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Abstract

We reconsider the DMO sum rule in light of our recent two-loop calcula-

tions of isospin and hypercharge vector and axialvector current propagators

in chiral perturbation theory. A modified derivation valid to second order in

the light quark masses is presented, and a phenomenological analysis yields

determination of a combination of finite counterterms occurring in the p4 and

p6 chiral lagrangians. Suggestions are given for further study.

Working in the chiral limit of massless quarks, Weinberg was the first to derive spectral
function sum rules involving the vector and axialvector currents. [1] There soon followed
the announcement of two additional chiral sum rules, one for the pion electromagnetic mass
difference [2] and one (the DMO sum rule [3]) involving an inverse moment of chiral spectral
functions, both also derived in the chiral limit. A subsequent study of chiral sum rules in
QCD determined that only the first Weinberg sum rule and the DMO sum rule survive the
inclusion of quark mass effects. [4,5] About a decade later, the DMO sum rule was analyzed
by applying the Gasser-Leutwyler analysis of chiral perturbation theory (ChPT) at one-
loop order. [6–8] In this paper, we report on a re-analysis of the DMO sum rule based on
our recent calculations of vector and axialvector current propagators at two-loop order in
ChPT. [9,10]

Derivation of DMO Sum Rule in Two-Loop ChPT

Given the normalization of vector and axialvector octet flavour currents,

J
µ
Vi = q̄

λi

2
γµq and J

µ
Ai = q̄

λi

2
γµγ5q (i = 1, . . . , 8) , (1)
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one defines the isospin vector and axialvector current propagators respectively as

∆µν
k3 (q2) ≡ i

∫

d4x eiq·x 〈0|T (Jµ
k3(x)Jν

k3(0)) |0〉 (k = V, A) . (2)

These have the tensorial decompositions

∆µν
k3 (q2) = (qµqν − q2gµν)Π

(1)
k3 (q2) + qµqνΠ

(0)
k3 (q2) (k = V, A) , (3)

and spectral functions obtained via imaginary parts,

1

π
Im ∆µν

k3 (q2) = (qµqν − q2gµν)ρ
(1)
k3 (q2) + qµqνρ

(0)
k3 (q2) (k = V, A) . (4)

In the following we shall assume isospin symmetry, for which the spin-zero vector current
contributions vanish (Π

(0)
V3 = 0 and ρ

(0)
V3 = 0).

The asymptotic behavior (s → ∞) of the vector and axialvector spectral functions
predicted by QCD is given as [4], [5], [11]

(ρ
(1)
V3 − ρ

(1)
A3 − ρ

(0)
A3)(s) ∼ o(s−1) . (5)

The information in Eq. (5) can be used, together with analyticity and the corresponding
asymptotic behavior of the polarization functions, to derive dispersion relations for the vector
and axialvector polarization functions,

(

Π
(1)
V3 − Π

(1)
A3 − Π

(0)
A3

)

(q2) =
∫

∞

0
ds

(ρ
(1)
V3 − ρ

(1)
A3 − ρ

(0)
A3)(s)

s − q2 − iǫ
. (6)

Upon evaluation at q2 = 0, Eq. (3) yields the inverse-moment DMO (or ‘L10’) sum
rule [3],

(

Π
(1)
V3 − Π

(1)
A3 − Π

(0)
A3

)

(0) =
∫

∞

0
ds

(ρ
(1)
V3 − ρ

(1)
A3 − ρ

(0)
A3)(s)

s
. (7)

For the purpose of phenomenological analysis, one wishes the spectral integral to contain
only quantities which have already been measured. Therefore, we make use of the ChPT
analysis of Ref. [12] to cast the DMO sum rule in the optimal form,



Π
(1)
V3 − Π̂

(1)
A3 +

dΠ̂
(0)
A3

dq2



 (0) + 4H
(0)
1 (µ) − 2L

(0)
10 (µ) =

∫

∞

0
ds

(ρ
(1)
V3 − ρ

(1)
A3)(s)

s
, (8)

where H
(0)
1 (µ) and L

(0)
10 (µ) are counterterms from the p4 chiral lagrangian and Π̂

(1,0)
A3 are finite

polarization functions entering at two-loop order [10,12].

ChPT Contributions to DMO Sum Rule

From Refs. [9,10], we obtain the following expressions for terms appearing on the left-
hand-side (LHS) of Eq. (8),

LHS = G(1) + G(2) ≡ G(1) + G(2)
π + G

(2)
K + G

(2)
NUM + G

(2)
CT , (9)
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with

G(1) ≡ −4L
(0)
10 (µ) −

1

48π2
log

M2
π

µ2
−

1

96π2
log

M2
K

µ2
−

1

32π2
,

G(2)
π ≡

M2
π

π4F 2
π

[

log
M2

π

µ2

(

−
1

288
+

1

768
log

M2
π

µ2
+

1

768
log

M2
K

µ2
+ π2L

(0)
10 (µ) +

π2

2
L

(0)
9 (µ)

)

+ log
M2

K

µ2

(

−
1

576
−

1

1536
log

M2
K

µ2

)

]

, (10)

G
(2)
K ≡

M2
K

π4F 2
π

log
M2

K

µ2

[

−
17

3072
+

1

1024
log

M2
K

µ2
+

π2

2
L

(0)
10 (µ) +

π2

4
L

(0)
9 (µ)

]

,

G
(2)
NUM ≡ −

49

13824π4

M2
π

F 2
π

−
5

36864π4

M2
K

F 2
π

−
1.927 · 10−6 GeV2

F 2
π

+
4.132 · 10−9 GeV2

F 2
π

,

G
(2)
CT ≡

4M2
π

F 2
π

(

QMS
A (µ) + RMS

A (µ) − QMS
V (µ) − RMS

V (µ)
)

+
8M2

K

F 2
π

(

RMS
A (µ) − RMS

V (µ)
)

,

where G(1) and G(2) are respectively the ChPT one-loop and two-loop contributions and
the final two (numerical) terms in G

(2)
NUM arise from the so-called sunset amplitudes. All

the two-loop quantities are new contributions which have not previously appeared in the
literature. We shall discuss the counterterm contributions separately in a later section.

Phenomenological Determination of DMO Spectral Integral

One anticipates an accurate determination of the DMO spectral integral

IDMO ≡
∫

∞

0
ds

(ρ
(1)
V3 − ρ

(1)
A3)(s)

s
(11)

insofar as the inverse factor of the squared-energy suppresses contributions at large s.
The dominant contributions to IDMO will arise from the 2π and 3π resonances ρ(770) and
a1(1260), with smaller contributions from nπ ≥ 4 multipion states, K̄K-multipion states,
etc. One can access such information via studies of tau-lepton decay and e+e− → 2π, etc

cross sections. [13]
An evaluation of IDMO which employs as input the most recent τ and e+e− data available

and which neglects contributions from s > m2
τ yields [14]

IDMO = (26.4 ± 1.5) · 10−3 , (12)

with an uncertainty of about 5.7%. In a modified analysis, one defines the laplace trans-
formed quantity

ÎDMO(M2) ≡
∫

∞

0
ds es/M2 (ρ

(1)
V3 − ρ

(1)
A3)(s)

s
+

F 2
π

M2
−

C6O6

6M6
−

C8O8

24M8
, (13)

where IDMO = limM→∞
ÎDMO(M2) and the final two terms involve nonperturbative contri-

butions. A fit to several M2-moments then yields [14]

IDMO = (25.8 ± 0.3 ± 0.1) · 10−3 , (14)

with a claimed uncertainty of about 1.24%.
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Inputs to Counterterm Contributions

Consider the contributions in Eq. (9) arising from counterterms. There are those from

the chiral lagrangians of order p4 (L
(0)
9 and L

(0)
10 ) and those from lagrangians of order p6

(QMS
A , RMS

A , QMS
V and RMS

V ). All these counterterms are evaluated in MS renormalization.1

For notational consistency with the axial propagator counterterms, the vector propagator
counterterms, defined earlier in Refs. [9,15] as Q and R, are denoted here respectively as

QMS
V and RMS

V .
The apparent dependence in Eq. (9) on the scale µ is illusory. The explicit scale depen-

dence of the logarithmic terms is compensated by implicit scale dependence in the p4 and p6

counterterms such that the LHS is independent of scale. In particular, the scale dependence
of the p6 counterterms is

(

QMS
A (µ) − QMS

V (µ)
)

− (µ → µ0) =

1

(16π2)2
log

µ2
0

µ2

[

5

32
−

3

2

(

L
(0)
9 (µ0) + L

(0)
10 (µ0)

)

+
3

32
log

µ2
0

µ2

]

,

(

RMS
A (µ) − RMS

V (µ)
)

− (µ → µ0) = (15)

1

(16π2)2
log

µ2
0

µ2

[

17

96
−

1

2

(

L
(0)
9 (µ0) + L

(0)
10 (µ0)

)

+
1

32
log

µ2
0

µ2

]

,

as can be obtained from renormalization group equations [9].
The collection of p4 and p6 counterterms originate from the renormalization procedure,

and each must ultimately be determined from experiment. The p4 counterterms L
(0)
9 and

L
(0)
10 are already known [16] from one-loop analyses to accuracies respectively of about 10%

and 13%,

L
(0)
9 (Mρ) = (6.9 ± 0.7) · 10−3 (from 〈r2〉πV) ,

L
(0)
10 (Mρ) = −(5.5 ± 0.7) · 10−3 (from π− → eν̄eγ) . (16)

We may employ these values for L
(0)
9 and L

(0)
10 in the two-loop quantities G(2)

π and G
(2)
K of

Eq. (9) because any error made is of still higher order. This is, however, not true for the

L
(0)
10 dependence in G(1), for which consistency demands a two-loop evaluation. That is,

suppose hypothetically that a physical amplitude existed which contained L
(0)
10 , but no other

counterterms to either one-loop or two-loop order. A phenomenological determination of
L

(0)
10 carried out in a two-loop analysis would yield a value somewhat different from that

obtained in a one-loop analysis. We would expect this shift in L
(0)
10 to be of the same order

as the p6 counterterms which comprise G
(2)
CT in Eq. (10), and so we are not justified a priori

in ignoring it.
Of the p6 counterterms, we have previously used spectral function sum rules to obtain

the estimates,

1The reader is referred to Ref. [10] for a discussion of renormalization scheme dependence of the

counterterms.
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QMS
V (Mρ) = (3.7 ± 2.0) · 10−5 (Ref. [15]) ,

QMS
A (Mρ) = (1.4 ± 0.5) · 10−4 (Ref. [10]) , (17)

where the result of Ref. [10] has been scaled down to µ = Mρ in the above. The relatively
large uncertainties in each of these reflects the paucity of existing data in the hypercharge
channel. It is also possible to obtain estimates of certain counterterms via the assumption
of resonance exchange saturation [17]. Thus, a reanalysis [18] of the paper by Jetter [19] on
γγ → ππ and η → πγγ yields

QMS
V |res = F 2

π

C
γ
SCm

S

M2
S

≃ ±3.0 · 10−5 , RMS
V |res = 0 . (18)

Since the counterterm QMS
V receives contributions in the resonance exchange approach only

from scalar exchange, its magnitude (the sign is not fixed) is rendered small. The resonance
couplings C

γ
S and Cm

S are defined in Appendix D.2 of Ref. [20], and the result is seen to agree

nicely with our sum rule determination cited in Eq. (17). As for RMS
V , although the contri-

butions from low-lying resonances vanish, there will of course be continuum contributions.
Even so, we disagree with the numerical estimates given in Ref. [19], and the vanishing result

for RMS
V |res implies that the interpretation of a large η → πγγ amplitude given in Ref. [19]

is not tenable.

Analysis and Conclusions

We are now ready to study the numerical implications of the DMO sum rule. To begin, let
us temporarily avoid any use of counterterm inputs in order to get a result free of theoretical
errors. Then using the conservative estimate of Eq. (12) for the DMO spectral integral IDMO,
we obtain from the DMO sum rule the numerical constraint

L
(0)
10 (Mρ) −

M2
π

F 2
π

[

QMS
A (Mρ) − QMS

V (Mρ)
]

−
M2

π + 2M2
K

F 2
π

[

RMS
A (Mρ) − RMS

V (Mρ)
]

= −
1

4

[

IDMO − G
(1)

(Mρ) − G
(2)

(Mρ)
]

= −0.0038 ± 0.0004 , (19)

where G
(1)

≡ G(1) + 4L
(0)
10 and G

(2)
≡ G(2) − G

(2)
CT. The RHS of Eq. (19) will change in a

known manner as the scale µ changes but the error bar, due exclusively to the uncertainty
in the evaluation of IDMO, will remain the same. The value of the RHS is seen to be rather
smaller in magnitude than the one-loop value L

(0)
10 (Mρ) ≃ −0.0055. This is due in large part

to sizeable chiral logarithms present in G(2)
π and G

(2)
K . That is, the numerical contribution

of IDMO to the RHS (equal to −0.0066) is reduced via cancellation with the one-loop term

G
(1)

to −0.0054 and then via cancellation with the two-loop term G
(2)

to the final value of
−0.0038. The latter reduction is about a 30% effect.

Can the contribution of L
(0)
10 (Mρ) be disentangled from the mass corrections on the LHS

of Eq. (19)? The interest in this question is underlined by the large numerical effect, just
mentioned, the chiral logarithms have on the LHS of the DMO sum rule. From Eq. (19),

one can already conclude that if L
(0)
10 (Mρ) stays close to the one-loop determination cited

in Eq. (16), the mass corrections involving the p6 counterterms have to be both substantial

5



and negative at scale µ = Mρ. Conversely, if these mass corrections turn out to be small at

µ = Mρ, any two-loop analysis would need to yield a determination for L
(0)
10 (Mρ) reduced by

about 30% relative to its one-loop value.
The information gathered in Eqs. (17),(18) is not by itself sufficient to conclusively answer

this question. Nevertheless it is instructive to investigate in more detail the individual
contributions to the LHS of the DMO sum rule. Using the estimates of Eq. (17), the
contribution of the Q-type counterterms is numerically found to be

−
4M2

π

F 2
π

[

QMS
A (Mρ) − QMS

V (Mρ)
]

= (9.3 ± 5.0) · 10−4 (20)

where we have added errors on QMS
A and QMS

V in quadrature. The Q-terms thus contribute
approximately 3.5% to the value obtained phenomenologically for the RHS of the DMO
sum rule. For RMS

V we can employ the resonance saturation estimate of Eq. (18). No

corresponding estimate is available, however, for RMS
A . A priori, such contributions proceed

through exchange of scalar resonances as well, but the couplings of those resonances to two
axialvector currents are not known experimentally. However, since both R-type counterterms
are Zweig-rule suppressed, we expect these to be small compared to the Q-type counterterms.

There is, however, a well-known drawback of such resonance saturation estimates of
counterterms. The method does not specify the scale at which the counterterm has to be
taken. The generally accepted procedure is to employ the resonance mass as the relevant
scale and to use the variation of the counterterm in a range between, say, µ = 0.5 → 1 GeV
as an estimate of the uncertainty of the method. In the DMO sum rule, the counterterms
turn out to vary strongly with scale. This can be seen either by using Eqs. (15) or be read

off from Table 1 where we give the two-loop contributions G(2)
π , G

(2)
K and G

(2)
NUM for three

different scales µ.

Table 1: Scale dependence

µ (GeV) 0.50 0.77 1.00

G(2)
π (µ) 0.0018 0.0023 0.0026

G
(2)
K (µ) 0.0001 0.0042 0.0065

G
(2)
NUM −0.0003 −0.0003 −0.0003

Sum(µ) 0.0016 0.0062 0.0088

For the range of scales between µ = 0.5 GeV and µ = 1 GeV the variation is 0.007, or
27% of the RHS of the DMO sum rule. This variation with scale is of course counterbalanced
by the p6 counterterms. However, as just explained, if an estimate for these counterterms is
used where one has no control over the scale at which the counterterm is fixed, the strong
variation with scale translates into a large uncertainty in the determination of the LHS
of the DMO sum rule. Consequently, it will be possible to disentangle L

(0)
10 (Mρ) from the

mass corrections on the LHS of the DMO sum rule only if one can perform an independent
determination of RMS

A − RMS
V directly from physical observables.

To close the discussion, we present some remarks concerning existing and future work in
this direction. A related process in which L

(0)
10 contributes at order p4 is the radiative pion

decay π → eν̄eγ. In this process, however, it is the combination L
(0)
9 +L

(0)
10 which occurs, and

6



the structure dependent part of the amplitude is actually used to determine this combination
of p4 counterterms.2 At order p6, additional counterterms will contribute, some of them not
occuring in the two-point functions considered here. Bijnens and Talavera have calculated
the radiative pion decay amplitude to two-loop order [21], although in chiral SU(2). Using
the hypotheses of resonance saturation (with just vector- and axialvector resonances), they
estimate the p6 counterterm contributions to be small. The sum of the two-loop contributions
is large, however, leading to an enhancement of about 15% for 2lr5 − lr6 at the scale Mρ. The
advantage of an SU(2) calculation is that mass corrections are always suppressed by factors
of M2

π . The large uncertainties due to scale-dependence of resonance saturated counterterms
found in our SU(3) calculation are thus largely avoided. The comparsion of our results to the
DMO sum rule in its SU(2) version will thus be an interesting avenue for future work. On the
other hand, working in chiral SU(3) offers the possibility of studying additional processes
with external currents/Goldstone Bosons containing strangeness. For instance, there are
the radiative Kl2 decays [22], where more precise data is expected in the near future [23].

However, because at one-loop order K → ℓν̄ℓγ involves the combination L
(0)
9 +L

(0)
10 , learning

more about just L
(0)
10 will require the study of other processes in which L

(0)
9 enters separately.

The meson form factors of vector current matrix elements, 〈P |Vµ|Q〉, where P, Q = π, K, η,

offer one possibility to study mass corrections to L
(0)
9 . Partial results on a combination of

such form factors have been reported recently [24]. It remains to be seen whether the mass
corrections to the individual form factors can be disentangled from the contributions of the
low energy constant L

(0)
9 .

To conclude, we have used our recent two-loop calculation of isospin and hypercharge
vector and axialvector current propagators in chiral perturbation theory to re-analyze the
DMO sum rule. The resulting relation, valid to second order in the light quark masses, is
summarized in Eqs. (8)-(10). Since we work in SU(3)×SU(3) chiral symmetry, both pion and
kaon mass dependence is present. A phenomenological determination of the DMO spectral
integral yielded a numerical constraint on the combination of p4 and p6 counterterms, given
in Eq. (19), and prospects for extending the analysis were considered. As regards the overall
question of how quickly the chiral expansion is converging, we find individual contributions
at two-loop level to occur at roughly the 30% level.
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