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We study localized modes on the surface of a three-dimensional dynamical lattice. The stability
of these structures on the surface is investigated and compared to that in the bulk of the lattice.
Typically, the surface makes the stability region larger, an extreme example of that being the three-
site “horseshoe”-shaped structure, which is always unstable in the bulk, while at the surface it is
stable near the anti-continuum limit. We also examine effects of the surface on lattice vortices. For
the vortex placed parallel to the surface this increased stability region feature is also observed, while
the vortex cannot exist in a state normal to the surface. More sophisticated localized dynamical
structures, such as five-site horseshoes and pyramids, are also considered.

I. INTRODUCTION

Surface waves have been a subject of interest in a vari-
ety of contexts, including surface plasmons in conductors
[1] and optical solitons in waveguide arrays [2] in physics,
surface waves in isotropic magnetic gels [3] in chemistry,
water waves in the ocean in geophysical hydrodynamics,
and so on. Quite often, features exhibited by such wave
modes have no analog in the corresponding bulk media,
which makes their study especially relevant. In particu-
lar, a great deal of interest has been drawn to nonlinear
surface waves in optics. It was shown theoretically [4]
and observed experimentally [5] that discrete localized
nonlinear waves can be supported at the edge of a semi-
infinite array of nonlinear optical waveguide arrays. Such
solitary waves were predicted to exist not only in self-
focusing media (as in the above-mentioned works), but
also between uniform and self-defocusing media [4, 6],
or between self-focusing and self-defocusing media (e.g.
in [7]). They have been subsequently observed in me-
dia with quadratic [8] and photorefractive [9, 10] nonlin-
earities. In the two-dimensional (2D) geometry, stable
topological solitons have been predicted in a saturable
medium [11], which constitute generalizations to lattice
vortex solitons predicted in Ref. [12]. Quasi-discrete vor-
tex solitons have been experimentally observed in a self-
focusing bulk photorefractive medium [13]. Theoretical
predictions for a variety of species of discrete 2D sur-
face solitons [14, 15, 16, 17, 18], corner modes [15, 17],
as well as surface breathers [17], were reported. Subse-
quent work has resulted in the experimental observation
of 2D surface solitons, both fundamental ones and multi-

pulse states, in photorefractive media [19], as well as in
asymmetric waveguide arrays written in fused silica [20].
Recently, surface solitons in more complex settings, such
as chirped optical lattices in 1D and 2D [21, 22], at inter-
faces between photonic crystals and metamaterials [23],
and in the case of nonlocal nonlinearity [24, 25], have
emerged.

Nearly all these efforts have been aimed at the study
of surface solitons in 1D and 2D geometries. The only
3D setting examined thus far assumed a truncated bun-
dle of fiber-like waveguides, incorporating the temporal
dynamics in longitudinal direction to produce 3D “sur-
face light bullets” in Ref. [26] (the respective 2D surface
structures were examined in Ref. [27]).

Our aim in the present work is to extend the analysis to
surface solitons in genuine 3D lattices. Our setup is rel-
evant to a variety of applications including, e.g., crystals
built of microresonators trapping photons [28], polari-
tons [29], or Bose-Einstein condensates in the vicinity of
an edge of a strong 3D optical lattice [30, 31]. In partic-
ular, we report results for discrete solitons at the surface
of a 3D lattice, i.e., 3D localized states that are similar
to relevant objects studied in the 2D setting of Ref. [14].
Thus, we will study localized states such as dipoles and
“horseshoes” abutting on a set of three lattice sites, but
also states that are specific to the 3D lattice. A vari-
ety of species of such solitons is examined below, and
their stability on the surface is compared to that in the
bulk. Some localized structures, such as dipoles, may
be placed either normal or parallel to the surface. We
demonstrate that, typically, the enhanced contact with
the surface increases the stability region of the struc-
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ture. Physically, this conclusion may be understood by
the fact that the surface reduces the local interactions to
fewer neighbors, rendering the system “more discrete”,
hence more stable (by pushing the medium further away
from the continuum limit, where all solitons would be
unstable against the collapse). This effect is remarkable,
e.g., for the three-site horseshoes which are never sta-
ble in the bulk, but get stabilized in the presence of the
surface. However, the surface may also have an adverse
effect, inhibiting the existence of a particular mode. The
latter trend is exemplified by discrete vortices, which, if
placed parallel to the surface, feature enhanced stability
as compared to the bulk-mode counterpart, but cannot
exist with the orientation perpendicular to the surface.
Surface-induced effects of a different kind, which are less
specific to discrete systems, are induced by the inter-
action of a particular localized mode with its fictitious
“mirror image”. In terms of lattice models, the approach
based on the analysis of the interaction of a real mode
with its image was proposed in Ref. [32].

To formulate the model, we introduce unit vectors
e1 = (1, 0, 0), e2 = (0, 1, 0), and e3 = (0, 0, 1) and de-

fine lattice sites by n =
∑3

j=1 njej with integer nj . We
assume that the lattice occupies a semi-infinite space,
n3 ≥ 1, and its dynamics obeys the discrete nonlinear
Schrödinger (DNLS) equation in its usual form,

iφ̇n + ε∆φn + σ|φn|2φn = 0. (1)

Here φn is a complex discrete field, ε is the coupling con-
stant, φ̇n stands for the time derivative, the parameter
σ = ±1 determines the sign of the nonlinearity (focusing
or defocusing respectively), and ∆φn is the 3D discrete
Laplacian:

∆φn≡
3∑

j=1

(
φn+ej

+ φn−ej
− 2sφn

)
, (2)

for n3 ≥ 2, while for n3 = 1 the term with subscript index
n − e3 is to be dropped (note that e3 is the direction
normal to the surface).

It is interesting to point out here that an approach to-
wards understanding the dynamics of Eq. (1) in the vicin-
ity of the surface can be based on the above-mentioned
concept of the fictitious mirror image, formally extends
the range of n3 up to n3 = −∞, supplementing the equa-
tion with the anti-symmetry condition,

φn1,n2,−n3
≡ φn1,n2n3

. (3)

Indeed, this condition implies φn1,n2,0 ≡ 0, which is
equivalent to the summation restriction in Eq. (2) as de-
fined above.

To confine the analysis to localized solitary wave
modes, we impose zero boundary conditions, φn → 0
at n1,2 → ±∞ and n3 → ∞. Additionally, s = ±1
in Eq. (2) —this parameter is introduced for convenience
(see Sec. III B) and can be freely rescaled using the trans-
formation φ → φ eiνt for an appropriate choice of ν and

time rescaling. Stationary solutions to Eq. (1) will be
sought for as φn = exp (iΛt)un, where Λ is the frequency
and the lattice field un obeys the equation

(Λ − σ|un|2)un − ε∆un = 0. (4)

Our presentation is structured as follows. The follow-
ing section recapitulates the necessary background for the
prediction of the existence and stability of lattice solitons.
In section III, we report a bifurcation analysis for various
surface states, treated as functions of coupling constant
ε, with emphasis on the comparison with bulk counter-
parts of these states. Section IV reports the study of the
evolution of unstable surface states. Finally, section V
summarizes our findings and presents our conclusions.

II. THE THEORETICAL BACKGROUND

First, we outline some general properties of the model.
Equation (1) conserves two dynamical invariants, namely
the norm N ,

N =

∞∑

n3=1
n1,2=−∞

|φn|2, (5)

and the Hamiltonian H ,

H =

∞∑

n3=1
n1,2=−∞



ε
3∑

j=1

[
φ∗
n
(φn+ej

− sφn) + c.c.
]
+
σ

2
|φn|4



 ,

(6)
where the asterisk stands for complex conjugation. Sta-
tionary solutions to Eq. (4) with σ = ±1 are connected
by the staggering transformation [17, 33]: if un is a solu-
tion for some Λ and σ = +1, then (−1)n1+n2+n3un is a

solution for Λ̃ = 12s−Λ and σ = −1. Consequently, it is
sufficient to perform the analysis of stationary solutions,
including their stability, for a single sign of the nonlin-
earity; thus, below we will fix σ = +1 (corresponding to
the case of onsite self-attraction).

Solutions to Eq. (4) in half-space n3 ≥ 1, subject to
boundary condition φn = 0 for n3 = 0, as defined above,
may be continued anti-symmetrically for the entire 3D
space by setting Un ≡ un for n3 ≥ 1 and Un ≡ −un for
n3 ≤ −1. Then, according to results of Ref. [34], this
leads to an immediate conclusion, namely that there ex-
ists a minimum norm Nmin necessary for the existence
of localized surface states in the present model. In other
words, no surface modes survive in the limit of N → 0.
In this connection, it is relevant to note that numerical
findings that will be presented below were obtained, of
course, for finite cubic lattices where, strictly speaking,
there is no lower limit for N necessary for the existence
of localized modes [17]. At this point, we have to specify
that speaking about localized modes in a finite lattice
we understand solutions which are localized on a num-
ber of cites much smaller than the total number of sites
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in the chosen direction used for numerical simulations.
Next we recall that generally speaking, there exist sev-
eral branches of the nonlinear localized modes, i.e. for
a given ε one can find localized excitations at different
values of the norm N . Using the natural terminology
we refer to higher/lower branches speaking about solu-
tions with larger/smaller norm. In this classification the
surface modes we are dealing with correspond to higher
branches of the solutions of the respective finite lattices,
i.e., their norm cannot be made arbitrarily small (see also
the relevant discussion below in Section III B).

To find solution families, we start with the anti-
continuum (AC) limit, ε = 0 [35]. In this limit, the
lattice field is assumed to take nonzero values only at
a few (“excited”) sites, which determines the profile of
the configuration to be seeded. The continuation of the
structure to ε > 0 is determined by the Lyapunov’s re-
duction theorem [36]. More specifically, the solution is
expanded as a power series in ε, the solvability condition
at each order being that the respective projection to the
kernel generated by the previous order does not give rise
to secular terms [35].

The linear stability is then studied, starting from the
usual form of the perturbed solution,

φn = eiΛt(un + δane
λt + δbne

λ∗t), (7)

where δ is a formal small parameter, and λ is a stabil-
ity eigenvalue associated with eigenvector ψ = {an, b∗n}.
Substituting this into Eq. (1) yields the linearized system,

iλan = −ε∆an + Λan − 2|un|2an − u2
n
b∗
n
,

−iλb∗
n

= −ε∆b∗
n

+ Λb∗
n
− 2|un|2b∗n − u∗

n

2an ,

which can be cast in the form
(

H(1,1) H(1,2)

H(2,1) H(2,2)

)(
A
B

)
= iλ

(
A
B

)
, (8)

where A and B are vectors composed by elements an and
b∗
n
, respectively, while the matrices H(p,q) (p, q ∈ {1, 2})

are given by,

H(1,1)
n,n′ = −H(2,2)

n,n′ = δn,n′

(
Λ + 6sε− 2|un

′|2
)

−ε
3∑

j=1

(
δn+ej ,n′ + δn−ej ,n′

)
, (9)

H(1,2)
n,n′ = −H(2,1)

n,n′

∗

= −δn,n′u2
n

′ .

An underlying stationary solution is (spectrally) unstable
if there exists a solution to Eq. (8) with Re(λ) > 0. Oth-
erwise, the stationary solution is classified as a spectrally
stable one. As explained in Ref. [37], the Jacobian of the
above mentioned solvability conditions is intimately con-
nected to the full eigenvalue problem. More specifically,
if the eigenvalues γ of the M ×M eigenvalue problem of
the Jacobian (where M is the number of excited sites at

the AC limit), then the near-zero eigenvalues of the full
stability problem can be predicted to be λ =

√
2γεp/2,

where p is the number of lattice sites that separate the
adjacent excited nodes of the configuration at the AC
limit.

III. THE BIFURCATION ANALYSIS

A. Existence and stability of surface structures

In this section we study, by means of numerical meth-
ods, the existence and stability of various 3D configura-
tions and compare the results to the corresponding ana-
lytical predictions. These configurations are obtained by
starting from the AC limit (ε = 0), and are continued to
ε > 0, using fixed-point iterations. For all the numerical
results presented in this work, we fix the normalization
Λ = 1 [see Eq. (4)], and use a lattice of size 13× 13× 13,
unless stated otherwise. Also, for the presentation of the
numerical results, we replace the triplet (n1, n2, n3) by
(l, n,m), i.e., the surface corresponds to m = 1.

We start by examining dipoles aligned parallel or nor-
mal to the surface. Panel (a) in Fig. 1 shows the norm
of such states versus coupling constant ε, while panel (b)
depicts the imaginary part of the stability eigenvalues
for the bulk dipole, produced by the theory outlined in
the previous section [dashed (black) lines], and by the
numerical computations [solid (blue) lines]. It is worth
mentioning that, for all the different configurations that
we report in this manuscript, we display the imaginary
part of the stability eigenvalue only for the bulk mode
since the difference between the curves for the different
variants (bulk, parallel or normal to the surface) is min-
imal. It should be noted however that the contact with
the surface may produce higher order (smaller) eigenval-
ues that are not present in its bulk counterpart (results
not shown here). The theoretical prediction for the sta-
bility eigenvalues is λ = ±2

√
εi, which, as expected, is

the same as in an out-of-phase (twisted) 1D mode an-
alyzed in Ref. [37], since the structure is nearly one-
dimensional, along the line connecting the two excited
sites. Panel (c) in Fig. 1 compares the largest instability
growth rate as a function of ε for the bulk dipoles [dash-
dotted (green) line] and those oriented normally and par-
allel to the surface [dashed (red) and solid (blue) lines,
respectively]. It is seen that the stability interval of the
dipoles increases as its contact with the surface strength-
ens, in accordance with the arguments presented above.
In the case of the bulk dipole, the instability occurs for
values of the coupling constant in between ε0 = 0.114
and ε1 = 0.115. From now on, when reporting computed
instability thresholds, we will use the lower bound for ε
(e.g., ε0 in the above example) with the understanding
that we always used the same resolution in ε. For the
dipole set normally to the surface, we observe the onset
of instability at ε = 0.117, while for the parallel-oriented
one at ε = 0.120. In panels (e)–(h) of Fig. 1 we also depict
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FIG. 1: (Color Online) Results for the dipoles oriented paral-
lel and normal to the surface. (a) Norm N versus the lattice
coupling constant, ε. (b) Imaginary part of the linear stability
eigenvalue: solid (blue) and dashed (black) lines correspond,
respectively, to numerically found and analytically predicted
forms. (c) Real part of the critical (in)stability eigenvalue:
the dashed (red) and solid (blue) lines depict the normal- and
parallel-oriented dipoles, respectively, while the dash-dotted
(green) line corresponds to the bulk dipole. (d) (In)stability
eigenvalue for the parallel surface dipole placed at distances
from the surface starting from zero and up to five lattice
periods away (curves right to left). (e)-(g) Configurations
and (f)-(h) respective spectral stability planes just above the
instability threshold. The level contours, corresponding to
Re(ul,n,m) = ±0.5 max {ul,n,m} are shown, respectively, in
dark gray (blue) and gray (red). The instability thresholds
for the dipoles oriented parallel and normally to the surface
are, respectively, ε = 0.117 and ε = 0.120. For comparison,
the threshold for the bulk dipole is ε = 0.114.

the shapes of the normal and parallel dipoles, just below
the instability threshold, along with their corresponding
spectral stability planes.

The stabilizing effects exerted by the surface depend,
in a great measure, on the distance of the configuration
from the surface, namely, the further away the config-
uration from the surface, the lesser the effect is. This
property is clearly seen in panel (d) of Fig. 1, where we
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FIG. 2: (Color Online) The stability of the three-site “horse-
shoe”. Panels are similar to those in Fig. 1. Panel (c)
compares the critical stability eigenvalue, as a function of
the lattice coupling, ε, for the surface and bulk horseshoes
[solid (blue) and dashed-dotted (green) lines, respectively].
The bulk horseshoe is always unstable (due to a purely real,
higher-order eigenvalue), while the corresponding surface con-
figurations have a stability region (the corresponding eigen-
value becomes imaginary in this case). Panels (d)-(e) corre-
spond to the surface horseshoe just above the stability thresh-
old of ε = 0.239.

plot the (in)stability eigenvalue as a function of the cou-
pling for several values of the separation of the parallel
dipole from the surface. The curves, from right to left,
depict the results for the dipole set at the distance of
0, 1, ..., 5 sites away from the surface (0 sites refers to
the dipole sitting on the surface). As the panel demon-
strates, the stability interval is reduced as the dipole is
pulled away from the surface, converging towards a bulk
dipole.

Let us now consider the “horseshoe” configurations,
for which the presence of the surface is critical to their
stability. In Fig. 2 we depict the properties of a three-
site horseshoe, which actually is a truncated version of a
quadrupole, cf. the 2D situation [14]. As before, panel
(a) in Fig. 2 shows the norm versus ε, while panels (b)
and (c) compare the stability of the bulk horseshoe (the
dash-dotted line) and ones built near the surface (the
solid line). While the bulk horseshoes are always unsta-
ble, similar to their 2D counterparts [14], the ones placed
near the surface are stable at small ε, destabilizing at
ε = 0.239. Panels (d)-(e) in Fig. 2 show the configura-
tion for the coupling just below the instability threshold,
along with the respective spectral plane. The analytical
expressions for stable eigenvalues are λ = 0, λ = ±2

√
3εi,

λ = O(ε2), cf. the expressions obtained in Ref. [14] for
the 2D horseshoes.
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FIG. 3: (Color Online) The stability for the five-site horseshoe
at the surface. Panels are identical to those in Fig. 2. In this
case, the stability threshold is at ε = 0.211, while for the
bulk 5-site horseshoe it is ε = 0.205. Panels (d)-(e) depict
the configuration and the respective linear stability spectrum
just above the critical point of ε = 0.211.

Figure 3 illustrates the same features as before but for
the five-site horseshoe. Unlike its three-site cousin, the
bulk five-site horseshoe is stable up to a critical value
of the coupling, ε = 0.205, while the surface variant
has it stability region ε < 0.211. The eigenvalues of
the linearization in this case can be computed similar
to those for the three-site modes [14], as outlined above
(cf. also Ref. [35]), which eventually yields λ = 3.8042εi,
λ = 2.8284εi, λ = 2.3511εi, λ = O(ε2), and λ = 0,
in good agreement with the corresponding numerical re-
sults, as shown in panel (b) Fig. 3.

Next we consider the quadrupole configuration, see
Fig. 4. The surface again exerts a stabilizing effect, albeit
a weaker one, when the quadrupole is placed normally
and parallel to the surface. In the bulk, the quadrupole
loses stability at ε = 0.068, while the normal and paral-
lel surface quadrupoles have stability thresholds, respec-
tively, at ε = 0.070 and ε = 0.071. The analytical ap-
proximation for the stability eigenvalues in this case are
λ =

√
8εi (a double eigenvalue), λ = 2

√
εi, and a zero

eigenvalue, which accurately capture the numerical find-
ings depicted in panel (b) of Fig. 4.

In Fig. 5 we present the results for four-site vor-
tices. This configuration, in contrast to the previous
ones, is described by a complex solution. In the AC
limit, the vortex occupies the same excited sites as
the above-mentioned quadrupole, but the phase profile,
{0, π/2, π, 3π/2}, emulates that of the vortex of charge 1
[12, 35]. The bulk four-site vortex (which was discussed
in Ref. [38]) loses its stability at ε = 0.438, while the
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FIG. 4: (Color Online) The stability of quadrupole modes.
The layout is similar to that in Fig. 3. In panel (c), due to
the close proximity of the thresholds, the close-up is shown
for the critical stability eigenvalue versus the lattice coupling
constant, ε, for the parallel and normal surface modes, and
the bulk one [solid (blue) and dashed (red) lines, and the
dash-dotted (green) line, respectively]. The threshold for the
bulk mode is ε = 0.068, while for the normal and parallel
quadrupoles it is, respectively, ε = 0.070 and ε = 0.071. As
before, panels (d) and (e) show the configuration just above
the instability threshold along with its corresponding spectral-
stability plane.

vortex parallel to the surface features an extended sta-
bility region, up to ε = 0.505. However, the surface in
this case prohibits the existence of a vortex that would be
oriented normally to the surface layer, similarly to what
was found for 2D lattice vortices [14].

The simplest explanation for the complete absence of
the solution normal to the surface, compared with that
of an existing vortex waveform parallel to the surface can
arguably be traced in the interaction of such vortices in
the half-space with their fictitious image (if the domain
is equivalently extended to the full space). In the case of
the vortex parallel to the surface, the situation is tanta-
mount to the vortex cube structures examined in [39, 40],
for which it was established in [40] that the persistence
conditions are satisfied (and, in fact, that such structures
consisting of two out-of-phase vortices should be linearly
stable close to the AC limit). On the other hand, for
the case normal to the surface, by examining the rele-
vant interactions it can be observed (at an appropriately
high order) that the persistence conditions of [35, 37, 40]
can not be satisfied and hence the structure can not be
continued beyond the AC limit. That is why the struc-
ture can never be observed to exist irrespectively of the
smallness of ε.

The next species of stationary lattice solutions is a
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FIG. 5: (Color Online) The stability of the four-site vortex in
the grid of size 11× 11× 11. The dash-dotted and solid lines
show the bulk vortex and the one parallel to the surface, re-
spectively. The layout is similar to that of the above figures.
Instability in the bulk occurs at ε = 0.438, and in the parallel
surface vortex at ε = 0.505. The vortex cannot exist with the
orientation normal to the surface. Panels (d) and (e) show
the parallel surface vortex just above the instability thresh-
old of ε = 0.485. As in the previous figures, the level con-
tours corresponding to Re(ul,n,m) = ±0.5max {ul,n,m} are
shown, respectively, in dark gray (blue) and gray (red), while
the complementary level contours, defined as Im(ul,n,m) =
±0.5 max {ul,n,m}, are shown by light gray (green) and very
light gray (yellow) hues, respectively.

pyramid-shaped structure, with characteristics displayed
in Fig. 6, whose base is a rhombus composed of four
sites. The remaining out-of-plane vertex site must have
phase 0 or π, since the phase values π/2 and 3π/2 at this
site do not produce a solution. The full set of pyramids
(bulk, normal, parallel —see panels (d)–(f) of Fig. 6) is
completely unstable, as seen in panel (c) of Fig. 6, the
surface producing no stabilizing effect on it. This strong
instability actually arises at the lowest order in the an-
alytical eigenvalue calculations, which yield λ = 2

√
5εi,

λ = 2
√

2εi, λ = 2ε, λ = 0, and λ = O(ε2), once again
in very good agreement with the full numerical results of
Fig. 6.

B. Small-amplitude modes in a finite lattice

Since our numerical investigation of the surface modes
uses a finite lattice, which allow the existence of small-
amplitude modes (ones with the zero threshold in terms
of the norm — cf. discussion in Sec. II), here we briefly
consider the modes in a finite lattice having the small-
amplitude limit. Our aim is to show that these modes
belong to lower branches, as compared with the “nor-
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FIG. 6: (Color Online) The instability of pyramid-shaped
structures. This configuration abuts on the base in the form of
a rhombus, and includes the out-of-plane site with zero phase.
Three variants of this configuration are displayed in panels
(d)–(f): bulk, normal and parallel to the surface, respectively.
The stability of the three different variants of the pyramid is
essentially identical, all three of them being unstable.

mal” surface modes considered above. To this end, we
concentrate on the lattice of size M×M×M lattice, sub-
ject to the zero boundary conditions, which imply that
discrete Laplacian (2) is modified at surfaces nj = 1 and
nj = M (j = 1, ..., 3) by setting the fields at sites n− ej

and n + ej, respectively, equal to zero. For the sake of
definiteness, we fix here s = −1 in Eq. (2).

To determine the norm N of small-amplitude modes
we follow Ref. [17], and look for a solution to Eq. (4)
with the amplitude un and coupling constant ε being
represented as series

un = ǫu0,n + ǫ2u2,n + O(ǫ3),

(10)

ε = ε0 + ǫ2ε2 + O(ǫ3),

in powers of small parameter ǫ ≡
√

8N/(M + 1)3 ≪ 1,
which vanishes in the limit of the infinite lattice (M →
∞); in other words, small ǫ characterizes the “largeness”
of the lattice. We focus on real solutions here.

Substituting expansions (10) into Eq. (4) and gather-
ing terms of the same order in ǫ, we rewrite Eq. (4) in
the form of a set of equations:

Λuj,n − ε0∆uj,n = Fj,n. (11)

Here F0,n = 0, F2,n = Λ(ε2/ε0)u0,n + (u0,n)
3
, hence
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Eq. (11) with j = 0 gives rise to a linear eigenmode,

u
(m)
0,n =

3∏

j=1

sin

(
πnjmj

M + 1

)
, (12)

with the respective approximation for the lattice coupling
constant,

ε
(m)
0 = Λ


6 + 2

3∑

j=1

cos

(
πmj

M + 1

)

−1

, (13)

parameterized by vector m = (m1,m2,m3). At the same
time, considering the solvability conditions for j = 2,
which amounts to demanding the orthogonality of F2,n

and u0,n, we obtain corrections to the coupling constants,

ε = ε
(m)
0 − ǫ2ε

(m)
0

64Λ

3∏

j=1

(
3 + δmj ,(M+1)/2

)
. (14)

It follows from Eq. (14) that each of the linear modes
(12) is uniquely extended into a small-amplitude nonlin-
ear one. These modes are characterized by the linear
dependence of the norm on coupling constant ε:

N (m) =
8Λ(M + 1)3

(
ε
(m)
0 − ε

)

ε
(m)
0

∏3
j=1

(
3 + δmj ,(M+1)/2

) . (15)

From Eq. (15) it follows that each mode, parameter-
ized by vector m, exists when ε belongs to the inter-

val 0 ≤ ε ≤ ε
(m)
0 . The validity of approximation (15) is

corroborated by the coincidence of analytical and numer-

ical results in the vicinity of ε
(m)
0 (as shown in Fig. 7),

where these modes reaches their small-amplitude limit.
Such a property of these modes differs considerably from
the case of the surface modes which do not possess the
small-amplitude limit and require some minimal value of
the norm (for the normal dipole, depicted in Fig. 7 by
dash-dotted line, the minimal norm is ≈ 1.262). Panel
(b) in Fig. 7 shows that only the mode, parameterized

by vector m = (1, 1, 1), is stable for ε close to ε
(m)
0 , while

other modes are completely unstable.

IV. DYNAMICS

In this section we examine the nonlinear evolution of
the various configurations, displaying the results in a set
of figures (see Figs. 8–12). In each case, the evolution is
initiated at a value of the coupling ε taken beyond the
instability threshold, and an initial small random per-
turbation is applied in order to expedite the onset of the
instability.

All the figures display the evolution of the instability
at six different moments of time, starting at t = 0, and
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FIG. 7: (Color Online) Low-amplitude modes in a finite grid
of size 9×9×9 with Λ = 1.0. (a) Norm N versus coupling con-
stant ε for several modes whose low-amplitude limit is param-
eterized by vectors m, as calculated numerically and predicted
by approximation (15) (solid and dashed lines, respectively).
For comparison, dash-dotted line depicts the norm for sur-
face normal dipole. (b) Real part of the critical (in)stability
eigenvalue, calculated numerically.

ending at a time well beyond the point at which the insta-
bility manifests itself. All configurations that were pre-
dicted above to be unstable through nonzero real parts
of the (in)stability eigenvalue λ indeed exhibit instabil-
ity dynamics, which eventually results in a transition to
a different configuration. In the case of the dipoles and
horseshoes, Figs. 8–10 show a spontaneous transition to
monopole patterns, i.e., ones centered around a single ex-
cited site. On the other hand, in the case of the vortices
and pyramids shown in Figs. 11–12, a few sites may re-
main essentially excited at the end of the evolution. The
monopole is, obviously, the most robust dynamical state
in the lattice system, with the widest stability interval, in
comparison with other discrete structures. This simplest
state becomes unstable, for given Λ, only at values of the
coupling constant ε ≈ Λ [38]. Another structure with a
relatively wide stability region is the dipole (the more sta-
ble the wider the distance between its constituent sites
[39]), consonant with the observation that some of the
structures (especially ones with a large number of ex-
cited sites, such as vortices and pyramids) dynamically
transform into dipoles.

Generally speaking, the exact scenario of the nonlin-
ear evolution and the finally established state depend on
details of the initial perturbation. In the figures, each
configuration is shown by iso-level contours of distinct
hues. In particular, dark gray (blue) and gray (red) are
iso-contours of the real part of the solutions, while the
light gray (green) and very light gray (yellow) colors de-
pict the imaginary part of the same solutions.

A case that needs further consideration is that of the
three-site horseshoe. As observed from the stability anal-
ysis presented in Fig. 2, this horseshoe in the bulk gives
rise to a small unstable purely real eigenvalue for all val-
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FIG. 8: (Color Online) The evolution of unstable dipoles: (a)
a bulk dipole; (b) and (c) dipoles placed parallel and normally
to the surface, respectively. In all the cases, the dipole is
subject to oscillatory instability, which is responsible for the
eventual concentration of most of the norm at a single site
(i.e., the transition to a monopole). Parameters are Λ = 1,
ε = 0.2, the lattice has a size of 13× 13× 13, and times are
indicated in the panels. All iso-contour plots are defined as
Re(ul,n,m) = ±0.75 = Im(ul,n,m), and the initial configura-
tions were perturbed with random noise of amplitude 0.01.
The coding for the iso-contours is as follows: dark gray (blue)
and gray (red) colors pertain to iso-contours of the real part of
the solutions, while the light gray (green) and very light gray
(yellow) colors correspond to the iso-contours of the imagi-
nary part.

ues of ε, see the lower green dashed-dotted curve in panel
(c) of the figure. Despite the presence of this eigenvalue,
the evolution of the unstable bulk three-site horseshoe is
predominantly driven by the unstable complex eigenval-
ues, if any (in fact, for ε > 0.226, see the dashed-dotted
(green) line of Fig. 2.(c)). A careful analysis of the insta-
bility corresponding to the small purely real eigenvalue
for ε < 0.226 (i.e., before the complex eigenvalues be-
come unstable) reveals that the corresponding dynamics
amounts to an extremely weak exchange of the norm be-
tween the two in-phase excited sites (see Fig. 2). The
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FIG. 9: (Color Online) The evolution of the unstable three-
site horseshoes: (a) bulk three-site horseshoe and (b) the
horseshoe oriented normally to the surface. In both cases,
the unstable horseshoe is subject to an oscillatory instability,
which leads to the eventual concentration of most of the norm
in a single-site structure. The iso-contours and parameters are
the same as in Fig. 8 except that ε = 0.3.
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FIG. 10: (Color Online) The evolution of unstable five-site
horseshoes: (a) the bulk horseshoe, and (b) the five-site horse-
shoe oriented normally to the surface. In both cases, the un-
stable horseshoe is subject to an oscillatory instability, which
triggers the transition to a monopole. The iso-contours and
parameters are the same as in Fig. 9.
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FIG. 11: (Color Online) The evolution of unstable vortices:
(a) the bulk vortex for ε = 0.3 and (b) the vortex parallel to
the surface, for ε = 0.6 and Λ = 1. The iso-contour plots are
defined by Re(ul,n,m) = ±1 = Im(ul,n,m).

norm exchange is driven by the corresponding unsta-
ble eigenfunction, which looks like a dipole positioned
at the two aforementioned in-phase sites. The difficulty
in observing this evolution mode is explained by the fact
that, in the course of the norm exchange, only ∼ 0.1%
of the total norm is actually transferred between the two
sites. Furthermore, as mentioned earlier, the correspond-
ing small real eigenvalue is completely suppressed by the
surface (see panel (c) in Fig. 2). It is worth noting that
such stable three-site horseshoe surface structures may
also be generated by the evolution of more complex un-
stable waveforms, such as the five-site pyramids placed
normally to the surface, see the bottom panel in Fig. 12.

V. CONCLUSIONS

In this work, we have investigated localized modes in
the vicinity of a two-dimensional surface, in the frame-
work of the three-dimensional DNLS equation, which is
a prototypical model of nonlinear dynamical lattices. We
have found that the surface may readily stabilize local-
ized structures that are unstable in the bulk (such as
three-site horseshoes), and, on the other hand, it may in-
hibit the formation of some other structures that exist in
the bulk (such as vortices which are oriented normally to
the surface, although ones parallel to the surface do exist
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FIG. 12: (Color Online) The evolution of unstable pyramids.
Panels (a), (b), and (c) display, respectively, the transforma-
tion of a bulk pyramid, and of ones oriented normally and
parallel to the surface, for ε = 0.2.

and have their stability region; a qualitative explanation
to these features was proposed, based on the analysis
of the interaction of the vortical state with its “mirror
image”). The most typical surface-induced effect is the
expansion of the stability intervals for various solutions
that exist in the bulk and survive in the presence of the
surface. This feature may be attributed to the decrease,
near the surface, of the number of neighbors to which ex-
cited sites couple, since the approach to the continuum
limit, i.e., the strengthening of the linear couplings to the
nearest neighbors, is responsible for the onset of the in-
stability or disappearance of all the localized stationary
states in the three-dimensional dynamical lattice.

On the other hand, while the techniques elaborated in
Refs. [35, 37, 40] for the analysis of localized states in
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bulk lattices are quite useful in understanding the domi-
nant stability properties of the solutions, the surface gives
rise to specific effects, such as the stabilization of higher-
order solutions or the suppression of some types of vortex

structures, which cannot be explained by these methods.
Therefore, it would be very relevant to modify these tech-
niques, which are based on the Lyapunov-Schmidt reduc-
tions, so as to take the presence of the surface into regard.
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R. Carretero-González, and D. J. Frantzeskakis, Phys.
Rev. E. 75, 056605 (2007).

[15] K. G. Makris, J. Hudock, D. N. Christodoulides, G. I.
Stegeman, O. Manela, and M. Segev, Opt. Lett. 31, 2274
(2006).

[16] Y. V. Kartashov and L. Torner, Opt. Lett. 31, 2172
(2006).

[17] Yu. V. Bludov and V. V. Konotop, Phys. Rev. E 76,
046604 (2007).

[18] R. A. Vicencio, S. Flach, M. I. Molina and Yu. S. Kivshar,
Phys. Lett. A 364, 274 (2007).

[19] X. Wang, A. Bezryadina, Z. Chen, K. G. Makris, D. N.
Christodoulides, and G. Stegeman, Phys. Rev. Lett. 98,
123903 (2007).

[20] A. Szameit, Y. V. Kartashov, F. Dreisow, T. Pertsch, S.
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