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K → ππ Electroweak Penguins in the Chiral Limit

V. Cirigliano a∗ , J.F. Donoghue and E. Golowich b †, K. Maltman c ‡

aDepartament de F́isica Teòrica, IFIC, Universitat de València - CSIC ,
Apt. Correus 22085, E-46071 València, Spain

bPhysics Department, University of Massachusetts,
Amherst MA 01003 USA

cDept. of Mathematics and Statistics, York University, 4700 Keele St., Toronto ON M3J 1P3 Canada,
and CSSM, University of Adelaide, Adelaide 5005, SA, Australia

We report on dispersive and finite energy sum rule analyses of the electroweak penguin matrix elements
〈(ππ)2|Q7,8|K

0〉 in the chiral limit. We accomplish the correct perturbative matching (scale and scheme de-
pendence) at NLO in αs, and we describe two different strategies for numerical evaluation.

1. Introduction

The subject of this talk is the calculation of
the K → ππ matrix elements of the electroweak
penguin operators, conventionally denoted as Q7

and Q8 [1]. Interest in these quantities is twofold.
First, the Standard Model prediction of ǫ′/ǫ de-
pends crucially on the K-to-2π matrix elements
of the QCD penguin (Q6) and EW penguin (Q8)
operators, [1,2,3]:

ǫ′

ǫ
= 20·10−4

[

−2.0·
〈Q6〉0

GeV3 (1−ΩIB)−0.50·
〈Q8〉2

GeV3

]

,

where the above matrix elements are evaluated
in the MS-NDR renormalization scheme at scale
µ = 2 GeV. Secondly, the leading term in the
chiral expansion of 〈Q7,8〉 can be related to the
V −A QCD correlator with flavor ud, whose spec-
tral function is experimentally accessible through
τ decays [4,5]. This provides the opportunity
to perform a data-driven evaluation of hadronic
matrix elements, whose results can then be con-
fronted with other non-perturbative techniques

∗Speaker at QCD02. Research supported in part by EC-
Contract ERBFMRX-CT980169, by MCYT, Spain (Grant
No. FPA-2001-3031), and by ERDF funds from the Euro-
pean Commission
†Research supported in part by the NSF under Grant
PHY-9801875
‡Research supported in part by the Natural Science and
Engineering Research Council of Canada

(like Lattice QCD and 1/Nc expansion). There-
fore electroweak penguins provide an interesting
theoretical laboratory for kaon physics.

2. Summary of formal results

Our first goal is to relate the K → ππ matrix el-
ements to the observable spectral functions. The
first large step is done for us by chiral symmetry,
which relates 〈ππ|Q7,8|K〉 to vacuum expectation
values of two 4-quark operators [6]

〈(ππ)2|Q7|K
0〉p0 = −

2

F 3
0

〈O1〉 ,

〈(ππ)2|Q8|K
0〉p0 = −

2

F 3
0

[

1

3
〈O1〉 +

1

2
〈O8〉

]

,

where F0 is the pion decay constant in the chi-
ral limit and the definitions of O1 and O8 can
be found in Ref. [6]. The above relations receive
NLO chiral corrections (whose order of magni-
tude is ∼ m2

K/(4πFπ)2 = 0.18) which have been
investigated within chiral perturbation theory [7].

The second step consists in relating the v.e.v.’s
of O1,8 to the V − A QCD correlator ∆Πud(s) ≡

Π
(0+1)
V (s)−Π

(0+1)
A (s), with flavor structure ud 4.

The outcome is that:

• 〈O1〉 is related to the integral of s2∆Π(s)
over all spacelike momenta;

4For details on the notation we refer to Ref. [8]

http://arXiv.org/abs/hep-ph/0209332v1
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• 〈O8〉 is related to the leading singularity
of ∆Π(s) at short distance (large spacelike
momenta).

Essential tools in a formal derivation of the above
results and in relating 〈O1,8〉 to the spectral func-
tion are the dispersive representation of the cor-
relator

∆Π(Q2) = −
2F 2

π

m2
π + Q2

+

∫ ∞

sthr

ds
∆ρ(s)

s + Q2
. (1)

and the operator product expansion (OPE) rep-
resentation, valid for large space-like momenta
Q2 ≫ Λ2

QCD, which, through O(α2
s), has the form

∆ΠOPE(Q2) ∼
∑

d≥2

1

Qd

[

ad(µ) + bd(µ) ln
Q2

µ2

]

.(2)

ad(µ) and bd(µ) are combinations of vacuum ex-
pectation values of local operators of dimension
d. In the chiral limit, the above sum begins with
a6, whose NLO expression is 5:

a6(µ) = (2παs + A8α
2
s)〈O8〉 + A1α

2
s〈O1〉 . (3)

The formal analysis is summarized by
(

〈O1〉µ
〈O8〉µ

)

= M̂(αs)

(

I1(µ) + H1(µ)
I8(µ) − H8(µ)

)

, (4)

where the matrix M̂(αs) contains the matching
coefficients at NLO in αs, and encodes the correct
renormalization scheme dependence. Its explicit
form can be found in Refs. [8]. I1,8 are related to
the spectral function as follows,

I1(µ) =

∫ ∞

0

ds s2 ln

(

s + µ2

s

)

∆ρ(s) (5)

I8(µ) =

∫ ∞

0

ds
s2µ2

s + µ2
∆ρ(s) (6)

while H1,8 are related to subleading (higher di-
mensional) terms in the short distance expansion:

H1(µ) =
∑

d≥8

2

d − 6
·
ad(µ)

µd−6
, (7)

H8(µ) =
∑

d≥8

ad(µ)

µd−6
. (8)

5The coefficients A1,8 depend on the definition used for
γ5 in d 6= 4. They can be found in Ref. [8].

A close look at the input needed in Eq. (4) and
at the database on ∆ρ (Refs. [4,5]) shows that
data alone do not provide enough information for
a reliable determination of the spectral integrals.
In fact, we run out of data at s = m2

τ , while the
weighs entering I1,8 are growing with s. We there-
fore need to supply some extra theoretical input
to optimize the use of data in this problem. Along
this path, we have followed two approaches, which
can be schematically characterized as follows:

I. Use of data plus QCD integral constraints
(classical chiral sum rules). [8]

II. Use of data plus QCD duality (Finite En-
ergy Sum Rules, FESR). [9]

3. Numerics I: Residual Weight Method

This approach is an efficient way to enforce the
constraints from classical chiral sum rules [10,11]
in the evaluation of the spectral integrals I1,8(µ),
which have the generic form:

I(µ) =

∫ ∞

0

ds K(s, µ)∆ρ(s) . (9)

The basic idea is to write K(s, µ) as the sum of
an arbitrary combination of the weights 1, s, and
s log s and a residual term r, as follows:

K(s, µ) = x 1 + y s + z s log s + r(x,y,z)(s, µ) .(10)

From Eq. (10) and the chiral constraints one then
has

I(µ) = F 2
0 (x−z

4πδM2
π

3α
)+

∫ ∞

0

ds r(s, µ)∆ρ(s),(11)

and can choose (x, y, z) (so far arbitrary) in such
a way as to minimize the total uncertainty (asso-
ciated with both the theoretical input for F0 and
δM2

π , and the large errors on ∆ρ(s) for s > 2.5
GeV2). The method is effective in those situa-
tions where choices for x, y, z exist which make
r ∼ 0 in the region with no data (but before the
onset of asymptotia) without amplifying the ef-
fect of imprecise knowledge of F0 and δM2

π . Pro-
cedural details and intermediate results can be
found in Ref. [8]. Here let us recall that the
method leads to a reasonably accurate determi-
nation I1,8 at different values of µ between 2 and
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4 GeV (with accuracy deteriorating at large µ).
This method tells us very little about the sub-
leading terms H1,8, which can be neglected only
for sufficiently large µ. We have assumed that
H1,8(µ = 4GeV) = 0 in Eq. (4) and used the
NLO renormalization group equations to evolve
the results down to the lower scale µ = 2 GeV.
Numerical results are reported in Sect. 5

4. Numerics II: FESR

In principle, this method allows us to determine
the coefficients ad appearing in the OPE expan-
sion for the correlator ∆Π(s) in the asymptotic
Euclidean region (Eq. (2)). The determination of
a6, in particular, provides a direct extraction of
〈O8〉 at µ = 2 GeV. The determination of the ad,
d ≥ 8, also allows one to estimate the combina-
tions H1,8(µ = 2 GeV), needed as input to the
lower scale version of the RWM analysis, Eq. (4).
Let us now summarize our implementation of the
FESR analysis [9].

An FESR analysis, applied to a generic corre-
lator Π(s) with spectral function ρ(s) is based on
the following relation (consequence of Cauchy’s
theorem, and the analytic structure of the corre-
lator):

J [w, s0] + R[w, s0] = fw[s0, {ad}] . (12)

Eq. (12) involves the spectral integral

J [w, s0] =

∫ s0

sth

ds w(s)ρ(s) , (13)

the integrated OPE (function of the various con-
densates)

fw[s0, {ad}] = −
1

2πi

∮

|s|=s0

ds w(s)ΠOPE(s) , (14)

and the remainder term (arising from the differ-
ence Π(s) − ΠOPE(s) on the |s| = s0 circle)

R[w, s0] = −
1

2πi

∮

|s|=s0

ds w(s) (ΠOPE − Π) . (15)

Eq. (12) is valid for any value of s0 and any poly-
nomial weight. However, the presence of R[s0, w]
pollutes the extraction of the OPE coefficients
ad in terms of data through Eq. (12). There-
fore it is highly desirable to work with a range

of s0 values and with weights w(s) such that
R[w, s0] << J [w, s0]. To accomplish this, we
rely on the observation that for |s| large enough
(s0 ≫ Λ2

QCD), the OPE provides a good represen-
tation of the full correlator along the whole circle,
except in a region localized around the time-like
axis. The physics of this breakdown is given by
the arguments of Poggio, Quinn and Weinberg
[12]. As a consequence one expects that weights
with a zero at s = s0, de-emphasizing the region
where the OPE fails, are good candidates to gen-
erate a small-sized R[w, s0]/J [w, s0]

6. We use
this as the basic guiding principle in the selection
of weights for our analysis. The weights were also
chosen to avoid large cancellations in the spectral
integrals, which would lead to a poor statistical
signal.

The lowest degree weights satisfying our cri-
teria have degree 3. Two useful cases (with
y = s/s0) are:

w1(y) = (1 − y)2 (1 − 3y) (16)

w2(y) = (1 − y)2 y (17)

These choices imply that fw1,2
[s0, {ad}] depend

on the dimension six and eight condensates,
thereby allowing us to extract information on a6

and a8 from a least-square fit. The window of s0

values used in the fit procedure is 1.95 GeV2 <
s0 < 3.15 GeV2. The lower endpoint has been
determined by trying ever lower values of s0 until
the extracted a6 ceases to be consistent with the
values obtained by the smaller analysis windows.
From the ALEPH data we obtain (at µ = 2 GeV):

a6 = (−4.45 ± 0.7) · 10−3 GeV6 (18)

a8 = (−6.2 ± 3.2) · 10−3 GeV8 (19)

with a correlation coefficient c(a6, a8) = −0.99.
Although no precise answer emerges for a8, we
see that a6 (directly related to Q8) can be de-
termined fairly well. The errors reported above
are essentially of statistical nature. In order
to address potential systematic effects due to
R[s0, w] 6= 0 (duality violation), we have repeated
the fit procedure using non-overlapping s0 sub-
windows. We find that the fitted parameters in

6Supporting evidence for this fact has been found in
Ref. [13], within an analysis of the V and A correlators.
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the different analyses are consistent, thereby con-
firming that the effect of R[s0, w] is suppressed in
this case. A more explicit portrait of the FESR
machinery is obtained by plotting J [w1,2, s0] and
fw1,2

[s0; a6, a8] as a function of s0, as in Figs. 1,2.
The excellent match of the OPE curve versus data
increases our confidence that in this analysis du-
ality violation is under control.

2 2.2 2.4 2.6 2.8 3
-0.011

-0.01

-0.009

-0.008

-0.007

-0.006

-0.005

-0.004

Figure 1. fw1
[s0, a6, a8] (continuous curve) and

J [w1, s0] (data points) versus s0 (GeV2).

2 2.2 2.4 2.6 2.8 3
0.001

0.0015

0.002

0.0025

0.003

Figure 2. fw2
[s0, a6, a8] (continuous curve) and

J [w2, s0] (data points) versus s0 (GeV2).

5. Results for 〈(ππ)I=2|Q7,8|K
0〉

Having outlined the two numerical strategies
in the above sections, in Table 1 we report 〈Q7,8〉
in the MS-NDR renormalization scheme at scale
µ = 2 GeV, from methods I, II, and VSA 7.

Procedures I and II lead to consistent results,
with II having reduced uncertainty. The underly-
ing reason is that method II exploits best the low-
error part of experimental data. Both our results
seem to point to moderate violation of VSA. For
a comparison with other recent determinations
[14,15,16,17,18] see Refs. [14,9]. Implications of

7The number reported corresponds to (ms+md)(2GeV ) =
110 MeV.

Table 1
MS-NDR results at µ = 2 GeV and nf = 4.

Method 〈Q7〉I=2/GeV3 〈Q8〉I=2/GeV3

I 0.16 ± 0.10 2.22 ± 0.70
II (ALEPH) 0.23 ± 0.05 1.41 ± 0.27
II (OPAL) 0.21 ± 0.05 1.72 ± 0.32

VSA 0.32 0.94

our results for the value of ǫ′/ǫ in the Standard
Model will be discussed in [9].
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