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In this paper we analyze the existence, stability, dynamical formation and mobility properties
of localized solutions in a one-dimensional system described by the discrete nonlinear Schrédinger
equation with a linear point defect. We consider both attractive and repulsive defects in a focusing

lattice.

Among our main findings are: a) the destabilization of the on-site mode centered at

the defect in the repulsive case; b) the disappearance of localized modes in the vicinity of the
defect due to saddle-node bifurcations for sufficiently strong defects of either type; ¢) the decrease
of the amplitude formation threshold for attractive and its increase for repulsive defects; and d)
the detailed elucidation as a function of initial speed and defect strength of the different regimes
(trapping, trapping and reflection, pure reflection and pure transmission) of interaction of a moving

localized mode with the defect.

PACS numbers: 63.20.Pw, 63.20.Ry

Keywords: Nonlinear Schrodinger equation; Solitons; Discrete Breathers

I. INTRODUCTION

The past few years have witnessed an explosion of in-
terest in discrete models that has been summarized in
a number of recent reviews [1]. This growth has been,
to a large extent, motivated by numerous applications
of nonlinear dynamical lattice models in areas as broad
and diverse as the nonlinear optics of waveguide arrays
[2], the dynamics of Bose-Einstein condensates in peri-
odic potentials [3], micro-mechanical models of cantilever
arrays [4], or even simple models of the complex dynam-
ics of the DNA double strand [5]. Arguably, the most
prototypical model among the ones that emerge in these
settings is the, so-called, discrete nonlinear Schrédinger
equation (DNLS) [6, [71]. DNLS may arise as a direct
model, as a tight binding approximation, or even as an
envelope wave expansion: the DNLS is one of the most
ubiquitous models in the nonlinear physics of dispersive,
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(Spain)

discrete systems.

Perhaps the first set of experimental investigations
that generated an intense interest in DNLS type equa-
tions was in the area of nonlinear optics and, in partic-
ular, in fabricated AlGaAs waveguide arrays [§]. In the
latter setting a wide range of phenomena such as dis-
crete diffraction, Peierls barriers (the energetic barrier
that a wave needs to overcome to move over a lattice —
see details below), diffraction management (the periodic
alternation of the diffraction coefficient) [9, [10] and gap
solitons (structures localized due to nonlinearity in the
gap of the underlying linear spectrum) |11] among others
[12] were experimentally observed. These phenomena, in
turn, led to a large increase also on the theoretical side of
the number of studies addressing such effectively discrete
media.

A related area where DNLS, although it is not the
prototypical model, it still yields useful predictions both
about the existence and about the stability of nonlinear
localized modes is that of optically induced lattices in
photorefractive media such as Strontium Barium Nio-
bate (SBN). Since the theoretical inception of such a
possibility in Ref. [13], and its experimental realization
in Refs. |14, [15, [16], there has been an ever-expanding
growth in the area of nonlinear waves and solitons in
such periodic, predominantly two-dimensional, lattices.
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A wide array of structures has been predicted and ex-
perimentally observed in lattices induced with a self-
focusing nonlinearity, including, e.g., discrete dipole |17],
quadrupole [18], necklace |19] and other multi-pulse pat-
terns (such as e.g., soliton stripes [20]), discrete vortices
[21], and rotary solitons [22]. Such structures have a def-
inite potential to be used as carriers and conduits for
data transmission and processing, in the setting of all-
optical communication schemes. A recent review of this
direction can be found in Ref. [23] (see also Ref. |24]).

Finally, yet another independent and completely dif-
ferent physical setting where such considerations and
structures are relevant is that of soft-condensed mat-
ter physics, where droplets of the most recently discov-
ered state of matter, namely of Bose-Einstein conden-
sates (BECs), may be trapped in an (egg-carton) optical
lattice (OL) potential produced by counter-propagating
laser beams in one, two or even all three directions [25].
The field of BEC has also experienced a huge growth over
the past few years, including the prediction and manifes-
tation of modulational instabilities (i.e., the instability
of spatially uniform states towards spatially modulated
ones) [26], the observation of gap solitons [27], Landau-
Zener tunneling (tunneling between different bands of the
periodic potential) [28] and Bloch oscillations (for matter
waves subject to combined periodic and linear potentials)
[29] among many other salient features; reviews of the
theoretical and experimental findings in this area have
also recently appeared in Refs. [30, 31].

While DNLS combines two important features of many
physical lattice systems, namely nonlinearity and period-
icity, yet another element which is often physically rele-
vant and rather ubiquitous is disorder. Localized impu-
rities are well-known in a variety of settings to introduce
not only interesting wave scattering phenomena [32], but
also to create the possibility for the excitation of impu-
rity modes, which are spatially localized oscillatory states
at the impurity sites [33]. Physical applications of such
phenomena arise, e.g., in superconductors [34], in the
dynamics of the electron-phonon interactions [35], in the
propagation of light in dielectric super-lattices with em-
bedded defect layers [36] or in defect modes arising in
photonic crystals [37).

In the context of the DNLS, there have been a number
of interesting studies in connection to the interplay of
the localized modes with impurities. Some of the initial
works were either at a quasi-continuum limit (where a
variational approximation could also be implemented to
examine this interplay) [38] or at a more discrete level
but with an impurity in the coupling [39] (see also in the
latter setting the more recent studies of a waveguide bend
[40, 41] and the boundary defect case of Ref. [42]). More
recently the experimental investigations of Refs. [43, [44]
motivated the examinations of linear [45] and nonlinear
[45,146] defects in a DNLS context. In the photorefractive
context, further recent experimental work has illustrated
blocking effects to a probe beam from either bright or
dark soliton beams in defocusing waveguide arrays [47].

Our aim in the present work is to systematically ex-
amine the properties of the focusing DNLS equation in
the presence of both an attractive and a repulsive linear
impurity. Our first aim is to present the full bifurcation
diagram of the localized modes in the presence of the
impurity and how it is drastically modified in compari-
son to the case of the homogeneous lattice. The relevant
bifurcations are quantified whenever possible even ana-
lytically, in good agreement with our full numerical com-
putations. A second problem that is examined is that
of the threshold for the formation of solitary waves and
how it is systematically affected by the presence of im-
purities both in the repulsive and in the attractive case.
This is motivated by the recent examination of the rel-
evant threshold in the homogeneous lattice [48] and its
connection with experiments in focusing [49] (and even
defocusing [50]) waveguide arrays. Finally, in the same
spirit as that of Ref. [45], but for attractive and repulsive
impurities, we systematically investigate the interaction
of an incoming solitary wave with the localized impurity,
identifying the main observed regimes as being trapping,
reflection with trapping, pure reflection and pure trans-
mission.

This paper is organized as follows. In section II, we
introduce the model. In Section III, we analyze the exis-
tence and stability of localized excitations in a system de-
scribed by the DNLS with the linear impurity. In Section
IV, we examine the (energy/initial amplitude) threshold
for soliton formation. In Section V we present our results
related to the interaction of moving localized excitations
with the impurity and, finally, in Section VI, we summa-
rize our findings and present our conclusions.

II. THE MODEL

We consider a discrete system with a defect described
by the DNLS equation as

“ﬁn + '7|"/’n|2wn + C(Ynt1 +Pn—1) + anpn =0, (1)

where v, is the complex field at site n (n = 1...N); v
is the anharmonicity parameter, C' the coupling constant
and parameters «,, allow for the existence of local, linear
inhomogeneities. In this paper, we consider a single point
defect, thus oy, = ady n,, that can be positive (attractive
impurity) or negative (repulsive impurity). In general,
the presence of an on-site defect would affect the near-
est neighbor coupling, and Eq. () should be modified
to take this effect into account, as in Ref. [51]. On the
other hand, this inhomogeneity in the coupling can be
avoided using different techniques, for example, in non-
linear waveguide arrays, changing slightly the separation
between defect waveguide and its nearest neighbors, as it
has been done in Ref. [9]. In this work, we will assume
that the coupling parameter C' is independent on the site
and positive.

Upon renormalization of parameters, we consider v =
1 (focusing case). Note that the defocusing case (y <



0) can be reduced, under the staggering transformation
Y — (—1)™,, to the previous one with opposite sign
of the impurity a.. Also, under the transformation ,, —
1, €2'Ct Eq. (@) can be written in the standard form

“/)n + "Y|7/}n|27/}n + CAYy + antPn =0, (2)

where Ay, = ¥p11 + Y1 — 2, is the discrete Lapla-
cian. Throughout this work, we use the form given by
Eq. @).

The DNLS () conserves two dynamical invariants, the
Hamiltonian

H:—ngw+aﬁmm+ﬁwaH%WﬁW$

n

with canonical variables ¢, = v, and p,, = @@}, and the
(squared L?) norm or optical power

P ="l (4)

III. STATIONARY SOLUTIONS

In order to study solitons in the system described by
Eq. (@), we aim to look for stationary solutions with fre-
quency w. Thus, substituting

bn = €th(,0n, (5)
The stationary analog of Eq. () then reads

—wopn + C(Gni1 + 1) + ¢ + angn =0.  (6)

Some of the properties of solitons are related to the ex-
istence (or not) and properties of linear localized modes.
These modes arise when an inhomogeneity appears and
can be obtained from the linearized form (around the
trivial solution ¢, = 0,V n) of Eq. [@). In this case,
and considering an inhomogeneity located at the first site
of the chain and with periodic boundary conditions, the
problem reduces to solving the eigenvalue problem

a C 0 C oo ®o
cCo0oCo 0 o1 o1

0 C0C . . W . ()
. .. . Co0cC dN—2 PN_2

c . . . COQO ON-1 PN-1

that is a particular case of the eigenvalue problem studied
in Ref. [52]. There it was shown that, if « # 0, the
solution corresponds to N — 1 extended modes and an
impurity localized mode. Also, if N becomes large, the
frequencies of extended modes are densely distributed in
the interval 2 € [-2C,2C] and the localized mode can
be approximated by

a > 0 (attractive impurity):

bo=n|(35+0) "+ (a5 +0) | ®

2C 2C
and
o2
w=2018, B= /11 (9)

with an in-phase pattern (see bottom-right panel in

Fig. ).

a < 0 (repulsive impurity):

—n n—N
b= (10 | (55 48) "+ D (55+0)" .
(10)
and
w=-20l8, By

with a staggered pattern (see bottom-left panel in Fig. [T).
In both cases ¢ is an arbitrary constant. In Fig. [l we
depict the linear mode spectrum as a function of the inho-
mogeneity parameter « (top panel) and examples of the
profiles of the ensuing localized modes (bottom panels).

In order to explore the existence and stability of the
nonlinear stationary states described by Eq. (@), we have
used the well-known technique based on the concept of
continuation from the anti-continuum (AC) limit using a
Newton-Raphson fixed point algorithm [53]. Also, a stan-
dard linear stability analysis of these stationary states
has been performed, using the ansatz

On = [dsol + €(an exp(At) + b, exp(A*t)] exp(iwt), (12)

and solving the ensuing eigenvalue problem. ¢go is the
solution of Eq. (@) with frequency w, A is the linearization
eigenvalue and \* its complex conjugate. Due to symme-
tries of the system, the eigenvalues appear in quartets (if
A is an eigenvalue, so are \*, —\ and —\*). Furthermore,
the U(1) invariance of the equation (the so-called phase
or gauge invariance) leads to the existence of a pair of
zero eigenvalues. If the remaining eigenvalues are imagi-
nary, the state is linearly stable and, on the contrary, the
presence of a eigenvalue with a nonzero real part implies
instability.

In the homogeneous lattice case of a = 0, fundamental
stationary modes are well known to exist and be centered
either on a lattice site or between two adjacent lattice
sites [6]. The site-centered solitary waves are always sta-
ble, while the inter-site centered ones are always unstable
16].

In order to study the effects of the inhomogeneity on
the existence and properties of localized modes, we have
performed a continuation from the homogeneous lattice
case of « = 0. We found that, if « increases, (o > 0,
attractive impurity case), the amplitude of the stable on-
site mode decreases, while if o decreases (a < 0, repulsive
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FIG. 1: Linear modes: the top panel shows the dispersion
relation as function of impurity parameter o (notice the im-
purity mode outside of the interval [-2C,2C]). The linear
modes are normalized (Y, |¢n|> = 1), the impurity is lo-
cated at n = 0, and periodic boundary conditions are consid-
ered. The bottom panels depict examples of the profiles of
the impurity modes. Bottom-left panel: profile for @« = —1
(repulsive impurity), and bottom-right panel profile for o = 1
(attractive impurity). In all cases N = 200 and C = 1.

impurity case), in general, the stable on-site soliton local-
ized at the impurity merges with the unstable inter-site
centered one localized between impurity and its neigh-
boring site (beyond some critical value of |«|) and the
resulting state becomes unstable. Notice that, at heart,
the latter effect is a pitchfork bifurcation as the on-site
mode collides with both the inter-site mode centered to
its right, as well as with the one centered to its left.

In Fig. @l we show a typical bifurcation scenario where,
for a fixed value of the frequency w and the coupling pa-
rameter C, we depict the mode power P corresponding
to different on-site and inter-site localized modes as a
function of impurity parameter «. If we denote as ng the
site of the impurity, when « > 0 increases, we found that
the unstable intersite soliton localized at n = ng + 0.5
disappears in a saddle-node bifurcation with the stable
site soliton localized at n = ng + 1. Also, if we continue
this stable mode, when « decreases, and for a given value

2.75¢

2.77

2.651

2.6

2.55

d)

FIG. 2: Bifurcation diagram of stable (solid line) and unstable
(dashed line) nonlinear modes. Shown is the power P as a
function of the impurity parameter a. In all cases N = 100
and w = 2.5. The top panel is for C = 1.0, while the bottom
one is for C = 0.2. The branch designation is as follows:
a) Unstable soliton centered at the impurity (n = ng), b)
stable on-site soliton centered at n = no, ¢) Unstable inter-
site soliton centered at n = ng + 0.5, d) stable on-site soliton
at n = no + 1, e) unstable inter-site soliton at n = no + 1.5,
f) stable on-site soliton at n = mg + 2, g) unstable inter-
site soliton at n = ng + 2.5, and h) stable on-site soliton at
n = no + 3. The stable on-site mode located at the impurity,
in the homogeneous case, disappears for a coupling value of
C ~ 1.25 due to resonances with the phonon band.

a = a. < 0, it also disappears together with the unsta-
ble mode localized at n = ng+ 1.5 through a saddle-node
bifurcation. If we increase again the impurity parame-
ter, this unstable mode localized at n = ng + 1.5 bifur-
cates with the stable site mode localized at n = ng + 2
for a critical value of parameter a = o, > 0 through a
saddle-node bifurcation again, and it could be possible
to continue this bifurcation pattern until a site ng + k,
where the value of site k increases with the value of the
coupling C' and the frequency w parameters. This sce-
nario is similar to the one found in previous studies with
different kinds of impurities [40, [46] and appears to be
quite general. It should be noted that when the coupling



parameter increases, more bifurcations take place, in a
narrower interval of power P and impurity parameter a
values.

Some of the particularly interesting experimentally
tractable suggestions that this bifurcation picture brings
forward are the following;:

e A localized mode centered at the impurity may be
impossible for sufficiently large attractive impuri-
ties (because the amplitude of the mode may de-
crease to zero), while it may be impossible to ob-
serve also in the defocusing case due to the insta-
bility induced by the pitchfork bifurcation with its
neighboring inter-site configurations.

e A localized on—site mode centered at the neighbor-
hood of the impurity should not be possible to lo-
calize for sufficiently large impurity strength both
in the attractive and in the repulsive impurity case.

We have also performed a more detailed study of the
bifurcation between the on-site nonlinear mode centered
at the impurity and its inter-site and one-site neighbor.
Thus, we have determined that, for a given value of the
coupling parameter C, the corresponding critical value of
impurity parameter o = a.. Note that this bifurcation
takes place only if « is negative (repulsive impurity). In
case of a positive (attractive impurity), the inter-site so-
lution disappears in a saddle-node bifurcation with the
on-site wave centered at the site next to the impurity.
In these cases, via an analysis of invariant manifolds of
the DNLS map, and following the method developed in
Ref. [54] (see Appendix A), some approximate analytical
expressions corresponding to this bifurcation point can
be obtained. Fig. Bl shows the comparison between the
exact numerical and the approximate analytical results.
In general, for a fixed value of the coupling parameter C,
the critical value of the frequency increases with |a.

IV. THRESHOLD FOR SOLITARY WAVE
FORMATION

We now examine the problem of solitary wave forma-
tion, i.e., whether there exists a minimal, say, amplitude
threshold for a compactum of initial data w,,(0) = Ad,
to nucleate a localized mode. The recent work of Ref. [4§]
suggests that a good approximation to the amplitude of a
single-site initial condition at site k required to nucleate
a nonlinear localized mode at that site is given by

A4
-5 (2C — ay)A? < 0. (13)

In this expression, «y is the impurity parameter value at
site k, and A the amplitude of the initial condition [4§].

In order to study the effect of the impurity on this mag-
nitude, we have performed numerical simulations initially
“seeding” energy at different sites of the lattice (either at

FIG. 3: Bifurcation loci corresponding to the bifurcation be-
tween the on-site localized mode at the impurity (n = no) and
its neighbor inter-site breather (n = no+0.5) (top panel), and
to the bifurcation between the on-site localized mode next to
the impurity (n = no + 1) and its neighbor inter-site breather
(n = no + 0.5) (bottom panel), for different values of pa-
rameter C. Dashed lines correspond to numerical results and
continuous lines to approximate analytical calculations.

the impurity or at its neighbors). After a transient state,
we have analyzed the existence of localized modes on the
chain. To measure the localization of a state we have
introduced the localization of an initial excitation of am-

plitude A, L(A), as

S, loal?
REAL 14

Thus, for a single excited particle we have L = 1, and
if we have n excited particles (with the same amplitude,
and the rest with zero amplitude), L = 1/n. In general,
1/N<L<L1.

In Fig. @l we summarize our numerical results and ana-
lytical prediction. In general, when a single perturbation
is located on the impurity, numerical and analytical re-
sults are in good agreement (left panel of Fig. ). On the
other hand, when the perturbation is located in other
(nearby to the impurity) sites of the chain, the excita-
tions of impurity dynamics play a significant role, and

L(A) =



FIG. 4: Localization as function of amplitude A and impurity
parameter « for a single excitation ¢n(t = 0) = Adn,k. The
left panel corresponds to the excitation localized at the impu-
rity (k = no), the center panel to the excitation localized at
the first neighbor of the impurity (k = ng+ 1), while the right
panel to the second neighbor of the impurity (k = ng + 2).
The solid line depicts in each case the theoretical threshold
given by Eq.([I3). In all cases N = 200 and C = 1.0.

numerical and analytical thresholds show a slight diver-
gence (middle panel of Fig. d]). However, when the per-
turbation is located far enough of the impurity (that for
the purposes of formation of a localized mode, we return
to the limit of a “homogeneous” lattice), the effect of the
impurity is negligible, and the threshold corresponding
to homogeneous case is in good agreement with the nu-
merical data, as can be appreciated in the right panel of
Fig. @

These results also suggest an immediately testable ex-
perimental prediction, namely that thresholds such as the
ones reported in Ref. [49] (see also Ref. [50] for the defo-
cusing case) should be directly affected by the presence
of a localized impurity. In particular, an attractive lin-
ear impurity facilitates the formation of localized modes,
by decreasing the threshold of their formation, while the
opposite is true for repulsive impurities that increase the
corresponding threshold.

V. INTERACTION OF A MOVING LOCALIZED
MODE WITH A SINGLE IMPURITY

Early studies of the DNLS had shown that discrete
solitary waves in the DNLS can propagate along the
lattice with a relatively small loss of energy [55], and
more recent work suggests that such propagating solu-
tions might exist, at least for some range of control pa-
rameters [7, 56, 57); nevertheless, genuinely traveling so-
lutions are not present in the DNLS, but only in variants
of that model (such as the ones with saturable or cubic-
quintic nonlinearity) [58].

0.8

0.6

0.4

FIG. 5: Power trapping (left), reflection (center) and trans-
mission (right) coefficients as function of impurity parameter
« and initial thrust ¢. In all cases N = 1000 and C = 1.

In this section we study the interaction of propagating
(with only weak radiative losses) localized modes with
the impurity. Thus, we consider a nonlinear localized
mode, far enough from the impurity, of frequency w, and
perturb it by adding a thrust ¢ to a stationary breather
on |59] , so that:

n(t =0) = ¢, (15)

This is similar in spirit to the examination of Ref. [45],
although we presently examine both attractive and re-
pulsive impurities. In the remainder of this study we
consider w = 2.5 and C' = 1, but we have checked that a
similar scenario emerges for other values of the frequency
w.

In general, if ¢ is large enough, the soliton moves with a
small loss of radiation. We have calculated, as a function
of parameters ¢ and «, the power and energy that remains
trapped by the impurity, reflected and transmitted along
the chain, and determined the corresponding coefficients
of trapping, reflection and transmission, defined as the
fraction of power (energy) that is trapped, reflected or
transmitted. In Fig. Bl we summarize our results.

We can essentially distinguish four fundamental
regimes:

(a) Trapping. If the parameters ¢ and « are small
enough, and the impurity is attractive, nearly all
the energy remains trapped at the impurity, and
only a small fraction of energy is lost by means of
phonon radiation. An example of this phenomenon
is shown in Fig. [l (top). In this case, the cen-
tral power (power around the impurity) before the
collision is nearly zero. When the localized mode
reaches the impurity, it loses power as phonon ra-
diation and remains trapped. The analysis of the
Fourier spectrum of this trapped breather, carried
out after the initial decay and at an early stage of
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6: Trapping: Contour plot corresponding to the power

of soliton P as function of site n and time ¢ (top panel) and
Fourier components of the trapped soliton calculated soon

after

the collision (bottom panel). The parameters are o =

0.2, g = 0.3, w = 2.5, C = 1 and the impurity is located at
n =0.

the evolution, shows a frequency close to the ini-
tial soliton frequency, as shown in Fig. @l (bottom).
We have observed that, in general, this frequency
is slightly smaller than that of the incident soliton,
and, in consequence, it has even smaller energy (in
absolute value) and power than the corresponding
nonlinear mode with the frequency of incident soli-
ton.

In this particular case, corresponding to ¢ = 0.3
and « = 0.2, the initial incident wave (after pertur-
bation) has power P = 2.61 and energy E = —5.40
and the stationary mode, trapped at the impu-
rity, with the same frequency, has P = 2.17 and
E = —4.73. Thus, the incident breather can acti-
vate this nonlinear mode, and nearly all energy and
norm remains trapped. In all simulations we have
detected similar phenomena, as reported recently
in a Klein-Gordon system [60, [61].

Trapping and reflection. If the impurity is attrac-
tive, but strong enough, some fraction of energy re-

mains trapped by the impurity, but a considerable
amount of it is reflected. The reflected excitation
remains localized. This case is similar to the pre-
vious one, but now the incident traveling structure
has enough energy and norm to excite a stationary
mode centered at the impurity, remaining localized
and give rise to a reflected pulse. A typical case
is shown in Fig. [{l corresponding to ¢ = 0.6 and
a = 1.0. The incident wave has power and energy
P =2.61 and £ = —4.79, and the stationary non-
linear mode centered at the impurity, with the same
frequency, P = 0.76 and F = —1.79. When the in-
cident breather reaches the impurity, it excites the
nonlinear mode, and, after losing some energy (in
absolute value), part of it remains localized, and an-
other part is reflected. Also, in our numerical sim-
ulations, we have detected, as in the previous case,
that the frequency of the remaining trapped mode
is slightly lower than that the incident breather, so
it has even smaller energy (in absolute value) and
power than the corresponding nonlinear mode with
the frequency of incident soliton.

In general, we have found that a necessary condi-
tion to trap energy and power by the impurity is
the existence of a nonlinear localized mode centered
at the impurity, with similar frequency, and energy
(in absolute value) and power smaller than that of
the corresponding incident soliton.

Reflection with no trapping. Here, we have to dis-
tinguish two cases. If the impurity is repulsive, and
q small enough, neither trapping, nor transmission
occur. Instead, all energy is reflected, and the trav-
eling nonlinear excitation remains localized. In this
case, as shown in Fig. B (top), the incident wave
has no energy and power to excite the localized
mode. In a typical case, i.e., w = 2.5, ¢ = 0.6
and o = —0.5, the incident soliton has energy and
power £ = —4.79 and P = 2.61, and the nonlin-
ear localized mode on the impurity with the same
frequency E = —8.038 and P = 3.77. No trapping
phenomenon occurs, and the pulse is reflected.

On the other hand, if the impurity is attractive
and strong enough, i.e. ¢ = 0.7, w = 2.5 and o =
2.0, the frequency of the soliton is smaller than the
corresponding to linear impurity mode (wy, ~ 2.82),
and all the energy is reflected. This is in accordance
with the necessity of a nonlinear localized mode at
the impurity site in order for the trapping to occur.

Transmission with no trapping. If |a| is small
enough, and ¢ high enough, transmission with no
trapping occurs, as shown in Fig. [ (bottom).
There exists a critical value of ¢ = ¢q. > 0 that,
if ¢ > g., the incident soliton crosses through the
impurity. The value of ¢, grows with |a|. In the
case where ¢ < q., if @ < 0, reflection with no
trapping occurs, while if a > 0, trapping with no
reflection phenomenon takes place.



FIG. 7: Trapping and reflection: Contour plot corresponding
to the power of soliton P as a function of site n and time ¢ (top
panel) and Fourier components of the trapped soliton calcu-
lated soon after the collision (bottom panel). The parameters
are « = 1.0, ¢ = 0.6, w = 2.5, C = 1 and the impurity is
located at n = 0.

Our results related to trapping, reflection and trans-
mission phenomena are in agreement with some results
recently obtained, using a different approach, in a simi-
lar system [45]. In this work, where approximate discrete
moving solitons with fixed amplitude are generated using
a continuous approximation, the authors study the trap-
ping process by a linear and a nonlinear attractive impu-
rity. In this latter framework, trapping can be explained
by means of resonances with the linear localized mode.
In our case, where nonlinear effects become stronger, all
this phenomena are related with resonances with a non-
linear localized mode.

Finally, a very interesting phenomenon occurs when
parameter « is repulsive and small (in absolute value)
enough. In this case, the solitary wave can be reflected
or transmitted depending on its velocity. Also, when it
is reflected, our numerical tests show that its velocity
is similar to its incident velocity. Thus, if we consider
the soliton as a “quasiparticle”, the effect of the impu-
rity is similar to the effect of a potential barrier. To
determine this potential barrier for a given value of pa-
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FIG. 8: Reflection with no trapping (top panel) correspond-
ing to parameters a = —0.5, ¢ = 0.6 and w = 2.5 and trans-
mission with no trapping (bottom panel) corresponding to
parameters a = 0.1, ¢ = 0.7 and w = 2.5. In both cases we
represent a contour plot corresponding to the power of soliton
P as function of site n and time ¢, C' = 1 and the impurity is
located at n = 0.

rameter «, we have used a method similar to the one
described by Ref. [62]. We have considered different val-
ues of the thrust parameter ¢ corresponding to the reflec-
tion regime, and determine, for each value, the turning
point, X (g). Thus the translational energy of the barrier
for this value of ¢ is defined as the difference between
the energy ([B)) of the moving soliton (IZ) and the sta-
tionary state (B of the same frequency far from the im-
purity. It can be written as V(q) = C'sin(q/2)|P(q/2)|,
with P(q) = i), ¥itpnt1 — ¥ihn—1 being the lattice
momentum, as defined in Ref. |63]. Results are shown in
Fig. [@ which exhibits, as expected, an irregular shape,
whose origin lies in the nonuniform behavior of the trans-
lational velocity due to the discreteness of the system.

On the other hand, if the parameter « is small enough,
and positive (attractive), the solitary wave faces a poten-
tial “well” and can be trapped if its translational energy
is small or, if the translational energy is high enough, it
may be transmitted, losing energy that remains trapped
by the impurity, and decreasing its velocity. We have not
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FIG. 9: Contour plot of the phenomenon of reflection of a soli-
ton corresponding to trust parameter ¢ = 0.6 (top panel). Po-
tential barrier calculated as described in text (bottom panel).
In both cases a = —0.2, C = 1, w = 2.5 and the impurity is
located at n = 0.

found a regime with trapping and transmission as have
also been observed in Klein-Gordon lattices [60].

VI. CONCLUSIONS

In this work, we have revisited the long-standing theme
of the interactions of DNLS localized modes with an im-
purity. In particular, we have examined both the case
of attractive and repulsive impurities and have shown
how localized modes bifurcate out of the linear spectrum
in the presence of the impurity. Subsequently, we have
seen how drastically the bifurcation diagram of localized
modes is affected by the presence of the impurity. In
particular, we have concluded that for attractive impu-
rities the on-site mode at the impurity eventually dis-
appears, while for repulsive ones, it becomes unstable
beyond a critical impurity strength. In addition, local-
ized modes one site away from the impurity and beyond
are also structurally affected and cannot be sustained
under strong (either attractive or repulsive) impurities.
Furthermore, we have seen how the presence of the im-

purity significantly modifies the threshold for the forma-
tion of localized modes, under a compactum of initial
data. Attractive impurities favor the formation of such a
mode under weaker excitations, while repulsive ones ne-
cessitate an even higher amplitude threshold. Finally, we
have examined in detail for both impurity cases (attrac-
tive and repulsive) the interaction of the impurity with
a moving localized mode initiated away from it. The
principal regimes that we have identified as a function
of the impurity strength (and sign) and initial speed are
trapping, partial trapping and partial reflection, pure re-
flection and pure transmission. In general, if the impu-
rity is repulsive, and the speed small enough, the wave
is always reflected. If the impurity strength (in absolute
value) is small enough and the speed is high enough, then
transmission can take place. On the other hand, if im-
purity is attractive, trapping can occur, and if the speed
is high enough trapping with reflection too. If impurity
is attractive and sufficiently strong, the frequency of the
soliton is smaller than the one corresponding to the linear
localized impurity mode and the wave is reflected.

There are numerous avenues that one can think of for
further exploration of this subject. On the one hand, we
feel that numerous among the conclusions of the present
work including ones about the unavailability of localiza-
tion on or at nearby sites to the impurity for sufficiently
high strengths, or ones about the threshold for localized
modes should be immediately experimentally testable in
arrays of optical waveguides. On the other hand, this
type of wave-impurity interactions have been predom-
inantly studied in one-dimensional systems. However,
the present availability of two-dimensional waveguide ar-
rays renders this a very interesting system for examining
the relevant interaction in multi-dimensional frameworks,
even from a theoretical point of view and the examination
of both the standing wave and of the scattering problems.
The latter problem is currently under investigation and
will be reported in future publications.
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APPENDIX A: INVARIANT MANIFOLDS
APPROXIMATION

In this appendix we sketch the method followed in Sec-
tion 4.1.4 of Ref. [54] for determining the value of a., i.e.,
the value of a at which the breathers centred at n = nyg
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FIG. 10: First winding of the homoclinic tangle of the map
(Ad). Dashed line corresponds to the linear transformed un-
stable manifold when o = 0. Labels 1, 2, 3 (1, 2', 3") corre-
sponds to fundamental solitons for & = 0 (a # 0).

and n = ng + 0.5 bifurcate.

The difference equation (), for & = 0, can be recast
as a two-dimensional real map by defining y,, = ¢,, and
Lp = ¢n71 [64]

{ Tn+1 = Yn
(A1)
Ynt1 = (Wyn — y3)/C — 2y
For w > 2, the origin =z, = y, = 0 is hyperbolic
and a saddle point. Consequently, there exists a one-
dimensional stable (W*°(0)) and a one-dimensional un-

stable (W"(0)) manifolds emanating from the origin in
two directions given by y = iz, with

w =+ Vw? — 402
20 '

These manifolds intersect in general transversally,
yielding the existence of an infinity of homoclinic orbits.
Each of their intersections corresponds to a localized so-
lution. Fundamental solitons (i.e. on-site and inter-site
solitons), correspond to the primary intersections points,
i.e. those emanating from the first homoclinic wind-
ings. Each intersection point defines an initial condition
(z0,Y0), that is, (¢—_1, do), and the rest of the points com-
posing the soliton are determined by application of the
map ([AJ) and its inverse. Fig. [[0] shows an example of
the first windings of the manifolds. Intersections corre-
sponding to fundamental solitons are labeled as follows:
(1) is the on-site breather centred at n = 0, (2) is the
inter-site breather centred at n = 0.5 and (3) is the on-
site breather centred at n = 1.

The effect of the inhomogeneity is introduced as a lin-
ear transformation of the unstable manifold A(a)W*(0)
with A(«) given by:

Ay = (A2)

10

Ala) = b A
@={ _pc (43)

When « > 0, the unstable manifold moves downwards,
changing the intersections between the transformed un-
stable manifold and the stable manifold to points 1/, 2’
and 3’ (see Fig.[I0). For o = a, both manifolds become
tangent. Thus, for @ > «. intersections 3’ and 2’ are
lost, that is, for @ = . the breathers centred at n = 1
and n = 0.5 experience a tangent bifurcation. On the
contrary, if @ < 0, intersections 1’ and 2’ are lost when
|| > ||, leading to a bifurcation between the breathers
centered at n = 0.5 and n = 0.

A method for estimating «.(w) is based on a simple
approximation of W*(0). Let us consider a cubic approx-
imation Wy, of the local unstable manifold of Fig. 10,
parametrized by y = Az — ¢® 23, with A = A\,.. The coef-
ficient ¢ depends on w and C' and need not be specified
in what follows (a value of ¢ suitable when X is large is
computed in Ref. [65]). We have

y = oz — c? ? (A4)
on the curve A(w,a)Wy ., where \g = X\ — a/C. By
symmetry we can approximate the local stable manifold
using the curve Wy, , parametrized by

r=\y—c*y’. (A5)
The curves A(«)W2  and W2

app app Decome tangent at (r,y)
when in addition

(A =3c22?) (N — 3¢ = 1. (A6)

In order to compute a. as a function of w, or, equiv-
alently, the corresponding value of Ay as a function of
A, one has to solve the nonlinear system (A4)-(A€) with
respect to x, y, Ag, which yields a solution depending on
. Instead of using A it is practical to parametrize the
solutions by ¢ = y/x. This yields

1 1.1/ t 1.1/
r=——(t+ =) y=—"_(t+ =)
et =ttt
3. 1 31
Ao = —t+ =—+=t

i tom ATty
Since A + A7 = w/C it follows that

th—2Xxt+3=0,

o=

(A8)

| Q

1
(t— g)g-

Given a value of w, one can approximate . by the value

of a given by equations (AT)-(AS). In particular, (A7)
has two real positive solutions (one larger than 1, and



another smaller than 1), and two complex conjugated
solutions. The solution with ¢ > 1 (¢ < 1) leads to o > 0
(ae < 0) and, subsequently, approximates the tangent
bifurcation values when the breathers at n = 0.5 and
n=1 (n=0) collides.
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Despite it gives precise numerical results in a certain
parameter range, the approximation (A7)—(AS)) is not al-
ways valid. Indeed, the parameter regime w < 5C/2 is
not described within this approximation [65].
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