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Long Range Electromagnetic Effects
involving Neutral Systems and

Effective Field Theory

Barry R. Holstein

Department of Physics-LGRT,
University of Massachusetts,

Amherst, MA 01003

February 15, 2008

Abstract

We analyze the electromagnetic scattering of massive particles with
and without spin wherein one particle (or both) is electrically neutral.
Using the techniques of effective field theory, we isolate the leading
long distance effects, both classical and quantum mechanical. For
spinless systems results are identical to those obtained earlier via more
elaborate dispersive methods. However, we also find new results if
either or both particles carry spin.
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1 Introduction

There has been a good deal of recent interest in higher order corrections to
electromagnetic scattering. In particular the one-photon-exchange approx-
imation, which has traditionally been used to analyze electron scattering
has been shown to be inadequate when applied to the problem of isolating
nucleon form factors via Rosenbluth separation—inclusion of two-photon-
exchange contributions has been found to be essential in resolving small dis-
crepancies with the values of these same form factors as obtained from spin
correlation measurements[1]. A second arena where two-photon-exchange
effects are needed is the in the analysis of transverse polarization asym-
metry measurements in electron scattering. Such quantities vanish in the
one-photon-exchange approximation meaning that the sizable effects found
experimentally must arise from two-photon effects[2].

Much has been written about such higher order photon processes and a
number of groups have undertaken precision calculation of such effects[3].
It is not our purpose here to attempt such detailed calculations of charged
particle interactions or to confront experimental data. Rather our goal is
to use the methods of effective field theory (EFT) in order to analyze the
very longest range (smallest momentum transfer) contributions to the elec-
tromagnetic scattering process when one or both of the scattering particles
are neutral. These long range components are associated with pieces of the
scattering amplitude which are nonanalytic (and singular) in the momentum
transfer. Some of these corrections are classical (h̄-independent) and behave
as 1/

√
−q2,

√
−q2, etc. while others are quantum mechanical (h̄-dependent)

and behave as log−q2, q2 log−q2, etc., where q2 is the momentum transfer[5].
In the case of two spinless charged particles the lowest order interaction,
which arises from one-photon exchange, is the simple Coulomb interaction,
which behaves as α/r, where α = e2/4π is the fine structure constant. The
contribution to this charged scattering process from two-photon exchange
is a problem addressed nearly two decades ago by Feinberg and Sucher us-
ing dispersive methods[6]. Even earlier Iwasaki had studied the classical
piece of this problem using standard noncovariant perturbation theory[7].
Recently we reexamined this problem, using the methods of effective field
theory (EFT)[8]. Results for spinless scattering were found to agree with
those of [6] and [7], but the use of EFT methods permitted the extraction of
new and interesting spin-dependent structure.

Our goal in the present note is to extend these considerations to the case
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of the electromagnetic scattering of two nonzero mass particles, at least one
of which is neutral. In this case there exists no lowest order Coulomb po-
tential and the leading contribution arises from two-photon exchange. The
interaction of two spinless systems was considered long ago by Casimir and
Polder[9] and by Feinberg and Sucher[10] in the neutral-neutral case and by
Bernabeu and Tarrach[13] and by Feinberg and Sucher in the case of the inter-
action of a neutral and a charged particle[14]. The first of these calculations
was performed using noncovariant fourth order perturbation theory, while
the latter evaluations were done using dispersive methods. In the present
paper we reanalyze these problem using EFT techniques. The basic idea
is to calculate the infrared singular components of the two-photon-exchange
diagrams, since such terms give rise to the longest order interactions in coor-
dinate space. In the case of spinless scattering, we will reproduce the results
of previous authors[10, 14, 13]. However, the use of EFT methods allows the
straightforward extraction of the new and interesting structure which arise
if either or both particles carry spin.

In the next section we study the interaction of two neutral particles, while
in the following chapter we look at the situation when one of these particles
is charged. We present a brief summary in a concluding section.

2 Neutral-Neutral Scattering

The electromagnetic interaction of two neutral systems having separation r,
the so-called Van der Waals force, was considered long ago by London[15],
who gave a simple form for the interaction potential in terms of the electric
polarizabilities of the two systems—

VvdW (r) ∼ −α
a
Eα

b
Eω0

4πr6
(1)

where ω0 is a typical excitation energy. The form of the vanderWaals po-
tential can be understood in terms of the energy of the dipole moment of
”atom” b (db = −exb) in the electric field created by the dipole moment of
”atom” a—

H1 ∼ −dbEb(da) = exb ×
−exa

4πr3
= −e

2xaxb

4πr3
(2)

Of course, < xa >=< xb >= 0, i.e., there exists no average dipole moment,
so this energy change vanishes in first order perturbation theory

∆E1 =< ψ0|H1|ψ0 >= 0.
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However, there is a shift at second order since at any given instant of time
there exists an instantaneous dipole moment in atom a say. The correspond-
ing electric field from atom a at the position of atom b—Ea(R)—generates a
correlated electric dipole moment due to its electric polarizability—

db = 4παb
EEa(R) = 4παb

E

exa

4πr3
(3)

The electric field generated by this electric dipole moment then acts back on
the original atom, yielding an energy

∆Evdw ∼ −daEb(r) = −e
2x2

aα
b
E

4πr6
(4)

which is the Van der Waals interaction. What makes this work, then, is the
point that one can use the instantaneous position of one atom to provide an
action at a distance correlation with a second atom in the vicinity. Finally,
we note that the electric polarizability itself can be extracted by calculating
the shift in energy of the atom in the presence of an external electric field E0

in second order perturbation theory

∆E(2) =
∑

n 6=0

< 0|eE0xa|n >< n|eE0xa|0 >
E0 −En

≡ −1

2
4παa

EE
2
0 (5)

We find then αa
E ∼ e2 < x2

1 > /ω0 and

∆Evdw ∼ αa
Eα

b
Eω0

4πr6
(6)

so that it is this self-interaction energy which is responsible for the London
form.

Casimir and Polder generated a general form for the interaction poten-
tial from quantum mechanics by using two-photon exchange and fourth-order
noncovariant perturbation theory[9]. Their result reproduces the simple Lon-
don form at short distance—r ≤ 1

ω0

but at large distances, when retarda-
tion is important, i.e., when a typical quantum mechanical excitation time
Tqm ∼ 1/ω0 is smaller than the time for light to travel between the two par-
ticles Tγ ∼ r then the London potential, which depends upon the correlation
between the instantaneous positions of the two systems, breaks down and
the interaction evolves into the ong distance asymptotic form

VCasPol(r)
R→∞−→ −23(αa

Eα
b
E + βa

Mβ
b
M) + 7(αa

Eβ
b
M + αb

Eβ
a
M)

4πr7
(7)
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p1 p3

a b

p2 = p1 − q p4 = p3 + q

Figure 1: Basic kinematics of electromagnetic scattering.

That the very long distance asymptotic form must vary as 1/r7 is clear from
simple scaling, as argued by Kaplan[16]. The argument is elementary—since
polarizabilities have units of volume, and since the interparticle separation
is the only scale in the problem, the form of the potential must be

V ∼ −α
a
Eα

b
E

r7
.

The derivation of the Casimir-Polder form—Eq. 7—within modern quantum
field theory was given by Feinberg and Sucher using dispersive methods[10].
In an impressive calculation using simple assumptions involving analyticity
they were able to obtain the Casimir-Polder result.

In this section we shall show how the same form can be obtained in a much
simpler and more direct fashion using the methods of effective field theory.
The basic idea is to calculate the diagram for two-photon exchange between
the two systems and then to retain only the leading nonanalytic—small mo-
mentum transfer—terms, since it is these pieces which lead to the dominant—
large r—behavior of the potential. We first set the generic framework for our
study. We examine the electromagnetic scattering of two particles—particle
a with mass ma and incoming four-momentum p1 and particle b with mass mb

and incoming four-momentum p3. After undergoing scattering the final four-
momenta of particle a is p2 = p1 − q and that of particle b is p4 = p3 + q—cf.

Figure 1. Now we need to be more specific.
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2.1 Spinless Neutral-Spinless Neutral Scattering

First suppose that the two particles are both neutral and spinless. Then
the leading piece of the electromagnetic amplitude is that for two photon
emission and can be characterized in terms of the electric and magnetic
polarizabilities—αE , βM—which are in turn defined via the energies[11]

0δE(1) = −1

2
(4παE

~E2 + 4πβM
~B2) (8)

For a spinless neutral particle a of mass ma having four-momentum p1, the
amplitude to emit a photon with polarization ǫa and four-momentum k to-
gether with a second photon having polarization ǫb and four-momentum q−k
is then

ǫ∗αa ǫ∗βb
0τa

αβ(p1, k, q − k)

= −i4παa
E

1

m2
a

(ǫ∗αa k · p1 − kαǫ∗a · p1)(ǫ
∗
bα(q − k) · p1 − (q − k)αǫ

∗
b · p1)

− i4πβa
M

1

m2
a

(ǫαβγδǫ∗aβkγp1δ)(ǫαρσλǫ
∗ρ
b (q − k)σpλ

1) (9)

The two-photon-exchange diagram between spinless neutral particles is shown
in Figure 2 and is of the form

00M2γ(q)

=
1

2!

(4π)2

m2
am

2
b

∫

d4k

(2π)4

−iηαγ

k2

−iηβδ

(k − q)2
0τa

αβ(p1, k, q − k)0τ b
sγδ(p3,−k, k − q)

=
1

2!

(4π)2

m2
am

2
b

∫

d4k

(2π)4

1

k2(k − q)2

[

αb
E

(

ηαβp3 · kp3 · (k − q) + pα
3 p

β
3k · (k − q)

− (k − q)αpβ
3p3 · k − pα

3k
βp3 · (k − q)

)

+ βb
M(ǫλαγδkγp3δ)(ǫλ

βκµ(k − q)κp3µ)
]

×
[

αa
E

(

ηαβp1 · kp1 · (k − q) + p1αp1βk · (k − q)

− (k − q)αp1βp1 · k − p1αkβp1 · (k − q)) + βb
M(ǫλαστk

σpτ
1)(ǫλβκµ(k − q)κpµ

1 )
]

(10)

Performing the indicated contractions and integrating, using the results
in Appendix A, we find the result

00M2γ(q) = −Lq
4

240

[

23
(

αa
Eα

b
E + βa

Mβ
b
M

)

− 7
(

αa
Eβ

b
M + αb

Eβ
a
M

)]

(11)
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Figure 2: Bubble diagram used to evaluate the electromagnetic scattering of
two neutral systems.

where we have defined L = log−q2. In order to determine the potential, we
Fourier transform and find, using the results from Appendix B,

00V2γ(r) = −
∫

d3q

(2π)3
M2γ(q)e

−i~q·~r =
−23(αa

Eα
b
E + βa

Mβ
b
M) + 7(αa

Eβ
b
M + αb

Eβ
a
M)

4πr7

(12)
which is the classic result of Casimir and Polder[9].

2.2 Nonzero Spin Neutral-Spinless Neutral Scattering

If either neutral particle has spin, the potential becomes more complex, but
is still straightforward. We must now characterize the system in terms both
of its ordinary electric and magnetic polarizabilities but also in terms of so-
called ”spin polarizabilities.” If the particle a has spin Sa, then the leading
order spin-dependent generalization of Eq. 8 has the form[12]

SaδEtot = 0δE(1) < Sa, maf |Sa, mai > +SaδE(2) (13)

where

δE(2) = −4π
[

γa
E1
~Sa · ~E × ~̇E + γa

M1
~Sa · ~B × ~̇B

− 2γa
E2

(

~E · ~∇~Sa · ~B + Ej
~Sa · ~∇Bj

)

+ 2γa
M2

(

~B · ~∇~Sa · ~E +Bj
~Sa · ~∇Ej

)]

(14)

Here ~Sa =< Sa, maf |~S|Sa, mai > and γa
E1, γ

a
M1, γ

a
E2, γ

a
M2 are the spin-polarizabilities

of the particle. The two-photon vertex of particle a then has the form

ǫ∗αa ǫ∗βb
Saτa

αβ(p1, k, q − k)

6



=
4π

m2
a

[αa
E(ǫ∗αa k · p1 − kαǫ∗a · p1)(ǫ

∗
bα(q − k) · p1 − (q − k)αǫ

∗
b · p)

+ βa
M(ǫαβγδǫ∗aβkγp1δ)(ǫαρσλǫ

∗ρ
b (q − k)σpλ

1)
]

< Sa, maf |Sa, mai >

+ γa
E1iǫαβγδS

α
a

[

(ǫ∗βb (q − k) · p1 − (q − k)βǫ∗b · p1)k
γ(ǫ∗δa k · p1 − kδǫ∗a · p1)

+ (ǫ∗βa k · p1 − kβǫ∗a · p1)(q − k)γ(ǫ∗δb (q − k) · p1 − (q − k)δǫ∗b · p1)
]

+ γa
M1iǫαβγδS

α
b

[

ǫβρλξǫ∗ρb (q − k)λp1ξkγǫ
δκζσǫ∗aκkζp1σ

+ ǫβκζσǫ∗aκkζp1σ(q − k)γǫδρλξǫ∗ρb (q − k)λp1ξ

]

+ 2γa
E2

[

Sb · k(ǫ∗ρb (q − k) · p1 − (q − k)ρǫ∗b · p1)iǫρκζσǫ
∗κ
a k

ζpσ
1

+ Sb · (q − k)(ǫ∗ρa k · p1 − kρǫ∗a · p1)iǫρκζσǫ
∗κ
b (q − k)ζpσ

1

+ (ǫ∗b · k(q − k) · p1 − (q − k) · kǫ∗b · p1)iǫρκζσS
ρ
aǫ

∗κ
a k

ζpσ
1

+ (ǫ∗a · (q − k)k · p1 − (q − k) · kǫ∗a · p1)iǫρκζσS
ρ
aǫ

∗κ
b (q − k)ζpσ

1

]

+ 2γa
M2

[

Sa · k(ǫ∗ρa k · p1 − kρǫ∗a · p1)iǫρκζσǫ
∗κ
b (q − k)ζpσ

1

+ Sa · (q − k)(ǫ∗ρb (q − k) · p1 − (q − k)ρǫ∗b · p1)iǫρκζσǫ
∗κ
a k

ζpσ
1

+ iǫρκζσk
ρǫ∗κb (q − k)ζpσ

1 (ǫ∗a · Sak · p1 − k · Saǫ
∗
a · p1)

+ iǫρκζσ(q − k)ρǫ∗κa k
ζpσ

1 (ǫ∗b · Sa(q − k) · p1 − (q − k) · Saǫ
∗
b · p1)

]

(15)

and the scattering amplitude becomes

Sa0M2γ(q) =
1

2!

(4π)2

m2
am

2
b

∫

d4k

(2π)4

−iηαγ

k2

−iηβδ

(k − q)2
Saτa

αβ(p1, k, q−k)0τ b
sγδ(p3,−k, k−q)

(16)
Performing the various contractions and integration, we find

Sa0Mtot
2γ (q) = Sa0Ma

2γ(q) + Sa0Mb
2γ(q) (17)

with

Sa0Ma
2γ(q) = −Lq

4

240
< Sa, maf |Sa, mai >

[

23
(

αa
Eα

b
E + βa

Mβ
b
M

)

− 7
(

αa
Eβ

b
M + αb

Eβ
a
M

)]

(18)
and

Sa0Mb
2γ(q) = −Lq

4

240

i

m2
a

ǫαβγδp
α
1p

β
3q

γSδ
a

[

4(αb
E + βb

M)(γa
E1 + γa

M1)

+ 20(αb
E + βb

M)(γa
E2 + γa

M2)
]

(19)
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The first piece here is identical to the form found in the spinless case but
is multiplied by the spin-independent factor < Sa, maf |Sa, mai >= δmaf mai

.
The second component, however, is spin-dependent and more interesting.
Working in the center of mass frame with ~p3 = −~p1 ≡ ~pCM and taking the
nonrelativistic limit we find

Sa0Mb
2γ(q) = i

Lq4(ma +mb)

240m2
a

~Sa · ~pCM × ~q
[

4(αb
E + βb

M)(γa
E1 + γa

M1)

+ 20(αb
E + βb

M)(γa
E2 + γa

M2)
]

(20)

Taking the Fourier transform, and noting that ~r × ~pCM = ~L is the angular
momentum, we obtain then

Sa0V (r) = −
∫

d3q

(2π)3
e−i~q·~rSa0Mtot

2γ (q)

= < Sa, maf |Sa, mai >
−23(αa

Eα
b
E + βa

Mβ
b
M) + 7(αa

Eβ
b
M + αb

Eβ
a
M)

4πr7

+
ma +mb

m2
a

~Sa · ~pCM × ~∇ 1

πr7

[

(αb
E + βb

M)(γa
E1 + γa

M1) + 5(αb
E + βb

M)(γa
E2 + γa

M2)
]

= < Sa, maf |Sa, mai >
−23(αa

Eα
b
E + βa

Mβ
b
M) + 7(αa

Eβ
b
M + αb

Eβ
a
M)

4πr7

+
ma +mb

m2
a

~Sa · ~L
7

πr9

[

(αb
E + βb

M)(γa
E1 + γa

M1) + 5(αb
E + βb

M)(γa
E2 + γa

M2)
]

(21)

The potential has a spin-independent piece which is simply the Casimir-
Polder result, accompanied by a shorter range spin-orbit component, which
can be identified by its characteristic spin dependence. Clearly, higher order
polarizabilities will lead to new and shorter range interactions as well as spin-
spin correlations in the case of scattering of two neutral particles both of
which carry spin. However, we will end our discussion here for the neutral-
neutral case and move on the situation that one of the particles carries a
charge.
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3 Spinless Neutral-Charged Particle Interac-

tion

The long range interaction between a neutral and charged system was known
classically long before its first quantum mechanical calculation. In this case
the presence of a charge e at the origin leads to an electric field at location ~r

of size ~E(~r) = er̂/4πr2. If there exists a neutral particle at this location there

will be an induced electric dipole moment ~dE = 4παE
~E. the corresponding

interaction energy is

δE = −1

2
~dE · ~E(~r) = −1

2
4παE

~E2(~r) = −αEα

2r4

where α = 4πe2 is the fine structure constant.
A full quantum mechanical calculation leads to quantum corrections to

this result and was first performed by Bernabeu and Tarrach using dispersive
methods[13]. The problem was later reexamined dispersively by Feinberg and
Sucher[14]. The result found for the leading long range potential between
charged and neutral spinless systems was

V (r) = −1

2

ααE

r4
+

(11αE + 5βM)αh̄

4πmr5
+ . . . (22)

We see that the leading term is classical (h̄-independent) and agrees with
the result found in the simple derivation above—Vcl(r) ∼ −ααE/r

4. How-
ever, there exist additional contributions to the potential which are quantum
mechanical in nature and have the form Vqm(r) ∼ ααEh̄/mr

5. Numerically
these corrections are tiny. However, such terms are intriguing in that their
origin appears to be associated with zitterbewegung. That is, classically we
can define the potential by measuring the energy when two objects are sepa-
rated by distance r. However, in the quantum mechanical case the distance
between two objects is uncertain by an amount of order the Compton wave-
length due to zero point motion—δr ∼ h̄/m. This leads to the replacement

V (r) ∼ 1

r4
−→ 1

(r ± δr)4
∼ 1

r4
∓ 4

h̄

mr5

which is the form found in our calculations.
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(a) (b)

Figure 3: Triangle and bubble diagrams used to evaluate the electromagnetic
scattering of a charged and a neutral system.

3.1 Spinless Charged–Spinless Neutral Particle

The EFT evaluation of the charge-neutral interaction proceeds similarly to
that done for two neutral particles, except that the two photon emission from
the charged particle is characterized by the usual vertices—for a spinless
charged particle we have the one- and two-photon vertices

0τ (1)
µ (p2, p1) = −ie(p1 + p2)µ

0τ (2)
µν (p2, p1) = 2ie2ηµν (23)

The relevant diagrams are shown in Figure 3 and the associated amplitudes
are

0Ma
2γ(q) = e2

4π

m2
b

∫ d4k

(2π)4

ηαγηβδ

k2(k − q)2

[

αb
E

(

ηαβp3 · kp3 · (k − q) + pα
3p

β
3k · (k − q)

− (k − q)αpβ
3p3 · k − pα

3k
βp3 · (k − q)

)

+ βb
M(ǫλαζσkζp3σ)(ǫλβκµ(k − q)κp3µ)

]

× (2p1 − k − q)δ 1

(p1 − k)2 −m2
a

(2p1 − k)γ

0Mb
2γ(q) = 2e2

1

2!

4π

m2
b

∫

d4k

(2π)4

ηαβ

k2(k − q)2

[

αb
E

(

ηαβp3 · kp3 · (k − q) + pα
3p

β
3k · (k − q)

− (k − q)αpβ
3p3 · k − pα

3k
βp3 · (k − q)

)

+ βb
M(ǫλαγδkγp3δ)(ǫλ

βκµ(k − q)κp3µ)
]

(24)

Doing the indicated contractions and performing the integration via the
forms given in Appendix A, we find

0Ma
2γ(q) = − αq2

4ma

αb
E (5L+ 2maS)

10



0Mb
2γ(q) = − αq2

12ma

(

−4αb
E + 5βb

M

)

L (25)

where we have defined S = π2/
√
−q2. Adding, we find

0Mtot
2γ (q) = − αq2

12ma

[

6maSα
b
E + L(11αb

E + 5βb
M)
]

(26)

whose Fourier transform, using the results given in Appendix B, is

0V (r) = −
∫

d3q

(2π)3
0Mtot

2γ (q)e−i~q·~r = −1

2

ααb
E

r4
+

(11αb
E + 5βb

M)αh̄

4πmar5
(27)

in complete agreement with Eq. 22. Now consider the modifications which
result if spin is introduced.

3.2 Charged Spin 1/2–Spinless Neutral Particle

In order to see what changes result if the charged particle carries spin, sup-
pose particle a has spin 1/2. Then the calculation goes through as before
except that we must use the one- and two-photon vertices

1

2 τ (1)
µ (p2, p1) = −ieū(p2)γµu(p1)

1

2 τ (2)
µν (p2, p1) = 0 (28)

and we find

1

2Ma
2γ(q) = − αq2

12ma

[

αb
E

(

ū(p2)u(p1)(7L+ 3Sma) +
1

mb

ū(p2) 6p3u(p1)(4L+ 3maS)
)

+ βb
M

(

ū(p2)u(p1)(L− 3Sma) +
1

mb

ū(p2) 6p3u(p1)(4L+ 3Sma)
)]

1

2Mb
2γ(q) = 0 (29)

Using the identity

ū(p2)γµu(p1) =





1

1 − q2

4m2
a





[

(p1 + p2)µ

2ma

ū(p2)u(p1) −
i

m2
a

ǫµβγδq
βpγ

1S
δ
a

]

(30)

where

Sµ
a =

1

2
ū(p2)γ5γ

µu(p1)

11



is the spin vector and reduces to

Sµ
a

NR−→ (0, ~Sa) =
(

0, χa†
f

1

2
~σχa

i

)

in the nonrelativistic limit, the full amplitude can be written as

1

2Mtot
2γ (q) = − αq2

12ma

[

ū(p2)u(p1)
(

αb
E(11L+ 6maS) + 5βb

M

)

+
i

m2
amb

ǫαβγδp
α
3 p

β
1q

γSδ
a(4L+ 3maS)(αb

E + βb
M)

]

(31)

Taking the nonrelativisitic limit via

ū(p2)u(p1)
NR−→ χa†

f χ
a
i −

i

2m2
a

~Sa · ~p2 × ~p1 (32)

we find the nonrelativistic amplitude in the center of mass frame

1

2Mtot
2γ (q) ≃ − αq2

12ma

[(

6maSα
b
E + L(11αb

E + 5βb
M)
)

χa†
f χ

a
i

+
i

2m2
a

~Sa · ~p2 × ~p1

(

3
ma

mb

S(maα
b
E + (ma +mb)β

b
M)

+
1

2mb

L((8ma − 3mb)α
b
E + (8ma + 3mb)β

b
M

)]

(33)

We observe that the resulting amplitude contains two components—a spin-
independent piece whose form is identical to that found in the spinless case
accompanied by a new spin-dependent form. Taking the Fourier transform,
we find the effective potential

1

2V (r) =
∫

d3q

(2π)3

1

2Mtot
2γ (q)e−i~q·~r =

(

−1

2

ααb
E

r4
+

(11αb
E + 5βb

M)αh̄

4πmar5

)

χa†
f χ

a
i

− 1

2m2
a

~Sa · ~pCM × ~∇
(

α

4mbr4

(

maα
b
E + (ma +mb)β

b
M

)

− αh̄

8πmbmbr5

(

(8ma − 3mb)α
b
E + (8ma + 3mb)β

b
M

)

)

=

(

−1

2

ααb
E

r4
+

(11αb
E + 5βb

M)αh̄

4πmar5

)

χa†
f χ

a
i

− 1

2m2
amb

~Sa · ~L
(

α

r6

(

maα
b
E + (ma +mb)β

b
M

)

− 5h̄α

8πmar7

(

(8ma − 3mb)α
b
E + (8ma + 3mb)β

b
M

)

)

(34)

12



The potential then has a universal spin-independent form accompanied by a
spin-orbit component, which in turn will be seen to have a universal structure.
In order to verify this assertion, we proceed to the case that particle a has
unit spin.

3.3 Charged Spin 1–Spinless Neutral Particle

In order to verify our conjecture that the spin-orbit piece has a universal
structure, we perform the scattering calculation for the case of a charged
spin 1 particle, which we take to be a W+ boson. In order to determine the
correct interaction vertices we must recall that the electroweak interaction
is a gauge theory. This means that the spin one Lagrangian which contains
the charged-W has the Proca form—

L = −1

4
(~Uµν)

2 +
m2

2
~U2

µ (35)

but the SU(2) field tensor ~Uµν contains an additional term on account of the
required gauge invariance

~Uµν = πµ
~Uν − πν

~Uµ − ik~Uµ × ~Uν (36)

where k is the SU(2) electroweak coupling constant. This additional term
in the field tensor is responsible for the interactions involving three and four
W-bosons and for an ”extra” interaction term which has the form of an
anomalous magnetic moment and, when added to the simple Proca moment,
increases the predicted gyromagnetic ratio from its naive value—gnaive

W± = 1—
to its standard model value—gsm

W± = 2[18]. The resulting one- and two-
photon vertices are then found to be

τµ(p2, p1) = −ie
[

(p2 + p1)µǫ
a∗
f · ǫai − ǫa∗fµǫ

a
i · p2 − ǫaiµǫ

a∗
f · p1

+ ǫa∗fµǫ
a
i · (p1 − p2) − ǫaiµǫ

a∗
f · (p1 − p2)

]

τµν(p2, p1) = ie2(2gµνǫ
a∗
f · ǫai − ǫaiµǫ

a∗
fν − ǫa∗fµǫ

a
iν) (37)

where we take the incoming spin 1 particle to have polarization vector ǫai
satisfying ǫai · p1 = 0 and the outgoing particle to have polarization vector
ǫaf satisfying ǫaf · p2 = 0. Evaluating the diagrams shown in Figure 3 we find

13



then

1Ma
2γ(q) =

αq2

48ma

[

αb
E

(

2ǫa∗f · ǫai (29L+ 12maS) +
1

m2
a

ǫa∗f · qǫai · q(20L+ 9maS)

− 2

mam
2
b

ǫa∗f · p3ǫ
a
i · q(L(ma − 8mb) − 6mambS) − 8

m2
b

ǫa∗f · p3ǫ
a
i · p3L

− 2

mam
2
b

ǫa∗f · qǫai · p3(L(ma + 8mb) + 6mambS)

)

+ βb
M

(

ǫa∗f · ǫai 8L− 1

m2
a

ǫa∗f · qǫai · q(4L+ 15maS)

− 2

mam2
b

ǫa∗f · p3ǫ
a
i · q(L(ma − 8mb) − 6mambS) − 8

m2
b

ǫa∗f · p3ǫ
a
i · p3L

− 2

mam2
b

ǫa∗f · qǫai · p3(L(ma + 8mb) + 6mambS)

)]

1Mb
2γ(q) =

αq2L

24ma

[

αb
E

(

−7ǫa∗f · ǫai +
4

m2
b

ǫa∗f · p3ǫ
a
i · p3 +

1

m2
b

(ǫa∗f · qǫai · p3 + ǫa∗f · p3ǫ
a
i · q)

)

+ βb
M

(

6ǫa∗f · ǫai +
4

m2
b

ǫa∗f · p3ǫ
a
i · p3 +

1

m2
b

(ǫa∗f · qǫai · p3 + ǫa∗f · p3ǫ
a
i · q)

)]

(38)

Summing, we determine the total amplitude

1Mtot
2γ (q) =

αq2

48ma

[

αb
E

(

ǫa∗f · ǫai 4(11L+ 6maS) +
1

m2
a

ǫa∗f · qǫai · q(20L+ 9maS)

− 1

mamb

(ǫa∗f · qǫai · p3 − ǫa∗f · p3ǫ
a
i · q)4(4L+ 3maS)

)

+ βb
M

(

ǫa∗f · ǫai 20L− 1

m2
a

ǫa∗f · qǫai · q(4L+ 15maS)

− 1

mamb

(ǫa∗f · qǫai · p3 − ǫa∗f · p3ǫ
a
i · q)4(4L+ 3maS)

)]

(39)

In order to make contact with our previous results, we use the identity

ǫaiµǫ
a∗
f ·q−ǫai ·qǫa∗fµ =

(

1

4m2
a − q2

)

[

−4imaǫµβγδp
β
1q

γSδ
a + 2(p1 + p2)µǫ

a∗
f · qǫai · q

]

(40)
where we have defined the spin vector

Saµ =
−i

2ma

ǫµβγδǫ
a∗β
f ǫaγ

i (p1 + p2)
δ (41)

14



The amplitude can then be written as

1Mtot
2γ (q) =

αq2

12ma

[

ǫa∗f · ǫai
(

αb
E(11L+ 6maS) + 5βb

ML
)

+
i

m2
amb

ǫαβγδp
α
3p

β
1q

γSδ
a(4L+ 3maS)(αb

E + βb
M )

+
1

m2
a

ǫa∗f · qǫai · q
(

αb
E(4L− 3maS) − βb

M(20L+ 27maS)
)

]

(42)

Comparing with Eq. 31 we see that both the spin-independent and dipole
terms have a universal form. There is an additional quadrupole contribution
that presumably is itself universal if higher spin is considered.

In the nonrelativistic limit we have

ǫa0
i ≃ − 1

ma

ǫ̂ai · ~p1, ǫa0
f ≃ − 1

ma

ǫ̂af · ~p2 (43)

so that

ǫa∗f · ǫai ≃ −ǫ̂a∗f · ǫ̂ai +
1

m2
a

ǫ̂a∗f · ~p2ǫ̂
a
i · ~p1

= −ǫ̂a∗f · ǫ̂ai +
1

2m2
a

ǫ̂a∗f × ǫ̂ai · ~p2 × ~p1 +
1

2m2
a

(ǫ̂a∗f · ~p2ǫ̂
a
i · ~p1 + ǫ̂a∗f · ~p1ǫ̂

a
i · ~p2)

(44)

Since
− iǫ̂a∗f × ǫ̂ai =< 1, mf |~S|1, mi >≡ ~Sa, (45)

Eq. 44 becomes

ǫa∗f · ǫi ≃ −ǫ̂a∗f · ǫ̂ai +
i

2m2
a

~Sa · ~p2 × ~p1 +
1

2m2
a

(ǫ̂a∗f · ~p2ǫ̂
a
i · ~p1 + ǫ̂a∗f · ~p1ǫ̂

a
i · ~p2) (46)

Dropping the last term here, which is O(v2/c2), we find the nonrelativistic
amplitude in the CM frame

1Mtot
2γ (q) ≃ αq2

12ma

[(

6maSα
b
E + L(11αb

E + 5βb
M)
)

ǫ̂a∗f · ǫ̂aiχi

+
i

2m2
a

~Sa · ~p2 × ~p1

(

3
ma

mb

S(maα
b
E + (ma +mb)β

b
M)

+
1

2mb

L((8ma − 3mb)α
b
E + (8ma + 3mb)β

b
M

)

+
1

m2
a

q : T a : q
(

αb
E(4L− 3maS) − βb

M(20L+ 27maS)
)

]

(47)
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where

q : T a : q ≡ 1

2
(ǫ̂a∗f ·~qǫ̂ai ·~q)−

1

3
~q2ǫ̂a∗f · ǫ̂ai =< 1, mf |~S ·~q~S ·~q− 2

3
~q2|1, mi > (48)

involves the quadrupole moment. Taking the Fourier transform we find the
effective potential

1V (r) =
∫

d3q

(2π)3

1

2Mtot
2γ (q)e−i~q·~r =

(

−1

2

ααb
E

r4
+

(11αb
E + 5βb

M)αh̄

4πmar5

)

ǫ̂a∗f · ǫ̂ai

− 1

2m2
a

~Sa · ~pCM × ~∇
(

α

4mbr4

(

maα
b
E + (ma +mb)β

b
M

)

− αh̄

8πmbmbr5

(

(8ma − 3mb)α
b
E + (8ma + 3mb)β

b
M

)

)

+
1

m2
a

~∇ : T a : ~∇
(

α

4r4
(αb

E + 9βb
M) +

αh̄

maπr5
(αb

E − 5βb
M)

)

=

(

−1

2

ααb
E

r4
+

(11αb
E + 5βb

M)αh̄

4πmar5

)

ǫ̂a∗f · ǫ̂ai

− 1

2m2
amb

~Sa · ~L
(

α

r6

(

maα
b
E + (ma +mb)β

b
M

)

− 5αh̄

8πmar7
((8ma − 3mb)α

b
E + (8ma + 3mb)β

b
M)

)

+
1

m2
a

~r : T a : ~r

(

24α

r8
(αb

E + 9βb
M) +

35αh̄

maπr9
(αb

E − 3βb
M)

)

(49)

We see then that the potential in the case of spin 0-spin 1 scattering consists
of three component. The first is a spin-independent form which is identical to
that found earlier in the case of spin 0-spin 0 and spin 0-spin 1/2 scattering.
This piece is accompanied by a shorter range spin-orbit potential identical
to that found in the case of spin 0-spin 1/2 scattering. Thus both the spin-
independent and spin-orbit components are seen to be universal, in that they
have identical forms, independent of spin. There exists in the case of spin-
1 an even shorter range quadrupole interaction, which we suspect is also
universal in nature.
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3.4 Nonzero Spin Neutral Particle-Spinless Charged
Particle

A fianl possibility is that the charged particle is spinless but the neutral
system carries spin. In this case, the neutral system is characterized not only
in terms of the electric and magnetic polarizabilities but also in terms of the
four spin polarizabilities defined in Eq. 14 The calculation proceeds as in the
case of a spinless neutral particle, but the two photon vertex Eq. 15 is used.
The resulting diagrams yield

0Ma
2γ(q) = − αq2

12ma

[

αb
E (15L+ 6maS) < Sa, maf |Sa, mai >

+
i

mamb

ǫαβγδp
α
1 p

β
3q

γSδ
a

(

(10L+ 3maS)γb
E1 − 2Lγb

M1

+ (26L+ 9maS)γb
E2 − (14L+ 6maS)γb

M2

)]

0Mb
2γ(q) = − αq2

12ma

(

−4αb
E + 5βb

M

)

L < Sa, maf |Sa, mai > (50)

where we have defined S = π2/
√
−q2. Adding, we find

0Mtot
2γ (q) = − αq2

12ma

[(

6maSα
b
E + L(11αb

E + 5βb
M)
)

< Sa, maf |Sa, mai >

+
i

mamb

ǫαβγδp
α
1p

β
3q

γSδ
a

(

(10L+ 3maS)γb
E1 − 2Lγb

M1

+ (26L+ 9maS)γb
E2 − (14L+ 6maS)γb

M2

)]

(51)

The effective potential is found as usual by taking the nonrelativistic limit
and Fourier transforming

0V (r) =

(

−1

2

ααb
E

r4
+

(11αb
E + 5βb

M)αh̄

4πmar5

)

< Sa, maf |Sa, mai >

+
ma +mb

mambr9
~Sa · ~L

(

(10L+ 3maS)γb
E1 − 2Lγb

M1

+ (26L+ 9maS)γb
E2 − (14L+ 6maS)γb

M2

)

(52)
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4 Conclusions

Above we have examined the long range electromagnetic interaction between
particles with and without spin. This is not a new problem—the interac-
tion between two neutral but polarizable particles was examined in 1948 by
Casimir and Polder using old fashioned perturbation theory[9], while that be-
tween a neutral and charged system was treated by Bernabeu and Tarrach in
the mid-1970’s using dispersive methods[13]. A definitive dispersive analysis
of both problems was given somewhat later by Feinberg and Sucher[10, 14].
Here we examined both problems using ideas from effective field theory and
included the complications associated with spin. The basic idea of the EFT
approach is that the long range component of the interaction is generated
from the very low momentum transfer region, specifically from terms which
are nonanalytic in q2. One can straightforwardly isolate such terms from a
relativistic Feynman diagram calculation and the resulting Fourier transform
yields the effective potential. The method is direct and generally much eas-
ier to implement than that used in earlier treatments. In this way we have
easily rederived the results of previous authors. Also, we have included the
effects of spin, which leads to a spin-orbit interaction. In the case of a neu-
tral particle, we have used spin polarizabilities to characterize the structure,
while in the case of a charged particle we have used the usual electromag-
netic interaction. Such spin-dependent effects are shorter range compared to
the leading spin-independent terms, but they can be identified due to their
characteristic spin dependence. In higher order, if both particles carry spin
then there exists an even shorter-range spin-spin correlation. However, we
end our discussion here.

Appendix A: One loop integration in EFT

In this section we sketch how our results were obtained. The basic idea
is to calculate the Feynman diagrams shown in Figure 1a,..e. For simplicity
we shall assume spinless scattering. Thus for Figure 1a we find

Amp[1a] =
1

2!

∫

d4k

(2π)4

τ (2)
µν (p2, p1)η

µαηνβτ
(2)
αβ (p4, p3)

k2(k − q)2
(53)

while for Figure 1b

Amp[1b] =
∫ d4k

(2π)4

1

k2(k − q)2((k − p1)2 −m2
a)

× τ (2)
µν (p4, p3)η

µαηνβτ
(1)
β (p2, p1 − k)τ (1)

α (p1 − k, p1) (54)
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Here the various vertex functions are listed in section 3, while for the inte-
grals, all that is needed is the leading nonanalytic behavior. Thus we use

I(q) =
∫ d4k

(2π)4

1

k2(k − q)2
=

−i
32π2

(2L+ . . .)

Iµ(q) =
∫

d4k

(2π)4

kµ

k2(k − q)2
=

i

32π2
(qµL+ . . .)

Iµν(q) =
∫

d4k

(2π)4

kµkν

k2(k − q)2
=

−i
32π2

(qµqν
2

3
L− q2ηµν

1

6
L+ . . .)

Iµνα(q) =
∫

d4k

(2π)4

kµkνkα

k2(k − q)2
=

i

32π2
(−qµqνqα

L

2

+ (ηµνqα + ηµαqν + ηναqµ)
1

12
Lq2 + . . .)

(55)

with L = log−q2 for the ”bubble” integrals and

J(p, q) =
∫ d4k

(2π)4

1

k2(k − q)2((k − p)2 −m2)
=

−i
32π2m2

(L+mS) + . . .

Jµ(p, q) =
∫

d4k

(2π)4

kµ

k2(k − q)2((k − p)2 −m2)
=

i

32π2m2

× [pµ((1 +
1

2

q2

m2
)L− 1

4

q2

m
S) − qµ(L+

m

2
S) + . . .]

Jµν(p, q) =
∫

d4k

(2π)4

kµkν

k2(k − q)2((k − p)2 −m2)
=

i

32π2m2

× [−qµqν(L+
3m

8
S) − pµpν

q2

m2
(
1

2
L+

m

8
S)

+ q2ηµν(
1

4
L+

m

8
S) + (qµpν + qνpµ)((

1

2
+

1

2

q2

m2
)L+

3

16

q2

mS
)

Jµνα(p, q) =
∫ d4k

(2π)4

kµkνkα

k2(k − q)2((k − p)2 −m2)

=
−i

32π2m2

[

qµqνqα

(

L+
5m

16
S
)

+ pµpνpα

(

− 1

6

q2

m2
L
)

+ (qµpνpα + qνpµpα + qαpµpν)
(

1

3

q2

m2
L+

1

16

q2

m
S
)

+ (qµqνpα + qµqαpν + qνqαpµ)
(

(

− 1

3
− 1

2

q2

m2

)

L− 5

32

q2

m
S
)
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+ (ηµνpα + ηµαpν + ηναpµ)
( 1

12
q2L

)

+ (ηµνqα + ηµαqν + ηναqµ)
(

− 1

6
q2L− 1

16
q2mS

)

]

+ . . .

(56)

where S = π2/
√
−q2 for their ”triangle” counterparts. Similarly higher order

forms can be found, either by direct calculation or by requiring various iden-
tities which must be satisfied when the integrals are contracted with pµ, qµ

or with ηµν .

Appendix B: Fourier Integrals

Here we collect the integrals used to calculate the long range electromag-
netic potentials. For the classical effects we use

∫ d3q

(2π)3
e−i~q·~r|~q| = − 1

π2r4

∫

d3q

(2π)3
e−i~q·~rqj |~q| =

4irj

π2r6

∫

d3q

(2π)3
e−i~q·~r|~q|3 =

12

π2r6

∫

d3q

(2π)3
e−i~q·~rqj |~q|3 =

−i72rj

π2r8
(57)

while for the quantum case we utilize

∫

d3q

(2π)3
e−i~q·~r~q2 log ~q2 =

3

πr5

∫

d3q

(2π)3
e−i~q·~rqj~q

2 log ~q2 =
i15rj

πr7

∫

d3q

(2π)3
e−i~q·~r~q4 log ~q2 = − 60

πr7

∫ d3q

(2π)3
e−i~q·~rqj~q

4 log ~q2 =
i420rj

πr9
(58)
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