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Abstract

We describe the influence of electromagnetism on the phenomenology of K →
ππ decays. This is required because the present data were analyzed without

inclusion of electromagnetic radiative corrections, and hence contain several

ambiguities and uncertainties which we describe in detail. Our presentation

includes a full description of the infrared effects needed for a new experimental

analysis. It also describes the general treatment of final state interaction

phases, needed because Watson’s theorem is no longer valid in the presence

of electromagnetism. The phase of the isospin-two amplitude A2 may be

modified by 50 → 100 %. We provide a tentative analysis using present data

in order to illustrate the sensitivity to electromagnetic effects, and also discuss

how the standard treatment of ǫ′/ǫ is modified.

http://arXiv.org/abs/hep-ph/0008290v1


I. INTRODUCTION

In this paper we address the effect of electromagnetism on the phenomenology of K →
ππ decays. Our previous work of Refs. [1–3] has dealt mainly with the determination of
structure dependent EM effects on the K → ππ amplitudes. It is the aim of the present
work to attempt a complete phenomenological analysis. We start by briefly reviewing the
standard treatment of K → ππ decay amplitudes, pointing out that there is room for
potentially important isospin breaking effects. We then focus on the effect of electromagnetic
interactions (EM); we enumerate the main new features due to EM and describe their impact
on the parameterization of the K → ππ decay amplitudes. Our quantitative analysis begins
in Section II where we take up the problem of the infrared divergences which are induced
by electromagnetism. We provide a complete description suitable for use in an experimental
analysis in Section III. We also point out that the data on K → ππ do not lead to a direct
extraction of the strong phase shift difference δ0−δ2, because electromagnetism changes the
rescattering phases of the amplitudes. Already a perturbative calculation has provided clues
for the presence of sizeable effects [2]. To account for this effect more generally, we provide in
Section IV a suitable extension of Watson’s theorem, obtained after writing and solving the
unitarity constraints in presence of isospin-breaking interactions. Our goal throughout the
paper is to relate the theoretical and experimental issues of these decays, in the hope that
a future experimental analysis will be undertaken to resolve the substantial experimental
uncertainties.

The reason why present experimental information is not adequate is that most of the
data was analyzed without the inclusion of electromagnetic radiative corrections. This
means that the data in the Particle Data Tables is not fully reliable. Moreover, for certain
quantities (namely δ0 − δ2 and the I = 2 amplitude A2) this uncertainty is enhanced by
a ∆I = 1/2 enhancement factor of 22. In Section V we demonstrate these effects by
giving an illustrative data analysis, trying our best to interpret the present data. This
step is necessarily tentative and likely partially incorrect, as it requires knowledge of the
experimental procedure used to deal with soft photons when measuring the branching ratios.
In the absence of detailed information from the Particle Data Group (PDG), we adopt the
simplest theoretical framework, not necessarily corresponding to the real experimental setup.
Within this simple framework we are able to show that the extraction of EM free quantities
is quite sensitive to the treatment of infrared photons.

The other interesting phenomenological issue concerns the effect of electromagnetism on
CP-violating observables. In Section VI we discuss the impact of our findings on theoretical
predictions for ǫ′/ǫ. In particular, we provide a quantitative estimate for the parameter
ΩEM, the effect of a ∆I = 5/2 interaction, and the impact of the new rescattering effects on
the phase of ǫ′. We conclude the paper with a summary of our findings in Section VII.
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A. Standard Phenomenology for K → ππ Decays

Let us start from the conventional phenomenological analysis of the decay amplitudes.
There are three physical K → ππ decay amplitudes,∗

AK0→π+π− ≡ A+− , AK0→π0π0 ≡ A00 , AK+→π+π0 ≡ A+0 . (1)

We consider first these amplitudes in the limit of exact isospin symmetry and then identify
which modifications must occur in the presence of electromagnetism. In the I = 0, 2 two-pion
isospin basis, the physical amplitudes are parameterized as:

A+− = A0 eiδ0 +

√

1

2
A2 eiδ2 ,

A00 = A0 eiδ0 −
√

2A2 eiδ2 , (2)

A+0 =
3

2
A2 eiδ2 .

In the above, A0,2 are the ∆I = 1/2, 3/2 transition amplitudes corresponding to the ππ final
states with isospin equal to 0, 2 respectively. They are real in the limit of CP conservation.
The δI are the I = 0, 2 ππ scattering S-wave phase shifts at center of mass energy equal
to the kaon mass. They enter the parameterization as prescribed by unitarity (the Fermi-
Watson theorem). Knowledge of the experimental branching ratios [4] allows one to use
Eqs. (2) to extract the isospin amplitudes. Neglecting the small CP -violation effect, we
find†

A0 = (5.458 ± 0.012) × 10−7MK0 ,

A2 = (0.2454 ± 0.0010) × 10−7MK0 , (3)

δ0 − δ2 = (56.7 ± 3.8)o .

Throughout we express the K → ππ amplitudes in units of 10−7MK0, with MK0 = 0.497672
GeV.

A careful inspection of these phenomenological results reveals some inconsistencies with
other existing pieces of phenomenology and theoretical analysis. These clues seem to suggest
that isospin breaking effects (like EM) can play an important role in the phenomenology
of K → ππ decays. The considerations we present below apply to all isospin breaking
interactions. In this category one includes both EM and strong isospin breaking, produced
by the difference in the up and down quark masses. In this work we are concerned exclusively
with EM effects (also analyzed in Refs. [5–7]). For treatments of strong isospin breaking
effects see Refs. [8,9].

∗The invariant amplitude A is defined via out〈ππ|K〉in = i(2π)4δ(4)(pout − pin) (iA).

†Knowledge of the phase difference δ0−δ2 from other determinations poses the constraint cos(δ0−
δ2) > 0, implying that A0A2 > 0. In this paper, we take A0 and A2 as positive numbers.
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Isospin breaking interactions will in general mix the amplitudes A0 and A2, thus generat-
ing potentially big corrections to A2, proportional to A0 · α/π. A related issue concerns the
presence of a ∆I = 5/2 component in the interaction. This problem has recently received
attention in Ref. [10]. A ∆I = 5/2 component will distinguish between the amplitudes A2

entering in the K0 and K+ decays. The expression of A0, A2, A
+
2 in terms of A∆I is given

by:

A0 = A1/2 ,

A2 = A3/2 + A5/2 , (4)

A+
2 = A3/2 − 2/3 A5/2 .

We expect the dominant ∆I = 5/2 effect to arise by combining the large ∆I = 1/2 weak
interaction with the ∆I = 2 component of the electromagnetic interaction. A combination
of the ∆I = 3/2 hamiltonian with the ∆I = 1 interaction proportional to mu − md is also
expected to contribute. However, its effect is expected to be doubly suppressed (by the
∆I = 1/2 rule and the smallness of mu − md).

A further problem with the isospin analysis is revealed by looking at the extracted
phase shifts. The value δ0 − δ2 = (56.7 ± 3.8)o obtained from kaon decay data has to be
compared with information coming from other sectors of low energy phenomenology. In
particular, the value extracted from a dispersive treatment of ππ scattering data is δ0−δ2 =
(45.2 ± 1.3+4.5

−1.6)
o [11], and the prediction of ChPT [12] is δ0 − δ2 = (45 ± 6)o. These two

determinations are mutually compatible. However, there is a sizeable discrepancy with the
result obtained in the fit to K → ππ. This can be ascribed to isospin breaking and to a
non-vanishing A5/2.

The above mentioned issues also affect a proper theoretical understanding of the direct
CP-violation parameter ǫ′/ǫ. In particular, the leakage of the octet amplitude in A2 (due to
isospin breaking effects) brings an extra contribution to the CP-violating phase of A2. In
the literature only the leakage due to mu − md isospin breaking effects has been analyzed,
and is found to be numerically important [8,9] . Moreover, the presence of a ∆I = 5/2
amplitude introduces an extra term in the usual formulae for ǫ′. Finally, understanding the
issue regarding the phase shift δ0 − δ2 will provide a better theoretical determination of the
phase of ǫ′.

The above considerations call for a careful analysis of electromagnetic effects on K → ππ
decays.

B. Electromagnetism and the K → ππ Amplitudes

One can summarize the effects of electromagnetism on K → ππ amplitudes as follows:

1. First of all one has to deal with universal infrared (IR) effects, due to photons of long
wavelength. These effects are common to all processes with charged external particles
and do not depend on details concerning the original interaction. They are represented
diagrammatically in Fig. 1, where the dark blob is seen as pointlike by the infrared
photons. This class of contributions provides a Coulomb final state interaction (FSI)
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(a) (b) (c)
FIG. 1. Electromagnetic contributions relevant for the infrared behavior.

phase and gives rise to IR divergent amplitudes. Such infrared divergences have to
be canceled by considering the effect of soft real photons (Fig. 1(b)). As we shall
show in Sections II and V, these effects can be described as modifying the phase
space factor rather than producing effects on the amplitudes themselves. In order to
perform an accurate phenomenological study, it is important to include this class of
radiative corrections in the experimental analysis of the branching ratios (See Sect. V
for details).

2. There are structure dependent effects, sensitive to the form of the original interaction.
These are hidden in Fig. 1 within the large dark vertices. We consider only corrections
induced by the dominant (octet) part of the weak hamiltonian. These produce shifts
in the isospin amplitudes, and are responsible for possible large contaminations of A2.
They also generate a ∆I = 5/2 amplitude. We have calculated these effects in ChPT
and in dispersive matching. [2,3]

3. Finally EM affects the final state interaction. As a consequence the unitarity relations,
determining the rescattering phases, are altered. The main modifications are due to
the opening of the ππ+nγ intermediate channels and the possibility of mixing between
two-pion states in isospin I = 0 and I = 2. These new features imply modifications
to the unitarity parameterization, governed by an extension of Watson’s theorem that
we shall discuss at length in Sect. IV.

Clearly the items enumerated above are intertwined and affect in various respects the
way one analyzes the K → ππ amplitudes. It is important to note that - although being per-
turbatively small - the new interaction considered breaks the original isospin symmetry on
which the parameterization of K → ππ amplitudes is based. Therefore, to perform a com-
plete analysis of EM effects to K → ππ decays, one must understand how to parameterize
the above mentioned effects.

II. INFRARED BEHAVIOR AND ISOSPIN AMPLITUDES

A. Defining Infrared Finite Amplitudes

Let us start by summarizing the regularization and removal of infrared divergences.
These arise in perturbation theory through diagrams in which virtual photons connect ex-
ternal charged legs. The classical works of Refs. [13,14] show how to sum the infrared
singularities to all orders in perturbation theory and isolate an infrared finite amplitude.
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We begin by reviewing the content of these works. Let us introduce an IR regulator λ. For
our calculation, this takes the form of a photon squared-mass, λ ≡ m2

γ . Let A be the ampli-
tude for a generic process involving charged particles. To all orders in the EM interaction
A is given by the expansion

A =
∞
∑

k=0

Ak , (5)

with Ak = O(αk). Order by order one has the sequence of relations,

A0 = a0 ,

A1 = a0 · αB(λ) + a1 ,

A2 = a0 ·
(αB(λ))2

2
+ a1 · αB(λ) + a2 , (6)

...

Here B(λ) is an infrared divergent function of λ, while the ak are infrared finite. Summing
to all orders results in the compact relation

A(α) = eαB(λ) ·
∞
∑

k=0

ak ≡ eαB(λ)Ā(α) , (7)

where all IR-singular dependence appears solely within the exponentiated factor αB(λ),
which multiplies the infrared finite amplitude Ā(α). The function αB(λ) only depends on
the external states and knows nothing on the nature of the interaction generating the process.
On the other hand, the amplitude Ā(α) contains the structure dependent EM effects. These
quantities arise naturally in the calculation described in Ref. [2], where we provided explicit
expressions in the case of A+−.

The construction just described needs to be supplemented by the the following comments.
As Eq. (6) shows, the function B(λ) arises as a first order correction in α. This means that
a one-loop calculation allows resummation of the IR singularity to all orders. However, the
definition of the IR finite part of B(λ) is not unique. This means that there is an ambiguity
in the way one separates the infrared multiplicative factor from the structure dependent
effects. This is a peculiar property of EM radiative corrections and does not affect the
definition of physical observables. For example, once one picks a definition for B(λ) and
follows it throughout the calculation, comparison with experiment will lead to unambiguous
extraction of the EM free quantities (like a0). We will explicitly display our formulas for
B(λ) below.

The infrared divergences of the amplitudes have now been isolated in an overall factor.
Removal of infrared divergences from the expression for the decay rate or cross sections
is achieved by taking into account the effect of soft real photons in the external states.
This is motivated by the observation that for soft photons, whose energy is below some
experimental resolution ω, the generic states n and n + k γ cannot be distinguished. The
physical observable always involves an inclusive sum over the n and n + k γ final states. We
shall give details of this in Sect. V.
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B. Isospin Amplitudes

Having described the construction of IR finite amplitudes, we can now analyze the effect
produced on the isospin amplitudes A0, A2. We start from the IR finite amplitudes in the
charged basis {A+−,A00,A+0}. It is then possible to define the would-be isospin amplitudes
by taking the following linear combinations:

A0 =
2

3
A+− +

1

3
A00 ,

A2 =

√
2

3
(A+− −A00) , (8)

A+
2 =

2

3
A+0 .

The content of Eq. (8) is that in the absence of EM and for mu = md the amplitudes AI truly
describe transitions to ππ states with definite isospin. In the presence of isospin breaking
interactions, however, the amplitudes AI become

AI = (AI + δAI) ei(δI+γI) , (9)

with shifts δAI and γI corresponding respectively to the modulus and phase of the original
isospin amplitude.

We can summarize the discussion presented so far by displaying the parameterization of
the IR finite amplitudes in the charged basis

A+− = (A0 + δA0) ei(δ0+γ0) +
1√
2

(A2 + δA2) ei(δ2+γ2) ,

A00 = (A0 + δA0) ei(δ0+γ0) −
√

2 (A2 + δA2) ei(δ2+γ2) , (10)

A+0 =
3

2

(

A2 + δA+
2

)

ei(δ2+γ+

2
) ,

where δAI and γI contain IR finite EM effects as well as other isospin breaking terms. This
parameterization has to be compared with the isospin invariant expressions in Eq. (2). We
recall here that this parameterization holds for the IR finite amplitude as defined in Eq. (7).
We also observe that the shifts δA+

2 and γ+
2 in A+0 are distinct from the corresponding shifts

in A+− and A00, as a consequence of the ∆I = 5/2 amplitude induced by electromagnetism.
In the notation of Eq. (4) one has:

δA0 = δA1/2 ,

δA2 = δA3/2 + A5/2 , (11)

δA+
2 = δA3/2 − 2/3 A5/2 .

C. Discussion

The parameterization given in Eqs. (10),(11) provides the basis for any phenomenological
analysis of K → ππ decays with inclusion of isospin breaking (due to strong and electromag-
netic effects). Comparison with experimental branching ratios (see next Section for some
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caveats related to radiative corrections) allows one to arrive at relations among the different
parameters. Examples of such analysis are given in Ref. [10] and the third paper of Ref. [9].

It is legitimate at this point to ask what do we know about the parameters entering
Eq. (10) and what do we want to extract from the comparison with experiment.

1. First, let us consider the amplitudes A0 and A2. Many theoretical efforts have been
devoted to their calculation, and no calculation can be considered fully satisfactory at
present. We want to extract these parameters from the comparison with the branching
ratios, eliminating the electromagnetic isospin breaking contaminations.

2. Next, one has the shifts δA0, δA2, and δA+
2 . We have calculated the EM contributions

to them [2,3], and we are quite confident that our results capture the true underlying
physics within the theoretical uncertainty quoted. In particular, our results provide
an estimate for A5/2. Explicitly we find [3]:

δAEM
0 = (0.0253 ± 0.0072) · 10−7 MK0 ,

δAEM
2 = (0.0147 ± 0.0063) · 10−7 MK0 ,

δA+ EM
2 = (0.008 ± 0.0088) · 10−7 MK0 ,

AEM
5/2 = (0.0137 ± 0.0097) · 10−7 MK0 .

For recent estimates of the size of non-EM isospin breaking effects, see Ref. [9]. The
corrections δAiso−brk

∆I contain only a negligible ∆I = 5/2 component, as the only source
for it would be a combination of the ∆I = 1 interaction proportional to (mu − md)
with the suppressed ∆I = 3/2 weak interaction. This ensures that δAiso−brk

1/2,3/2 can be
reabsorbed into A0,2. Therefore, in what follows A0 and A2 still contain strong isospin
breaking contaminations. These can be subtracted by using the results of Refs. [9].

3. Finally, let us consider the rescattering phases. In absence of isospin-breaking the
phases γI vanish as a consequence of Watson’s theorem. The strong phases δI at
s = M2

K are known through dispersive treatment of ππ scattering data ‡. The inclusion
of strong isospin breaking effects still gives γI = 0, to first order in mu − md [10]. It
is the inclusion of EM corrections that generates nonzero γI . Since the phase δ2 + γ+

2

does not enter any physical relation, we disregard it from now on. As for the phases
γ0 and γ2, we can relate them to EM effects in the final state interaction. This can
be done in perturbation theory [2] or in a more general setting provided by unitarity.
As we shall discuss in Sect. IV, our present knowledge of γ0,2 reveals a large value
of γ2 and relies on a lowest order analysis of EM corrections to ππ scattering. Next
to leading order corrections can be quite large at s = M2

K , and this adds substantial
uncertainty to γ2.

‡For a list of references see [10].
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III. ANALYSIS IN THE PRESENCE OF ELECTROMAGNETISM

The CP-conserving sector of K → ππ phenomenology relies essentially on three experi-
mental numbers. These are the partial decay widths of KS into π+π−, π0π0 and of K± into
π±π0. Knowledge of these numbers allows one to extract the invariant decay amplitudes
and to compare with theoretical calculations. In this section we describe the procedure to
be followed in order to extract the invariant amplitudes in presence of radiative corrections.

A. The Fitting Procedure in Presence of Radiative Corrections

In presence of radiative corrections, the appropriate expression to be used when compar-
ing theory and experiment is:

Γn(ω) =
Φn

2
√

sn
|An|2 Gn(ω) , (12)

where n = {+−, 00, +0}. In Eq. (12) the left hand side Γn represents the measured partial
width and we indicate with the parameter ω its dependence on the way soft photons are
treated in the data analysis. It is clear that the use of different cuts leads to different values
for the decay widths, because of the inclusion of different portions of the corresponding
radiative channel (n + γ) in the data sample. On the right hand side of Eq. (12) one
has the kinematical parameters sn (squared center-of-mass energy of the process) and Φn

(the two body invariant phase space associated with the decay). The quantities related to
the dynamics are An and Gn(ω). An is the infrared finite invariant amplitude, as defined in
Sect. II, Eq. (10). It contains the true weak transition component that we wish to ultimately
extract as well as infrared finite electromagnetic corrections. Gn(ω) is the infrared factor
associated with the combined effect of virtual and real photons. The latter contribution
involves an integration over the soft-photon phase space: this has to be done with the same

prescription used in extracting the experimental number Γn(ω).
The extraction of IR-free invariant amplitudes is a straightforward consequence of

Eq. (12). Specializing to the K → ππ case, one has:

|A+−|
MK0

=
1√
2

√

√

√

√

8π

p+−

Γ+−(ω)

G+−(ω)
,

|A00|
MK0

=

√

8π

p00
Γ00 , (13)

|A+0|
MK+

=

√

√

√

√

8π

p+0

Γ+0(ω)

G+0(ω)
,

where

p+− =

√

(

MK0

2

)2

− M2
π+ ,
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p00 =

√

(

MK0

2

)2

− M2
π0 , (14)

p+0 =

√

√

√

√

(

MK+

2
+

M2
π0 − M2

π+

2MK+

)2

− M2
π0 .

In order to carry out the procedure one needs the physical masses, the experimental input
Γn(ω), and the corresponding theoretical infrared parameters G+−,+0(ω). If things are done
properly, the ω dependence cancels in the ratios on the right hand side of Eq. (13), which
provides then the values of |An|. Having the amplitudes |An| one can then use Eq. (10) to
obtain relations between the physical parameters. However, there is an important issue to
be addressed in order to complete the program outlined above: it is the proper definition of
the infrared factors G+−(ω) and G+0(ω), to which we now turn.

B. The Infrared Factors

As already noted, the theoretical definition of G+−(ω) and G+0(ω) involves integration
over the soft-photon phase space, with cuts generically indicated by ω. The infrared factor
is experiment dependent and accounts for the component of the radiative mode (ππγ in our
case) included in the parent mode (ππ) branching ratio. We shall work to order α and thus
include only the effect of the ππγ radiative state. While we display the ingredients needed
for any experimental analysis, we carry the treatment to completion for the case where
the infrared sensitivity is isotropic in the center of mass. That is, we display the explicit
formulas obtained when one integrates over the ππγ phase space applying an isotropic cutoff
ω on the photon energy Eγ in the center of mass frame. This is most natural to use in the
data analysis for an experiment such as KLOE at DAΦNE, given the working conditions
of the machine and the detector geometry. A more detailed study (either theoretical or
experimental) is required in order to apply radiative corrections to the data analysis of other
experiments. The presence of several high statistics experiments offers a unique opportunity
for performing an accurate measurement of K → ππ branching ratios, including the effect
of radiative corrections. Such an analysis would fill the present gap in the study of radiative
corrections to K0 → ππ, and would therefore be highly desirable.

Calculation of the factors G+−(ω) and G+0(ω) requires consideration of a combination
of effects due to virtual photons in the amplitudes A+−,+0 (field theoretic version of the
non-relativistic Gamow factors) and to soft real photons entering the process K → ππ + γ.
Moreover, in the infrared region of the spectrum, the amplitude for K → ππ+γ is dominated
by the internal bremsstrahlung (IB) component, proportional to the non-radiative amplitude.
For the case in question one has:

AIB
+− γ = eA+−

(

ǫ · p+

q · p+
− ǫ · p−

q · p−

)

,

AIB
+0γ = eA+0

(

ǫ · p+

q · p+
− ǫ · pK

q · pK

)

, (15)

where ǫ and q are the polarization and momentum of the emitted photon. Now, the infrared-
finite observable decay rate is

9



Γn(ω) = Γn + Γn γ(ω) , (16)

where n = +−, +0 and

Γn =
1

2MK

∫

dΦn |An (1 + αBn(mγ)) |2 , (17)

Γn γ(ω) =
1

2MK

∫

Eγ<ω
dΦnγ |Anγ|2 =

1

2MK

∫

dΦn |An|2 In(mγ , ω) . (18)

At this stage the rest of the calculation becomes dependent on the geometry of the exper-
iment. For a kaon at rest with an isotropic detector, the acceptance cutoff Eγ < ω will be
the same in all directions. For a kaon in flight, the acceptance may be different for photons
emitted in different directions. In this latter situation, the integral in Eq. (18) needs to be
numerically integrated over the detector acceptance and then added to the two body result,
Eq. (17). This will then be finite in the limit of mγ → 0, and will allow the measurement of
the IR finite amplitude An. We carry out this procedure explicitly below for the case of an
isotropic cutoff.

In Eqs. (17),(18) dΦk is the differential phase space factor for each process, An is the
IR finite amplitude, as defined in Sect. II by extracting the IR divergent functions Bn. The
Bn can be calculated by considering one-loop diagrams with virtual photons connecting the
external legs and using a point-like vertex for the weak interaction. The definition of Bn

is not unique due to the possibility of adding IR and UV finite terms to it. The explicit
expressions given below § fully specify our choice of what goes into Bn and what goes into the
structure dependent shifts δAn. The second expression in Eq. (18) describes the factorization
of the ππ and γ phase spaces, valid with an accuracy of ω/MK. Explicitly one has:

In(mγ , ω) =
∫

Eγ<ω

d3q

(2π)32Eγ

∑

pol

∣

∣

∣

∣

AIB
nγ

An

∣

∣

∣

∣

2

. (19)

Combining the above results one arrives at

Gn(ω) = 1 + 2αReBn(mγ) + In (mγ , ω) + O(α2) . (20)

We now collect the explicit form of the functions B+−,+0 and I+−,+0, entering in the
definition of G+−,+0 (see Eq. 20). For G+−(ω) one needs:

B+−(m2
γ) =

1

4π

[

2a(β) ln
M2

π

m2
γ

+ H+−(β) + iπ

(

1 + β2

β
ln

M2
Kβ2

m2
γ

− β

)

]

,

I+−(mγ , ω) =
α

π

[

a(β) ln
(

mγ

2ω

)2

+ F+−(β)

]

, (21)

where

§See also Ref. [2].
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β = (1 − 4M2
π/M2

K)1/2 (22)

and

a(β) = 1 +
1 + β2

2β
ln

(

1 − β

1 + β

)

,

H+−(β) =
1 + β2

2β

[

π2 + ln
1 + β

1 − β
ln

1 − β2

4β2
+ 2f

(

1 + β

2β

)

− 2f

(

β − 1

2β

)]

+ 2 + β ln
1 + β

1 − β
,

F+−(β) =
1

β
ln

1 + β

1 − β
+

1 + β2

2β

[

2f(−β) − 2f(β) + f

(

1 + β

2

)

− f

(

1 − β

2

)

+
1

2
ln

1 + β

1 − β
ln(1 − β2) + ln 2 ln

1 − β

1 + β

]

f(x) = −
∫ x

0
dt

1

t
ln |1 − t| . (23)

We note that B+− includes the Coulomb factor πα/vrel (first term in H+−(β)), as well as
typical field theoretic effects. As for G+0(ω), one has:

B+0(m
2
γ) =

1

4π

[

2b(β) ln
M2

π

m2
γ

+ H+0(β)

]

,

I+0(mγ , ω) =
α

π

[

b(β) ln
(

mγ

2ω

)2

+ F+0(β)

]

, (24)

where

b(β) = 1 +
1

2β
log

(

1 − β

1 + β

)

,

H+0(β) = − 1

β

[

1

2
log

(

1 + β

2

)

log

(

2 + 2β

(1 − β)2

)

−1

2
log

(

1 − β

2

)

log

(

2 − 2β

(1 + β)2

)

+ log

(

4β

1 − β2

)

log

(

1 + β

1 − β

)

+ f

(

1 + β

2β

)

− f

(

β − 1

2β

)

+ f

(

−(1 − β)2

4β

)

− f

(

(1 + β)2

4β

)]

+2 + log
1 − β2

4
− 2

1 − β
log

(

1 + β

2

)

− 2

1 + β
log

(

1 − β

2

)

and

F+0(β) = 1 +
1

2β
log

(

1 + β

1 − β

)
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− 4

1 − β2

∫ +1

−1
dx

E(x)

D(x)p(x)
log

(

E(x) + p(x)

E(x) − p(x)

)

D(x) = (x − x1)(x − x2)

x1/2 =
M2

K

M2
π

(1 ± β) − 1

E(x) =
MK

4
(3 − x)

p(x) =
MK

4
β(1 + x) . (25)

G+− and G+0 do not depend on the infrared regulator mγ . We display plots of the
functions G+−(ω) and G+0(ω) on a typical range of values for the parameter ω in Figs. 2 and
3. The functions Gn(ω) are the only EM effects previously considered in the literature [5],
although with a slightly different definition. In fact, the works of Ref. [5] use a point-
like vertex for the weak interaction, and therefore are not sensitive to structure dependent
corrections. In these works the EM effects due to wavefunction renormalization and vertex
correction go entirely in the definition of Bn (this includes also the UV divergent terms,
regulated by means of a cutoff). Apart from the cutoff-dependent term and an extra finite
contribution, our expressions match the ones given in the second and third papers of Ref. [5].

5 10 15 20

0.96

0.97

0.98

0.99

1.01

ω (MeV)

G+−(ω)

FIG. 2. The function G+−(ω).

IV. EFFECT OF EM ON K → ππ PHASES

The amplitude parameterization we have used for the previous analysis already implies
that K → ππ data do not provide direct information on the strong ππ phase shift difference
δ0 − δ2. This would only be true in the isospin limit (γI = 0). In this limit, the requirement
that strong interaction phases appear in the weak decays is known as Watson’s theorem,
which is valid whenever the final state rescattering involves only elastic scattering. Despite
the fact that isospin breaking has been long understood to cause mixing of weak amplitudes,
there has been no recognition that the strong interaction phases no longer suffice to describe
the rescattering effects. This occurs because elastic rescattering is no longer the full content

12
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FIG. 3. The function G+0(ω).

of final state interaction, so that the conditions for the application of Watson’s theorem no
longer apply. Moreover, there exists a sizeable discrepancy between the determination of
δ0 − δ2 from K → ππ data using isospin relations and the favored value of the phase shift
difference known by other determinations. This seems to point to violations of Watson’s
theorem. It is our purpose to set the framework for the correct treatment of this problem
in the isospin breaking real world. We shall accomplish this by writing a coupled channel
unitarity constraint in the presence of EM interactions (and isospin breaking in general)
and solving for the parameters γ0 and γ2 entering Eq. (10). This analysis will complement
and extend the perturbative results obtained in Ref. [2], which already indicated a large
value of γ2. We defer to the next section the extraction of δ0 − δ2 and the uncertainty to be
associated with it.

A. Extended Unitarity Relations

The first step in our program is writing down meaningful unitarity relations in the
presence of EM interactions. Here, it is natural to work in the charged basis {π+π−, π0π0}
and then try to recover the notion of isospin amplitudes. In order to fix the notation, let us
start from the unitarity relations involving the decay amplitudes of K0 to {π+π−, π0π0} in
the limit in which EM is turned off. Then, only the ππ intermediate states have to be taken
into account and one finds:

A+− −A∗
+− = i

(

T ∗
+−;+− ×A+− + T ∗

00;+− ×A00

)

,

A00 −A∗
00 = i

(

T ∗
+−;00 ×A+− + T ∗

00;00 ×A00

)

, (26)

In Eq. (26) A+− and A00 represent the K0 decay amplitudes and Tf ;i is the T -matrix element
for the transition i → f ( in this case it only involves pion-pion scattering ). ‘T ∗×A’ denotes
the product of amplitudes integrated over the intermediate state phase space. In the case
considered here of two-pion intermediate states, one has:

T ∗ ×A ≡
∫

dΦ2 T ∗A = Φs 4β A · T ∗ , (27)
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where β = (1−4m2
π/m2

K)−1/2 is the pion velocity in the kaon rest frame. Φs is the symmetry
factor for identical particles (equal to 1/2 for the π0π0 state) and T is the S-wave projection
of the ππ scattering amplitude T (cos θ), defined by:

T =
1

64π

∫ +1

−1
d(cos θ) T (cos θ) . (28)

Turning on EM interactions introduces isospin breaking dynamics as well as IR singulari-
ties in the amplitudes and the opening of intermediate radiative channels. Specifically, A+−,
T00,+−, and T+−,+− become IR divergent and T+−,+− acquires a purely Coulomb component
(also IR singular). The work of Refs. [13,14], summarized in Sect. II teaches us that one can
always isolate the singularity in a multiplicative exponential factor

Af,i = eαBf,i Af,i . (29)

Here Af,i is the IR finite amplitude and Bf,i(mγ) is the IR singular factor that depends
only on the external states. We shall only need the factor B+−, already encountered in this
paper, associated with a pair of charged pions in the initial or final state. We note that
Bf,i(mγ) is in general complex. In particular, its imaginary part is equal to the Coulomb
scattering phase shift associated with each pair of charged particles in the initial and final
states [14].

Upon integrating over the phase space and using the above mentioned property on the
Coulomb phases, one can rewrite Eq. (26) in terms of IR finite quantities and Bf,i factors.
Moreover, due to the integration over the phase space some contributions in the Bf,i factors
simplify and one ends up with:

A+− −A∗

+− = i
(

T ∗

+−;+− ×A+− e2αReB+− + T ∗

00;+− ×A00

)

,

A00 −A∗

00 = i
(

T ∗

+−;00 ×A+− e2αReB+− + T ∗

00;00 ×A00

)

. (30)

Note that now T +−,+− is the IR finite π+π− → π+π− amplitude subtracted of its purely
Coulomb term.

Eq. (30) contains IR singularities, but the analysis is still missing an important effect
of EM: the opening of inelastic radiative channels. This is the key ingredient in obtaining
an IR finite set of unitarity constraints, as it was in obtaining an IR finite cross section or
decay rate. In fact, the IR singularities will cancel in the sum over the π+π− and π+π−γ
intermediate states, with the same mechanism described in the definition of Γ+−, Γ+0 earlier
in Sect. III. Working at order O(α), we consider only the radiative state π+π−γ. For our
analysis we require the amplitudes for K0 → π+π−γ and ππ → π+π−γ. We include only
the internal bremsstrahlung component of these amplitudes, known to be dominant over
possible direct emission terms. Now one has to integrate over the full π+π−γ phase space
and the final result for the unitarity condition reads:

Im

(

A+−

A00

)

= β

(

2 T ∗

+−;+− (1 + ∆+−) T ∗

00;+−

2 T ∗

+−;00 (1 + ∆+−) T ∗

00;00

)(

A+−

A00

)

. (31)

We recall that T a,b are the S-wave projections of the ππ scattering matrix. ∆+− is the IR
finite remnant of the sum of IR singular terms in the π+π− and π+π−γ intermediate states.
In terms of the notation of Sect. III B, it is given by:
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∆+− = − 2δM2
π

β2M2
K

+ 2αReB+−(mγ) + e2 1

Φ+−

∫

dΦ+−γ

∑

pol

∣

∣

∣

∣

q+ · ǫ
q+ · k − q− · ǫ

q− · k

∣

∣

∣

∣

2

. (32)

Here the first term is the phase space correction due to the EM mass-shift of charged
pions. The second term is the effect of infrared virtual photons, while the third term is the
effect of real soft photons in the intermediate state π+π−γ. Numerically we find (displaying
separately the phase space contribution and the remainder):

∆+− = (−14.8 + 10.8) · 10−3 = −4.0 · 10−3 . (33)

B. From Charge to Isospin Basis

Assuming unitarity of the S matrix, we have thus far obtained a set of relations containing
the IR finite amplitudes in the charge basis. In order to compare with usual treatments of
this problem, we rotate now to the isospin basis for the K → ππ amplitudes,

AISO =

(

A0

A2

)

=
1

3

(

2 1√
2 −

√
2

)(

A+−

A00

)

. (34)

Applying the same transformation to the whole system in Eq. (31) one obtains in matrix
form:

ImAISO = β
(

T †

ISO + R
)

AISO , (35)

where

T ISO =

(

T0 T02

T20 T2

)

, (36)

and

R =

(

R00 R02

R20 R22

)

=
1

3
∆+−

(

2T ∗
0

√
2T ∗

0√
2T ∗

2 T ∗
2

)

. (37)

T ISO is the ππ scattering matrix in the isospin basis, while the matrix R, proportional to
∆+−, contains the effect of IR radiative corrections and the radiative intermediate channel.
The ππ scattering T-matrix now involves both strong and EM interactions, and thus contains
isospin-violating matrix elements. In the conventions used in our work, the amplitudes for
the ππ scattering in the isospin basis are expressed in terms of the charged ones as:

T0 =
1

3

(

4T +−,+− + T 00,00 + 4T 00,+−

)

,

T2 =
2

3

(

T +−,+− + T 00,00 − 2T 00,+−

)

, (38)

T20 = T02 =

√
2

3

(

2T +−,+− − T 00,00 − T 00,+−

)

.
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A general parameterization of the ππ transition matrix in the isospin basis is:

β T ISO =

(

(η0 e2iδ0 − 1)/(2i) aei(δ0+δ2+∆)

aei(δ0+δ2+∆) (η2 e2iδ2 − 1)/(2i)

)

. (39)

In this parameterization we allow for isospin mixing (the off-diagonal parameter a) and for
possible non-unitarity in the ππ two dimensional subspace (due to opening of other channels).
This is accomplished by introducing the inelasticity parameters η0,2 and the extra phase ∆
in the off-diagonal term. The parameters ηI are of order 1 + O(α2), while a and ∆ are of
order α.

The form given in Eq. (39) is fully general and includes all isospin breaking effects.
However, strong isospin breaking is expected to induce only subleading rescattering effects.
In fact, mu −md 6= 0 produces an I = 1 perturbation to the original interaction. This is not
sufficient to mix the I = 0 and I = 2 ππ scattering states when treated to first order, nor
does it cause a splitting of the masses of the charged and neutral pions. This implies that
elastic scattering of these states is still the only option, and to first order in mu − md the
parameter a does not receive contributions. The values of the phases δI may in principle be
slightly modified by the quark mass effect, yet this is contained in the measured values of
the experimental phase shifts.

C. Solution for γ0,2

We are now in position to explore the consequences of unitarity on the rescattering phases
γ0,2. We write

AI = AI ei(δI+γI ) (40)

and insert these expressions into Eq. (35). We then solve for sin γ0 and sin γ2 to first order
in α, taking into account the ∆I = 1/2 hierarchy of magnitudes. After some simple algebra,
we obtain the solutions

sin γ0 = β (ReR00 − tan δ0 ImR00) ≃ O(α sin δ0)

sin γ2 = β
A0

A2

[

T20 +
1

cos δ2

(ReR20 cos δ0 − ImR20 sin δ0)
]

(41)

The most important feature of these results is the factor A0/A2 in the formula for sin γ2.
This implies that even though the non-elastic scattering is electromagnetic in origin, it is
enhanced by a large factor that allows the net change to be significant. Eq. (41) gives us the
desired expression relating the phase γ2 to isospin breaking rescattering effects. These are
contained in the parameters T20, the mixing amplitude between ππ states, and R20. This
last parameter contains the effect of the radiative intermediate channel π+π−γ as well as the
phase space correction. We note that Eq. (41) is a generalization of the relation obtained at
one loop in ChPT. However, inspection reveals that the perturbative determination contains
only the phase space effect and the T20 mixing in lowest order.

In attempting to estimate the magnitudes of the new phases, we are hampered by the
fact that the analysis of electromagnetic effects in ππ scattering is not yet complete in the
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literature. Two groups have provided analyses of reactions involving neutral mesons [16],
but the channels with all charged particles are not yet fully analyzed. We require the
scattering elements at center-of-mass energy equal to the kaon mass. The threshold matrix
elements are known from simple tree level calculations, and we will use these in our estimate
below. However, the amplitudes can experience large changes at s = M2

K , and one needs at
least one-loop chiral perturbation theory in order to obtain these. As these results become
available, they can be used to update our numerical estimates.

We estimate the off diagonal parameter at lowest order in chiral symmetry obtaining:

T02 =

√
2

3
· δM2

π

8πF 2
π

≃ 2.7 × 10−3 . (42)

For the parameter R20 , proportional to the radiative effect, one has

R20 =

√
2

3
∆+−T ∗

2 , (43)

and we use the form

T2 =
1

β
eiδ2 sin δ2 , (44)

with the phenomenological central value of δ2 = −7.0o [?]. Numerically this leads to

ReR20 = 0.280 · 10−3

ImR20 = 0.034 · 10−3 (45)

These numerical estimates allow us to identify the off-diagonal ∆I = 2 rescattering as the
major new ingredient in the final state phases and to arrive at the result:

γ0 = −0.1o , γ2 = 3.1o . (46)

We note here that the result for γ2 is quite large, amounting to almost 50% of the strong
phase δ2 at s = M2

K .

V. SAMPLE FIT TO K → ππ DATA

In this section, we provide a tentative fit to the present experimental data. This is meant
as an illustration of the ideas that we have discussed above, and hopefully will provide a
model for a new fully consistent experimental analysis of new data, taken with the full
treatment of electromagnetic effects. We describe our treatment as tentative because it
involves older data sets which were taken without the inclusion of radiative corrections. We
cannot fully account for the experimental acceptances, and are forced to adopt a cruder
procedure. However, the sample fit is none the less of interest because it illustrates the
significant sensitivity of various quantities to electromagnetic corrections, and represents
the best that can be done with the present data set.
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A. Data Analysis

It will be convenient in the discussion to follow to first define

χi ≡ δi + γi (i = 0, 2) . (47)

Then having G+−(ω), G+0(ω) and the structure dependent corrections δAEM
I , one is in a

position by using Eqs. (13) and (10) to extract the quantities A0, A2 and χ0 − χ2.
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FIG. 4. Fitted A0 as a function of ω .
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A2/(10−7MK0 )

FIG. 5. Fitted A2 as a function of ω .

As experimental input for the branching ratios we use the PDG averages, although these
numbers come with no reference to what portion of the K → ππγ mode is included. In order
to understand the attendant uncertainties and ambiguities of this approach, in Figs. 4, 5
and 6 we plot the output of our fit as a function of the parameter ω, the upper cutoff
for IR photons in the center of mass frame. It is not clear to which value of ω (if any)
the experimental numbers correspond. This ignorance gives rise to little uncertainty in
the extraction A2 and to a moderate one in the extraction of A0, for ω varying between
1 MeV and 20 MeV.∗∗ However, more delicate is the situation for the extraction of the

∗∗This range is chosen to reflect a realistic possibility for detector resolution.
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FIG. 6. Fitted χ0 − χ2 as a function of ω .

phase χ0 − χ2, where a variation of the order of 10% is seen over the considered range of
ω. Thus our analysis indicates that the extraction of rescattering phases from K → ππ
data is sensitive to the treatment of soft photons. In the absence of precise experimental
information, it is not possible to pick a definite central value for our output. We thus quote
the results for the set of EM-free quantities with two error bars. The first one is due to
the spread in the central values according to variations of ω between 1 and 20 MeV. The
second one comes from propagating the experimental uncertainty in the decay widths and
the theoretical uncertainty on the inputs δAEM

I . We find:

A0 = (5.450 ± 0.020 ± 0.015) × 10−7MK0 ,

A2 = (0.255 ± 0.001 ± 0.009) × 10−7MK0 , (48)

χ0 − χ2 = (56 ± 4 ± 4)o .

These results should be compared with the ones presented in Eq. (3), derived from the
analysis in the isospin limit. The most important new feature is that considering EM
corrections places larger error bars on all these quantities. In the case of A2 the reason
for this resides in the quite large theoretical uncertainty on δA+

2 . For A0 and the phase
difference χ0−χ2, the larger error bar is due essentially to incomplete information concerning
the treatment of the radiative channel. A measurement of the the partial width Γ+−(ω),
with accuracy level of ∼ 0.5% (this is the accuracy level of the present PDG numbers),
accompanied by information on soft-photon cuts, would allow one to extract a definite
central value for A0 and χ0 − χ2. As a consequence, this would eliminate the first error bar
associated with A0 and χ0 − χ2 in Eq. (48), reducing the total uncertainty by 50% or more.
Indeed, such an analysis will be performed by the KLOE experiment at DaΦne [15].

B. Extraction of δ0 − δ2: Discussion

Finally we turn to the extraction of δ0 − δ2 from K → ππ data. The relation to be used
is:

δ0 − δ2 = (χ0 − χ2)fit + γ2 − γ0 . (49)
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As shown by Eq. (49), the extraction of the strong phase difference relies on two distinct
inputs:

1. The first one comes from the fit to K → ππ branching ratios, which provides χ0 − χ2.
In Sect. VA we discussed such a fit and pointed out the sensitivity of χ0 − χ2 to
cuts used for soft real photons. In the absence of information on these cuts a precise
determination of χ0 − χ2 is not possible and our conclusion is that the error bars are
larger than previously thought:

χ0 − χ2 = (56 ± 8)o (50)

2. The second input concerns the magnitude of γ2 − γ0. We have thus far established
a general framework (based on unitarity) for the analysis of these isospin breaking
phases. We found that γ2 receives a ∆I = 1/2 enhancement and the dominant effect
is due to isospin mixing in the ππ rescattering rather than to radiative intermediate
channels. We have provided an estimate of T20 at lowest order in the chiral expansion,
leading us to write:

γ2 − γ0 = 3.2o + γ
(e2p2)
2 . (51)

The possibility of large chiral corrections to T20 (associated with γ
(e2p2)
2 ) cannot be ruled

out, given the results obtained in the analysis of other EM corrections (violations of
Dashen’s theorem and the K → ππ amplitudes).

In light of the previous discussion, we give the following value for δ0−δ2 from K → ππ data:

δ0 − δ2 =
(

59 + γ
(e2p2)
2 ± 8

)o
. (52)

The leading order estimate for γ2 is seen to worsen the discrepancy between the central values
of weak and strong determinations of δ0−δ2. However, the large uncertainty associated with
radiative corrections makes impossible a precise comparison at this stage. In this sense, the
phase puzzle is alleviated, its cause being a previous underestimate of error bars. Indeed we

believe that the combined effect of radiative corrections to χ0 −χ2 and calculation of γ
(e2p2)
2

can fully resolve the puzzle, providing a satisfactory theoretical formulation of the problem.
In fact, once a more precise extraction of χ0 − χ2 becomes available, Eq. (49) can be used
to extract T20, and thus information on the isospin breaking dynamics in ππ scattering at
s = M2

K .

VI. IMPACT ON CP PHENOMENOLOGY

In the present section we focus on the consequences of our work to CP phenomenology in
the kaon system. Our work gives rise to interesting effects only in the theoretical analysis of
ǫ′. In particular, we provide an estimate of the isospin breaking parameter ΩEM, the effect
of the ∆I = 5/2 amplitude and the phase of ǫ′.

20



The analysis of direct CP-violation in K → ππ proceeds exactly as in the standard
case, except that now we work with the IR finite isospin amplitudes AI and the final state
interaction phases χI associated with them. One can then write

ǫ′ = − i√
2

ei(χ2−χ0)
ReA2

ReA0

[

ImA0

ReA0

− ImA2

ReA2

]

. (53)

Defining

ω =
ReA2

ReA0

, (54)

and neglecting the small effect of δA0/A0 one arrives at

ǫ′ = − i√
2

ei(χ2−χ0) ω
ImA0

ReA0

[

1 − 1

ω

ImA2

ImA0

]

. (55)

We recall here that in the Standard Model analysis the imaginary part of A0 is generated by
the so called gluonic penguin, while the phase of A2 is generated by the electroweak penguin.

In order to make manifest the effects of electromagnetic corrections, we now further study
Eq. (55). The first new effect is to be found in the parameter ω. It is due to the presence of

the ∆I = 5/2 amplitude, distinguishing A2 from A
+
2 (see Eq. (10)). In the usual treatment

one uses the parameter

ω =
ReA

+
2

ReA0

=
1

22.2
. (56)

However, our derivation shows that one should use ω. The two are related by:

ω =
ReA

+
2

ReA0

ReA2

ReA
+
2

= ω
(

1 + f5/2

)

. (57)

The other relevant phenomenon is the leakage of the octet amplitude into A2, providing
the dominant part of δA2. This brings an extra contribution to the CP-violating phase of
A2, essentially generated by the gluonic penguin and transferred to A2 via isospin breaking
effects. This mechanism is usually parameterized by:

Ωiso−brk =
1

ω

Im δAiso−brk
2

ImA0

, (58)

where Ωiso−brk will have contributions from both electromagnetic effects (ΩEM) and from
strong interaction effects (ΩSTR) associated with mu 6= md,

Ωiso−brk ≡ ΩEM + ΩSTR . (59)

The above observations lead us to write:

ǫ′ = − i√
2

ei(χ2−χ0) ω
ImA0

ReA0

[

1 − 1

ω

ImA2

ImA0
+ f5/2 − Ωiso−brk

]

(60)

Comparing Eq. (60) to the standard analysis (not including EM corrections), one identifies
three new effects.
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1. The factor f5/2 appears: it can be obtained by inserting in Eq. (57) our previous
estimates of δA2 and δA+

2 (see Ref. [3]). We find

fEM
5/2 = (9.3 ± 6.1) · 10−2 . (61)

The large uncertainty reflects the one in δA+
2 . We thus find that this effect tends to

increase (although slightly) the central value of ǫ′/ǫ. The authors of Ref. [10] find an
opposite result because they use the “phenomenological” value of A5/2. We believe
that the phenomenological determination of A5/2, as performed in Ref. [10], suffers
from large systematic uncertainties due to neglecting IR effects and the EM phases γI .

2. One has to consider the electromagnetic contribution ΩEM, to be added to existing
estimates of ΩSTR due to strong isospin breaking. Again, the analysis performed in
Ref. [3] enables us to get the magnitude of ΩEM, since we calculated there the octet
induced component of δAEM

2 . Thus we can write:

ΩEM =
Re A0

ReA2
· Im δA2

ImA0
=

Re A0

ReA2
· Re δA2

ReA0
. (62)

Numerically we find:

ΩEM = (6.0 ± 2.5) · 10−2 . (63)

3. One observes that the phase of ǫ′/ǫ is related to χ0 − χ2 and not to δ0 − δ2, although
with the present accuracy it is hard to make a meaningful determination. We find

Φǫ′/ǫ =
(

χ2 − χ0 +
π

2

)

− π

4
= − (11 ± 8)o . (64)

The resulting effect on the real and imaginary part of ǫ′/ǫ is below the sensitivity of
present kaon factories.

We conclude by observing that the individual terms f5/2 and ΩEM have a respectable size
but enter in the expression for ǫ′ with opposite sign. The net effect has a very small central
value with a large uncertainty.

VII. CONCLUSIONS

In this paper we have attempted a full phenomenological analysis of K → ππ decays
in the presence of electromagnetic interactions. We have provided a general parameteriza-
tion of K → ππ amplitudes to include the effect of isospin breaking interactions. Such a
parameterization has allowed us to organize the calculation in terms of three main effects:
structure dependent corrections (see Refs. [1–3]), electromagnetic infrared corrections, and
isospin breaking in final state interactions. We have also studied the effect of electromagnetic
corrections on the direct CP-violation parameter ǫ′.
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A. IR Effects: Need for New B.R. Measurements

It is well known that the calculation of IR effects requires knowledge of the experimen-
tal cuts used in treating the soft photons emitted in the K → ππ decays. In Sect. V we
have pointed out that the PDG numbers come with no information concerning the radia-
tive channel, and this seriously compromises any attempt to properly include the radiative
corrections. In the absence of experimental input, we have performed a calculation of the
IR effects in a simple theoretical scheme (isotropic cut on the photon energy in the center
of mass system). We have shown how this incomplete state of affairs produces uncertainties
larger than previously thought in the EM-free quantities

We strongly urge that a measurement of the K → ππ branching ratios be performed at
one of the current high statistics kaon experiments. To be precise, it would be interesting to
have a set of measurements of Γn(ω) (n = +−, +0) at different values of ω (the soft photon
upper cutoff in the center of mass frame). This would allow anyone to apply our calculation
of G+− and G+0 in making a phenomenological analysis (as in Sect. V). Of course, each
distinct experimental procedure would require its own theoretical calculation of G+−,+0. All
such studies would be equally welcome, as long as they provide information on the inclusive
sum of ππ and ππγ channels. We stress that such measurements are necessary in order to
fully address the impact of EM on K → ππ decays.

B. Final State Interaction Phases

We have shown that isospin breaking changes the description of rescattering phases in
K → ππ decays, as Watson’s theorem is no longer applicable. We have described this new
feature within the general framework provided by the unitarity relations, pointing out that
the relevant effect is of electromagnetic origin. In Sect. IV we have set up the framework
relating the extra phases γ0,2 to EM effects in ππ scattering. Our leading order analysis
finds a large effect in γ2, equal to 50% of the strong phase δ2. The general framework
presented has the potential to fully resolve the long standing inconsistency between the
strong determination of δ0 − δ2 at s = M2

K and the one emerging from K → ππ data. At
present, little can be concluded due to the large uncertainty in the phase χ0 − χ2 and the

lack of a calculation for γ
(e2p2)
2 . The first problem will be solved by new measurements of the

branching ratios (including proper information on radiative effects). The second problem
depends on the theoretical ability to calculate EM corrections to ππ scattering at order e2p2

in the chiral expansion.

C. CP Phenomenology

Finally, we have analyzed the impact of electromagnetic corrections on CP phenomenol-
ogy (see Sect. VI), pointing out the new features in the study of ǫ′/ǫ. The isospin breaking
effects can be encoded into the factors Ω and f5/2, and also affect the phase of ǫ′. Both f5/2

and Ω receive contributions from strong isospin breaking and electromagnetism. We have
provided an estimate for the electromagnetic effect, finding results of the order of 10%, for
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these parameters. They appear with opposite sign, and thus do not produce sizeable shifts
in the theoretical prediction of ǫ′/ǫ.
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