited states; the latter, will be characterized by the presence of one vortex or of many
vortices arranged as vortex-lattice configurations. We shall consider only repulsive intra-species interactions, since
for attractive ones, the system is generally subject to collapse [2]. In order to compare the results with the ones
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FIG. 7: (a) The transmitivity function T versus the inter-species strength g12 for γ = π/10 (solid line) and γ = π/20 (dashed
line). (b) Contour plot of the initial density of the ground state in the first component ψ1. (c) Contour plot of the corresponding
final density |ψ2(t = 25)|2 of the second component for g12 = 1; here the transfer of matter is complete. (d), (e) Contour plots
of the corresponding final densities of both species, namely |ψ1(t = 25)|2 and |ψ2(t = 25)|2, but for g12 = 2; as it is seen part
of the matter remains (is missing) in the first (from the second) component.

pertaining to the 1D setting, we vary the inter-species strength g12 in the same domain (although for g12 < 0 the
system is also subject to collapse). In a real experiment this may be done by using external magnetic fields, which
can change the magnitude and sign of the scattering length through the Feshbach resonance mechanism [1].

It is relevant to consider at first the efficiency T as a function of g12, for different values of γ. The result is shown in
the top panel of Fig. 7. In the 2D case, the transfer is almost complete as T ≥ 0.95 for all positive values of g12 < 2
(for γ = π/10). It is also seen that the efficiency is higher for larger values of the magnitude (or inverse duration) of
the linear coupling coefficient γ.

We have considered the ground state of the system, shown in Fig. 7(b), in the first component ψ1, for an harmonic
trapping potential with strength Ω = 0.045 (the chemical potential is equal to one). In this case, assuming that the
switch parameters are t0 = 10 and γ = π/10, we have found the following: for g12 = 1, the transfer of matter in
the second component ψ2 is complete [see Fig. 7(c) where the density of the second component at t = 25 is shown],
while for g12 = 2 it is incomplete. In particular, as shown in Figs. 7(d)-(e) (where the densities |ψ1(t = 25)|2 and
|ψ2(t = 25)|2 are respectively shown), a fraction of matter remains in the first component and is correspondingly
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FIG. 8: (a) Same as in Fig. 7(a). (b) The initial density of the first component ψ1, consisting of a cloud with one vortex in the
center. (c) The corresponding final density |ψ2(t = 25)|2 of the second component for g12 = 1; here the transfer is complete
and the final configuration is identical to the initial one. (d), (e) The corresponding final densities of both species, namely
|ψ1(t = 25)|2 and |ψ2(t = 25)|2, but for g12 = 2.

missing from the central part of the second component after the switch-off of the Rabi pulse.
Next we consider an excited state, in which a vortex is initially placed at the center of the BEC cloud (first

component). Here, it is interesting to investigate whether such a coherent nonlinear state can be transfered in the
second component. As seen in Fig. 8(a), the efficiency is as high as for the ground state transfer. Also, for g12 = 1, a
perfect transfer of this excited state occurs as seen in Figs. 8(b) and (c), where the initial state of the first species and
the final one of the second species are respectively shown. Nevertheless, for g12 = 2, the transfer is not complete, as
it can be seen in Figs. 8(d) and (e): starting again from the initial density shown in in Fig. 8(b), after the switch-off
of the process, a ring-shaped part of the matter remains in (is missing from) the first (second) component. A careful
observation of Fig. 8(d) also shows that this “high” density ring surrounds a low density (≈ 0.2) part of matter with
a vortex on top of it. Note that even in this case, the vortex is transferred in the second component; on the other
hand, the above mentioned “bright” and “dark” ring structures (respectively in the first and second component) do
not carry any topological charge. It is interesting to remark that such methods are similar in spirit to the ones used
to produce ring-like patterns in the recent experimental work of [20].

Finally, we have considered a vortex cluster, namely a triangular vortex lattice, initially placed on top of the BEC of
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FIG. 9: (a) Same as in Figs. 7(a) and 8(a). (b) The initial density of the first component ψ1, consisting of a TF-cloud with
a triangular vortex lattice (≈ 24 vortices). (c) The corresponding final density |ψ2(t = 25)|2 of the second component for
g12 = 1; here the TF cloud and the vortex lattice are perfectly transferred to the second species. (d), (e) The corresponding
final densities of both species, namely |ψ1(t = 25)|2 and |ψ2(t = 25)|2, but for g12 = 2.

the first component. Similarly to what was found for the ground state and the single vortex, we find that the transfer
efficiency function shown in Fig. 9(a) assumes values very close to 1 for a wide range of values of g12 (especially so
in the case of short pulse durations i.e., fast transfer). As shown in the example of Figs. 9(b) and (c) for g12 = 1 the
vortex lattice in the first component is perfectly transferred to the second one. An “imperfect transfer”, for g12 = 2,
is shown in Figs. 9(d) and (e), corresponding to the final states of the first and second species when the initial state
is as in Figs. 9(b). Here it is observed that small spots of matter (with densities ≈ 0.025), each of which carries a
vortex on it, remain in the first species, while a robust crystal structure is transferred to the second component. It is
worth noting here that the vortex lattice remarkably appears to be even more robust, in its “switching properties”,
than the ground state of the 2D system.
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VI. CONCLUSIONS AND OUTLOOK

In this paper, we have systematically examined the possibility of using the linear Rabi coupling between the two
(or more) components of a Bose-Einstein condensate as a means of controllably transferring the wavefunction of
one condensate to the other. In particular, we have focused on the case of different hyperfine states, even though
similar considerations are applicable to multicomponent condensates composed by different atomic species. We have
illustrated that this transfer is exact and can be analytically studied in the limit where all inter- and intra- species
interactions are equal. In addition, we have studied departures from this limit both numerically and by means of
a two-mode ansatz, showing that in this two-mode description the impossibility to transfer all the particles from a
condensate to the other is seen as the self-trapping of the initial condensate wavefunction. The threshold for the self-
trapping has been compared in the homogeneous limit with the findings of the numerical simulations Gross-Pitaevskii
equations.

The two-mode analysis shows that that for deviations from the ideal case one can optimize the transfer by choosing
an appropriate pulse duration different from the duration given by Eq. (11) for equal interaction strengths . In the
presence of external trapping potentials, our numerical simulations show that, for repulsive condensates (but, to a
lesser extent, also for attractive condensates), the Rabi switch is very robust with high efficiency. In general, a change
of sign of the inter-species interactions in 1D has been shown to degrade –although, under appropriate conditions, not
substantially– the efficiency of the transfer process. The switching was surprisingly found to be even more robust for
particular types of coherent patterns, such as vortex lattices in pancake-shaped condensates. Furthermore, we have
also illustrated that the generalization of the proposed Rabi switch to more than 2 components can offer a possibility
for systematically routing matter, in a controllable way, between different “atomic channels”.

It would be quite challenging to examine experimental realizations of such atomic switches and routers especially
within the context of two hyperfine states, but also in that of spin-1 states recently studied in [15, 17]. Of particular
interest in this setting would be the dynamics and phase separation of vortices and vortex lattices in multicomponent
condensates. We expect that our mechanism may be relevant when transferring a condensate wavefunction also in
different components of a dipolar BEC [60].

Another relevant issue concerns the analysis of the role of the quantum fluctuations on the Rabi switch of wave-
functions: indeed, for two condensates (whose dynamics is described by coupled Gross-Pitaevskii equations) the Rabi
switch is not copying the full many-body wavefunction of a component in the other, but only the (one-body) or-
der parameter. Then, we expect that the presence of quantum fluctuations would naturally degrade the efficiency
of our protocol. A study of such degradation is relevant for the implementation of a quantum register through a
two-component Bose gas in an array of double-wells.

The protocol proposed in this paper allows the possibility to copy the wavefunction of a condensate into another
species, providing a matter-wave counterpart for optical switches realized in nonlinear fiber optics [43]. “All-optical
switches” are very important tools in this context, allowing for to manipulate and eventually store the information
contained in optical solitons. For this reason, the study of protocols focused on copying of wavefunctions in Bose
condensates is deemed to be an important task towards an efficient manipulation of matter-wave solitons. Furthermore,
one can think of a possible application of the present protocol to implement copies for quantum registers: indeed, one
could perform some operations on a component (e.g., with a component in an array of double wells) and arrive at a
desired wavefunction. At this point the wavefunction can be copied on the other component, and one can gain access
(at a later time) to this information. In this respect, it would be very important to investigate the degradation of the
quantum switch due to the quantum fluctuations.

Finally, since the protocol proposed in this paper is not restricted to linearly coupled Gross-Pitaevskii equations,
one may safely expect that - once the effects of quantum corrections are accounted for - it can be extended to other
sets of coupled equations such as the ones arising in the analysis of the weak pairing phase of p-wave superfluid states
of cold atoms [61] and of quantum wires embedded in p-wave superconductors [62].
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APPENDIX A: DIFFERENT POTENTIALS AND INTERACTION STRENGTHS

When the interaction strengths gij are different (and, for simplicity, V1 = V2), then Eqs. (1)-(2) can be written as

i
∂ψ

∂t
= −1

2
∆ψ + V ψ +

2
∑

j=1

(ψ†Gjψ)σjψ + α(t)Pψ, (A1)
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with

G1 =

(

g11 0
0 g12

)

, G2 =

(

g12 0
0 g22

)

. (A2)

Upon removing the Rabi term in Eq. (A1) by setting ψ = Uφ, with U given by Eq. (6), one gets

i
∂φ

∂t
= −1

2
∆ψ + V φ+

4
∑

j=1

(φ†G̃jφ)σjφ, (A3)

where G̃1 = L1−S2(L1−L2) and G̃2 = L2+S2(L1−L2), where the 2×2 matrices L1,2 are defined by L1 = G1−iSδ1A
and L2 = G2+iSδ2A, with A = −iS(σ1−σ2)+C(σ3−σ4), S = sin I(t), C = cosI(t) and δ1 = g11−g12, δ2 = g22−g12.
Furthermore G̃3 = −iCS(L1 − L2) = −G̃4. For g11 = g12 = g22 = g, then δ1 = δ2 = 0 and G̃1 = G̃2 = G and
G3 = G4 = 0, so that Eq. (7) is retrieved.

With different external potentials (V1(~r) 6= V2(~r)) and equal interaction strengths (g11 = g22 = g12 = g), Eqs.
(1)-(2) can be written in a matrix form as

i
∂ψ

∂t
=

1

2

(

−i~∇
)2

ψ +
(

ψ†Gψ
)

ψ + V1(r)σ1ψ + V2(r)σ2ψ + α(t)Pψ, (A4)

where

σ1 =

(

1 0
0 0

)

, σ2 =

(

0 0
0 1

)

, σ3 =

(

0 1
0 0

)

σ4 =

(

0 0
1 0

)

, (A5)

and G given in Eq. (4). It is yet possible to perform a decomposition permitting to formally write Eq. (A4) without
the Rabi term α(t)Pψ. We set ψ = Uφ, with

U =

(

u1 u3

u4 u2

)

: (A6)

the Rabi term vanishes, provided that the functions uj(~r, t) (j = 1, · · · , 4) obey the (linear) matrix equation

i
∂U

∂t
= −1

2
∆U + α(t)PU + V(~r) (u3σ3 − u4σ4) , (A7)

where V(~r) = V1(~r) − V2(~r). This matrix equation corresponds to four equations for u1, u2, u3, and u4, which are
grouped in two pairs, one for u1 and u4, namely

i
∂u1

∂t
= −1

2
∆u1 + α(t)u4, (A8)

i
∂u4

∂t
= −1

2
∆u4 − V(~r)u4 + α(t)u1, (A9)

and a similar for u2 and u3 (with V(~r) instead of −V(~r)). Eqs. (A8)-(A9) are two coupled linear Schrödinger equations,
and the difference between the potentials V enters as an effective potential in one of the two equations. When V = 0,
the result u1 = u2 = cosI(t) and u3 = u4 = −i sinI(t) is readily obtained.

With the functions uj defined by Eq. (A7), then φ satisfies the equation

i
∂φ

∂t
=

1

2

(

−i~∇
)2

φ+
(

φ†G̃φ
)

φ+ V1(r)σ1φ+ V2(r)σ2φ+ ~X · ~∇φ, (A10)

with G̃ = U †GU and ~X = ~X (~r, t) = −U−1~∇U . Eq. (A10) can be written in the form

i
∂φ

∂t
=

1

2

(

−i~∇ + i ~X
)2

φ+
(

φ†G̃φ
)

φ+ V1(r)σ1φ+ V2(r)σ2φ+ Yφ, (A11)

where Y =
(

~X 2 − ~∇ · ~X
)

/2, showing that, with different external potentials, an effective complex vector potential

acts on the multicomponent gas and the effective interaction strengths are both time- and space- dependent [since

the G̃ depends upon the U(~r, t)].
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APPENDIX B: TWO-MODE VARIATIONAL EQUATIONS

For the pulse (8) and at times t0 ≤ t ≤ t0+δ, the Lagrangian to be computed is given by L = i
2 〈ψ

†
V
∂ψV

∂t − ∂ψ†
V

∂t ψV 〉−
〈ψ†
V H̃ψV 〉, where

H̃ =

(

K − ℓ11
2 |ψv1|2 − ℓ12

2 |ψv2|2 γ
γ K − ℓ12

2 |ψv1|2 − ℓ22
2 |ψv2|2

)

, (B1)

ψV is defined in Eq. (31) and K = − 1
2
∂2

∂x2 . Then, one gets

L = −N1ϕ̇1 −N2ϕ̇2 − γ

√

ℓ22
ℓ11

F

(

ℓ22
ℓ11

)

√

N1N2 cos (ϕ1 − ϕ2) −
ℓ211
24
N1 −

ℓ222
24
N2 + µ+

+
ℓ211
12
N2

1 +
ℓ222
12
N2

2 +
ℓ22
8
ℓ12L

(

ℓ22
ℓ11

)

N1N2, (B2)

where the functions F (θ) and L(θ) are defined as

F (θ) ≡
∫ ∞

−∞

dy

cosh (y) cosh (θy)
; L(θ) ≡

∫ ∞

−∞

dy

cosh2 (y) cosh2 (θy)
. (B3)

Note that F (0) = π, F (1) = 2, L(0) = 2, and L(1) = 4/3, while both functions → 0 as θ → ∞. For small values of

δθ = θ − 1, one has F (θ) ≈ 2 − δθ + 24−π2

36 δθ2 and L(θ) ≈ 4
3 − 2

3δθ −
2(π2−15)

45 δθ2. For ℓ11 = ℓ22, from Eq. (B2) one
gets, apart from constant terms, the Lagrangian

L = −N1ϕ̇1 −N2ϕ̇2 − 2γ
√

N1N2 cos (ϕ1 − ϕ2) +
ℓ211
12
N2

1 +
ℓ222
12
N2

2 +
ℓ11ℓ12

6
N1N2. (B4)

Introducing the variables (33), the equations of motions for η and ϕ obtained from the Lagrangian (B2) are
{

η̇ = 2γ′
√

1 − η2 sinϕ,
ϕ̇ = −2γ′ η√

1−η2
cosϕ+ ∆E +Mη, (B5)

where

γ′ =
γ

2

√

ℓ22
ℓ11

F

(

ℓ22
ℓ11

)

, (B6)

M =
1

12

[

3

2
ℓ12ℓ22L

(

ℓ22
ℓ11

)

− ℓ211 − ℓ222

]

, (B7)

and

∆E =
1

24

(

ℓ222 − ℓ211
)

. (B8)

The variables η, ϕ are canonically conjugate dynamical ones with respect to the effective Hamiltonian

Heff =
M

2
η2 + 2γ′

√

1 − η2 cosϕ+ ∆E · η. (B9)

Equation (B9) is the Hamiltonian of a non-rigid pendulum, whose mass and length depend on the parameters ℓij .
For ℓ11 = ℓ22, then M = ℓ11(ℓ12 − ℓ11)/6, ∆E = 0 and γ′ = γ, retrieving Eq. (34) and the effective Hamiltonian
(35). When ℓ12 = ℓ11 = ℓ22, then the mass of the pendulum is vanishing. When ℓ11 6= ℓ22, then the presence of the
detuning ∆E favours self-trapping and can be studied as in [57].
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