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ABSTRACT

USING CONTEXT TO ENHANCE THE
UNDERSTANDING OF FACE IMAGES

SEPTEMBER 2010

VIDIT JAIN

B.Tech., INDIAN INSTITUTE OF TECHNOLOGY, KANPUR

M.Sc., UNIVERSITY OF MASSACHUSETTS AMHERST

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Erik G. Learned-Miller

Faces are special objects of interest. Developing automated systems for detecting

and recognizing faces is useful in a variety of application domains including providing

aid to visually-impaired people and managing large-scale collections of images. Hu-

mans have a remarkable ability to detect and identify faces in an image, but related

automated systems perform poorly in real-world scenarios, particularly on faces that

are difficult to detect and recognize. Why are humans so good? There is general

agreement in the cognitive science community that the human brain uses the context

of the scene shown in an image to solve the difficult cases of detection and recogni-

tion. This dissertation focuses on emulating this approach by using different kinds of

contextual information for improving the performance of various approaches for face

detection and face recognition.

vii



For the face detection problem, we describe an algorithm that employs the easy-

to-detect faces in an image to find the difficult-to-detect faces in the same image. For

the face recognition problem, we present a joint probabilistic model for image-caption

pairs. This model solves the difficult cases of face recognition in an image by using

the context generated from the caption associated with the same image. Finally,

we present an effective solution for classifying the scene shown in an image, which

provides useful context for both of the face detection and recognition problems.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

Faces are special objects of interest. Not only are they useful for social interactions,

but they also appear to be different from other objects in the processing of their

visual stimuli by the human brain [31, 98, 115, 116]. In particular, the existence

of cases of congenital prosopagnosia1 [7] supports the hypothesis that humans are

genetically wired to recognize human faces. Nevertheless, it is also evident that

the ability to recognize faces is fine-tuned to the types of faces to which the person is

exposed especially during infancy and youth [55]. As a result of this interplay between

nature and nurture, an average adult human brain has highly developed machinery

for recognizing faces.

Developing automated systems for detecting and recognizing faces is very impor-

tant. In addition to providing help to people with disabilities such as impaired vision

and prosopagnosia, these systems have been found to be useful in a variety of applica-

tion domains such as personal access control [28], human-computer interfaces [3], and

indexing and organization of large photo collections. Perhaps due to this wide-spread

applicability, several face detection [88, 91, 108] and recognition [33, 64, 83] systems

have been developed. Despite high performance reported by these systems on several

face data sets [94, 100], automatic face recognition has not achieved acceptable per-

formance in real-world scenarios. For instance, the face recognition system deployed

1Prosopagnosia refers to a disorder where the ability to recognize faces is impaired, while the
ability to recognize other objects remains unaffected and no other neurological defects are observed.
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at the Logan International Airport failed to match the identities of a control group

in 38 percent of the cases [78].

Why are humans so good at face detection and recognition? There is substantial

evidence [12, 81] that in addition to an effective part-based encoding of faces in the

human brain, context plays a significant role in recognizing objects and faces (al-

though it is unclear how and at what stage the context is processed in human vision).

Bar [4] hypothesized that the human brain uses a different representation of an ob-

ject for each of the different contexts in which this object could be observed. While

analyzing the utility of contextual cues for object detection, Wolf and Bileschi [111]

concluded that the context is a useful cue only when the appearance information is

weak.

In brief, there is a general agreement that the human brain uses context to solve

difficult cases of detection and recognition. The automated systems, on the other

hand, typically focus only on a given image region, ignoring any kind of information

external to the appearance of this image region. As a result, these systems are trying

to solve face recognition and detection problems without using any scene context. In

other words, they are solving a problem that may be more difficult than necessary.

In this dissertation, we focus on using different kinds of contextual information

for enhancing the understanding of face images. In particular, we develop different

probabilistic models to infer the context from other parts of the image, co-occurring

faces, and the associated caption (if available) to solve the difficult cases of face

detection and recognition.

1.2 What is context?

Context refers to the circumstances that form the setting for an observation,

perception, or event. The context for an image region is defined as any information
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external to the appearance of the given image region. The types of context commonly

found in the computer vision literature are:

• Spatial context. This context refers to the use of spatial constraints such as

modeling the dependencies between neighboring image regions. For instance,

Carbonetto et al. [18] use the spatial relationships between the objects in an

image to annotate different parts of an image.

• Geometric context. This context refers to the reasoning about the geometric

properties (e.g., the surface orientation) of the image regions. For instance,

Hoiem et al. [41] used the surface orientation of different image regions as the

context to boost (or reduce) the probability of observing different objects in an

image region; they argued that it is more likely to see a car on a horizontal

surface than a vertical surface.

• Scene context. This context refers to the use of statistics of the low-level image

features to characterize the scene shown in a given image. For instance, Torralba

et al. used the scene statistics as context for object detection [102, 103, 105]

and depth estimation [104].

In this dissertation, we use two other types of context:

• Collective context. This context refers to performing joint inference for all of

the image regions, or performing a joint inference for different, yet related,

classification problems. We use this type of context to solve the face detection

problem for difficult-to-detect faces in an image.

• Multi-modal context. This context refers to using the information from other

sources (e.g., a textual description of an image), if available. We use this type

of context to solve the face recognition problem for difficult-to-recognize faces

in an image.
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1.3 Outline of this document

The rest of this document is organized as follows. In Chapter 2, the design of

a face detector that uses the easy-to-detect faces in an image to solve the difficult-

to-detect faces in this image is described. Next, in Chapter 3, a joint probabilistic

model is presented, which uses the caption associated with an image to generate the

context about the scene shown in the image to help in the recognition of the difficult-

to-recognize faces in the given image. Then, in Chapter 4, we describe a model that

simultaneously performs the segmentation of an image and generates a classification

label for the scene shown in the image; the scene classification label obtained from

this model can potentially be used as context for either of the face detection and

face recognition problems. Finally, our conclusions and discussions of some possible

extensions to this work are presented in Chapter 5.

1.4 Contributions in this dissertation

There are six major contributions in this dissertation:

1. We creation of a competitive benchmark and a rigorous evaluation scheme for

evaluating the performance of different face detection algorithms. This bench-

mark is referred to as FDDB, or Face detection data set and benchmark [48].

2. We develop an algorithm for online domain-adaptation of a pre-trained cascade

of classifiers for contextual face detection [49, 52].

3. We improve the face identification performance of hyper-features based models

through a direct, discriminative training of these models [47].

4. We present a joint probabilistic model that uses the coherence of face images

and their captions to obtain clusters of faces and distributions of words that are

closely related to a single person. We refer to this model as People-LDA [50].
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5. We create a data set of images of five popular sports (known as the FlickrSports-

5 data set) to evaluate different approaches for scene classification.

6. We develop a probabilistic framework for simultaneously solving the segmen-

tation and scene classification problems for a given image. This framework is

referred to as selective hidden random fields [51].
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CHAPTER 2

CONTEXTUAL FACE DETECTION

2.1 Introduction

Face detection refers to the problem of determining the location and extent of

all the faces present in an image. A restricted formulation of this problem is face

localization, which assumes the presence of exactly one face in the given image and

the goal is to determine the location and extent of this face. In this chapter, we focus

on a more general version of this problem where we do not make any assumption about

a priori knowledge of the number of faces present in the given image. Furthermore,

we assume that a face detection algorithm takes a single image as input, and this

image is not a part of a sequence of images or a video. Note that because of the

continuity in the location, size, and appearance of face regions in consecutive images

in a sequence, a solution for face detection in image sequences could employ tracking-

based approaches [72]. In the absence of such structured information, detecting faces

in single images is likely to be more difficult than detecting faces in a sequence of

images. Hereafter, we focus only on this more difficult case of face detection in single

images.

Detecting faces in single images has been found useful in a variety of real-world

applications. For instance, face detection systems are used for automatically control-

ling the exposure in digital cameras [113], and for categorizing and filtering retrieved

images by commercial image search engines such as Google Images1 and Bing.2 De-

1http://images.google.com

2http://www.bing.com/images/
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spite this widespread interest and significant research effort over the last few decades,

face detection still remains an area of active research, as people try to improve auto-

matic systems. As we show later in this chapter, the performance of standard face

detection systems is very low on images acquired in unconstrained environments.

One reason for the low performance of most of these face detectors is because they

perform the face vs. non-face classification independently for each candidate image

region. In unconstrained environments, learning a precise model of discrimination be-

tween face and non-face regions becomes very difficult because of the presence of large

variations in face appearances due to factors such as facial expressions, occlusions,

and illumination patterns. We argue that the faces appearing in a single image, how-

ever, have similar range of such variations because they share the common geometric

structure, illumination sources, and similar properties of the scene. For instance,

in each of the two images shown in Figure 2.1 all of the face regions have similar

shadow patterns. Also note that because of the difference in the pose and position of

these faces relative to the camera, some faces have weaker shadows compared to the

other faces. We postulate that these faces with weaker shadows (and hence stronger

appearance signal) should be relatively easy to detect. In this chapter, we present

an adaptive face detection algorithm that uses such easy-to-detect faces to develop

a local model of discrimination between face and non-face regions that is specific to

the given image.

Before we describe the design of our contextual face detector, we first present a

competitive benchmark and a precise scheme for evaluating the performance of dif-

ferent face detection algorithms in Section 2.2. Next, in Section 2.3, we describe a

scientific setup for conducting experiments to compare different face detection ap-

proaches. Then, in Section 2.4, we describe a typical approach for implementing a

face detection system and, in Section 2.5, we present the details of our contextual face
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Figure 2.1. Easy-to-detect faces could help identify difficult-to-detect faces.

All of the faces in each of these images have similar shadow patterns – shadow on the
right half of the faces in the left image, and shadow on the left half of the faces in the
right image. Note that because of the difference in the pose and position of these faces
relative to the camera, some faces have weaker shadows compared to the other faces.
We postulate that these faces with weaker shadows (and hence stronger appearance
signal) should be relatively easy to detect. Furthermore, these easy-to-detect faces
could be used to develop a local model of discrimination between face and non-face
regions that is specific to the given image.

detector. Finally, in Section 2.6, we report significant improvements in face detection

results using this contextual face detector.

2.2 Evaluation of detection algorithms

Despite the maturity of face detection research, it remains difficult to compare

different algorithms for face detection. This is partly due to the lack of common

evaluation schemes. Also, existing data sets for evaluating face detection algorithms

do not capture some aspects of face appearances that are manifested in real-world

scenarios. Here, we address both of these issues. We present a new data set of

face images with more faces and more accurate annotations for face regions than in

previous data sets. We also propose two rigorous and precise methods for evaluating

the performance of face detection algorithms.
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2.2.1 Data sets

For a data set to be useful for evaluating face detection, the locations of all faces

in these images need to be annotated. Sung et al. [100] built one such data set.

Although this data set included images from a wide range of sources including scanned

newspapers, all of the faces appearing in these images were upright and frontal.

Later, Rowley et al. [88] created a similar data set with images that included faces

with in-plane rotation. Schneiderman et al. [90, 91] combined these two data sets

with an additional collection of profile face images, which is commonly known as the

MIT+CMU data set. Figure 2.2 shows some samples from this data set.

Figure 2.2. Example images from the MIT+CMU face data set.

This data set includes images from a wide range of sources including scanned newspa-
pers, and includes frontal and profile images. However, since this collection contains
only gray-scale images, it is not applicable for evaluating face detection systems that
employ color information as well.

Since this resulting collection contains only gray-scale images, it is not applicable

for evaluating face detection systems that employ color information as well [42]. Some

of the subsequent face detection data sets included color images, but they also had

several shortcomings. For instance, the GENKI data set [107] includes color images

that show a range of head poses (yaw, pitch ±45◦, roll ±20◦), but every image in

this collection contains exactly one face. Similarly, the Kodak [66], UCD [94] and

VT-AAST [1] data sets included images of faces with occlusions, but the small sizes
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of these data sets limit their utility in creating effective benchmarks for face detection

algorithms.

To address the above-mentioned issues, we present a new data set FDDB that

includes

• 2845 images with a total of 5171 faces;

• a wide range of difficulties including occlusions, difficult poses, and low resolu-

tion and out-of-focus faces;

• the specification of face regions as elliptical regions; and

• both gray-scale and color images.

Next we discuss the origin and creation of this data set.

2.2.2 FDDB: Face detection data set and benchmark

Figure 2.3. Example images from Berg et al.’s data set.

The images in this collection were collected from news articles and display large
variation in pose, lighting, background, and appearance.

Berg et al. [10] created a data set that contains images and associated captions

extracted from news articles (see Figure 2.3). The images in this collection display

large variation in pose, lighting, background and appearance. Some of these vari-

ations in face appearance are due to factors such as motion, occlusions, and facial
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expressions, which are characteristic of the unconstrained setting for image acquisi-

tion. Berg et al. used Mikolajczyk’s face detector [75] to extract many of the face

regions in these images. This set of extracted face images is commonly known as the

Faces in the Wild data set.3 Since the faces in this data set were selected based on

the output of an automatic face detector, an evaluation of face detection algorithms

on the existing set of annotated faces would favor the approaches with outputs highly

correlated with Mikolajczyk’s face detector. This bias makes this data set unsuitable

for evaluating different approaches for face detection. However, the richness of the

images included in this collection motivated us to build an index of all of the faces

present in a subset of images from this collection. We believe that benchmarking face

detection algorithms on this data set will provide good estimates of their expected

performance in unconstrained settings.

Original 
Collection

Near-
duplicate 
Detection

Ellipse 
Fitting

Figure 2.4. Outline of the face labeling process.

To create our data set of annotated face regions, first the near-duplicate images
are identified and removed, and then the remaining images are presented to manual
annotators to draw ellipses around the face regions.

The images in Berg et al.’s data set were collected from the Yahoo! news web-

site,4 which accumulates news articles from different sources. Although different news

organizations may cover a news event independently of each other, they often share

3http://www.tamaraberg.com/faceDataset/index.html

4http://news.yahoo.com
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photographs from common sources such as the Associated Press5 and Reuters.6 The

published photographs, however, may not be digitally identical to each other because

they are often modified (e.g., cropped or contrast-corrected) before publication. We

refer to all of the images that are derived from a single original photograph as near-

duplicates of each other. Note that the above-mentioned processing of the original

photograph to obtain an image to be published in a news article has led to the

presence of several near-duplicate images in Berg et al.’s data set. Also note that the

presence of such near-duplicate images is limited to a few data collection domains

such as news photos and those on the Internet, and is not a characteristic of most

practical face detection application scenarios. For example, it is uncommon to find

such near-duplicate images in a personal photo collection. Thus, an evaluation of

face detection algorithms on a data set with multiple copies of near-duplicate images

may not generalize well across domains. For this reason, we decided to identify and

remove as many near-duplicates from our collection as possible. We now present the

details of the duplicate detection.

2.2.2.1 Near-duplicate detection

We selected a total of 3527 images (based on the chronological ordering) from the

image-caption pairs of Berg et al. [10]. Examining pairs for possible duplicates in this

collection in the näıve fashion would require approximately 12.5 million annotations.

An alternative arrangement would be to display a set of images and manually identify

groups of images in this set, where images in a single group are near-duplicates of each

other. Due to the large number of images in our collection, it is unclear how to display

all the images simultaneously to enable this manual identification of near-duplicates

in this fashion.

5http://www.ap.org/

6http://www.reuters.com/
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Figure 2.5. An example of a pair of near-duplicate images.

These two images differ from each other slightly in the resolution and the color and in-
tensity distributions, but the pose and expression of the faces are identical, suggesting
that they were derived from a single photograph.

Figure 2.6. An example of a pair of similar but not near-duplicate images.

Although these two images are very similar in appearance, there is a slight difference
in the head pose. This difference in pose suggests that these images were derived
from two separate photographs, and hence are not considered near-identical images.
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Identification of near-duplicate images has been studied for web search [20, 21, 30].

However, in the web search domain, scalability issues are often more important than

the detection of all near-duplicate images in the collection. Since we are interested

in discovering all of the near-duplicates in our data set, these approaches are not

directly applicable to our task. Zhang et al. [117] presented a more computationally

intensive approach based on stochastic attribute relational graph (ARG) matching.

Their approach was shown to perform well on a related problem of detecting near-

identical frames in news video databases. These ARGs represent the compositional

parts and part-relations of image scenes over several interest points detected in an

image. To compute a matching score between the ARGs constructed for two different

images, a generative model for the graph transformation process is employed. This

approach has been observed to achieve high recall of near-duplicates, which makes it

appropriate for detecting similar images in our data set.

As with most automatic approaches for duplicate detection, this approach has a

trade-off among false positives and false negatives. To restrict the number of false

positives, while maintaining a high true positive rate, we follow an iterative approach

(outlined in Algorithm 1) that alternates between clustering and manual inspection of

the clusters. We cluster (steps 3-5 of Algorithm 1) using a spectral graph-clustering

approach [80]. Then, we manually label each non-singleton cluster from the preceding

step as either uniform, meaning that it contains images that are all near-duplicates

of each other, or non-uniform, meaning that at least one pair of images in the cluster

are not near-duplicates of each other. Finally, we replace each uniform cluster with

one of the images belonging to it.

For the clustering step, in particular, we construct a fully-connected undirected

graph G over all the images in the collection, where the ARG-matching scores are used

as weights for the edges between each pair of images. Following the spectral graph-

clustering approach [80], we compute the (unnormalized) Laplacian LG of graph G
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with n nodes as

LG = DG −WG, (2.1)

where DG is a n × n diagonal matrix with elements DG(i, i) equal to the degree of

the ith node in G, respectively, and WG is the adjacency matrix of G. A projection

of the graph G into a subspace spanned by the top few eigenvectors of LG provides

an effective distance metric between all pairs of nodes (images, in our case). We

perform mean-shift clustering [22] with a narrow kernel in this projected space to

obtain clusters of images.

Algorithm 1 Identifying near-duplicate images in a collection.

1: Construct a graph G = {V, E}, where V is the set of images, and E are all
pairwise edges with weights as the ARG matching scores.

2: repeat
3: Compute the Laplacian of G, LG.
4: Use the top m eigenvectors of LG to project each image onto Rm.
5: Cluster the projected data points using mean-shift clustering with a small-width

kernel.
6: Manually label each cluster as either uniform or non-uniform.
7: Collapse the uniform clusters onto their centroids, and update G.
8: until none of the clusters can be collapsed.

Using this procedure, we were able to arrange the images according to their mu-

tual similarities. Annotators were asked to identify clusters in which all images were

derived from the same source. Each of these clusters was replaced by a single exem-

plar from the cluster. In this process we manually discovered 103 uniform clusters

over seven iterations, with 682 images that were near-duplicates. Additional manual

inspections were performed to find an additional three cases of duplication. Note

that a quantitative evaluation of the above procedure for near-duplicates is not done

because a labeled data set for evaluating the problem of near-duplicate detection does

not exist. Although we tried our best to remove all the near-duplicates in our data

set, it is conceivable that some of them still remain.
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Next we describe our annotation of face regions.

2.2.2.2 Annotating face regions

As a preliminary annotation, we drew bounding boxes around all the faces in 2845

images. From this set of annotations, all of the face regions with height or width less

than 20 pixels were excluded, resulting in a total of 5171 face annotations in our

collection.

Figure 2.7. Challenges in face labeling.

For some image regions, deciding whether or not it represents a “face” can be chal-
lenging. Several factors such as low resolution (green, solid), occlusion (blue, dashed),
and pose of the head (red, dotted) may make this determination ambiguous.

For several image regions, the decision of labeling them as face regions or non-

face regions remains ambiguous due to factors such as low resolution, occlusion, and

head-pose (e.g., see Figure 2.7). One possible approach for handling these ambiguities

would be to compute a quantitative measure of the “quality” of the face regions, and

reject the image regions with the value below a pre-determined threshold. We were

not able, however, to construct a satisfactory set of objective criteria for making this

determination. For example, it is difficult to characterize the spatial resolution needed

to characterize an image patch as a face. Similarly, for occluded face regions, while a
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threshold based on the fraction of the face pixels visible could be used as a criterion,

it can be argued that some parts of the face (e.g., eyes) are more informative than

other parts. Also, note that for the current set of images, all of the regions with faces

looking away from the camera have been labeled as non-face regions. In other words,

the faces with the angle between the nose (specified as radially outward perpendicular

to the head) and the ray from the camera to the person’s head is less than 90 degrees

are not considered face regions. This angle is denoted as θ in the illustration shown

in Figure 2.8. Note that estimating this angle precisely from an image is difficult.

Camera

θ
n

r

v

Figure 2.8. Illustration of the pose of a head relative to the orientation of the
camera.

Here, the vectors specifying the orientation of the nose and the camera are denoted by
n and r, respectively. Both of these vectors are assumed to be perpendicular to the
vertical orientation of the head, which is denoted by v. The pose of a head relative
to the orientation of the camera is represented by the angle θ between n and r.

Due to the lack of an objective criterion for including (or excluding) a face region

in our data set, we resort to human judgments for this decision. Since a single human

decision for determining the label for some image regions is likely to be inconsistent,

we used an approach based on the agreement statistics among multiple human an-

notators. All of these face regions were presented to different people through a web

interface to obtain multiple independent decisions about the validity of these image
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regions as face regions. The annotators were instructed to reject the face regions for

which neither of the two eyes (or glasses) were visible in the image. They were also

requested to reject a face region if they were unable to (qualitatively) estimate its

position, size, or orientation. The guidelines provided to the annotators are described

in Appendix A.

2.2.2.3 Elliptical face regions

Figure 2.9. An approximation of the shape of a human head.

We approximate the shape of a human head (left) as the union of two ellipsoids
(right). We refer to these ellipses as vertical and horizontal ellipsoids.

As shown in Figure 2.9,7 the shape of a human head can be approximated using

two three-dimensional ellipsoids. We call these ellipsoids the vertical and horizontal

ellipsoids. Since the horizontal ellipsoid provides little information about the features

of the face region, we estimate a 2D ellipse for the orthographic projection of the

hypothesized vertical ellipsoid in the image plane. We believe that representing a

7Reproduced with permission from Dimitar Nikolov, Lead Animator, Haemimont Games.
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face region by this 2D ellipse provides a more accurate specification than a bounding

box without introducing any additional parameters.

1 unit

1 unit

Chin

Top of the head

Figure 2.10. Guidelines for drawing ellipses around face regions.

The extreme points of the major axis of the ellipse are respectively matched to the chin
and the topmost point of the hypothetical vertical ellipsoid used for approximating
the human head (see Figure 2.9). Note that this ellipse does not include the ears.
Also, for a non-frontal face, at least one of the lateral extremes (left or right) of this
ellipse are matched to the boundary between the face region and the corresponding
(left or right) ear. The details of our specifications are included in Appendix A.

We specified each face region using an ellipse parameterized by the location of

its center, the lengths of its major and minor axes, and its orientation. Since a 2D

orthographic projection of the human face is often not elliptical, fitting an ellipse

around the face regions in an image is challenging. To make consistent annotations

for all the faces in our data set, the human annotators are instructed to follow the

guidelines shown in Figure 2.10. In Figure 2.11, we illustrate the annotations obtained

by following these guidelines to the faces in an actual image. Some difficult example

annotations in our data set are shown in Figure 2.12.

The next step is to produce a consistent and reasonable evaluation criterion for

comparing different detection algorithms.
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Figure 2.11. An illustration of annotations for all the faces in an image.

The two red ellipses specify the location of the two faces present in this image. Note
that for a non-frontal face (right), the ellipse traces the boundary between the face
and the visible ear. As a result, the elliptical region includes pixels that are not a
part of the face.

Figure 2.12. Some difficult examples of face annotations.

2.2.3 Evaluation scheme

To establish an evaluation criterion for detection algorithms, we first specify some

assumptions we make about their outputs. We assume that

• A detection corresponds to a contiguous image region.

• Any post-processing required to merge overlapping or similar detections has

already been done.
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• Each detection corresponds to exactly one entire face, no more, no less. In

other words, a detection cannot be considered to detect two faces at once, and

two detections cannot be used together to detect a single face. We further

argue that if an algorithm detects multiple disjoint parts of a face as separate

detections, only one of them should contribute towards a positive detection and

the remaining detections should be considered as false positives.

To represent the degree of match between a detection di and an annotated region

lj, we employ the commonly used ratio of intersected areas to joined areas:

S(di, lj) =
area(di) ∩ area(lj)

area(di) ∪ area(lj)
. (2.2)

2.2.3.1 Matching detections and annotations

A major remaining question is how to establish a correspondence between a set of

detections and a set of annotations. While this problem is easy for very good results

on a given image, it can be subtle and tricky for large numbers of false positives or

multiple overlapping detections (see Figure 2.13 for an example). Below, we formulate

this problem of matching annotations and detections as finding a maximum weighted

matching in a bipartite graph (as shown in Figure 2.14).

Let L be the set of annotated face regions (or labels) and D be the set of detections.

We construct a graph G with the set of nodes V = L∪D. Each node di is connected

to each label lj ∈ L with an edge weight wij as the score computed in Equation 2.2.

For each detection di ∈ D, we further introduce a node ni to correspond to the case

when this detection di has no matching face region in L.

A matching of detections to face regions in this graph corresponds to the selection

of a set of edges M ⊆ E. In the desired matching of nodes, we want every detection

to be matched to at most one labeled face region, and every labeled face region to be

matched to at most one detection. Note that the nodes nk have a degree equal to one,
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Figure 2.13. Example scenario for matching detections and annotations.

In this image, the ellipses specify the face annotations and the five rectangles denote
a face detector’s output. Note that the second face from left has two detections
overlapping with it. We require a valid matching to accept only one of these detections
as the true match, and to consider the other detection as a false positive. Also, note
that the third face from the left has no detection overlapping with it, so no detection
should be matched with this face. The blue rectangles denote the true positives and
yellow rectangles denote the false positives in the desired matching.

so they can be connected to at most one detection through M as well. Mathematically,

the desired matching M maximizes the cumulative matching score while satisfying

the following constraints:

∀d ∈ D, ∃l ∈ {L ∪N}, d
M−→ l; (2.3)

∀l ∈ L, @d, d′ ∈ D, d 6= d′, d
M−→ l ∧ d′

M−→ l. (2.4)

The determination of the maximum weight matching in a weighted bipartite graph

has an equivalent dual formulation as finding the solution of the minimum weighted

(vertex) cover problem on a related graph. This dual formulation is exploited by

the Hungarian algorithm [58] to obtain the solution for the former problem. For a

given image, we employ this method to determine the match between detections and
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l1 l3l2

d1 d2

Max-Flow

Detections

Labels

n1 n2 No Match

Figure 2.14. Maximum weight matching in a bipartite graph.

We make an injective (one-to-one) mapping from the set of detected image regions di

to the set of image regions li annotated as face regions. The property of the resulting
mapping is that it maximizes the cumulative similarity score for all the detected image
regions.

ground-truth annotations.8 The resulting similarity score is used for evaluating the

performance of the detection algorithm on this image.

2.2.3.2 Evaluation metrics

Let di and vi denote the ith detection and the corresponding matching node in the

matching M obtained by the algorithm described in Section 2.2.3.1, respectively. We

propose the following two metrics for specifying the score yi for this detection:

• Discrete score (DS) :

yi =

 1, if S(di, vi) > 0.5,

0, otherwise.
(2.5)

8Our implementation of the matching process is available as part of the FDDB evaluation toolkit
at http://vis-www.cs.umass.edu/fddb/evaluation.tgz.
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• Continuous score (CS):

yi = S(di, vi). (2.6)

For this discussion, we assume a region-based output from a face detector, and

ignore any additional inference about properties such as head pose [44, 53, 63, 82, 93]

and the location of facial landmarks [109]. The scope of this work is limited to the

evaluation of a region-based output alone.

2.3 Experimental Setup

For an accurate and useful comparison of different face detection algorithms, we

recommend a distinction based on the training data used for estimating their param-

eters. To this end, the FDDB data set is split into ten mutually exclusive sets, or

folds, such that the number of faces appearing in the images in each of these folds is

approximately equal across all of these ten folds.9 We use these folds to propose the

following experiments:

EXP-1: 10-fold cross-validation

This experiment specifies that only the images from nine (out of ten) folds are

used for estimating the parameters of the face detector. The trained detector is then

used to detect faces in the images in the remaining one fold. This process of training

on nine folds and testing on one fold is performed for each of the ten choices for the

test fold.

9The ten folds used in our experiments are available at http://vis-www.cs.umass.edu/fddb/
FDDB-folds.tgz.
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EXP-2: Unrestricted training

For this experiment, data outside the FDDB data set is permitted to be included

in the training set. The above-mentioned ten folds are used separately as test sets.

Note that, in both of these experiments, the lists of detected faces are reported

separately for each of these ten folds. Each of the detected faces is expected to

have a real-valued score associated with it, which denotes the detector’s confidence in

this detection. A threshold over this confidence score is varied to generate different

points on a receiver operating characteristic (ROC) curve to report the cumulative

performance of the given face detector.10 A software implementation of this procedure

of generating the performance curves for a list of detected faces in the FDDB data

set is available at http://vis-www.cs.umass.edu/fddb/evaluation.tgz. All of

the performance curves included in this chapter are generated using this software.

Having established a benchmark for evaluating different face detectors, we are

now prepared to discuss the details of some approaches for face detection. In the

next section, we describe the steps followed by a typical face detection system and

discuss the details of the standard Viola-Jones [108] face detector. We will use this

detector to develop a contextual face detection algorithm, which will be presented in

Section 2.5.

2.4 A typical face detection approach

Given an image, a typical face detection system follows the following three steps

(illustrated in Figure 2.15):

1. Sample candidate image regions,

10Typically, an ROC curve is a plot of true positive rate vs. false positive rate. Since there are
millions of non-face regions in an image collection, the false positive rate is expected to be very low
for most of the detection algorithms. For better visualization of the performance of different face
detectors, our performance curves include a plot of true positive rate vs. false positives instead.
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Figure 2.15. Steps followed by a typical face detection system.

2. Classify each of these image regions as a face or non-face region, and

3. Post-process the detected face regions to merge overlapping detections and re-

move spurious detections.

While modeling dependencies among these three steps may improve the perfor-

mance of a face detector, the inference in such a joint model is likely to be com-

putationally expensive. Similar to most of the existing face detection systems, we

also do not model these dependencies and focus on developing better alternatives for

the second step of face classification. For the other two steps, we follow standard

approaches, the details of which are discussed later in Section 2.6.
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2.4.1 Classifiers for face detection

A variety of statistical techniques, including näıve Bayes, neural-networks, and

multi-layer perceptrons, have been explored for the binary classification task of de-

termining whether a given image region is a face region. Here, we summarize a few

face detectors that represent key progress in this area of research. The reader is

referred to Yang et al. [114], and Hjelmas and Low [37] for detailed surveys of face

detection research. In particular, we discuss three approaches that achieved very

impressive results, and provide useful baselines for evaluating other face detection

algorithms.

• Neural-networks. Rowley et al. [88] trained several multi-layer perceptrons

with different receptive fields to predict the classification label for a given image

region. An arbitration perceptron is trained to combine the output of all of

these trained neural networks for generating the final prediction. While they

achieved impressive results on the image from MIT+CMU data set (discussed

in Section 2.2.1), it remains unclear how to determine a good set of parameters

(e.g., number of layers and hidden units) for their neural network to perform

well on a new image collection.

• Parts-based model. Schneiderman and Kanade [90] formulated the problem

of face detection as the determination of the maximum a posteriori estimate of

the presence of a face given the observed image patch. In their model, an image

region is represented as a an ordered set of multiple sub-regions. Intuitively,

these sub-regions correspond to different parts of a face such as the eyes and the

nose. This model inspired much of the later work on parts-based representation

for general object detection as well. They also showed impressive face detection

results on MIT+CMU data set, but this approach is computationally expensive.
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• A cascade of AdaBoost classifiers. The Viola-Jones detector [108] is consid-

ered a significant advancement in face detection not only because it achieved a

high level of true positive rate with very low number of false positives, but also,

through clever engineering, it was one of the first real-time face detector with

a processing speed of 15 frames per second. Their detector was able to achieve

such high level of performance in an efficient manner because of: (1) the use of

an effective data structure called integral image representation for evaluating

responses of Haar-like features; (2) an AdaBoost-based learning framework for

obtaining strong classifiers from multiple weak classifiers; and (3) the use of a

cascade of these classifiers for early rejection of non-face regions.11

All of the above approaches are supervised learning techniques. Supervised learn-

ing relies on the assumption of similarity between the distribution of training and

test instances. However, in practice there are often significant differences between

these distributions. These differences arise due to the cost of collecting large training

data sets and also to the difficulties in obtaining training instances from a particular

target test domain.12 In face detection, it may be infeasible to collect training data

for the enormous variety of domains in which face detection is useful. In realistic ap-

plications, then, we can expect to encounter domains at test time for which we have

seen little training data. Furthermore, even when doing face detection in domains

for which we do have significant training data, we may be able to perform signifi-

cantly better classification by conditioning our classifier’s output on the specifics of

11Further details of these three steps of the Viola-Jones’ detector are not relevant to our discussion,
and can be found in their original paper [108].

12We use domains to denote distinct modes in the data distribution. Note that in the limit of
infinite data with samples from all the possible modes of the data distribution, there is no distinction
between the source and target domain, but in practice, this distinction is manifested due to the
limitations of the process of data collection.
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Figure 2.16. The classification cascade of the Viola-Jones face detector.

Given an image patch P , a set of features are Φ are computed and fed into a binary
classifier (top; shown succinctly in middle). The Viola-Jones face detector (bottom)
uses n such classifiers to define a cascade that instantaneously rejects a patch that is
rejected by any of the n classifier. As a result, an image region is classified as a face
region if and only if it is accepted by all the classifiers in the cascade.

the domain. That is, a generic classifier is unlikely to define the same classification

boundary as one that has been adapted to a specific domain.

In the next section, we present a method for adapting pre-trained classifiers to

improve performance in a new test domain. While this method could be applied to

any choice of face classifier, we only present the details for adapting the classification

cascade of the Viola-Jones detector (shown in Figure 2.16). We omit other details

of the Viola-Jones detector such as the Haar-like features and the AdaBoost-based

learning framework because they are not necessary for this discussion.
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2.5 An online, adaptive cascade of classifiers

Most of the work on domain-adaptation [17, 23, 24, 61, 121] addresses the case in

which a small number of labeled examples are available from the target domain. We

defer a discussion of these approaches to Section 2.7. Here, we focus on the extreme

case in which no labeled data is available for the new domain. We also assume, as

described below, that we do not have access to the original training data from which

the original classifier was derived. Furthermore, we assume that there is no known

relationship among our test images. That is, we assume that each new test image

may represent a new domain for the face detection problem. This means that there

is only limited information to share across images. Hence our method re-adapts a

pre-existing classifier to each new image it encounters. We demonstrate a dramatic

increase in the state-of-the-art performance on the FDDB benchmark (Section 2.2.2),

which shows that there is a surprisingly large amount to be gained by adapting a

classifier, even using the information in just a single image.

Our domain-adaptation approach exploits the structure in the appearance of the

faces co-occurring in an image to predict the detection label collectively for all the

candidate regions in an image. This differs from the typical approach (as described in

the previous section) of applying a classifier to each of these regions independently [88,

90, 100, 108].

Consider the image shown in Figure 2.17. A detector is likely to fail on the

face of the person sitting in the left-bottom corner because of the shadow on the

left half of this face. Since the shadow is relatively small on the two faces in the

right half of the image, a good detector may successfully detect these faces. These

two “easy-to-detect” faces could subsequently be used to infer common structure in

the appearance of all the faces in this image, allowing us to normalize the “harder-

to-detect” candidate face regions and ultimately classify them correctly. This same
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Figure 2.17. Easy-to-detect faces could help identify hard-to-detect faces.

There is a shadow in the right half of all the four faces. The shadow is stronger on
the two faces on the left, making them more difficult to detect than the other two
faces. A detector that could learn the shadow pattern from the easy-to-detect faces
could normalize the other faces to reduce their difficulty of detection.

reasoning can be applied to background patches, reducing both false negatives and

false positives.

One näıve way to implement the above intuition is to scan the image for high-

confidence faces, and then adapt the detection model according to the high-confidence

face and non-face regions. This two-stage process has two problems. First, it can

lead to over-fitting to the first stage predictions. Second, it represents a substantial

increase in computation. We avoid the issue of over-fitting to new observations by

using a Bayesian model with a strong prior. Furthermore, to minimize the increase in

computation, we choose Gaussian process regression as the Bayesian model because

its solution can be analytically computed. We discuss the details of this model in

Section 2.5.3. But, first we present our formulation of face detection as regression,

followed by a brief introduction of Gaussian process regression in Section 2.5.2.

2.5.1 Face detection as regression

In Section 2.4.1, we discussed the formulation of the problem of face detection

as a classification task. Here, we argue that regression – or the problem of making
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real-valued predictions – is a more suitable formulation for developing a contextual

face detector.

Figure 2.18. Multiple modes in appearance quality of face regions.

The resolution of the faces of people in the audience is much lower than the resolution
of the faces of the players. Thus, it is likely that there is little commonality in the
structure of appearance between these two classes of faces in this image.

The quality of appearance of a face region in an image depends on several fac-

tors including the pose of the person, the distance of the face from the camera, and

the occlusion of the face from other objects present in the scene. For instance, in

Figure 2.18, the resolution of the faces of people in the audience is much lower than

the resolution of the faces of the players. Thus, it is likely that there is little com-

monality in the structure of appearance between these two classes of faces in this

image. Similarly, in a different image, there might be more than two such modes in

the distribution of face appearances present in a single scene.

As described in the previous section, our approach exploits the common appear-

ance structure among the face regions in an image. Due to the potential presence

of multiple modes in a single image, we formulate face detection as solving a regres-

sion problem rather than a classification problem. In this formulation, our approach

predicts similar detection scores for image regions that are similar in appearance. In
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other words, the detection scores for the faces in the audience are encouraged to be

similar to each other but may be different from the detection scores for the face regions

corresponding to the players. Although this effect can be achieved using an ensemble

of classification models, specifying a Bayesian model13 with an appropriate family of

priors for such an ensemble is non-trivial. For regression, on the other hand, Gaus-

sian process prior provides a straightforward way to implement the corresponding

Bayesian formulation.

2.5.2 Gaussian process regression

A Gaussian process refers to a stochastic process for which every finite set of

samples is jointly Gaussian. When a Gaussian process prior is used in a Bayesian

regression model for inferring continuous valued output, the resulting regression is

called Gaussian process regression (GPR) (see Rasmussen and Williams [87] for fur-

ther details). Consider the standard regression model with Gaussian noise:

y = xTw + η, (2.7)

where y is the target variable, x is the input vector, and η ∼ N (0, σ2
n). Let us assume

a zero mean Gaussian prior on w, i.e., w ∼ N (0, Σp). The conditional likelihood and

the posterior distribution are respectively given by

p(y|X,w) = N (XTw, σ2I), (2.8)

p(w|X,y) = N (
1

σ2
n

A−1Xy, A−1), (2.9)

where A = σ−2
n XXT + Σ−1

p . Subsequently, the prediction for a new example x∗ is

given by

13We need the Bayesian formulation to introduce a strong prior to avoid over-fitting to the new
observations from the easy-to-detect faces.
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p(y∗|x∗,X,y) = N (
1

σ2
n

xT
∗ A−1Xy,xT

∗ A−1x∗). (2.10)

Instead of using the original representation for data x, if a function φ(·) is used to

project x into a (potentially) higher-dimensional space, then the resulting prediction

for a new example follows the distribution

p(y∗|x∗,X,y) = N (
1

σ2
n

φ(x∗)
T B−1Φy, φ(x∗)

T B−1φ(x∗)), (2.11)

where the terms Φ = Φ(X) and B = σ−2
n Φ(X)Φ(X)T + Σ−1

p are used for notational

convenience. Rearranging a few terms, this equation is equivalent to

p(y∗|x∗,X,y) = N (φT
∗ ΣpΦ(K + σ2

nI)−1y, φT
∗ Σpφ∗ − φT

∗ ΣpΦ(K + σ2
nI)−1ΦT Σpφ∗),(2.12)

where φ∗ = φ(x∗), and K = ΦT ΣpΦ. Since all the terms involving the projection

function φ occur in the form φ(x)T Σpφ(x′), an appropriate covariance function or

kernel k(x,x′) can be used to avoid an explicit representation of the feature space.

Thus, the resulting predictive distribution becomes

p(y∗|x∗,X,y) = N (µ(x∗,X,y), σ(x∗,X)), (2.13)

where

µ(x∗,X,y) = K(x∗,X)(K(X,X) + σ2
nI)−1y, (2.14)

σ(x∗,X) = K(x∗,x∗)−K(x∗,X)(K(X,X) + σ2
nI)−1K(x∗,X)T . (2.15)

These mean and variance terms are used in the next section to re-compute the

prediction scores for instances near the classification boundary.
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2.5.3 Online domain-adaptation

Let S denote a classifier based on the sign of the prediction value from a function

f(·), i.e.,

S(x|f) , sgn(f(x)). (2.16)

Let us assume that the probability of error of f is monotonically non-increasing

with |f(x)|. In other words, the large prediction values (both positive and negative)

are more likely to be correct than the small prediction values. This assumption further

suggests that the classification label obtained by the classifier S for the points near

the classification boundary (i.e., 0) may not be reliable. For the face detection prob-

lem, this assumption suggests that the pre-trained classifier can confidently accept

unoccluded, in-focus, or “easy-to-detect” faces, and reject several non-face regions

from a given image. This classifier is assumed to generate high prediction values for

these easy acceptances and rejections. Consequently, the decision for the faces with

low prediction values is assumed to be more difficult as compared to the decision for

the regions with high prediction values.

Here, we propose to update the scores for the data instances with low prediction

values from the pre-trained classifier by encouraging consistency in the final prediction

values. In other words, if two data points x1 and x2 are similar to each other, then

the corresponding predictions f ′(x1) and f ′(x1) should also be similar to each other.

To this end, we define a small margin around the classification boundary. The data

points with prediction values outside this margin are used to learn a Gaussian process

regression model, which is used to update the prediction values of the data points

with prediction values lying inside the margin. Figure 2.19 illustrates the intuition

for this classifier adaptation, and the formal description is included below.

Given ε > 0, define the in-margin set Xm ⊆ X as
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Figure 2.19. An illustration of online domain-adaptation.

Let f(x) denote the output of a classifier on a data point x. Consider an ε margin
(green dotted line) around the classification boundary (black solid line). For points
lying in the margin the classifier is not very certain about the predictive label. The
proposed method updates the scores for the points in this margin based on their
similarity to the other points for which the classifier is relatively more confident
about the classification label. The original classification output is shown using blue
‘+,’ whereas the updated output (obtained using Equation 2.19) is shown using red
‘o.’

Xm , {x ∈ X s.t. |f(x)| < ε}. (2.17)

Similarly, define the out-of-margin set Xo ⊆ X as

Xo , X \Xm. (2.18)

Using the mean (Equation 2.14) and variance (Equation 2.15) terms of the predictive

distribution

f ′(x) =

 f(x) if |f(x)| > ε

µ(x,Xo, Φ(Xo))− σ(x,Xo) otherwise.
(2.19)

Finally, the classifier is defined as

S ′(x|f, ε) , sgn(f ′(x)). (2.20)
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In our face detection experiments, we use the noisy squared-exponential function

as the covariance function Kθ, i.e.,

Kθ(xi,x) = ν2 exp

(
−‖xi − x‖2

2l2

)
+ σ2

gpnδxi,x, (2.21)

where ν and l refer to the weight and scale-length parameters of the squared-exponential

function, and σgpn is the variance of the added noise when xi and xj are identical.

Also, δxi,x is a Kronecker delta. Hereafter, we use θT = [ν, l, σ]T to refer to the set of

all of these three parameters of the covariance function K.

Algorithm 2 Cascade of adaptive classifiers.

Require: input X, classifier cascade {S}1...n, margin ε ≥ 0, covariance function k(·, ·)

1: for n = 1 to N do
2: Let the stage classifier Sn := sgn(fn(x))
3: Xm ← {x ∈ X| |fn(x)| < ε}
4: Xo ← X \Xm

5: Yo ← fn(Xo)
6: θ∗ ← argmax

θ
log p(Yo|Xo, θ, k), where θ are the parameters of k

7: ∀x ∈ Xo, f ′
n(x)← fn(x)

8: ∀x ∈ Xm, compute f ′
n(x) using Equation 2.19.

9: X ← {x ∈ X|f ′
n(x) > 0 }

10: end for

The steps for our method for domain-adaptation for a pre-trained cascade of

classifiers are shown in Algorithm 2. We refer to the new classifier as cascade of

adaptive classifiers. Note that in this classifier, for each test image, the parameters θ

of the covariance function (Equation 2.21) are estimated by maximizing the likelihood

of observing the data and prediction values in the out-of-margin set Xo (Step 6 of

Algorithm 2). In our experiments, we observed little dependency on the initialization

of this maximization step. The other parameter ε is chosen by maximizing the true

positive rate at the observed number of false detections equal to 10% of the total

number of true faces on a held-out data set.
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2.6 Experiments

Here, we discuss our observations for the EXP-2 experimental setup (see Sec-

tion 2.3 for details) on the FDDB benchmark. For our experiments, we use the

OpenCV14 implementation of the Viola-Jones face detector. In particular, we use a

pre-trained cascade of classifiers for frontal face detection, which is included in the

OpenCV version 1.0 distribution as haarcascade frontalface default.xml. This

cascade evaluates image regions of width (wr) and height (hr) equal to 24 pixels. In

the following experiments, we set the parameter specifying the minimum number of

neighbors required for a valid detection to 0, and use the CV HAAR DO CANNY PRUNING

flag.

We first present the observations related to the sampling of candidate image re-

gions and the merging of overlapping detections. A discussion of these steps was

deferred to here in Section 2.4.

2.6.1 Sampling candidate image regions

Given an image I and a real-valued scale-factor parameter s, the OpenCV imple-

mentation of Viola-Jones detector samples the candidate image regions as following:

1. Add all of the image regions I(x, y, wr, hr)
15 that lie entirely within the limits

of image I, to the set of candidate image regions.

2. If at least one candidate image region is found in the previous step, down-scale

the image I by a factor equal to s, and go to Step 1.

Denoting the width and height of the image I by wI and hI respectively, the

number of scales at which the candidate image regions are sampled is given by

14http://sourceforge.net/projects/opencvlibrary/

15We use I(x, y, wr, hr) to denote a rectangular region in the image I with (x, y) as the coordinates
of the left-top corner, and wr and hr as its width and height respectively. Also note that for our
experiments wr = hr = 24 pixels.
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ns = logs min

(
wI

wr

,
hI

hr

)
. (2.22)

From Equation 2.22, it is clear that for a lower scale factor, a larger number of re-

gions are evaluated for the given image. Figures 2.20 and 2.21 show the effect of the

choice of scale-factor on the performance of the Viola-Jones detector using the evalu-

ation metrics in terms of discrete and continuous scores (described in Section 2.2.3.2)

respectively.

Figure 2.20. The effect of change in sampling scales using discrete score.
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Figure 2.21. The effect of change in sampling scales using continuous score.

Among the two best performance curves, the performance for scale-factor s = 1.1

is slightly better than the performance for s = 1.2. The number of evaluations for the

former choice of s is much larger than the number of evaluations for the latter choice

of s. Considering this trade-off, we choose s = 1.2 in all of our further experiments.

2.6.2 Merging similar detections

As a result of the sampling approach described in the previous section, several

overlapping regions can be considered candidates for being classified as face regions.

Thus, it is likely that the presence of a face in an image would lead to the classi-

fication of a set of overlapping image regions as face regions. Note that according
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to the matching algorithm described in Section 2.2.3.1, each of these repeated de-

tections correspond to an additional false positive. Hence, to remove unnecessary

repeated detections, we only report a single detection for the above set of detections.

The average location and extent over the set of detections are used to specify this

representative detection.

Figure 2.22. The effect of merging similar detections using discrete score.

The observations in Figures 2.22 and 2.23 confirm the intuition for achieving an

improved performance by merging the overlapping detections. For all of the following

experiments, we merge overlapping detections as a post-processing of a face detector’s

output.
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Figure 2.23. The effect of merging similar detections using continuous score.

2.6.3 Comparing different face detection systems

To the best of our knowledge, only the following implementations of face detection

systems are available for public use:

• The OpenCV implementation of the Viola-Jones detector [108],

• Mikolajczyk’s variant [75] of Schneiderman et al.’s approach [90],16

• Kienzle et al.’s [56] face detector.17

16http://www.robots.ox.ac.uk/∼vgg/research/affine/face detectors.html

17http://www.kyb.mpg.de/bs/people/kienzle/fdlib/fdlib.htm
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The performance of Kienzle et al.’s face detector was very poor on our benchmark.

Note that neither the source code of this system is available, nor did we have an access

to sufficient parameters to optimize to obtain acceptable performance curves for our

benchmark. Hence, we exclude this detector from our comparison of face detection

systems.

In Figures 2.24 and 2.25, we present the performance curves for Viola-Jones de-

tector, Mikolajczyk’s face detector and our face detector. Since our detector uses the

Viola-Jones detector and the base detection algorithm and Gaussian process regres-

sion for re-computation of detection scores, we refer to our detector as VJ GPR.

Figure 2.24. A comparison of different face detectors based on discrete score.
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Figure 2.25. A comparison of different face detectors based on continuous score.

As seen in these performance curves, the number of false positives obtained from

all of these face detection systems increases rapidly as the true positive rate increases.

Note that the performance of all of these systems on the new benchmark are much

worse than those on the previous benchmarks, where they obtain less than 100 false

positives at a true positive rate of 0.9. Figure 2.26 shows the comparison of face

detection results obtained by the Viola-Jones face detector and our adaptive face

detector with parameter settings such that they obtain same false positive rates on

the FDDB benchmark.

Note that we did not alter the extent of the detected regions from these face

detection systems. It is likely to obtain better performance curves by changing the
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Viola-Jones detector Our adaptive detector

Figure 2.26. Detections obtained by two face detectors on some images from the
FDDB data set.

The detections are denoted by green rectangles, whereas the matched ground truth
face annotation is denoted by red ellipses. These face detection results are obtained
using systems with identical false positive rate.
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height or width systematically for all of the detected face regions to obtain more

overlap between the detected regions and the annotated faces. Here, we focus on the

fundamental improvements in face detection approaches, and hence an exploration

of such post-processing techniques for improvements in performance are beyond the

scope of this work.

Furthermore, the above experiments are limited to the approaches that were devel-

oped for frontal face detection, whereas our data set includes images of both frontal

and non-frontal faces. This limitation is due to the unavailability of a public im-

plementation of a multi-pose or pose-invariant face detection system. Nevertheless,

the new benchmark includes more challenging examples of face appearances than the

previous benchmarks. We hope that our benchmark will further prompt researchers

to explore new research directions in face detection.

2.6.4 Evaluating the parameters of our online domain-adaptation method

Our method for online domain-adaptation uses the parameter ε to define a margin

around the classification boundary. This parameter is chosen using cross-validation

in the experiments in the previous section. Here, we study the effect of the choice of

this parameter in more detail. Intuitively, when the margin around the classification

boundary is too tight, only a few instances will lie in this margin. Hence, we expect our

approach to show little improvement over the base detection algorithm (Viola-Jones

detector, in these experiments). On the other hand, if the margin is too large, only a

few instances will lie outside the margin, and hence our model is likely to generate the

updated scores according to the generic prior model. Note that the performance in

the latter case could be worse than the performance of the base detection algorithm.

To summarize, as we increase the value of ε (starting from ε = 0), we expect the

performance to first improve, and then get worse. The above intuition is validated

through the performance curves shown in Figures 2.27 and 2.28.
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Figure 2.27. The effect of the choice of the margin parameter ε using discrete score.

In our next experiment, we evaluate the possibility of bootstrapping our approach

to obtain further improvements in performance. Note that our approach treats the

base detection algorithm as an oracle that provides a real-valued confidence score for

all of the candidate image regions. It is conceivable to design an iterative approach,

where the detection scores computed in one iteration are treated as the input for the

re-computation of the detection scores in the next iteration. We implemented this

iterative approach and observed that only a few iterations were required for the pre-

dictions to converge. Moreover, even after a single iteration, the performance curves

were very similar to the performance curves obtained by using multiple iterations till

the convergence of predictions. Also, since performing multiple iterations of score
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Figure 2.28. The effect of the choice of the margin parameter ε using continuous
score.

computations significantly increases the computational cost of our approach, we used

only a single iteration in all of the other experiments.

2.7 Other related work

Our proposal for domain-adaptation is similar to work in a variety of fields. Here,

we discuss these related approaches and distinguish our method from the previous

work.

Semi-supervised learning refers to the problem of learning from both labeled and

unlabeled data. One common approach for handling unlabeled data is to construct
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a graph using pairwise similarities between both labeled and unlabeled training in-

stances. The nodes corresponding to the labeled instances are annotated with the

original labels, and label propagation [121] is performed to estimate the labels for un-

labeled instances. Another related line of research uses the unlabeled data to estimate

the underlying data density and move the classification boundary out of regions with

high data density. For example, Lawrence and Jordan [61] presented a null-category

noise model to push the unlabeled data out of the margin; and Szummer et al. [101]

included a regularization term based on a local estimate of the mutual information

between the data and the label distributions to move the classification boundary out

of the high density data regions. The latter approach, also referred to as information

regularization, was extended by Corduneanu et al. [23] for semi-supervised learning.

Our approach uses the similarity between the data points to update the detection

score of the data points for which the predicted score from the pre-trained detector

is near the classification boundary. This update effectively sparsifies the distribution

of data around the original classification boundary. While the intuition behind this

procedure is similar to those of the above-mentioned methods, these semi-supervised

learning approaches assume that both of the labeled and unlabeled data are sampled

from an identical underlying distribution. As described in the previous section, this

assumption does not hold true for our problem setting.

The problem formulation used in this paper is very similar to the work in domain-

adaptation. In domain adaptation, labeled data from one or multiple “source” do-

mains is used to train models to perform well on a different yet related “target”

domain. Daumé and Marcu [24] approach this problem by modeling the data dis-

tribution for each of these domains as a mixture of a global and a domain-specific

component. This global component is inferred from the data of the source domain(s)

and applied to the data of the target domain. Another approach to the domain-

adaptation problem is to use models trained on the data from the source domain to
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label a subset of the unlabeled data from the unlabeled target domain and re-train

the classifier on the combined labeled data set [112].

Most of the work in domain-adaptation suggests minimizing a convex combination

of source and target empirical risk [17]. Thus, the classifier needs to be re-trained

(repeatedly) from scratch for every new domain. For face detection, we argue that the

distribution of face appearances varies significantly from one image to another. Hence,

in the domain-adaptation setting, every image represents a new domain. Applying

existing techniques for domain-adaptation would therefore be prohibitively slow for

our problem formulation.

Our work could also be interpreted as regularizing the output of a face detection

algorithm on the data manifold. Belkin et al. [9] proposed smoothing the discrimina-

tive function by controlling the complexity of the learned classifier through the norm

of the desired function in the corresponding reproducing kernel Hilbert spaces. They

further showed that this manifold regularization framework generalizes a large set of

learning algorithms including ridge regression and support vector machines. Although

this framework provides useful insights into the relation between the hypotheses for

the original detector and the adapted detector, the infeasibility of re-training the clas-

sifier for a new test image prevents us from building on this work as well. A similar

argument holds true for the relevance of the previous work related to the analysis of

covariate shift [11].

To the best of our knowledge, our work is the first to approach domain-adaptation

in a completely unsupervised and on-line setting. In other words, instead of training

a new classifier from scratch for a new target domain, we adapt a classifier trained

on a different source domain by encouraging smoothness of the output function. We

present a simple, yet effective, method to perform this adaptation, and report state-

of-the-art results in face detection using this approach.
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2.8 Conclusions

We have shown that simply by adapting a black-box classifier so that its out-

puts are smooth with respect to a new test set, we can substantially improve its

performance. The performance gain we have achieved on the FDDB face detection

benchmark is dramatic, especially in view of the fact that the Viola-Jones classifier

has remained a top contender in face detection accuracy since its introduction in 2004.

(We note that FDDB is particularly difficult, including many profile views and other

faces which the best detectors currently miss.)

While it is certainly worth asking whether semi-supervised methods, despite their

greater computational burden, could be applied in this scenario, several problems

have kept us from pursuing this question. First, the original training data for the

Viola-Jones classifier is proprietary and unavailable for us to use. Thus, we must

already accept an alternative training set than the one used to train the original

published classifier. Second, the details of training the original Viola-Jones classifier

are not completely specified in the literature. We have had difficulty reproducing the

original results from the classifier, even after contacting one of the original authors

of the paper.

Without the original training data and without a clearly specified training algo-

rithm, the task of applying a semi-supervised method is especially daunting. This

perhaps makes our approach even more appealing, since there is no need for either

the original data or the original algorithms. In future work, we hope to character-

ize necessary and/or sufficient conditions for our approach to lead to an expected

reduction in classification error.
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CHAPTER 3

CONTEXTUAL FACE RECOGNITION

3.1 Introduction

Face recognition refers to the problem of determining the identity of persons from

the appearance of their faces. We assume that the input to a face recognition al-

gorithm is a single image region showing a person’s face.1 In a typical setting for

face recognition, a few example images are selected for each individual to specify the

appearance of his or her face. The set of all of these example images is referred to

as the gallery images. For a new test face image (also known as a probe image), the

identity of the person is determined as the best match in the gallery images.

One common approach for face recognition is to learn a model of the appearances

of faces from the gallery images. Under large variations of parameters such as pose,

lighting, and expression, modeling such distributions of appearances of face images

is very difficult [120]. For the above-mentioned uncontrolled settings, it is relatively

easy to build models for the difference in appearance of two face images – one model

each for the same and different classes of image pairs. This formulation corresponds

to the problem of determining if two face images are of the same person, which is

commonly known as face verification or face identification. Note that the problem

of face recognition can be formulated as solving multiple face identification problems

as follows. First, the probe image is evaluated for the possibility of a match with

each of the gallery images using a face identifier. Then, the gallery image with the

1The reader is referred to Zhou et al.’s work [119] for a discussion of face recognition in video
sequences.
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best identification result is selected to specify the identity of the probe image. This

formulation is illustrated in Figure 3.1. In this chapter, we follow this approach for

face recognition.

Figure 3.1. Face recognition formulated as solving multiple face identification prob-
lems.

Given a set of gallery images and a probe image, we compute the face identification
scores for the probe image with each of the gallery images. The gallery image with
the maximum identification (indicated in red) is then used to specify the identity
of the person in the probe image. The scores shown in this illustration are not the
output of an actual face identifier.

While models for face identification are easier to learn than for face recognition, the

following two challenges remain in face identification as well: first, faces of different

individuals may have similar appearances; and second, the face of a single person may

appear very different in two images due to variations in factors such as pose, makeup,

and emotion.
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Figure 3.2. An example of a pair of different individuals with similar face appear-
ances.

Film director Quentin Tarantino (left) and tennis player Roger Federer (right) have
similar looking faces. Hence, disambiguating between these two identities based only
on their facial features is difficult.

Roger Federer of Switzerland

celebrates after winning the

men’s title against Novak

Djokovic of Serbia at the

U.S. Open tennis tournament

in New York.

Figure 3.3. An illustration where context helps in face recognition.

Is this a picture of Roger Federer after winning the U.S. Open tennis championship, or
of Quentin Tarantino after winning an Academy Award for the movie Pulp Fiction?
Since both of these individuals have similar-looking faces (as shown in Figure 3.2), it
is very difficult to answer this question from the given image alone. This distinction,
however, becomes trivial after looking at the caption for this image (shown on the
right of the image).

For instance, as shown in Figure 3.2, tennis player Roger Federer and film director

Quentin Tarantino have similar-looking faces. Now consider the image shown in

Figure 3.3. Even after assuming that this image shows the face of either Federer or

Tarantino, the disambiguation of the identity of the person shown in this image is

challenging due to an extreme display of emotion in this face image. However, if a

caption, e.g., the one shown to the right of the image in Figure 3.3, is also provided,
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an analysis of this caption would make it easier to identify the person shown in the

above image as Federer.

In this chapter, we study the problem of face recognition in the above setting

where a caption is provided for all images, which is typical for images appearing in

news articles. We argue that the context generated from the analysis of the caption

significantly reduces the number of competing identities for faces appearing in an

image. To this end, we present a multi-modal probabilistic model People-LDA for

the image-caption pairs. Our model uses the coherence of face images and their

captions to obtain clusters of face images and of words that are closely related to a

single person. To do this we incorporate a face identifier in a statistical topic-modeling

framework.

First, in Section 3.2, we present the details of the face identifier used in our model.

Next, in Section 3.3, we discuss the fundamentals of topic-models. In Section 3.4,

we present our model for image-caption pairs. Then, we describe the setup used in

our experiments in Section 3.5, and discuss our results in Section 3.7. Finally, we

conclude this chapter with a discussion of possible future directions in Section 3.8.

3.2 Hyper-features based face identification

In an image, some regions are more useful than others to determine the class of

the object shown in the given image. The same patches may not be very helpful in

determining the identity of the shown object within the object-class. For instance, the

presence of two tires in an image suggests that the image shows an automobile, but

may not provide enough information to distinguish between Alice’s Toyota Prius and

Bob’s BMW Z8. In other words, some image regions are useful for classification (i.e.,

“car”), whereas others are useful for identification (i.e., specific car brand or model).

For face identification, regions of the latter type are useful because the object class
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(“faces”) is already known and the goal is to determine the closest matching instance

within the face class.

To select the image regions useful for identification, Ferencz et al. [29] proposed

to model the difference in appearances for a pair of image regions as follows. They

estimate two distributions for the expected distance between a pair of image regions,

one each for the following two cases:

1. “same” pair, i.e., when the two image regions in the given pair show the same

object,

2. “different” pair, i.e., when the two image regions in the given pair show different

objects.

Both of these distributions are defined in terms of the appearance of only one of

these two regions (hereafter referred to as the left image region; the other region in

this pair is referred to as the right image region). In particular, they used easy-to-

compute image features (or hyper-features) such as the location, intensity values, and

directional edge-energies to represent the left image region. Several example pairs

of images showing the same object are used to estimate the expected distribution

of difference in appearance for the “same” pair of images. A similar distribution is

estimated separately for the “different” pair of images. The difference between these

two estimated distributions is used to determine the expected utility of the given

image region, which is used to select a few regions from each image. This selection

of regions is done using a single image, and hence can be done once for each of the

gallery images, and does not need to be computed again for every probe image.

After the selection of useful image regions, Ferencz et al. used a generative model

to combine the differences between the corresponding pairs of left and right image

regions for the computation of the final identification score. Here, we present an al-

ternative, more direct, modeling of this computation using a discriminative approach.
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We show that our approach improves the identification performance of Ferencz et al.’s

approach.

First, in Section 3.2.1, the notation used in the following discussion on hyper-

features based systems is described. Next, in Section 3.2.2, the process of selecting

image regions is described. Then, in Section 3.2.3, the details of Ferencz et al.’s

generative model and our discriminative model for the computation of identification

score for a pair of images are presented. Next, the performance curves for different

face identification approaches are presented in Section 3.2.4. Finally, in Section 3.2.5,

the suitability of each of the above two models is evaluated for the contextual face

recognizer described in the previous section.

3.2.1 Preliminaries

Let IL and IR denote the left and right images respectively. We assume that

the faces shown in these images are approximately frontal faces. In other words,

any variations in the head pose has already been normalized using a face alignment

algorithm.2 Also, a binary random variable C is used to denote if IL and IR are

examples of the same object.

For each of these images, a large number of regions are sampled at different scales

and locations in the image. The jth region in the left image is referred to as FL
j .

The image region most similar3 to FL
j in a small neighborhood of the corresponding

location in the right image is referred to as FR
j . The distance between FL

j and FR
j is

computed as

dj = 1− FL
j ? FR

j , (3.1)

2The reader is referred to Learned-Miller et al. [62] and Huang et al. [45] for approaches for image
alignment.

3The similarity between two image regions is measured as the normalized cross-correlation be-
tween them.
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where the symbol ? denotes the normalized cross-correlation computation.

For each of these image regions, a set of simple features such as its location in the

image, the intensity values, and the edge energies in different directions are computed.

The monomials, of degree up to three, of these features are collected to create a pool

of candidate hyper-features. This pool has a large number of hyper-features that

are correlated with each other. From this pool, a few (20 in our experiments) of

these hyper-features are selected using least angle regression [26]. The computed

values of these selected hyper-features for the jth image region is denoted by hj.

Hereafter, unless a distinction between two different image regions is needed, we drop

the subscript j for notational convenience.

Let us denote the two distributions for the expected distance between two image

regions described in Section 3.2 as P (d|C = 0,h) and P (d|C = 1,h), where d is a

continuous random variable and the distribution of d|C is likely to be asymmetric

around its mean. Based on these observations, the family of gamma distributions

(shown in Figure 3.4) is selected to model these two conditional probability density

functions as

P (d|C = 0,h) = Gamma(d; α0(h), θ0(h)), (3.2)

P (d|C = 1,h) = Gamma(d; α1(h), θ1(h)), (3.3)

where

Gamma(d; α, θ) = dk−1 e−d/θ

θαΓ(α)
. (3.4)

Given the observed hyper-feature values h, the parameters α0, α1, θ0, θ1 are obtained

using a generalized linear model [71], the parameters of which are learned using the

several examples of pairs of face images.
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Figure 3.4. Probability density functions for different gamma distributions.

A gamma distribution has a shape parameter α and a scale parameter θ. Note that
this family of unimodal distributions are asymmetric around their modes.

Using the notation described here, we now provide further details of the process

of selecting image regions useful for the identification task.

3.2.2 Selection of useful image regions

Intuitively, if P (d|C = 0,h) and P (d|C = 1,h) are similar distributions, we do

not expect much useful information about the value of the match-mismatch variable

C from an observation of the value of the difference in appearances d. Mathemati-

cally, this intuition corresponds to the mutual information I(d; C|h) between random

variables C and d given the hyper-feature values h, which is defined as

I(d; C|h) = H(d|h)−H(d|C,h), (3.5)
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where H(·) is the Shannon entropy4 and P (d|h) is obtained by combining the esti-

mates of P (d|C = 0,h) and P (d|C = 1,h).

All of the regions in an image are then sorted in a non-increasing order according

to the estimate of their expected mutual information, and the top m regions are

selected. We assume that the selections of image regions are independent of each

other, which is not valid in general. However, for hyper-feature based systems, Ferencz

et al. observed that modeling pairwise relationships between image regions does not

improve the performance of these systems significantly.

We denote these m regions selected in the left image of the given pair of images as

{FL
1 , · · · , FL

m}. We determine the corresponding regions in the right image using the

procedure described in Section 3.2.1 and refer to them as {FR
1 , · · · , FR

m}. The distance

dj between the corresponding pairs of image regions FL
j and FR

j is computed using

Equation 3.1. For ease of notation, we refer to a pair of corresponding image regions

(FL
j , FR

j ) together with the distance dj between them as the bi-patch Fj. In the next

section, we present two different models that use a collection of these bi-patches to

predict the binary identification label for the given pair of images (IL, IR).

3.2.3 Prediction of identification label

The end goal of an identification task is to predict the value of the identification

label C, where C = 1 implies that the given pair of images is a “same” pair and

C = 0 implies that it is a “different” pair. In a probabilistic model, this prediction

corresponds to determining if P (C = 1|IL, IR) is greater than P (C = 0|IL, IR). In

other words, we predict that IL and IR are of the same object if

4For a discrete random variable X with n possible outcomes {xi : i = 1 · · ·n}, the Shannon
entropy is given by

H(X) = −
n∑

i=1

p(xi) log p(xi), (3.6)

where p(xi) is the probability mass function for the outcome xi.
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P (C = 1|IL, IR)

P (C = 0|IL, IR)
> 1. (3.7)

This criterion is also known as the maximum a posteriori (MAP) classification crite-

rion.

In the previous section, we discussed the representation of an image-pair in terms

of m bi-patches F1, ..., Fm. Using this representation, we approximate the conditional

probabilities as

P (C|IL, IR) ≈ P (C|F1, · · · , Fm), (3.8)

P (IL, IR|C) ≈ P (F1, · · · , Fm|C). (3.9)

In the next section, we describe Ferencz et al.’s generative model that optimizes

the conditional likelihood of bi-patches given the identification label (Equation 3.9),

which are then used to infer the identification label using Bayes’ rule.

3.2.3.1 A generative model

Given an image-pair (IL, IR), Ferencz et al. [29] develop two separate models for

estimating the probabilities P (IL, IR|C = 1) and P (IL, IR|C = 0) and employed

Bayes’ rule to compute the ratios of the posterior probabilities as

P (C = 1|IL, IR)

P (C = 0|IL, IR)
=

P (IL, IR|C = 1)P (C = 1)

P (IL, IR|C = 0)P (C = 0)
. (3.10)

Using the right hand side of the above equation, the probabilistic decision (Equa-

tion 3.7) is rewritten as

P (IL, IR|C = 1)P (C = 1)

P (IL, IR|C = 0)P (C = 0)
> 1, (3.11)
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which by defining λ = P (C=0)
P (C=1)

becomes

P (IL, IR|C = 1)

P (IL, IR|C = 0)
> λ. (3.12)

Ferencz et al. further assume that all of the bi-patches in an image-pair are indepen-

dent of each other when conditioned on the identification label C, i.e.,

P (F1, ..., Fm|C) =
m∏

j=1

P (Fj|C) (3.13)

Applying the above assumption and Equation 3.9 in Equation 3.12, they used the

identification criterion

m∏
j=1

P (Fj|C = 1)

P (Fj|C = 0)
> λ. (3.14)

Since the bi-patch Fj is completely specified by the hyper-feature values hj and

the distance dj, we have

P (Fj|C) = P (dj,hj|C) (3.15)

= P (dj|C,hj)P (hj|C) (3.16)

∝ P (dj|C,hj), (3.17)

where Equation 3.17 is obtained by assuming the independence between hj and C

(which holds almost exactly in practice) and by assuming a uniform distribution for

the hyper-feature values hj.

Using Equation 3.17, the final decision criterion for Ferencz et al.’s model is given

by

m∏
j=1

P (dj|C = 1,hj)

P (dj|C = 0,hj)
> λ. (3.18)
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Since both P (C) and P (F |C) are completely specified in this model, it provides

a generative process for the difference in appearance. Hence we refer to this model

as a generative model.

The objective of developing the above model is to obtain better identification

results, and not to design a generative process for sampling differences in appearance.

While the above model was shown to achieve impressive results on identification of

cars and faces, we argue that through a direct modeling of the desired objective, i.e.,

the distribution of the identification label, the performance of these hyper-feature

based approaches could be further improved. In the next section, we present one

such approach.

3.2.3.2 A discriminative model

Applying Equation 3.8 to Equation 3.7, the decision criterion becomes

P (C = 1|F1, · · · , Fm)

P (C = 0|F1, · · · , Fm)
> 1. (3.19)

Since the bi-patch Fj is completely specified by the hyper-feature values hj and

the distance dj, the above equation is rewritten as

P (C = 1|d1, · · · , dm,h1, · · · ,hm)

P (C = 0|d1, · · · , dm,h1, · · · ,hm)
> 1. (3.20)

Since C is a binary random variable, we know that

P (C = 1|d1:m,h1:m) + P (C = 0|d1:m,h1:m) = 1. (3.21)

Using this equality and changes of notation d1:m to represent d1, · · · , dm and h1:m to

denote h1, · · · ,hm, the decision criterion is given by

P (C = 1|d1:m,h1:m)

1− P (C = 1|d1:m,h1:m)
> 1. (3.22)
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Next, we present a discriminative model that directly estimates the value of P (C =

1|d1:m,h1:m) for a given image region. This estimated value is then used in the above

decision criterion for an identification task.

To predict the probability values for a binary random variable, logistic regression

is a commonly used approach. Here C is a binary random variable that depends on

(d1:m,h1:m). This dependency is captured by using the model

P (C = 1|d1:m,h1:m) =
1

1 + e−Xβ
, (3.23)

where X is a vector representation computed using (d1:m,h1:m) and β represents the

parameters of the logistic regression model

log

(
P (C = 1|d1:m,h1:m)

1− P (C = 1|d1:m,h1:m)

)
= Xβ + ε. (3.24)

Here a binomial distribution is assumed for the noise term ε.

An alternate specification of a logistic curve f(x) is given by two parameters: α1

such that f(α1) = 0.5; and α2 equal to the derivative of f at x = α1, i.e., f ′(α1) = α2.

Note that by defining XT = [1 d1:m h1:m]T , we have

Xβ = β0 + d1:mβd + h1:mβh. (3.25)

It can be easily shown that

α1 = −β0 + hβh

βd

, (3.26)

α2 =
βd

4
. (3.27)

Clearly, α2 does not depend on h. We argue that both of these parameters should

be dependent on the hyper-feature values h to provide sufficient flexibility in the esti-
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mation of the above conditional distributions. To this end, we use the representation

XT = [1 d1:m h1:m (dh)1:m]T .

Figure 3.5 shows an illustration of the estimates of posterior probabilities obtained

using our model. Note that for this illustration, we consider the identification task for

a simpler object class namely cars. Also, the hyper-features used in this illustration

are restricted to the monomials of degrees up to three of the y-position of the center

of the image region in the image.

In the next section, we compare the performance of the above-mentioned gen-

erative and discriminative models for hyper-feature based face identification on a

collection of images in unconstrained environments.

3.2.4 Face identification experiments

An approach similar to the above hyper-features based models is Moghaddam et

al.’s Bayesian face identification system [76]. This approach also uses probabilistic

models of differences of appearance d for a given image pair. In particular, they model

P (d|C = 0) and P (d|C = 1) as Gaussian distributions. These two distributions

are then used to predict the identification score as the maximum likelihood (ML)

estimate P (d|C = 1), or the maximum a posteriori (MAP) estimate P (C = 1|d).

We refer to these choices of scoring methods as Bayesian ML and Bayesian MAP

approaches respectively. Note that the Bayesian MAP approach reported the best

performance on the data set used in the FERET face recognition competition [84],

which was sponsored by the U.S. Department of Defense. Here we include these two

Bayesian face identification approaches as baseline approaches for the evaluation of

the performance of the generative and discriminative models described in the previous

sections.
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Figure 3.5. Logistic regression based upon a single hyper-feature, the y-position.

The blue circles in the lower plane and the red dots in the upper plane represent the
pairs of training images for matched and mismatched cars respectively. Each point
is plotted as a function of its match/mismatch label (C), the distance d between the
image regions, and a hyper-feature y, the y-position of the left image region of the
image region pair. Notice that the points for matching cars (lower plane) which are
in the bottom half of the original images have their d values clustered around zero.
This is because d values tend to be low for image regions near the bottom of the
image when the cars match. On the other hand, for the same image position, the
points representing mismatched cars have a more uniform distribution of d values.
The goal of logistic regression is to approximate the original data points as well as
possible while constraining each “slice” of the surface parallel to the d axis to be
a logistic function. Furthermore, the parameters of the logistic curves at various y
coordinates should be a smooth polynomial function of y. It is easy to see that the
logistic surface “dips” to represent the low d values of the matching cars for image
regions in a particular y range.
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Figure 3.6. Example face images from the Faces in the Wild data set.

For our experiments, we randomly selected 1000 pairs each of “same” and “dif-

ferent” face images from Berg et al.’s Faces in the Wild data set.5 Some example

face images from this data set are shown in Figure 3.6. Note that a discussion of

the characteristics of the images in this data set can also be found in the previous

chapter (Section 2.2.2). One half of the selected images are held out as the test set,

and remaining half is used for training different face identification models. Note that

the test set contains faces of persons that are not in the training set.

Let S be the set of image-pairs in which both the images are known to be of

the same person. Also, let T be the set of image-pairs for which the predicted label

implies that both the images in each of these image-pairs are of the same person. We

define

Precision =
|S ∩ T |
|T |

, (3.28)

Recall =
|S ∩ T |
|S|

, (3.29)

where | · | denotes the cardinality of a set. Varying a threshold on the identification

score obtained from a face identification approach, we generate different points on

the precision vs. recall curves (shown in Figure 3.7).

As shown in Figure 3.7, the precision vs. recall for our discriminative model clearly

dominates the curves for Ferencz et al.’s generative model and Moghaddam et al.’s

5http://www.tamaraberg.com/faceDataset/index.html
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Figure 3.7. Precision vs. recall curves for our face identification experiments.

All of these models are trained using 500 image pairs each of “same” and “different”
faces. The test set contains 500 pairs of “same” and “different” faces of persons not
included in the training set. The blue curve for our discriminative model dominates
the curves for all the other approaches, and the boost in performance is clearly evident
over a wide range of recall values. Note that our results also outperform the Bayesian
MAP approach [76] that was the best performer on the FERET data set.

40% 60% 80%
Bayesian ML 74.6± 7.83 60.5±8.38 54.8 ± 2.91

Bayesian MAP 74.8± 9.09 59.9± 8.59 54.3 ± 6.15
Generative 81.2 ± 6.35 63.4± 6.71 54.4 ± 6.37

Discriminative 93.0 ± 6.29 78.9 ± 8.15 60.1 ± 6.97

Table 3.1. Precision at 40%, 60%, and 80% recall for different face identifiers.

These precision and recall values correspond to a 10-fold cross-validation on the held-
out test set.
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two approaches for Bayesian face identification. Table 3.1 shows the comparison of

precision values at three different choices (40%, 60%, 80%) of recall for a 10-fold cross

validation on the test set. Note that for all of these three settings, the precision values

for our discriminative model are higher than the corresponding precision values for

the generative model as well as the other two approaches, although the difference

in performance is not always statistically significant. Some examples of pairs of

face images that are correctly identified using our discriminative model are shown in

Figure 3.8.

Figure 3.8. Example pairs of face images correctly labeled as “same” by our face
identifier.

3.2.5 Discussion

In the previous sections, we introduced the notion of hyper-features, which are

properties of an image region that can be used to estimate its utility for the identi-

fication task. Using these hyper-features, we presented two different models for the

prediction of the identification label for a given pair of images. In our experiments,

both of these models outperformed Moghaddam et al.’s Bayesian face recognition

approach [76], which was the best-performing system on FERET face recognition
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competition [84]. The difference between the two models described in the previous

section is that one of them is a generative model, and the other is a discriminative

model.

Similar comparative studies of generative and discriminative learning have at-

tracted significant interest in the machine learning community. One such comparison

is due to Ng & Jordan [79]. In their theoretical analysis, they compared the empir-

ical risk minimization for linear classifiers with näıve Bayes classifier. Their results

suggest that even though the discriminative model (logistic regression) has a lower

asymptotic error, the generative model (näıve Bayes) has a faster convergence to-

wards the asymptotic error. Thus, with only a handful of training examples, näıve

Bayes performs better than logistic regression, but with more training examples, the

latter outperforms the former. More recently, Jain [46] performed an empirical com-

parison between näıve Bayes and logistic regression using large-scale experiments on

data from the field of information retrieval. Also, Liang & Jordan [65] presented a

unified framework for studying the comparison between generative and discrimina-

tive estimators, and concluded that when the model is well-specified, the asymptotic

error for generative models is less than that of discriminative models, whereas when

the model is mis-specified (i.e., the approximation error is not zero), discriminative

models have lower approximation and asymptotic estimation errors.

Note that the above comparisons are helpful in understanding the behavior of these

models in the limit of infinite training data. In practice, however, we have a limited

number of training examples and the conclusions derived in the above comparisons

often do not hold. Also, the choice between a generative model and a discriminative

model depends on the requirements for the output of such a model. For instance, if

the goal is to maximize the classification accuracy, a discriminative model may be

the preferred choice, whereas a generative model may be preferred if the goal is to

maximize the likelihood of the data under the learned model.
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The joint model for image-caption pairs that we describe later in Section 3.4 uses

a face identification system to estimate the likelihood of observing the difference in

appearance between a given pair of images. Therefore, although the discriminative

approach showed better performance than the generative approach in the face iden-

tification experiments shown in Section 3.2.4, the latter is a more suitable choice for

our proposal for a contextual face recognizer.

Next, we describe a family of statistical models known as “topic models.” A model

from this family is used in Section 3.4 as our joint model for image-caption pairs.

3.3 Topic models

As described in Steyvers et al. [97], topic models are based on the idea that a text

document is a mixture of topics, where a topic refers to a probability distribution

of words. These models have recently emerged as powerful tools for the analysis of

different types of data such as text documents [16, 32, 38], images [96, 99], and music

key-profiles [43].

The topics obtained from these models are often broad and generic, associating

large groups of people and issues that are loosely related. For instance, typical topics

that emerge from a set of newspaper articles might represent broad areas such as

“sports,” “politics,” or “the Middle East.” Of course, as large numbers of topics are

extracted from a set of documents on the same narrow subject, topics will become

more and more narrow, and “politics” may split into “the White House,” “Capitol

Hill,” and “the Justice Department,” or some comparable set of more focused topics.

In many cases, it may be desirable to influence the direction in which these topics

emerge. Here, we explore the idea of centering topics around people. In particular,

given a large corpus of images featuring collections of people and associated captions,

it seems natural to extract topics specifically focused on each person. What words

are most associated with George Bush? Which with Condoleezza Rice? Since people
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play such an important role in life, it is natural to anchor one topic to each person.

We use the term anchor to connote not only that a person should be a part of a topic,

but that the topic should not drift too far from the topic defined by that person and

their associations.

3.4 People-LDA

We present a new topic model People-LDA, which uses the coherence of face

images in news captions to guide the development of topics. In particular, we show

how topics can be refined to be more closely related to a single person (e.g., George

Bush) rather than describing groups of people in a related area (e.g., politics). To do

this our model tightly couples images and captions through a modern face identifier.

Our model produces word topics that are people-specific – it tends to eliminate

secondary people or mixtures of people, focusing on a single person that matches a

subset of face images. In addition, these people topics improve our ability to cluster

faces over a method that uses only images. Thus, in addition to producing word

topics that are people-specific (using images as a guiding force), our model is also

used to cluster images by person, using the language model to boost performance.

People-LDA tightly couples images and captions through the face identifier de-

scribed in the previous section. Note that this identifier provides a generative model

of the differences in appearance of two face images as opposed to a generative model

of the appearance of a face. Therefore, it is non-trivial to incorporate this face identi-

fication model into a topic model. A significant portion of our contribution represents

the adjustment of a standard topic model to accommodate the modeling of differences

in appearance rather than appearance.

The generative process for People-LDA is similar to the generative process for Blei

et al.’s latent Dirichlet allocation model [16]. In the next section, we describe their

model, and present the details of our model in the subsequent sections.
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3.4.1 Latent Dirichlet allocation

The generative process for a document under the latent Dirichlet allocation (LDA)

model is as follows. First, we sample a multinomial distribution θ from a K-dimensional

Dirichlet distribution with parameters α given by

p(θ|α) =
Γ(
∑K

i=1 αi)∏K
i=1 Γ(αi)

K∏
i=1

θαi−1
i . (3.30)

Next, this sampled multinomial is used to generate N samples from K different topics

according to the distribution

p(zn = k|θ) = θk. (3.31)

Finally, for each of these topics zn, we use the corresponding distribution βzn
of V

words in the vocabulary to sample a word wn using the multinomial distribution

p(wn = v|zn, βzn
) = βznv. (3.32)

Algorithm 3 outlines the above generative process, and the corresponding graph-

ical model representation is shown in Figure 3.9.

Algorithm 3 Generative process for LDA.

1: Choose a multinomial distribution θ over K topics from a Dirichlet distribution,
i.e., θ ∼ Dir(α), where α is a Dirichlet prior.

2: for n = 1 to N do
3: Choose a topic zn from the chosen multinomial distribution in step 1. zn ∼

Multinomial(θ).
4: Choose a word wn from a topic-specific distribution βzn

.
5: end for

Note that there are only two parameters in this model: the parameters of the

above-mentioned Dirichlet distribution denoted by α; and K different topic-specific

distribution of V words denoted by β1:K . Given these two model parameters, and a
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Figure 3.9. Graphical model representation of latent Dirichlet allocation.

Here, θ is a multinomial distribution, which specifies a mixture of topics z. The entire
collection contains D documents, each of which is represented as a collection of N
words w. The parameters for the model are α and K distributions of words β1:K , one
for each topic. In this graphical model, gray and orange nodes denote observed and
latent random variables respectively, and cyan nodes denote the model parameters.

document w, the joint distribution of a topic-mixture θ, topics z, and the observed

words w is given by

p(θ, z,w|α, β1:K) = p(θ|α)
N∏

n=1

p(zn|θ)p(wn|zn, β1:K). (3.33)

Determining the distribution of topics in a given document corresponds to the

computation of the posterior distribution of the document-specific latent variables θ

and z
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p(θ, z|w, α, β1:K) =
p(θ, z,w|α, β1:K)

p(w|α, β1:K)
. (3.34)

For the exact computation of this posterior distribution, we need to compute the

denominator term on the right hand side of the above equation, which is given by

p(w|α, β1:K) =
Γ(
∑

i αi)∏
i Γ(αi)

∫ ( k∏
i=1

θαi−1
i

)(
N∏

n=1

k∑
i=1

V∏
j=1

(θiβij)
wj

n

)
dθ. (3.35)

Due to the coupling between θ and β1:K in the summation term in the above equa-

tion, this function is intractable to compute [25]. To compute an approximation for

the above posterior distribution, Blei et al. used a mean-field variational inference

algorithm. Finally, they used a variational EM algorithm to estimate these model

parameters for a given document collection. The details of the variational inference

and variational EM algorithms can be found in Blei’s PhD thesis [13].

In the next section, we present a non-trivial extension of this LDA model that

employs a face identifier to obtain people-specific topics from a collection of image-

caption pairs.

3.4.2 Generative process for People-LDA

The generative process for an image-caption pair under the People-LDA model

is as follows. First, we sample a multinomial distribution θ from a K-dimensional

Dirichlet distribution with parameters α (Equation 3.30). Next, this sampled multi-

nomial is used to generate N + M samples from K different topics according to the

multinomial distribution in Equation 3.31. Then, for each of the first N topics zn,

we use the corresponding distribution βzn
of V words in the vocabulary to sample a

word wn according to the multinomial distribution in Equation 3.32. Finally, for each

of the next M topics zN+m, we sample the difference of appearance according to the

generative model described in Section 3.2.3.1. In particular, given the parameters λ
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of a generalized linear model, we obtain H samples of Gamma distributions Γ (Equa-

tion 3.4). Each of these Gamma distributions is then used to sample a difference in

appearance dmh. In other words, these H samples of the difference in appearance for

faces in an image are collectively generated according to the distribution

p(dm|zN+m, λ) =
H∏

h=1

p(dmh|zN+m,Γh)p(Γh|I, λ). (3.36)

Note that the People-LDA model does not provide a generative process for the appear-

ance of face regions, but provides a generative process for the difference in appearance

of face regions. The overall parameters for this model are α, β1:K , λ and a collection

of K fixed reference images IM, one for each person.

Algorithm 4 outlines the above generative process, and the corresponding graph-

ical model representation is shown in Figure 3.10.

Algorithm 4 Generative process for People-LDA.

1: Choose a multinomial distribution θ over K people from a Dirichlet distribution,
i.e. θ ∼ Dir(α), where α is a Dirichlet prior.

2: for n = 1 to N do
3: Choose a person zn from the chosen multinomial distribution in step 1. zn ∼

Multinomial(θ).
4: Choose a word wn from a person specific distribution βzn

.
5: end for
6: for m = 1 to M do
7: Choose a person zN+m from the chosen multinomial distribution in step 1.

zN+m ∼Multinomial(θ).
8: for h = 1 to H do
9: Choose parameters Γh from a pre-trained generalized linear model with pa-

rameter λ.
10: Choose a difference in appearance dmh from a person-specific hyper-feature

based distribution, p(dmh|zN+m,Γh).
11: end for
12: end for

Given the model parameters α, β1:K , λ, and IM, and an observed image I, the

joint distribution of a topic mixture θ, a set of N +M topics z, and an image-caption
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Figure 3.10. Graphical model representation of People-LDA.

Here, θ is a multinomial distribution, which specifies a mixture of people-topics z.
The entire collection contains D image-caption pairs, each of which is represented as
a collection of N words w and a collection of differences in appearance d between M
faces appearing in the image I and the best matching image in a pre-determined set
of reference images IM. The variable Γ and parameter λ correspond to the hyper-
features based face identifier described in Section 3.2.3.1. The parameters for this
model are α, K distributions of words β1:K and K reference images, one for each
person, and the parameters λ of the face identifier. The generative process for this
model is described in Algorithm 4. In this graphical model, gray and orange nodes
denote observed and latent random variables respectively, and cyan nodes denote the
model parameters.

pair with a set of N words w in the caption and image difference d between the M

faces in the image and the matching reference images in IM is given by
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p(θ, z,w,d|α, β, λ, IM) = p(θ|α)

·
N∏

n=1

p(zn|θ)p(wn|zn, β)

·
M∏

m=1

p(zN+m|θ)p(dm|zN+m, λ). (3.37)

3.4.3 Variational inference

Similar to the LDA model, the exact computation of the posterior distribution of

the latent variables specific to a given image-caption pair is intractable in the above

model as well. Following Blei et al.’s approach [16], we use a mean-field variational

approximate inference algorithm to approximate this computation. In particular, we

define a fully factorized model for the latent variables θ and z as

q(θ, z|γ, φ1:N , χ1:M) = q(θ|γ)
N∏

n=1

q(zn|φn)
M∏

m=1

q(zm|χm), (3.38)

where γ is a K-dimensional Dirichlet parameter, φ1:N and χ1:M are multinomial

distributions. These parameters are also referred to as variational or free parame-

ters, and this model is also referred to as a variational model. The graphical model

representation of our variational model is shown in Figure 3.11.

We estimate the setting of these variational parameters by minimizing the Kullback-

Leibler divergence between the approximate model and the true posterior distribution:

(γ∗, φ∗
1:N , χ∗

1:M) = argmin
(γ,φ1:N ,χ1:M )

D(q(θ, z|γ, φ1:N , χ1:M)||p(θ, z|w, I, α, β, λ, IM)).

(3.39)

This minimization is achieved using the iterative fixed-point method described in

Blei’s thesis [13], the update equations for which are obtained by computing the

derivatives of the above Kullback-Leibler divergence with respect to the variational

parameters and are as follows:
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Figure 3.11. Variational model for People-LDA.

This model provides a fully factorized model for the latent variables θ and z in terms
of the variational parameters λ, φ1:N , and χ1:M .

φt+1
ni = βiwn

exp(Ψ(γt
i)), (3.40)

χt+1
mi = p(dm|zN+m = i, I, λ) · exp(Ψ(γt

i)), (3.41)

γt+1
i = αt+1

i +
N∑

n=1

φt+1
n +

M∑
m=1

χt+1
m , (3.42)

where Ψ(.) is the digamma function.6

In the next section, we discuss how the parameters of the People-LDA model are

learned from a collection of image-caption pairs.

3.4.4 Parameter estimation

The parameter estimation in our model becomes complicated due to our choice

of the family of distributions to represent the image component. We simplify the

estimation procedure by training the face identifier separately as discussed in Sec-

tion 3.2.3.1. This approach of training some components of a probabilistic model

6The digamma function is the derivative of the log-gamma function, and is computable via a
Taylor approximation [2].
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separately is also known as pre-training. The parameters of this pre-trained face

identifier are fixed while estimating the other parameters of the joint model.

The parameters of the joint model are learned by maximizing the likelihood of

the given collection of image-caption pairs. In particular we used the variational

expectation-maximization (EM) procedure [6] for this minimization. This procedure

alternates between the following two steps until convergence: (E-step) estimate the

variational parameters for each document given the current model parameters (Equa-

tion 3.39); and (M-step) compute the maximum likelihood estimates of the model pa-

rameters using the variational distribution with parameters estimated in the E-step.

Note that the above M-step updates are the same as those of Blei et al. [16].

In this section, we have described the generative process and the procedures for

performing inference of the posterior distribution and for estimating the model pa-

rameters for People-LDA. However, there are a few other small but critical details

such as an automatic selection of reference images, that are necessary for applying

our model for an unsupervised analysis of a collection of image-caption pairs. In the

next section, we discuss these details and our experimental setup.

3.5 Experimental setup

In our experiments, we used 10000 images and associated captions from the Faces

in the Wild data set [10]. This data set contains images, each having possibly more

than one person appearing in it, and associated captions with one or two sentences of

textual description of the scene shown in the image. Note that these image-caption

pairs are typical of images appearing in news articles.

3.5.1 Unsupervised selection of reference images

People-LDA requires at least one reference image per people-topic. For an unsu-

pervised selection of these reference images, we use an approach based on the idea
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that if only one face appears in a given image, and only one name is mentioned in

the caption for this image, then this name is very likely to be that of the person

whose face is shown in this image. To automatically detect faces in the given im-

ages, we used the Viola-Jones detector [108] for faces, and to extract names from

the caption text, we employed a conditional random field-based named-entity recog-

nizer [70]. The above-mentioned idea is then applied to the output of the face detector

and the named-entity recognizer to obtain a selection of names and face images. For

each name in this initial selection, we randomly chose one example face image as

the corresponding reference image. Note that the named-entity recognizer is used

only for selecting these reference images, and not for processing the caption in our

model. Thus, our method is not particularly sensitive to the quality of the chosen

named-entity recognizer.

Using this selection of names and faces, we obtained a set of 1077 distinct names

(and one reference image for each of these names) in our data set. For our experiments,

we randomly select 25 names in the middle frequency range of 20-80 occurrences in our

data set. These names can intuitively be categorized as related to sports (e.g., Pete

Sampras), politics (e.g., Jacques Chirac), and entertainment (e.g., Winona Ryder).

The reference images for the selected names are shown in Figure 3.12.

3.5.2 Inferred distribution of topics for a document

For each of the given image-caption pairs, our model infers a distribution over

all the possible people-topics. From the graphical model representation of People-

LDA (Figure 3.10), it is not obvious that the inferred mixture θ of people-topics will

capture the co-occurrence relationship between the faces detected in an image and the

names identified in the corresponding caption text. However, an appropriate choice

of parameter values for the multinomial θ (when most of the probability mass is on

one value) do indeed force a correspondence between names and faces. Since we are
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Figure 3.12. The set of reference images used in our experiments.

These reference images were selected using an unsupervised approach, the details of
which are presented in Section 3.5.1.

learning the parameters of our model from the data itself, the inferred mixture θ for

a document takes the desired form.7

3.5.3 Annotating faces with names

For a given face region, our model makes an inference of the latent people-topic

associated with it. The most likely name in the distribution of words associated with

the inferred people-topic is then used as the annotation for this face region.

7A similar observation was made by Barnard et al. [5] in their model for annotating images with
categorical words such as “sky,” “grass,” and “water.”
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The parameters of our model are selected to maximize the joint likelihood of

the image-caption pairs and not to maximize the conditional likelihood of the names

given the face regions. Therefore it is conceivable that the estimates of the conditional

probability distributions obtained from our model may not be good, and can be better

approximated using an explicit modeling of the desired correspondence between the

names and faces (similar to the Correspondence-LDA model from Blei et al. [14]).

In our model, the learned latent topics are anchored to a single person, i.e., in each

of the learned topic-specific distributions of words, the probability of the most likely

name is much higher than the probability of the second most likely name. Thus, a

precise estimate of the probability values within a single topic is not critical in our

model. For this reason, we do not need to specify an explicit correspondence between

words and face images in our model.

3.5.4 “Unknown” class

Our model annotates a face in a given image with one of the names selected using

the approach described in Section 3.5.1. As a result, it cannot identify names for

people outside this set of selected names. Thus, we need to automatically identify

the image-caption pairs for which the identities of some of the face regions in the

image are likely to be from outside the set of selected identities. To address this

issue, we use an additional identity “unknown” as annotation for faces of people

whose reference images are not selected.

3.6 Related approaches

In this section, we discuss the face recognition and topic modeling approaches

that are used in the comparative evaluation of our People-LDA model in the next

section. Based on the input for these approaches, we categorized them as Image-only,

Text-only, and Image and text approaches.
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3.6.1 Image-only approaches

The following approaches only use the images (and not the captions) in our col-

lection in their analysis.

3.6.1.1 Eigen-Fisher-faces

Zhao et al. [118] proposed a face recognition system based on a two-step process

as follows. First, they project all of the training face regions into a low dimensional

subspace using principal component analysis. Next, they learn a linear classifier using

linear discriminant analysis [8].

Turk and Pentland [106] referred to the subspace obtained by principal compo-

nent analysis of face images as eigenfaces, and Belhumeur et al. [8] referred to the

subspace obtained by linear discriminant analysis of face images as fisherfaces. Since

Zhao et al.’s approach is a combination of both of these dimensionality reduction

techniques, we refer to Zhao et al.’s approach as Eigen-Fisher-faces. We implemented

their approach to obtain a baseline for image-based face recognition methods in our

experiments.

3.6.1.2 Hyper-features based face identifier

We trained the face identification system presented in Section 3.2.3.1 on a set of

500 “same” and 500 “different” pairs of images selected from the Faces in the Wild

data set. This training set of image-pairs does not contain images of the 25 people

(shown in Figure 3.12) used in our experiments. In Section 3.7, we will compare the

performance of People-LDA and this approach to assess the boost in performance (if

any) due to the use of a language model in addition to the image features.

3.6.2 Text-only approaches

The following approaches only analyze the captions in our collections.
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3.6.2.1 Random name from the caption

This approach uses one of the names extracted from the caption (using a named-

entity recognizer) and randomly assigns it to all the faces present in the associated

image. We observed that this approach is particularly useful for the image-caption

pairs with only one name detected in the caption. We implemented this approach

to obtain a baseline performance for approaches that use the caption in the analysis

of an image-caption pair. As we discuss later in Section 3.7, this näıve approach

outperforms some image-based face recognition techniques, which suggests that the

context from the caption is very useful for solving face recognition for difficult-to-

recognize faces.

3.6.2.2 LDA on captions

We used Blei et al.’s LDA model (described in Section 3.4.1) for an unsupervised

analysis of all of the captions in our collection. For each caption, we determine the

most likely name under the inferred multinomial distribution of topics and the learned

topic-specific word distributions. All of the face regions present in the associated

image are annotated with this name.

In Section 3.7, we will compare the learned topic-specific distributions of words

obtained using LDA with those obtained using People-LDA to verify if People-LDA

is able to obtain people-specific topics.

3.6.3 Image and text

In this Section, we describe the details of some previous approaches that jointly

analyze images and text.

3.6.3.1 Mixture of multimodal-LDA (MoM-LDA)

Barnard et al. [5] presented a joint model of the appearance of an image and a

set of caption words associated with the given image. They referred to this model
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as the mixture of multimodal-LDA model. We implemented their model with two

modifications. First, instead of representing an image as a collection of regions ob-

tained by an image segmentation algorithm (e.g., normalized cuts algorithm [95]),

we represent the image as a collection of face regions that are obtained from a face

detection algorithm. Second, in addition to the visual features used by Barnard et

al., we use SIFT descriptors [67] at several “interest point” locations8 to represent a

given image region. This approach provides a baseline for approaches that use both

images and captions.

3.6.3.2 Correspondence-LDA

The MoM-LDA model provides good estimates of the joint probability of image-

caption pairs, but does not provide good estimates of the conditional probabilities that

are needed for annotations of different image regions with words. To address this issue,

Blei et al. [14] presented an extension of MoM-LDA by including an explicit modeling

of correspondences between words and image regions. They refer to this model as

Correspondence-LDA. We include this model in our face recognition experiments as

well.

3.6.3.3 “Names and faces”

Berg et al. [10] presented an approach for clustering face images in a data set

of image-caption pairs, focusing particularly on the names of people present in the

caption. In particular, to obtain clusters of face images, they used a modified K-

means algorithm in a joint space of image features and names extracted from the

caption. While their method achieved impressive accuracy of annotating face regions

with names, it has two main limitations:

8These locations are determined as the locations of the extrema of difference of Gaussian operator
on the given image region.
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1. It relies heavily on the performance of the named-entity recognizer. These

programs can be brittle, and it is very difficult to recover from missed names.

These programs also cannot recognize that terms such as “the first lady” and

“Laura Bush” may refer to the same person. If the name of a person does not

appear in the caption, then the person cannot be identified.

2. This method ignores important context and information provided by non-name

text. Phrases like “Rose Garden” and “White House” (see Figure 3.13) can

provide critical context to identify difficult-to-recognize faces, even if the name

of the pictured individual is not shown.

President Bush, center, is flanked by the
civilian U.S. administrator of Iraq L. Paul
Bremer, right, and Secretary of Defense
Donald H. Rumsfeld, left, as he makes re-
marks on Iraq, Wednesday, July 23, 2003,
in the Rose Garden of the White House.

Figure 3.13. An image-caption pair from Berg et al.’s data set [10].

3.7 Experimental results

In this section, we first present a quantitative comparison of the above-mentioned

approaches for annotating face regions in images. Next, we present a qualitative com-

parative analysis of the different clusters of face images and the different distributions

of words obtained using some of these approaches.
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3.7.1 Annotation of face regions

To quantitatively evaluate the annotations obtained from different approaches for

face recognition, we manually labeled all of the face images in our collection with

the corresponding names. Using this set of labeled faces, we use the following two

measures to evaluate the performance of different approaches for face recognition:

• Perplexity

The perplexity of a probabilistic model q for a data X = {x1, · · · , xN} represents

how well this model predicts the data X and is given by

Perplexityq(X) = 2−
1
N

PN
i=1 log2 q(xi). (3.43)

The perplexity of the true identities for all of the face regions in our collection

is computed.

• Average class accuracy

The probabilistic model is used to classify each of the face regions in the entire

collection as one of the 25 selected persons and one “unknown” class, and the

average class accuracy for these 26 classes is computed.

As shown in Table 3.2, a joint modeling of images and text outperformed all of

the other approaches that model only one of the images or the captions. People-

LDA achieved the lowest label perplexity (lower values are better) among all of the

methods included in our experiments. People-LDA, and Barnard et al. [5] outperform

the approach used by Berg et al. [10] since they model the probability distribution

over all the possible names as compared to only the names detected in the caption

only (as done by Berg et al.). On the other hand, the method used by Berg et al.

had the best average class accuracies among the compared methods. Their method

draws advantage from the fact that many captions have a single name present in them

88



Model Perplexity % accuracy

Image Only
Eigen-Fisher-faces [118] 520.00 ± 24.17 22.02 ± 6.11
Hyper-features [47] 173.90 ± 3.96 44.86 ± 4.30

Text Only
Random name from the caption 382.05 ± 23.11 31.40 ± 3.82
LDA on captions [16] 1219.60 ± 202.53 39.07 ± 2.44

Image and Text
MoM-LDA [5] 68.23 ± 1.38 50.63 ± 4.01
Correspondence-LDA [14] 65.77 ± 2.13 52.50 ± 2.88
“Names and faces” [10] 73.05 ± 9.36 68.93 ± 4.69
People-LDA 25.99 ± 4.50 58.56 ± 3.59

Table 3.2. Quantitative evaluation of different face recognition approaches using
label perplexity and average class accuracy measures.

In the first column, we show the perplexity of the true label under different models
(lower values are better). In the second column, the average class accuracies are
shown. The error terms correspond to 10-fold cross-validation.

(similar to our näıve approach). Furthermore, their approach fails to annotate a face

if the corresponding name is not present in the caption (for example, see Figure 3.14).

For a perfect labeling of all the faces in the data set, we still need to correct the

misclassified faces. To do this, Berg et al. suggested the cost of correcting clustered

data as a evaluation metric for different approaches. An alternative view of this cost

is to consider only a few top matches and compute the recall (fraction of true labels

present) of a system. In Figure 3.15, our proposed model outperforms the other

approaches.

3.7.2 People-Topics

We presented People-LDA as a model that guides topics to automatically emerge

around people. In this section, we demonstrate this by comparing the image clusters
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President George W. Bush (L)
speaks to reporters at the con-
clusion of a bipartisan congres-
sional meeting, September 4, 2002
at the White House. Bush asked
Congress for nearly $1 billion to
aid Israel and the Palestinians,
fight the spread of AIDS and bol-
ster security at U.S. airports.

Figure 3.14. Difficulties in associating names in the caption with the faces appearing
in the corresponding image.

A typical failure case for Berg et al. [10]: Since the name “Tom Daschle” is not present
in the caption, Berg et al. do not consider it as a possible label for the detected face
in the given image.

(Figures 3.16 and 3.17) that correspond to different people-topics and the topic-

specific word distributions (Table 3.3) for different approaches. In particular, we

compare the following three approaches:

1. Image alone: the model described in Section 3.6.1.2,

2. Text alone: the LDA model described in Section 3.6.2.2,

3. People-LDA.

3.8 Conclusions

We proposed People-LDA as a model that guides semantic topics to develop

around people. We achieved this by combining two successful models: a hyper-feature

based face identifier and the latent Dirichlet allocation model, in a novel way. To the

best of our knowledge, our model is the first such combination for joint modeling of

images and text. We show excellent results of generation of people-specific topics
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Figure 3.15. Comparison of different approaches for top-K recall.

People-LDA outperforms the other approaches over most of the range. The approach
used by Berg et al. [10] shows promising recall up to rank three but levels out as it
does not consider names not present in the caption (none of the captions in our data
set had more than three distinct names detected in them).

from a data set containing images and associated captions. Our model outperformed

different modern approaches in soft clustering of face images.

There are several issues with LDA that affect the performance of our proposed

model. First is the assumption that topics are uncorrelated. This causes the clustering

results to be sensitive to the number of topics chosen, particularly for a large number

of latent topics. Several richer models [15] have been proposed to overcome this

weakness. Another issue with LDA arises when we have a highly skewed distribution

of cluster frequencies. This causes the very frequent terms to appear in multiple
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(a) Random samples from four clusters obtained using face recognition [47] on images.

 

 

    

(b) The corresponding clusters obtained by People-LDA.

Figure 3.16. Comparison of clusters obtained using only the images with those
obtained using People-LDA.

White squares are drawn manually on top of some of the images to highlight the
number of distinct people in a cluster. The clusters are cleaned up significantly using
our model and have fewer different people in them.

clusters. To avoid this problem in our implementation, the most frequent terms

(stop-words) in the captions were removed. Also, the frequencies of occurrence of the

selected individuals are similar to each other. Recently, Elkan [27] proposed a topic

model that addresses this issue of frequency skewness. Exploring such richer models

for multi-modal documents would be an interesting extension to our work.
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(a) Random samples from four clusters obtained using LDA on caption text [16].

 

 

 

  

  

(b) The corresponding clusters obtained by People-LDA.

Figure 3.17. Comparison of clusters obtained using only the captions with those
obtained using People-LDA.

White squares are drawn manually on top of some of the images to highlight the
number of distinct people in a cluster. The clusters are cleaned up significantly using
our model and have fewer different people in them.
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LDA

schumacher chretien versace williams
chirac bush chretien tennis

koizumi jean spears cup
prix street poses final

grand cargo jean won
michael michigan britney uribe
palace facility shows returns
japan suicide women development

jacques fort italian tokyo
french detroit final princess

People-LDA

schumacher chretien spears williams
germany jean film cup
cabinet house city women
france west star player
grand ottawa premiere practice
jean hill poses tennis

position vote britney left
announced action watts number
michael question mexico montreal
driver government week week

Table 3.3. Comparison of most likely words for people topics obtained by LDA and
People-LDA models.

Each column corresponds to a topic learned by the model (LDA on caption text only or
People-LDA). The name words are shown in bold face. These are four representative
topics obtained using LDA. Topics obtained using People-LDA are more centered
around one person compared to the topics for LDA. Moreover, the most likely name
in a topic corresponds to the associated reference image.
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Figure 3.18. Additional examples of image and text clusters obtained using People-
LDA.
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CHAPTER 4

SCENE CLASSIFICATION AS CONTEXT

4.1 Introduction

Figure 4.1. Are these two face images of the same person?

Consider the face images shown in Figure 4.1. These two face images are of

two different individuals, but they appear very similar to each other in the given

pose and emotion (of celebration). An automated system would find it extremely

difficult to discriminate between these two persons from these face images alone. In

the previous chapter, we presented an approach that reduces the complexity of such

difficult cases of face identification (or recognition) by using the context generated

from the captions associated with these images. However, that approach is useful

only when the captions are available for the given images. In this chapter, we discuss

the scenario where the captions for the images are not available, but other useful

information can be obtained from other image regions.

For instance, the two face images shown in Figure 4.1 are cropped from the two

images shown in Figure 4.2 respectively. It is clear that these two images are of
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two different sports: the first image is related to tennis, whereas the second image

is related to soccer. Based on this knowledge of the sporting event shown in each

of these images, it is easier to conclude that these face images are of two different

persons. (The highlighted face in the first image is of Serbian tennis player Novak

Djokovic, and the highlighted face in the second image is of Spanish soccer player

David Villa.)

Figure 4.2. Are the two highlighted faces in these two images of the same person?

Most of the existing approaches for face identification [29, 47, 50, 76] ignore any

information from the non-face regions in images. As a result, they are solving an

extremely difficult problem (as illustrated in Figure 4.1) that may not be necessary

to solve in several scenarios, e.g., the scenario shown in Figure 4.2. A face identifier

that characterizes the entire image (including both face and non-face regions) to

identify such scenarios could avoid solving these difficult identification tasks. In this

chapter, we present an approach that characterizes a given image by classifying the

scene shown in the image into a set of pre-determined classes. In particular, we study

the problem of identifying the sporting event shown in an image, assuming that we

know the image is related to sports.
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Classifying the scene shown in an image may also be useful in making further

inferences about the scene. For instance, consider the image shown in Figure 4.3.

Identifying the sporting event (tennis) in this image provides context for recognizing

the event (French Open), the venue (Roland Garros stadium), and the player (Rafael

Nadal). Some of these annotations (also shown in the caption of Figure 4.3) are

difficult to generate using the appearance of the corresponding image regions alone.

In particular, for the current resolution of the face region (shown in Figure 4.4), there

is no hope that an automated face recognizer (or even a human) will identify the

player in this image. However, given the context that this image captures a game of

tennis played on a clay court in the year 2007, the identity of the player is more likely

to be Rafael Nadal than Björn Borg or Tiger Woods.

In this chapter, we study a collection of sport images taken by amateur photog-

raphers and present an approach for automatically recognizing the sport. First, in

Section 4.2, the problem of sport classification is specified. Then, in Section 4.3,

the intuition behind our solution to this problem is presented. Next, in Section 4.4,

some random-fields based approaches are briefly described. This description is used

in Section 4.5 to present a new model called selective hidden random fields. Next, the

details of our experimental setup are included in Sections 4.6, 4.7, and 4.8, and the

experiments are presented in Section 4.9. Finally, in Section 4.10 we conclude this

chapter with a discussion of other domains where our framework is likely to improve

the existing solutions.

4.2 Sport classification

The problem of scene classification has been studied mostly for indoor vs. out-

door [92] scenes, and natural scenes such as mountains, waterfalls, and open fields [68].

For the classes of scenes included in these studies, simple algorithms that employ the

statistics of basic image features such as the distribution of color and low-level texture
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Figure 4.3. Example showing the role of context in event classification.

Most people may identify the sporting event in this image as “tennis” and associate
tags like “French Open” and “clay court” with this image. A careful observer may
also add “Rafael Nadal” and “serving” to the annotation.

Figure 4.4. An extremely difficult-to-recognize face.

This image shows the face region that is highlighted in the image shown in Figure 4.3.
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features reported impressive performance. However, these approaches perform poorly

in the domains where the different classes of scenes show high inter-class similarities

and high intra-class variations in the appearance of scenes.

Sport classification is one such challenging domain. On one hand, both the soccer

field and the football field are green and appear very similar to each other. On the

other hand, the tennis courts could be of different colors such as red (clay courts)

and green (grass courts). Thus, an approach based on the statistics of basic image

features is not likely to perform well for sport classification.

In this chapter, we study the sport classification problem with the classes being

five popular sports: baseball, basketball, (American) football, soccer, and tennis. To

study this problem in a natural and unconstrained setting, we consider a collection of

sports images taken by amateur photographers.1 Most of the images in this collection

were taken by the spectators who are at a considerable distance from the playing

surface (e.g., see Figure 4.5).

In most of these images, large image regions are occupied by the people watch-

ing the sporting event. These image regions, however, provide little information for

classifying the sporting event. Worse yet, these image regions can potentially be dis-

tractive to algorithms that analyze the general scene statistics to classify the sporting

event shown in an image. Ignoring these regions (of spectators) in the images in our

collection, several observations can be made:

• the markings on the playing surface for a single sport are consistent across

different venues and over time;

• the markings on the playing surface are different for different sports, e.g., a set

of parallel lines in a (American) football field for yard markings as opposed to

a diamond in a baseball field.

1These images were downloaded from http://www.flickr.com and described later in Section 4.8.
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Figure 4.5. Example image from our collection of sports images.

Most of the images in our collection are taken by the people sitting in the spectator
area, and often have a wide-angle view of the sporting event with the crowd covering
large regions of the image. While the resolution of such images is often too low to
recognize sport accessories such as a ball or a racquet, the playing surface stands out
as a reliable and robust source of information to identify the sporting event.

Based on these observations, one approach for sport classification would be to

identify and characterize the markings on the playing surface in a given sport image.

To characterize these markings, we need to identify the image regions that correspond

to the playing surface. However, segmenting the playing surface in an image may

depend on the sporting event itself. Therefore, there may be a circular dependency

between the classification of the sporting event and the segmentation of the playing

surface.

In this chapter, we solve both of these problems simultaneously through a novel

probabilistic model that jointly segments the regions of interest in an image and selects

the features computed on them to predict the classification label for the given image.

We refer to our model as selective hidden random fields. We start our discussion by

providing a brief overview of the idea that led to the development of this model.
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4.3 Overview of our solution

Our solution for the problem of sport classification works as follows. First, a given

image is partitioned into several image regions with little variation in the appearance

within each of these image regions (see Figure 4.6). These image regions are later

classified as being a part of the playing surface or not. Each of these image regions

are represented using several appearance-based image features (discussed later in

Section 4.6). Next, the markings in the image are characterized using several easy-

to-identify, long lines (not edges) in the given image (see Figure 4.7). Finally, a

probabilistic model (described later in Section 4.5) is used to simultaneously select

the image regions that are part of the playing surface, and use the line markings on

these selected image regions to classify the sporting event shown in the given image.

Figure 4.6. An example of the segmentation of an image.

We partition a given image into regions with consistent appearance using Comaniciu
and Meer’s segmentation algorithm [22]. The output of their segmentation algorithm
on the left image in shown in the right image, where each color represents a different
image region.

For the segmentation of the playing surface in an image, it is desirable that:

1. The segmented image regions should correspond to the actual playing surface

irrespective of the sharp changes in appearances within the playing surface. For

example, the painted area in a basketball court (blue area in the left image of
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Figure 4.7. An example of a set of line features computed for an image.

We identify several lines (not edges) in a given image using Kosecka et al.’s approach.
The line hypotheses in the left image are shown in red in the right image.

Figure 4.7) has a different appearance than the rest of the court, but is still a

part of the playing surface.

2. The segmentation labels for image regions are mostly consistent with their

neighboring image regions. In other words, if an image region is a part of

the playing surface, then its neighbors are also likely to be a part of the playing

surface.

To address the first issue, we employ a separate classifier for identifying the playing

surface across different sports. This classifier is trained using a set of images where

all the image regions that are part of the playing surface are marked. Obtaining such

labels is a very tedious task. Therefore, we have these labels only for a small subset

of images in our collection. Note that due to the large variations in the appearance

of the playing surfaces across different sports, we do not expect this classifier to work

very well. Nevertheless, we expect these predictions to be useful as features in our

model. We refer to the predictions from this classifier for different image regions as

the base hypotheses.
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To address the second issue, our model penalizes the labeling for two neighboring

image regions that are inconsistent with the similarity measure between them. In

other words, if two neighboring regions have similar appearances, then our model

would prefer the labeling that assigns the same label for these image regions (and vice

versa for the image regions with dissimilar appearances). We refer to this preference

for consistent labeling as the neighborhood compatibility.

One probabilistic model that employs features similar to the above base hypothesis

and neighborhood compatibility features is conditional random fields [60]. In the next

section, we present a brief overview of this model and describe variants of this model

that are suitable for solving the problem of sport classification.

4.4 Related approaches

4.4.1 Conditional random fields

Let X denote the observations for the regions in an image and y represent the

binary random variables that specifies if these image regions are part of the playing

surface or not. Also let G denote the dependency graph used to model the above-

mentioned properties for the desired segmentation of a given image. Now, we define

a joint probability distribution p(X,y) that is factorized over the cliques C of the

graph G as

p(X,y) =
∏
c∈C

φc(Xc,yc). (4.1)

Note that this model specifies a Markov random field with respect to the graph

G. The functions φc(·) are often referred to as factors of the graph G. In this model,

the probability of the labels conditioned on the observations is computed as

p(y|X) =
p(X,y)∑
y p(X,y)

. (4.2)
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In the above equation, the denominator is computed by enumerating over the set

of all possible observations y, which is exponential in |y| and may not be reasonably

enumerable in general. To address this issue, Lafferty et al. [60] proposed conditional

random fields that directly model the conditional probability distribution factorized

over the cliques C of a graph G as

p(y|X) =
1

Z(X)

∏
c∈C

φc(Xc,yc), (4.3)

where Xc and yc respectively represent the subsets of X and y that are in the clique

C. The term Z(X) is also known as the partition function and is given by

Z(X) =
∑
y

∏
c∈C

φc(Xc,yc), (4.4)

When each of the factors φc(·) is from the exponential family,2 the conditional

distribution is given by

p(y|X, θ) =
1

Z(X, θ)
exp

(∑
c∈C

nc∑
k=1

θckfck(Xc,yc)

)
, (4.5)

where θ = {θck}. Note that this model has a large number (
∑

c∈C nc) of parameters

that need to be learned from the training data. In practice, the number of these

parameters is reduced by sharing them among different sets of factors. These sets of

factors that share parameters are also known an factor templates.

The CRF model has been successfully used in a variety of domains, including text

processing [60], bioinformatics [89], and computer vision [34, 59]. One limitation with

these models is that they do not include latent variables to capture the intermediate

structure in the data. Quattoni et al. [86] addressed this issue by extending the

2
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CRF models to include latent variables. They refer to their models as hidden-state

conditional random fields (HCRF).

4.4.2 Hidden-state conditional random fields

Denoting the latent variables as h, the HCRF model defines the conditional prob-

ability distribution

p(y,h|X, θ) =
1

Z(X, θ)
exp

(∑
c∈C

nc∑
k=1

θckfck(Xc,yc,hc)

)
, (4.6)

where Xc, yc, and hc respectively represent the subsets of X, y, and h that are

in the clique C, and θ = {θck}. The conditional probability of the label given the

observations is computed as

p(y|X, θ) =
∑
h

p(y,h|X; θ). (4.7)

The parameters θ of this model were estimated by maximizing the regularized

data log-likelihood

L(θ) =
∑

i

log P (yi|Xi, θ)− 1

2σ2
‖θ‖2. (4.8)

A gradient ascent algorithm is employed to perform this maximization. Note that

computing the gradient of the log-likelihood term requires the inference of the marginal

distributions for P (hc|y,X, θ). In the HCRF model, the size of the cliques including

the hidden variables were restricted to be at most two, i.e., hc can include up to two

hidden variables. Thus, for the gradient computation in this model, we need to infer

P (hi|y,X, θ) and P (hi, hj|y,X, θ). Quattoni et al. further reduced the graph over

the hidden variables to a tree structure, which enabled them to apply belief propa-
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gation to make inference about these probability distributions. A similar approach is

used to perform the inference

y∗ = argmax
y

p(y|X), (4.9)

which is required for computing the most likely labels for an unseen data instance.

Several variants of the HCRF model have been applied to different applications

such as recognizing human gestures [110] and learning discriminative object parts [54].

There are two main limitations of these models:

1. The learned hidden layer in these models are not necessarily interpretable. The

model is optimized to predict the final label y. Hence, unless explicitly specified,

these models are not guaranteed to generate any semantic interpretations to the

inferred hidden layer.

2. In these models, the target variables y are connected only to the hidden layers

h. In other words, there are no edges between y and X, which implies that

the information flow from the observations to the classification label happens

through the hidden layer. Since the hidden layer is composed of discrete random

variables, these models are useful when the structure in the inferred hidden layer

provides sufficient information to generate the final labels y. Note that replacing

these discrete random variables with continuous random variables or variables

with a large number of possible states would make the required inference tasks

intractable.

In the next section, we present an extension of the HCRF model that addresses

both of these issues. In particular, our model

1. enforces semantics on the hidden layer through the use of a pre-trained classifier

(related to the desired semantics) and a careful choice of the family of functions

for specifying the factors of different types of random variables.
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2. includes edges between the observed and unobserved layers, thereby enabling a

richer information flow from the data to the labels.

In our model, the hidden layer is used to select some of the observations to be used

for predicting the sport label for the given image. Due to this selective nature of the

processing obtained from our model, we refer to this model as selective hidden random

fields (SHRF). Next, we present the details of our model for sport classification.

4.5 Selective hidden random fields

A selective hidden random field (SHRF) is an extension of the hidden-state con-

ditional random field model. The SHRF model employs binary random variables as

latent variables to select some of the observations to be used for predicting a label for

the observed data. In the context of sport classification, we represent the ith region in

a given image as xi and denote by hi the corresponding latent variable that specifies

if this image region is a part of the playing surface. Also, the sport label for the

given image is denoted by y. Figure 4.8 shows the factor graph representation of this

model.

Given a set of observations X and the parameters θ, the conditional probability

of the class (sport) label y is given by

p(y|X, θ) =
∑
h

p(y,h|X, θ) (4.10)

=

∑
h exp(Φ(y,h,X, θ))∑

y

∑
h exp(Φ(y,h,X, θ))

, (4.11)

where
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Figure 4.8. Factor graph representation of a selective hidden random field.

In this graphical model, the node y represents the sport label, and hi and xi represent
the surface annotation and observed features for the ith image region, respectively.
We used colored squares to specify different factor templates, i.e., all of the factors
of the same color share the same parameter values. A blue factor represents the
local evidence for the surface annotation of an image region, a green factor denotes
compatibility between the annotations for connected image regions, a purple factor
represents the contribution of an image region towards the sport label for the image,
and the black factor represents the prior probabilities for different sporting events.
Note that some of the edges (e.g., the edge connecting the green factor between hi

and hk with xi) are omitted for clarity.

Φ(y,h,X, θ) =
∑

i

φb(hi,xi, θb) (4.12)

+
∑
i,j∈E

φg(hi, hj,xi,xj, θg) (4.13)

+
∑

i

φp(y, hi,xi, θp) (4.14)

+ φk(y). (4.15)
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In this equation, θT = [θT
b θT

g vec(θp)
T ] and the factors φ are described as follows:

• Base hypothesis (blue box). For each of the regions xi in the given image, we

use a pre-trained classifier to estimate the probability that this region is a part

of the playing surface. We defer the discussion of the details of this classifier to

Section 4.7. Denoting the estimated probability by f1(xi), we compute

φb(hi,xi; θb) = θT
b [δhi=1f1(xi) δhi=0(1− f1(xi))]

T . (4.16)

• Neighborhood compatibility (green box). For every pair of neighboring3 im-

age regions, we compute a value f2(xi,xj) that represents the similarity in

appearance between these two image regions. In particular, we use the cosine

similarity between the two feature-vector representations of these two image

regions. (The details of our representation are presented in Section 4.6). This

computed similarity value f2(xi,xj) is used to compute

φg(hi, hj,xi,xj; θg) = θT
g [δhi=hj

f2(xi,xj) δhi 6=hj
(1− f2(xi,xj))]

T .(4.17)

• Selection of image regions (purple box). This factor is used to select the

image regions that are labeled as part of the playing surface. The selected

image regions are represented as f3(xi) in the factor

φp(y, hi,xi) = yT θT
p [δhi=1f3(xi)]

T . (4.18)

• Prior probability for different sport labels (black box). This factor specifies

the prior information about the frequencies of the labels of different sporting

3We apply different heuristics, such as sharing of boundary and threshold on similarity in ap-
pearance, to reduce the connectivity in graph, as opposed to a fully connected graph. This is done
to ensure that the approximate inference algorithm converges.
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events in a given data set. For example, if the owner of a given collection

is passionate about soccer and tennis, but would rarely go to a baseball game,

then the prior probabilities could be appropriately set to specify that soccer and

tennis images are more likely to occur than baseball images in this collection.

In our experiments, we assume a uniform (non-informative) prior, i.e.,

φk(y) = 1. (4.19)

Similar to the HCRF model discussed in the previous section, the parameters

of our model θ are estimated by maximizing the regularized data log-likelihood. A

conjugate-gradient method is used for this optimization, where the computation of

the gradient of the log-likelihood involves the evaluation of the marginal probabilities

of the hidden variables and of the pairs of hidden variables. Unlike the HCRF model,

the presence of cycles in the connectivity graph prevents the use of exact methods for

inference of these quantities. In our experiments, we use the loopy belief propagation

algorithm [77] for doing approximate inference in this graph. Finally, given the pa-

rameters θ and observed image X, we apply similar approximate inference techniques

for computing the sport label for this image

y∗ = argmax
y

p(y|X, θ) (4.20)

as specified in Equation 4.11.

In the next section, we present the details of the representation of image regions.

The classifier used for computing the base hypotheses is described in Section 4.7.

4.6 Representation of an image region

Given an image, we use Comaniciu and Meer’s mean-shift algorithm [22] to par-

tition the image into several image regions. Each of these image regions are then
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represented using a set of features (shown in Table 4.1) to describe its location,

shape, appearance, and geometry.

Type Features

Location and shape

Position mean x-position normalized by the width of the image.
mean y-position normalized by the width of the image.

Shape number of pixels (i.e., area) in the image region.
second moment of the region.

Appearance

Color mean of the red-green-blue (RGB) channel values.
mean of the hue-saturation-value (HSV) channel values.

Texture mean responses to eight difference-of-oriented-Gaussian
filters.

“Interest points” vector-quantized scale-invariant feature transform
(SIFT) descriptors are computed at the locations of in-
terest points detected by the maximally stable extrema
regions (MSER) detector, the extrema of the difference
of Gaussians (DoG) detector, and the affine-invariant
Harris corner detector.

Geometry

Single line histogram of lines in nine different orientations.

Pair of lines number of line intersections
length of the pairs of parallel lines

Table 4.1. The set of features used to represent an image region.

The details of the computation of the interest points features and the geometric
features are presented in Sections 4.6.1 and 4.6.2.
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4.6.1 Interest points

Interest points are used to represent an image region in terms of the appearance at

a few sample locations in this region. An interest point (or region) detector is used to

determine the locations of several informative samples in the given image region. The

appearances of the image at these sampled locations are represented using a feature

descriptor computed at these locations.

In a detailed comparison of scale- and affine-invariant interest point detectors [74],

Mikolajczyk and Schmid found the extrema of difference of Gaussian (DoG) opera-

tor [67] and the maximally stable extrema regions (MSER) [69] detector to be useful

for a variety of visual scene categories. Another useful interest point detector is the

affine-invariant Harris corner detector, which responds to relatively local yet salient

interest points in an image region. In our experiments, the union of the output of

these three interest point detectors is used.

To represent the image appearance at each of these interest point locations, we

follow Mikolajczyk and Schmid’s recommendation [73] and use the scale-invariant

feature transform (commonly known as SIFT) [67] descriptor. Note that the SIFT

descriptor requires the scale at which the interest point is detected to determine the

scale of the detected interest point. The DoG detector provides this information

but the MSER and affine-invariant Harris corner detectors do not. To address this

issue for the MSER detector, the scale of the detected interest point is estimated

using the dimensions of the ellipse (estimated using the method of moments) around

the output region. A similar procedure was followed for estimating the scale for the

affine-invariant Harris corner detector.

To further reduce the dimensionality of the representation of an image region,

the computed SIFT descriptors are clustered into several bins (or “visual words”)

using the k-means algorithm. All of the resulting bins are collectively referred to as
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a “visual vocabulary,” and the resulting representation for the image region is called

the “bag of visual words” representation.

4.6.2 Geometric features

In the previous sections, we discussed that the sport shown in an image can be

easily identified using an effective characterization of the playing surface shown in

the given image. In particular, we argued the case for the markings on the playing

surface as a useful characterization of the playing surface in a sports-related image.

Automatically determining these markings on the playing surface is difficult partic-

ularly for images with low resolution, occlusions, and extreme perspective view. To

determine these markings, our approach is as follows. First, we identify the straight

lines in the given image, and then use the interactions (e.g., intersections and paral-

lelism) between pairs of lines to represent the markings. In particular, we use Kosecka

et al.’s approach [57] to determine long line segments in an image and compute a his-

togram of orientations weighted by the length of the line segments. To compensate

for the difference in the viewing angle across images, this histogram is appropriately

adjusted such that the most frequent orientations are aligned. The average orienta-

tion histograms for the lines detected on the entire image and the playing surface are

shown in Figure 4.9. It is important to note that these lines were estimated once for

the entire image. To compute the line features for a particular image region, we use

the overlap between all of the estimated lines and this image region.

The representation described in this section computed for the ith region in an

image is used as the representation of the random variables xi in the SHRF model

(described in Section 4.5). The SHRF model also uses a classifier for generating a

base hypothesis for each of the image regions that denotes if this image region is part

of the playing surface. In the next section, we present the details of this classifier.
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Figure 4.9. Histogram of orientation of lines detected in an image.

Average distribution of the cumulative length of lines detected in the entire image
(top) and on the playing surface (bottom). The lines are clustered by their orienta-
tion, and the resulting histogram is rotated to center around the bin with maximum
cumulative length. The distribution at the bottom is more useful for discrimination
among the classes than the distribution on the top.

4.7 A simple classifier for identifying the playing surface

One observation about the sports included in our collection is that the playing

surface in each of these sports is horizontal. (Our collection does not include sports

such as downhill skiing and golf, where this observation is not true.) Thus it is

conceivable that we can generate the base hypothesis for image regions by predicting

their surface orientation.
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Hoiem et al. [41] developed a system that classifies the surface orientation of

different regions in an image as horizontal and vertical. Figure 4.10 shows two example

annotations obtained using their approach: the first image shows the output of their

system on an image showing a city scene containing streets and buildings; the second

image shows the output of their system on a sports (tennis) image. In general, they

achieved impressive surface annotations for city scenes, but failed to produce good

annotations for the sport scenes. This is perhaps because the features and statistics

used in their model were engineered for the domain of outdoor scenes and are not

useful for annotating sports images.

Figure 4.10. Examples of surface orientation annotations obtained by Hoiem et al.’s
approach.

Surface orientation annotation obtained by Hoiem et al. [41]. Green color represents
horizontal and red represents vertical. For this work, we ignore the subdivisions of
the vertical surfaces: planar orientations (arrows), non-planar solid (‘x’) and porous
(‘o’). The left image shows the results on an outdoor scene with buildings, and the
right image shows the results on a sports-related image. While their results are very
impressive on street scenes, we did not find the learned statistics to be useful in
modeling the surface orientations in sports images.

Since a general-purpose classifier for the surface orientation of an image region

(e.g., the classifier discussed above) could not be applied to solve the problem of

segmenting playing surfaces in sports images, we trained a classifier specifically for

this problem. In particular, we used a support vector machine (SVM) based classifier.
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To train this classifier, we labeled all of the regions in a small set of images with labels

l to denote if the corresponding image regions are part of the playing surface. Also,

each of these image regions is represented using the set of features shown in Table 4.1.

Note that the parameters of an SVM classifier are estimated by minimizing the

label error for the training samples. Since the number of image regions that are

part of the playing surface is much less than the number of image regions that are

not, the learned classifier tends to classify any image region as not a part of the

playing surface. This effect can be avoided either by using a different loss function

for training the SVM classifier, or by balancing the class frequencies in the training

set. Following the the latter option, we use the synthetic minority over-sampling

technique (SMOTE) [19] to balance the class frequencies.

For a given image region, the trained SVM classifier projects it into a reproducing

kernel Hilbert space and determines the classification label using a hyper-plane (whose

parameters are learned during training) that separates the instances of the two classes.

We use the distance d between the projection of the image region and this separating

hyper-plane to define

p(l|d) =
exp(d)

1 + exp(d)
, (4.21)

where l is a binary label that denotes if this image region is a part of the playing

surface. This probability term is used as the representation of the base hypothesis in

our model.

This section concludes the description of the details of our model. Next, we present

the data set used in our experiments.
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4.8 FlickrSports-5 data set

Flickr4 is an online photo management application that provides an API5 to search

and download images using text queries. We used this API to retrieve images for

several text queries specifying various team-names and venues for five popular sports:

baseball, basketball, football, soccer, and tennis, Some examples of these queries are:

“Red Sox,” “Miami Heat,” “New England Patriots,” “FIFA,” and “French Open.”

From the set of retrieved images, we discarded the images without a significant view

of the playing field, but did not restrict the images to include the entire view of the

field. Note that some of the images include players, balls, or other objects occluding

the distinctive markings on the playing surface. Figure 4.11 shows some examples of

the images in our collection.

Figure 4.11. Example images from the FlickrSports-5 data set.

Our final collection contains 2449 images with roughly the same number of images

for each of the five sports. For our experiments, we split this data set into three parts:

50% for training, 25% for validation, and 25% for testing. The training and validation

sets are used for tuning the parameters, and the test set is used for evaluating different

approaches for sport classification.

4http://www.flickr.com

5Application Programming Interface
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4.9 Experiments

To train the classifier to generate the base hypotheses for the image regions (dis-

cussed in Section 4.7), we labeled all of the image regions in 200 images from our

collection. As shown in Table 4.2, we achieved a significant improvement in the

average class accuracy by balancing the class frequencies in the training data.

Training set Average class accuracy
original data 55.87 ± 3.70

data balanced by SMOTE [19] 89.58 ± 2.33

Table 4.2. Effect of balancing the class frequencies on a image region classifier.

Some example predictions (base hypotheses) obtained from this classifier are

shown in Figure 4.12. In Figure 4.13, we show some examples of the estimation

of lines that are used to compute the geometric features described in Section 4.6.2.

In this section, our SHRF model is compared with the three different approaches

for scene classification:

1. SVM+SVM. We train linear SVM classifiers that take an image region as

input and predicts a binary label that denotes if this region is part of the

playing surface. In this section, we report the performance of this approach for

the following four choices of representations of image regions (as discussed in

Section 4.6):

(a) location and appearance features,

(b) geometric features,

(c) bag of visual words on interest points,

(d) all of the above features.

The image regions that these model predicted to be a part of the playing surface

are then used as input to a linear SVM classifier to predict the final sport label
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Original image Binary prediction Continuous prediction

Figure 4.12. Examples of the predictions of the base hypotheses.

The first column shows example images of five different sports. The second column
shows the binary predictions from the base classifier, where the predicted segmen-
tation of the playing surface are shown in red color. The third column shows a
real-valued representation of the base hypotheses (given by Equation 4.21) using a
range of colors with extremes being the blue and red colors. The blue color represents
a low probability value for an image region to be a part of the playing surface, and
red color represents a corresponding high probability value.
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Original image Estimated lines

Figure 4.13. Examples of the estimation of lines in images.

The first column shows example images of five different sports. The lines identified
in these images are displayed in red in the second column.

for the given image. Because of the sequential processing of images through two

different SVMs, we refer to this approach as SVM+SVM.
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2. CRF+SVM. We build a CRF model for predicting the segmentation of the

playing surfaces in images. In this model, the connectivity over the random

variables for the prediction labels is defined to be the same as the connectivity

over the latent variables in the SHRF model. This CRF model is trained using

the labeled examples used for training the base classifier for playing surface

(Section 4.7). The image regions that this model predicted to be a part of the

playing surface are then used as input to a linear SVM classifier to predict the

final sport label for the given image. We refer to this approach as CRF+SVM.

3. HCRF. We also include a hidden-state conditional random field discussed in

Section 4.4.2 in our experiments. In particular, we implemented Quattoni et

al.’s model [85] for gesture recognition with the choices of potential functions

similar to the ones used in our SHRF model.

Figure 4.14 shows a qualitative comparison of the predicted surface annotations

obtained using these approaches. Note that the ground truth annotations for the

regions in all of the images in our collection are not available. Hence we can not

perform a quantitative comparison of the segmentation results of different approaches.

Table 4.3 compares the average class accuracies for 5-fold cross validation exper-

iments on the test set of the FlickrSports-5 data set (Section 4.8). The important

observations in this comparison are as follows.

• Both of the CRF+SVM and SVM+SVM models use similar approach for pre-

dicting the sport label for a given image. There is one key difference between

these models: the SVM+SVM model performs an independent classification of

the playing surface label for different image regions, whereas CRF+SVM uses

a random field with the neighborhood compatibility constraint (Section 4.3) for

performing a collective inference for all of the regions in a single image. Using
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this additional compatibility constraint, an improvement of about four percent

in the average class accuracy is observed in our experiments.

• The SHRF model outperforms all of the other approaches in average class ac-

curacies and provides qualitatively better segmentations (see Figure 4.14) of

the playing surface. Another key observation in the comparison between SHRF

and CRF+SVM is that a joint segment-and -classify approach improves upon a

sequential segment-then-classify approach.

• The classification results obtained from the HCRF model are not competitive

with other approaches. Also, the learned hidden variables do not correspond to

the segmentation of the playing surfaces in images.

Approach Average class accuracy

SVM+SVM
Visual Vocabulary
image region features
Line features
All features

41.56 ± 1.79
52.07 ± 0.81
50.83 ± 4.22
56.76 ± 3.40

CRF + SVM 61.38 ± 2.01

HCRF 31.94 ± 4.19

SHRF 65.28 ± 3.85

Table 4.3. Average class accuracy for sport classification.

The error terms correspond to 5-fold cross-validation experiments. The results for
HCRF are not competitive with the other approaches.

4.10 Conclusions

In this chapter, we presented an extension of hidden-state conditional random

fields, which we refer to as selective hidden random fields. This model simultaneously
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does the segmentation of the object of interest in an image and uses it for scene

classification. We applied this model to solve a very challenging scene classification

problem, i.e., sport classification. In the context of sport classification, our model

simultaneously identifies the playing surface and characterizes the playing surface to

classify the sporting event.

While the experiments in this chapter have been limited to classifying sporting

events in images, we believe that this model can be applied to other domains where

a selective processing of data needs to be done. For instance, this model could be

applied to autonomous navigation, where it could be used to simultaneously segment

the horizontal surfaces and characterize them to determine the locations of the valid

driving areas or the cross-walks on the segmented horizontal surfaces.
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Original image SVM+SVM CRF+SVM SHRF

Figure 4.14. Example predictions of the playing surface using different approaches.

The first column shows example images of five different sports. The next three
columns show the segmentation of the playing surface obtained using different ap-
proaches, where the predictions for the playing surface are shown in red. It is clear
that the segmentation obtained by an independent image region model (column 2) are
improved by including the dependencies on the neighbors (column 3) as the “holes”
are filled and most of the field markers are correctly labeled. The segmentations ob-
tained by our model (column 4) are similar to those of CRF, and further improves the
labeling for surfaces with very dissimilar appearance for neighboring image regions
(see basketball image, row 2).
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CHAPTER 5

CONCLUSIONS

In this dissertation, some contextual cues have been explored to improve the

solutions for the face detection and recognition problems.

First, we establish a competitive benchmark for evaluating face detection algo-

rithms. To build a data set of face images in unconstrained settings, the faces ap-

pearing in a collection of news photographs are annotated. This FDDB data set has

more faces and more accurate annotations for face regions than in previous data sets.

To further establish a benchmark for the evaluation of face detection algorithms, two

rigorous evaluation schemes are presented.

Next, an algorithm for face detection is presented, which uses the context from

easy-to-detect faces in an image to help in the analysis of the difficult-to-detect faces

in the image. This algorithm uses an on-line approach for rapidly adapting a “black

box” classifier to a new test data set without retraining the classifier or examining the

original optimization criterion. Assuming the original classifier outputs a continuous

number whose threshold gives the class, points near the original boundary are re-

classified using a Gaussian process regression scheme. This face detection algorithm

achieved substantial improvement in performance over the state-of-the-art on the

FDDB benchmark.

Then, for face recognition, a joint probabilistic model (People-LDA) for image-

caption pairs is presented, which captures the coherence between the faces appearing

in the image and the names appearing in the associated caption. Using a pre-trained

face identifier in a probabilistic topic modeling framework, People-LDA guides se-
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mantic topics to develop around people. In addition to using the language model to

boost the performance for face recognition in constrained environments, this model

learns different distributions of words, each of which are closely related to a single

person.

Finally, we presented a probabilistic model that simultaneously segments the ob-

ject of interest in an image and uses it for scene classification. This model is applied

to solve a very challenging scene classification problem, i.e., sport classification. The

predicted scene classification label from this model is likely to be helpful in specifying

additional context for both of the face detection and face recognition problems. Build-

ing models that employ this type of context for face analysis would be an interesting

future research direction.

5.1 Future work

This dissertation presented a few ways to incorporate contextual cues in the so-

lutions for analyzing images with faces. This document is clearly not an exhaustive

study of the use of context for such an analysis. There are several other kind of

contextual cues that would be useful for detecting and recognizing faces in images.

For instance, the caption of an image could provide useful information about the

expected number of faces appearing in the image (see Figure 5.1 for an example).

The estimated number of faces could then be used to appropriately adapt the face

detector.

We presented separate solutions for the face detection and recognition problems,

which need to be integrated into an end-to-end system for contextual face analysis.

Note that one of our models is a joint model and another is a conditional model.

Combining these different kinds of models is very challenging. Hoiem et al. [40, 41, 39]

presented one such combination of different models for object recognition, surface

orientation estimation, and occlusion boundary detection to obtain improvements
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Noelle Bush (L) is
shown in Orange County,
Florida court after her
status hearing July
19, 2002. At right is
her brother, George P.
Bush.

Figure 5.1. Using the caption of an image to infer the number of faces appearing in
the image.

Since there are two names (Noelle Bush and George P. Bush) present in the caption,
it is very likely that there are exactly two faces appearing in this image. It is possible
to have more or fewer faces present in the image, but the posterior probability for
the number of faces, given the presence of two names in the caption, is likely to be
centered around two.

in the performance of each of these modules independently. In more recent work,

Heitz et al. [35, 36] proposed a framework called cascaded classification models. This

framework arranges multiple copies of the models for scene categorization, object

detection, and segmentation in different layers and uses the output from all of the

models in one layer to bootstrap the performance of the models in the subsequent

layer. Evaluating these frameworks for combining our models would be an interesting

extension to this dissertation.
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APPENDIX

GUIDELINES FOR ANNOTATING FACES USING
ELLIPSES

Multiple human annotators were asked to draw ellipses around the face regions

in images. They were instructed to approximate the shape of a human head as the

union of two ellipsoids as shown in Figure A.1. To ensure consistency across the

annotators, we developed a set of instructions that are illustrated in Figure A.2. A

formal description of these instructions using a flow-chart is shown in Figure A.3.

These instructions specify how to use facial landmarks to fit an ellipse depending on

the pose of the head. Figure A.4 presents an illustration of the resulting ellipses on

line drawings of a human head. The annotators were futher instructed to follow a

combination of these guidelines to fit ellipses to faces with complex head poses.

Figure A.1. An approximation of the shape of a human head.

We approximate the shape of a human head (left) as the union of two ellipsoids
(right). We refer to these ellipses as vertical and horizontal ellipsoids.
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1 unit

1 unit

Chin

Top of the head

Figure A.2. Guidelines for drawing ellipses around face regions.

The extreme points of the major axis of the ellipse are respectively matched to the chin
and the “top of the head,” which is defined as the topmost point of the hypothetical
vertical ellipsoid (see Figure A.1) used for approximating the human head. Note that
this ellipse does not include the ears. Also, for a non-frontal face, at least one of the
lateral extremes (left or right) of this ellipse are matched to the boundary between the
face region and the corresponding (left or right) ear. The details of our specifications
are included in Section A.

Figure A.5 shows some example annotations obtained using these guidelines. The

illustrations shown in Figure A.4 use faces with neutral expressions. A presence of

some expressions such as laughter, often changes the shape of the face significantly.

Moreover, even bearing a neutral expression, some faces have shapes markedly differ-

ent from the average face shape used in these illustrations. Such faces (e.g., faces with

square-jaw or double-chin) are difficult to approximate using ellipses. To annotate

faces with such complexities, the annotators were instructed to refer to the following

guidelines:

• Facial expression. Since the distance from the eyes to the chin in a face with

facial expression is not necessarily equal to the distance between the eyes and
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Pose?

1. Make the major axis 
parallel to the nose.

2. Match the chin to the 
bottom end of the major 
axis of the ellipse. 

3. Make the eyes align 
with the minor axis of the 
ellipse.

4. Ensure that the ellipse 
traces the boundary 
between the ears and the 
face.

1. Make the major axis 
parallel to the projection of 
the nose onto the face.

2. Place the visible eye on 
the minor axis.

3. Include the entire chin 
in the ellipse.

4. Ensure that the ellipse 
traces the boundary 
between the visible ear 
and the face.

1. Make the major axis 
parallel to the nose.

2. Ensure that the ellipse 
traces the boundary 
between the ears and the 
face.

1. Ensure that the ellipse 
traces the top of the 
head.

1. Ensure that the 
ellipse traces the jaw-
line.

Tilt direction?

Frontal Profile Tilted back/front

Back Front

Figure A.3. Procedure for drawing ellipses around an average face region.

The annotators were instructed to follow this flowchart to draw ellipses around the
face regions. The annotation steps are a little different for different poses. Here, we
present the steps for three canonical poses: frontal, profile and tilted back/front. The
annotators were instructed to use a combination of these steps for labeling faces with
derived, intermediate head poses. For instance, to label a head facing slightly towards
its right and titled back, a combination of the steps corresponding to the profile and
tilted-back poses are used.

the top of the head (an assumption made for the ideal head), the eyes do not

need to be aligned to the minor axis for this face.

• Double-chin. For faces with a double chin, the average of the two chins is

considered as the lowest point of the face, and is matched to the bottom extreme

of the major axis of the ellipse.
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1 unit

1 unit

Chin

Top of the head

1 unit

1 unit

Top of the head

Chin

1 unit

1 unit

Top of the head

Chin

Figure A.4. Illustrations of ellipse labeling on line drawings of human head.

The black curves show the boundaries of a human head in frontal (left), profile (cen-
ter), and tilted-back (right) poses. The red ellipses illustrate the desired annotations
as per the procedure shown in Figure A.3. Note that these head shapes are approx-
imations to an average human head, and the shape of an actual human head may
deviate from this mean shape. The shape of a human head may also be affected by
the presence of factors such as emotions. The guidelines on annotating face regions
influenced by these factors are specified in Section A.

Figure A.5. Example elliptical annotations for face regions.

The two red ellipses in this image specify the two faces present in this image. Note
that for a non-frontal face (right), the ellipse traces the boundary between the face
and the visible ear. As a result, the elliptical region includes pixels that are not a
part of this face.
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• Square jaw. For a face with a square jaw, the ellipse traces the boundary

between the face and the ears, while some part of the jaws may be excluded

from the ellipse.

• Hair. Ignore the hair and fit the ellipse around the hypothetical bald head.

• Occlusion. Hypothesize the full face behind the occluding object, and match

all of the visible features.

Figure A.6 shows some example annotations for complex face shapes.

Figure A.6. Illustrations of labeling for complex face appearances.

Illustrations of labeling for complex face appearances. These images show example
annotations for human heads with shapes different from an average human head due
to the presence of facial expression, double chin, square jaw, hair-do, and occlusion,
respectively.
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[20] Chum, Ondřej, Philbin, James, Isard, Michael, and Zisserman, Andrew. Scal-
able near identical image and shot detection. In ACM International Conference
on Image and Video Retrieval (2007), ACM, pp. 549–556. 14
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