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Experimental observation of oscillating and interacting matter wave dark solitons
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We report on the generation, subsequent oscillation and interaction of a pair of matter wave dark
solitons. These are created by releasing a Bose-Einstein condensate from a double well potential
into a harmonic trap in the crossover regime between one dimension (1D) and three dimensions
(3D). Multiple oscillations and collisions of the solitons are observed, in quantitative agreement
with simulations of the Gross-Pitaevskii equation. An effective particle picture is developed and
confirms that the deviation of the observed oscillation frequencies from the asymptotic prediction
v./V/2, where v, is the longitudinal trapping frequency, results from the dimensionality of the system

and the soliton interactions.

Solitons are one of the most prominent features of non-
linear dynamics emerging in diverse fields extending from
hydrodynamics to solid state physics and from nonlinear
optics to biophysics. Dark solitons are the fundamental
excitations of the defocusing nonlinear Schrédinger equa-
tion [I], and have the form of a localized “dip” on a back-
ground wave, accompanied by a phase jump [2]. These
localized waveforms have been demonstrated experimen-
tally in different contexts, including liquids [3], discrete
mechanical systems [4], thin magnetic films [5] [6], optical
media [7, [8 [@, 10, 11], and, more recently, Bose-Einstein
condensates (BECs) [12 13}, [14], 15 [16], 17, [I8]. The pos-
sibility of creating pairs of dark solitons [8| [I0] has stimu-
lated considerable interest in the repulsive [19] collisional
interactions between them [20], 2] 22]. The fundamen-
tal features of soliton collisions have a universal charac-
ter and thus, e.g., optical solitons interact essentially the
same way as matter-wave solitons.

In this letter we report on the systematic generation
of a pair of matter wave dark solitons which is subse-
quently oscillating and colliding in a harmonic trap. Our
experiment is performed in the crossover regime between
1D and 3D [23], where dark solitons exist and are ro-
bust [24]. This allows us to monitor, to our knowledge
for the first time in any field, multiple oscillations and
collisions of dark solitons, permitting the precise mea-
surement of their oscillation frequency and their mutual
repulsive interactions. Previous experiments have been
performed in a genuine 3D regime where dark solitons
are unstable due to the so-called snaking instability and
eventually decay into vortex rings [I4], 24]. In these ex-
periments solely their translation in the trap has been
shown [12], 13, 14]. Only very recently dark solitons have
been reported to undergo a single oscillation period in a
harmonic trap [18].

Different methods have been explored to create dark

solitons in Bose-Einstein condensates [12, 13| 14, 15} [16]
[I7, 18]. In our experiment, the solitons are generated by
merging two coherent condensates initially prepared in a
double well potential. The observed evolution in the trap,
after the preparation process, is shown in Fig. [l reveal-
ing that an even number of solitons is generated. This
formation process of the dark solitons can be regarded
as a consequence of matter wave interference of the two
condensates [25] 26] 27, 28]. Our procedure is very simi-
lar to the recently reported generation of vortices out of
a triple well potential [29].

Since the two dominant solitons are created with a dis-
tance of a few healing lengths, the repulsive interaction
between them leads to a significant modification of the os-
cillation frequency. The measured frequencies deviate up
to 16% from the single soliton asymptotic Thomas-Fermi
1D (TF1D) prediction of v, /v/2 [30] where v, is the longi-
tudinal trapping frequency. Our experimental results are
in quantitative agreement with numerical simulations of
the Gross-Pitaevskii equation (GPE). They reveal that
dark solitons can behave very similar to particles. This
is confirmed by explaining the essential features of the
dynamics within a simple physical picture regarding the
dark solitons as particles in an effective potential due
to the external trap and their mutually repulsive inter-
actions. Being in the crossover regime, the role of the
transverse degrees of freedom has to be included in the
effective potential in order to get quantitative agreement
between theory and experiment [31].

Before elaborating on the theoretical models and sys-
tematic studies we will briefly describe the details of the
experimental setup. We prepare a BEC of 8"Rb in the
|F =2, mp =2) state containing about N = 1500 atoms
in a double well potential [32]. This potential is realized
by superimposing a far detuned crossed optical dipole
trap (A = 1064 nm) and a one dimensional optical lattice
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FIG. 1: Observation of the time evolution of dark solitons in
a harmonic trap. a) Experimental observation of the dynam-
ics of the longitudinal atomic density for the case of N = 1700
atoms and trapping frequencies (v, v, )=(53 Hz,890 Hz) after
a short time of flight. The shown images are averaged over
10 realizations of the experiment. b) Result of the numer-
ical integration of the 3D GPE taking into account the full
preparation process. ¢) The theoretical prediction taking into
account the finite spatial as well as temporal resolution of the
experiment.

(A = 843 nm). The first beam of the dipole trap has a
gaussian waist of 5 pm and results in a strong transversal
and weak longitudinal confinement. The second beam or-
thogonally crosses the first one and has an elliptic shape
(60 pm x 230 pm waist) leading to an extra adjustable
confinement only in the longitudinal direction of the trap.
We start our experiments with a transversal frequency of
the total harmonic trap of v; = 408 Hz and a longitu-
dinal one of v, = 63 Hz. This corresponds to a power
of about 1 mW in the first beam and 400 mW in the
second beam. The barrier height of the optical lattice is
chosen to be approximately 1 kHz and the lattice spacing
is 5.7 pm. This results in a double well potential with a
well distance of 5.4 pm.

In order to start with a well defined phase between the
two condensates the barrier height is chosen to be low
enough such that thermal phase fluctuations are negligi-
ble for the measured temperature of T' ~ 10 nK [33] (the
critical temperature for condensation is 7. ~ 110 nK)

and high enough so that high contrast solitons are
formed. Switching off the optical lattice transforms the
double well potential into a harmonic trapping potential.
Right after the switching off, we ramp to the trap param-
eters of interest (v, ) and use an optimized ramping
time to minimize the excitation of quadrupole oscillations
(e.g. from (v,,v,)=(63 Hz, 408 Hz) to (53 Hz, 890 Hz)
within 10 ms for N = 1700 atoms, or to (58 Hz, 408 Hz)
within 3 ms for N = 950). The distance between the
formed solitons can be adjusted by choosing different sets
of final trap frequencies. Imaging the atomic density af-
ter a certain time of evolution in the harmonic trap is
done using standard absorption imaging. Although our
optical resolution of ~ 1 pym allows the direct observation
of the solitons in the trap, we use a short time of flight
on the order of 1 ms to enhance the contrast.

In our experiment the distance D = 5.4 pm between
the two colliding condensates is well within the regime
where the formation of dark solitons is expected due
to nonlinear interference. Dark solitons are generated
if the distance D is smaller than the critical distance
D. = W(G%)l/?’ = 25.8 pm with N being the num-
ber of atoms, as the s-wave scattering length, v, the
longitudinal trap frequency and m the atomic mass; if
D < D., the interaction-energy exceeds the kinetic en-
ergy and hence nonlinear dynamical phenomena are ex-
pected, such as the formation of dark soliton pairs [26].
This is confirmed by 3D GPE simulations of the soliton
formation and their subsequent evolution in the trap as
shown in Fig. Including the optical and time reso-
lution, the experimentally observed density profile evo-
lution is well reproduced. A dominant pair of solitons
oscillates close to the center of the cloud and we can also
distinguish additional pairs of solitons with much lower
contrast. In the following, we focus on the dynamics of
the dominant central pair and show that its oscillation
frequency is well described within a two soliton approxi-
mation.

We experimentally investigate the oscillation frequency
of the dominant soliton pair for different trap parameters
and different inter-soliton distances. A typical data set
consists of 50 time steps and 10 pictures per time step.
Our data does not allow to distinguish if the two solitons
do or do not cross at the collision point. Hence, for each
time step we measure the soliton distance which is well
defined and reconstruct its time evolution from which we
extract an oscillation frequency as shown in the inset of
Fig.[2l The obtained frequency is divided by two in order
to compare it to the oscillation frequency expected for a
single trapped soliton. The shot to shot reproducibility
of the soliton dynamics up to 100 ms allows the obser-
vation of up to 7 oscillation periods and hence the de-
duction of the frequency with high accuracy. The typical
statistical experimental error in the frequency measure-
ment is +1.5%. Fig. [2[ shows the results of our frequency
measurements and their comparison with numerical sim-



ulations for the motion of two trapped solitons using
the Nonpolynomial Schrédinger equation (NPSE) [34].
Note that this equation has been shown to be an excel-
lent approximation to the 3D GPE in the dimensionality
crossover regime where our experiments are performed,
especially for studying dark soliton dynamics [31].

In order to capture the essentials of the dynamics of
the experimentally realized soliton pairs, we initialize the
condensate with two solitons in the simulations such that
the rms amplitude of their oscillating motion matches
the one observed experimentally. The good agreement
between numerics and experiments shows that the dy-
namics produced by our method is well described within
a two soliton approximation even though extra solitons
are produced. From our experiment and the NPSE sim-
ulations, we observe an upshift up to 16% from the
v,/ V2 prediction which was the first value theoretically
derived for the oscillation frequency of a single trapped
soliton [30]. It is expected to be valid in a 1D trap in
the asymptotic Thomas-Fermi limit (NQas/a; < 1 and
(N/VQ)as/a )3 > 1) [23] where Q = v, /v, < 11is
the aspect ratio of the trap and a, the transverse har-
monic oscillator length.

We now give a theoretical description of the different
effects leading to the observed upshift for our situation of
two oscillating and interacting dark solitons including the
dimensionality of the trap. We consider the two solitons
as particles moving in an effective potential which arises
from the combination of a harmonic potential due to the
trap [30] (see Fig. [3h) and a repulsive potential due to
the interaction between the solitons [35]. Because of the
spatially symmetric preparation, the effective potential
is a symmetric double well potential which is depicted in
Fig. [3p. This potential can be expressed as a function of
the distance z of each of the solitons from the trap center
and its time derivative z:

[\v]

pB?

N 2%
V(z,2) = (2m1154) + 2m cosh?(2B2/€)

(1)

where B = /1 — (£/£)2(h/p)? denotes the darkness of
the solitons, p is a typical interaction energy on the order
of the chemical potential, £ = y/h/(mu) the associated
healing length and v4 the oscillation frequency of a sin-
gle trapped soliton. The frequency of the motion is ob-
tained by solving the Euler-Lagrange equation of motion
associated with the Lagrangian £(z,2) = 22/2 — V(2, 2).
To obtain quantitative agreement, the model has to take
into account correctly both the free propagation of the
solitons in the trap when they are far away from each
other (z > ) and the repulsive interaction when they
approach each other.

Good estimates for the single soliton parameter vqg
and the soliton interaction strength p can be calcu-
lated as follows. The single soliton frequency vy is ob-
tained by numerical integration of the NPSE describing
a single soliton. Because our experimental parameters
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FIG. 2: Comparison between experimentally obtained soliton
oscillation frequencies and NPSE simulation for one and two
solitons. Each frequency point is deduced from the temporal
evolution of the soliton distance as shown in the inset. Dif-
ferent symbols correspond to different aspect ratios €2 of the
trap. NPSE simulations are represented by solid lines for the
two soliton case, and by dashed lines for the respective single
soliton oscillations. The error bars on the measured frequen-
cies account for statistical errors on the measured soliton and
trap frequencies and systematic errors on the atom number
used to calculate the healing length.

2~ 0.06—0.14 and NQas/a, ~ 1.2—1.8 are both in the
crossover regime and far from the Thomas-Fermi limit,
substantial corrections to the asymptotic value v, /v/2 are
expected. Therefore the oscillation frequency of a single
dark soliton is upshifted by a few percent from the asymp-
totic value as discussed in detail using the Bogoliubov-de
Gennes analysis of the NPSE in [31] (see Fig. Bh). Our
simulations reveal that for the example of our parame-
ter sets with © ~ 0.06 this upshift is 5% (see Fig. [3).
Note that the frequencies obtained by 1D GPE simula-
tions are approximately 2% higher than the asymptotic
limit because the Thomas-Fermi limit is not reached for
our experimental parameters as discussed in [36]. The
effect of dimensionality of the system, i.e. the role of the
transverse degrees of freedom which is captured only by
the NPSE or the 3D GPE, accounts for the remaining
3%. Fig. shows the comparison between the asymp-
totic limit v, /v/2 and the single soliton NPSE simulation
for one specific trap. The simulation results for the three
different parameter sets used in the experiment are shown
in Fig. As expected, the single soliton frequency in-
creases with the aspect ratio.

As shown in Fig. Bk, the repulsive interaction between
the solitons results in an upshift of the oscillation fre-
quency, compared to the single soliton case, that strongly



depends on the oscillation amplitude. Our model accu-
rately reproduces the upshift if the interaction parameter
1 is set to be the chemical potential of the condensate ob-
tained from the 3D GPE equation. In our experimentally
accessible parameter range, the agreement of the model
with NPSE simulations is better than 5%. This allows
us to clearly identify the significant role of the repulsive
interactions and shows that the effective repulsive poten-
tial in Eqn. obtained in the 1D homogeneous case is
a good approximation to our complex situation.
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FIG. 3: The oscillation dynamics of dark solitons in a trapped
BEC is well captured in an effective particle picture. For one
soliton the particle moves in a harmonic trap (a), while for
two solitons an additional barrier due to the repulsive inter-
action appears (b). The dependence of the soliton oscillation
frequency on the oscillation amplitude from the trap center
is shown in (c¢). The dashed line shows the TF1D GPE re-
sult, the thin solid line indicates the upshift mainly due to the
dimensionality, while the thick solid line includes the upshift
due to the inter-soliton interaction obtained by solving the
NPSE. The dotted line represents the result obtained by the
simple effective particle model from Eqn. (TJ).

In conclusion we controllably create pairs of dark soli-
tons by colliding two atomic clouds released from a dou-
ble well potential in a harmonic trap. The full dynamics
of multiple dark soliton oscillations and collisions can be
observed for the first time, allowing for precise frequency
measurements and showing that dark solitons are still
stable after several collisions. The experimentally ob-
served total upshifts from the TF1D frequency prediction
are up to 16%. A simple effective particle picture con-
firms that the final oscillation frequency of two solitons is
affected by two effects namely the single soliton frequency

upshift and the inter-soliton interaction. The presented
robust method for preparing solitonic excitations will be
a starting point for further studies of dark soliton dy-
namics in the presence of designed potentials as well as
for a possible route towards multi-soliton interaction and
perhaps even dark soliton gases.
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