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ABSTRACT 

 

VIBRATIONAL SPECTROSCOPY OF INTERMEDIATES OF C-H BOND 

ACTIVATION BY TRANSITION METAL OXIDE CATIONS 

 

SEPTEMBER 2010 
 

GOKHAN ALTINAY, B.Sc., BOĞAZĐÇĐ UNIVERSITY 
 

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST 
 

Directed by: Professor Ricardo B. Metz 
 
 
 

Direct, efficient oxidation of alkanes is a long-standing goal of catalysis. 

Gas phase FeO+ can convert methane to methanol and benzene to phenol under 

thermal conditions. Two key intermediates of these reactions are the [HO-Fe-R]+
 

insertion intermediate and Fe+(ROH) (R=CH3 or C6H5) exit channel complex. 

This work describes measurements of the vibrational spectra of these 

intermediates and electronic structure theory calculations of the potential energy 

surfaces for the reactions. They help to characterize the mechanism for these 

reactions. Chapter 1 describes previous studies of methane-to-methanol and 

benzene-to-phenol conversion by gas-phase transition metal oxide cations. 



 ix

Spectra of gas-phase reaction intermediates are obtained using photofragment 

spectroscopy, in which absorption of a photon leads to bond breaking.  

Utuilizing this technique to measure vibrational spectra is challenging, due to 

the low photon energies involved. Techniques used to measure vibrational 

spectra of ions – argon tagging, infrared multiple photon dissociation (IRMPD), 

vibrationally mediated photodissociation (VMP) and infrared laser assisted 

photodissociation spectroscopy (IRLAPS) are also detailed in chapter 1.  The 

photofragment spectrometer and laser systems used in these studies are 

described in chapter 2, as is a multi-pass mirror arrangement which I 

implemented. This greatly improved the quality of vibrational spectra, 

particularly those measured using IRMPD. 

Chapter 3 describes studies of the O-H and C-H stretching vibrations of 

two intermediates of the FeO+ + CH4 reaction.  These intermediates are 

selectively formed by reaction of laser ablated Fe+ with specific organic 

precursors and are cooled in a supersonic expansion. Vibrations of the sextet and 

quartet states of the [HO-Fe-CH3]
+ insertion intermediate and Fe+(CH3OH) exit 

channel complex are measured by IRMPD and Ar-tagging.  Studies of the O-H 

stretching vibrations of the [HO-Fe-C6H5]  + and Fe+(C6H5OH) intermediates of 

the FeO+ + C6H6 reaction are discussed in chapter 4. For Fe+(C6H5OH), the O-H 

stretch is observed at 3598 cm-1. Photodissociation primarily produces Fe+ + 

C6H5OH.  IRMPD of [HO-Fe-C6H5]  + mainly produces FeOH+ + C6H5 and the 

O-H stretch spectrum consists of a peak at ~3700 cm-1 with a shoulder at ~3670 

cm-1. 



 x

Chapter 5 compares three techniques - IRMPD, argon-tagging, and 

IRLAPS – in the quality of the measured vibrational spectra of Ag+(CH3OH) 

ions produced under identical conditions.  The sharpest spectrum is obtained 

using IRLAPS. The O-H stretch is observed at 3660 cm-1. Monitoring loss of 

argon from Ag+(CH3OH)(Ar) gives a slightly broader peak, with no significant 

shift.  The vibrational spectrum obtained using IRMPD is shifted to 3635 cm-1, 

is substantially broader, and is asymmetrical, tailing to the red. 
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CHAPTER 1 

 
 

INTRODUCTION 

 

1.1 Introduction 

From practical, economic and environmental standpoints transition metal 

catalyzed reactions are set to dominate the chemical industry in the 21st century. 

Therefore, it is not surprising that the field of transition metal catalysis has been and 

will remain central to academic and industrial chemistry. The oxidative insertion of 

transition metals into the C-H bonds of hydrocarbons, a key step in many catalytic 

reactions, is well-documented.1, 2 This is challenging to do for simple alkanes, 

especially for methane due to its very strong C-H bonds.  

Methane is abundant - the energy equivalent of global natural gas reserves will 

soon surpass those of petroleum3 - yet it is underutilized as a precursor for chemicals 

and liquid fuels due to the difficulty of transporting this permanent gas.4 There has thus 

been a great deal of effort directed towards efficient conversion of methane to easily 

transportable and more synthetically useful liquids such as larger hydrocarbons or 

methanol. As a result, the direct, efficient conversion of methane to methanol been 

called a “holy grail” of catalysis.5 

Isolated transition metal ions (M+) in the gas phase have an extremely rich 

chemistry, activating C-H and C-C bonds in hydrocarbons at room temperature.6, 7  

 M+ + CnH2n+2 � MCnH2n
+ + H2 C-H activation              (1.1) 

 M+ + CnH2n+2 � MCn-1H2n-2
+ + CH4 C-C activation              (1.2) 
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This has led to extensive studies of the reactions of M+ (and related reactions of metal 

oxide cations MO+) by several groups.  

 MO+ + CnH2n+2 � M+ + CnH2n+1OH oxidation                   (1.3) 

In addition to interest in the inherent reactivity, these studies are motivated by the desire 

to understand the chemistry of a complex condensed phase system through detailed 

experiments and theory on the simpler gas phase reactions. In this thesis I am going to 

concentrate on studies of C-H activation by MO+. 

1.2 Methane activation by MO+  

The catalytic conversion of methane to methanol by M+/MO+ can be written as 

M+ + ½ O2 � MO+                                           (1.4)               

                        MO+ + CH4 � M+ + CH3OH                                           (1.5) 

The early transition metals bind so strongly to oxygen that reaction of MO+ with 

methane is endothermic. Some of the late transition metals bind oxygen so weakly that 

reaction (1.4) is endothermic.8  

In 1990 Schröder and Schwarz reported that gas-phase FeO+ directly converts 

methane to methanol under thermal conditions(at 300 K).9 The reaction is efficient, 

occurring ~20% of collisions, and is quite selective, producing Fe+ + CH3OH 40% of 

the time (the other major product is FeOH+ + CH3).  More recent experiments reveal 

that NiO+ and PtO+ also convert methane to methanol with good efficiency and 

selectivity.10 This process can be viewed as a model for alkane hydroxylation. Here, 

reductive elimination of methanol corresponds to a formal O-atom transfer from the 

metal oxide to methane.10 Reactions of gas-phase transition metal oxides with methane 

are thus a simple model system for the direct conversion of methane to methanol, which 
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has spurred extensive experimental and computational studies.8, 10-17 In Table 1.1, the 

efficiencies φ and the product branching ratios for reactions of several metal oxide 

cations with methane are summarized. 10 The reaction of FeO+ has attracted particular 

interest.  

 

1.3 Benzene activation by MO+ 
 
 

Schwarz, Schröder and coworkers also showed that, under thermal conditions, 

several gas-phase metal oxide cations MO+ react efficiently with benzene to produce 

phenol with good selectivity.18  The reaction of FeO+ has been particularly well-studied.  

This is the prototypical arene reaction. Oxidation of benzene is more exothermic than 

methane. The reaction efficiency and selectivity are higher as well. In Table 1.3, the 

efficiencies φ and the product branching ratios for reactions of many metal oxide 

cations with benzene are summarized. 
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MO+ 
 

% Efficiency 
(φ) 

Products 
M+ + CH3OH MOH+ + CH3 MCH2

+ + H2O 
MnO+ 

 
40 <1 100 - 

FeO+a 

 
20 41 57 2 

FeO+b 

 
9 39 61 Trace 

FeO+c 

 
7 18 82 - 

CoO+ 

 
0.5 100 - - 

NiO+ 

 
20 100 - - 

PtO+ 

 
100 25 - 75 

  

Table 1.1 Reaction efficiencies and selectivities of MO+ with methane at thermal 

energies. Values are from ref.10,except for: (a)1990 ICR study9; (b) 1997 ICR study15; 

(c)1997 SIFT study15 
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MO+ 

 

% 
Efficiency 

(φ) 

Products 

M+ + C6H5OH MOH+ + C6H5 MC6H4
+ + H2O MC5H6

++CO 

CrO+ 

 
100 100    

MnO+ 

 
100 67 15 18  

FeO+ 100 56  5 37 

CoO+ 

 
100 70   30 

NiO+ 

 
100 100    

 
 
Table 1.2 Reaction efficiencies and selectivities of MO+ with benzene at thermal 

energies.18, 19
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1.4 Studies of intermediates 

 
1.4.1 Electronic spectroscopy 
 
 
           Our group has studied the reactants, intermediates and products of C-H bond 

activating reactions by MO+. Intermediates are formed by reaction of M+ (produced by 

laser ablation) with an appropriate organic precursor and subsequently cooled. In 

previous work, we have measured their electronic spectroscopy and photodissociation 

dynamics using photofragment spectroscopy in the visible and ultraviolet.8, 14  In this 

technique, absorption of photons is monitored by photodissociation. Photofragment 

spectroscopy not only allows us to study the spectroscopy of these systems but also 

often gives information on the dissociation dynamics (fragmentation pathways and, in 

certain cases, kinetic energy release (KER)). 

 Electronic spectroscopy is useful for measuring positions of excited electronic 

states. In some cases the electronic spectrum contains resolved vibrational structure, 

which allows characterization of bonding in the excited state. However, electronic 

spectroscopy of cold molecules does not give any information on vibrations in the 

ground state. Also, the electronic spectrum is usually very broad and unstructured 

particularly for larger molecules and for non-covalent complexes with multiple ligands. 

Also, complexes with different metals give completely different electronic spectra, 

which makes it experimentally challenging to study periodic trends. 
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1.4.2 Vibrational spectroscopy  

Obtaining the vibrational (IR) spectra of these systems will broaden our 

horizons to describe the bonding in the ground states of the ions. Measuring the 

vibrational spectrum determines the structure and bonding characteristics of the 

intermediates and illuminates the mechanism of ligand activation by the metal center. 

IR spectroscopy is advantageous over electronic spectroscopy because it is applicable to 

all transition metals and their compounds. This feature will increase our ability to 

examine different organometallic systems in our apparatus. IR spectroscopy of the 

reaction intermediates will enhance our chance to understand the mechanism of C-H 

and C-C bond activation reactions of M+ and MO+ in the ground electronic state.  

 
1.5 Vibrational spectra of ions 
 
 
Vibrational spectroscopy is widely used to measure structure and bonding of gas-phase 

ions.14, 20-23  For most ions, low ion densities preclude direct absorption studies. As a 

result, photofragment spectroscopy, in which absorption of light leads to fragment ion 

formation (and parent ion depletion) is widely used.  The primary challenge in applying 

photofragment spectroscopy to measure vibrational spectra is that light absorption needs 

to lead to bond breaking.  One photon in the O-H stretching region has ~45 kJ/mol of 

energy, so vibrational photofragment spectroscopy requires studying weakly-bound ions 

or absorption of multiple photons. Popular techniques for vibrational spectra of ions 

include infrared multiple photon dissociation, messenger spectroscopy, and two-color 

techniques such as vibrationally mediated photodissociation and infrared laser assisted 

photodissociation spectroscopy. 
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1.5.1 IRMPD 
 

Infrared multiple photon dissociation (IRMPD) can be achieved by IR radiation 

with high laser fluences. Photodissociation requires that the molecule sequentially 

absorb several photons, which provide sufficient energy to break the weakest bond, and 

that this energy find its way from the initially-excited vibration to the dissociation 

coordinate. A high density of vibrational states and efficient intramolecular vibrational 

redistribution (IVR) facilitate IRMPD by maintaining the resonance that would 

otherwise be lost due to anharmonicity and by transferring energy from the vibration 

excited to the dissociation coordinate.24 Small molecules such as Fe+(CH3OH)  and 

Ag+(CH3OH) have relatively high binding energies and low IVR rates, and are thus 

challenging to study via IRMPD. IRMPD is often more efficient for larger molecules, 

such as Fe+(Phenol). Despite its simplicity, IRMPD has several disadvantages.  It 

requires high laser fluences, which can lead to spectral broadening.  Multi-passing the 

IR beam can help to overcome this problem.  A more fundamental problem is that 

IRMPD preferentially dissociates hot molecules, as they require fewer photons to 

dissociate.  This leads to spectral broadening, and often to tailing of peaks to the red.25 

 

1.5.2 Argon tagging 

Messenger spectroscopy avoids many of the drawbacks of IRMPD. In 

messenger spectroscopy, a weakly-bound atom or molecule is attached to the ion of 

interest. Absorption of one IR photon by the chromophore leads to loss of the 

messenger.26 This allows much lower laser fluences to be used than for IRMPD. Argon 

is the most widely used messenger (hence the technique is often termed “argon 
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tagging”).26-32 Argon usually binds strongly enough that the tagged ions can be readily 

produced in a molecular beam source, but weakly enough that absorption of one photon 

leads to dissociation. Vibrational resonances observed via tagging are usually sharp. 

This is due to the small ion-Ar binding energies, which ensure that Ar-tagged ions are 

vibrationally cold. Usually, the tag only slightly perturbs the vibrational spectrum of the 

ion. However, there are some ions for which rare-gas tagging significantly perturbs the 

spectrum.32, 33  To check for this, it is useful to measure, and use calculations to predict, 

spectra with varying number of  argon atoms attached, and even to use another tag such 

as neon.34 

 
1.5.3 VMP and IRLAPS 

 

Two-color methods combine one-photon vibrational excitation with selective 

dissociation of vibrationally excited molecules. In vibrationally mediated 

photodissociation (VMP), one-photon absorption in the visible or UV promotes the 

vibrationally excited ions to an excited electronic state from which they dissociate.24, 35-

37 This method requires that the vibrationally excited molecules have a different 

electronic photodissociation spectrum than the remaining, unexcited molecules.  In 

infrared laser assisted photodissociation spectroscopy (IRLAPS), the vibrationally 

excited ions absorb several photons from a second infrared laser and dissociate.38-42 

both have the potential to measure vibrational spectra of unperturbed ions with laser-

limited resolution. This makes them particularly useful for studying small, strongly 

bound ions such as V+(OCO), Co+(H2O) and Ag+(CH3OH).   
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This thesis is organized in the following manner. Chapter 2 describes the 

experimental techniques employed in these studies including details of the apparatus, 

laser systems and data acquisition used. In Chapter 3, we investigate the potential 

energy surface (PES) of the reaction FeO+ + CH4 � Fe+ + CH3OH in both sextet and 

quartet spin states and measure the O-H and C-H stretching frequencies of  the [HO-Fe-

CH3]
+ insertion intermediate and Fe+(CH3OH) exit channel complex using infrared 

multiple photon dissociation (IRMPD) and argon-tagging  techniques. In Chapter 4, we 

extend our vibrational spectroscopy study from the simple alkane to simple aromatic 

system of benzene to phenol conversion by FeO+. We measure vibrational spectra of the 

[HO-Fe-C6H5]
+ insertion intermediate and the Fe+(C6H5OH) exit channel complex in 

the O-H stretching region. In Chapter 5, we compare three different techniques for 

vibrational spectroscopy of ions - IRMPD, Ar tagging and IRLAPS - and apply them to 

Ag+(CH3OH). Finally, Chapter 6 discusses extensions and suggestions for future work.  
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CHAPTER 2 
 
 

EXPERIMENTAL 

 
2.1 Apparatus Overview and Modifications 

 

 The apparatus in which all the studies were performed is schematically 

illustrated in Figure 2.1 below. It is a dual Wiley-McLaren type time-of-flight mass 

spectrometer. It has been described in detail previously.1, 2 I will describe each part in 

detail. 

(A) Minilite (Continuum) ablation laser is focused onto a rotating metal rod to produce 

ions.  

(B) Selected transition metal rod. Laser ablation of a metal rod creates a mixture of 

metal clusters, neutrals, and multi-charged ions in addition to the desired singly charged 

cations. 

(C) Metal ions react with a precursor gas, which is introduced through a pulsed valve, 

to produce the ion of interest. Before they reach the skimmer, collisions with the bath 

gas cool the ions. Backing pressure of the gas mixture is generally 1-5 atm. 

(D) Skimmer: It allows ions to enter the accelerator along the beam axis. 

(E) Accelerator: Using a pulsed electric field ions gain 1800 V kinetic energy at this 

point. 

(F) Re-reference the ions to ground potential before entering the field-free flight tube. 
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(G) Einzel Lens and (H) Deflectors: Focus and guide the ions through a hole into the 

detector chamber. 

(I) Mass Gate: It selects the ions that will be photodissociated. It is the final deflector, 

which turns the ion beam to pass through the 5° angle through the reflectron. 

(K) Reflectron: It decelerates the ions and then reaccelerates them, so that fragment ions 

will have different flight times from the parent.3Multi-pass mirrors were added in this 

region and will be described in section 2.2. 

(J) Photodissociation Laser: Target ions are photodissociated at the turning point of the 

reflectron. Fundamental or frequency doubled output of a tunable Nd:YAG pumped dye 

or IR laser photodissociates the selected ions.  

Dye Laser System: it is tunable between 220 to 900 nm with 0.08 cm
-1

 linewidth with 

mixing and doubling crystals. 

The IR laser System: Using a combination of 532 nm OPO and 1064 nm pumped OPA 

system we get tunable near IR light with a range between 712 to 880 nm and mid IR 

from 1.35 to 5.0 microns. (2000-7400 cm
-1

) 

(L) Detector: The detector consists of a stack of two 40 mm dia. micro-channel plates, 

which efficiently detect ions and are sufficiently large to ensure all fragments and 

parents are detected. We can identify the masses of both parent and fragments by their 

flight times. The final signal is amplified and collected on a digital oscilloscope. Using 

a gated integrator system we can also measure the area under the peaks. A Labview 

program enables us to average the signal and save as a wavelength scan format. Also, 

immediate identification of the dissociation channels at a given wavelength is possible 
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using a difference spectrum with laser on and off system. The repetition rate for the 

experiment is that of the ablation and fragmentation lasers, 20 Hz. 

The source region (to the left of the skimmer (D)) is maintained at ~ 10-4 torr by a 6" 

diffusion pump; the differential region (between the skimmer and the ion optics (G)) is 

kept at ~ 10-6 torr by a 4" diffusion pump, and the detector (L) is kept at ~ 10-8 torr by 

a turbomolecular pump. 

 

2.2 Multi-pass laser beam system 

 

 In order to maximize the photodissociation yield, particularly in infrared 

multiple-photon dissociation, I implemented a multipass system for the dissociation 

laser(s).  We considered several designs, and settled on a “Perry cell.” 4 This is a 

multipass cell with two-spherical mirrors which has also been used for molecular beam 

absorption spectroscopy using a laser source.  It is schematically shown in Figure 2.2. 

This system has following features: 

i) Efficient coupling to a collimated molecular beam because the rays collectively form 

a small, easily adjustable waist in the center of the cell. 

ii)  All rays nearly perpendicular to a collimated molecular beam, minimizing Doppler 

broadening. The pattern of reflected spots on each mirror approximates a narrow 

parabola. 

iii)  The number of passes is easily and quickly adjustable. We obtain 21 passes in our 

system. 

iv) Off-the shelf commercial mirrors may be used.  
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Quantity Symbol 

Radius of curvature of the mirrors R 

Mirror spacing L 

Fractional deviation of mirror spacing from concentricity є 

Height of each spot pattern on each mirror  h 

Vertical waist of ray pattern in center of cell a 

Number of passes N 

Number of spots on each mirror n 

Wavelength  λ 

Spot size at center ωo 

Spot size at mirrors ω 

 

Table 2.1 Parameters and typical values for Perry cell. 4 
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The number of passes depends on the radius of curvature of the mirrors and, very 

sensitively, on the distance between them.  Following Kaur, et al.4 one can analyse the 

Perry cell as follows (See Table 2.1 for definitions of symbols used). 

The number of spots on each mirror is 

 n=2h/a    (2.1) 

The total number of passes through the cell is 

 N=2n + 1   (2.2) 

In the concentric limit, the mirrors would be spaced by L=2R.  In practice, the spacing 

used is very close to this value. The fractional deviation of L from the concentric value 

is 

 є =(2R-L)/2R   (2.3) 

typically,  є = 0.0015.  In order to maximize the number of passes, the spot size at the 

mirror should remain constant.  The required spot size at each mirror is 

 ω = (L λ /2 π)1/2 є -1/4  (2.4) 

The number of spots on each mirror is 

 n= 0.25 π  є -1/2  (2.5) 

Combining equations 2.4 and 2.5, 

 ω = (2 n L λ)1/2 / π  (2.6) 

Including the constraint that clipping of the input beam be minimized, one can obtain 

 nmax = (h2 π4 / 18 L λ)1/3 (2.7) 

Kaur et al. obtained N=41 passes.  In our experiment, the vacuum system limits the 

allowed spacing between the mirrors.  In addition, since we wish to use standard, off-
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the-shelf mirrors, this greatly limits their radius of curvature.  We use 2” diameter 

mirrors, with a 6” radius of curvature.  The mirrors are silver coated, so they are >98% 

reflective throughout the mid-IR.  The mirrors are mounted on 3-control adjustable 

mirror mounts.  In addition to tweaking the alignment of the mirrors, this allows us to 

change the distance between them.  As equation 2.5 shows, this adjustment is critical in 

maximizing the number of passes.  Equation 2.4 implies that the light entering the Perry 

cell is not collimated.  Rather, it focuses just before the first reflection.  In our system, 

the light enters the vacuum chamber through an anti-reflection coated ZnSe lens with a 

focal length of ~12.” As the IR laser beam is not visible to the naked eye, we overlap 

the IR beam with a visible HeNe laser beam, which we use for alignment.  The beams 

are combined using a ZnSe flat, which is placed at Brewster’s angle to the IR laser 

beam. The HeNe is reflected off the top surface of the ZnSe flat.  We find that it is very 

easy to obtain 3-4 spots on each mirror (~8 passes), but that obtaining more passes 

requires carefully tuning the separation of the mirrors.  We can obtain (and maintain) 10 

spots (21 passes) without too much effort.  The spots get slowly, but consistently larger. 

Obtaining more passes would likely require adjusting the focal length of the lens. After 

20 passes, assuming 98% reflectivity, the incident beam retains 67% of its initial 

intensity. 
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Figure 2.1 Schematic view of the Dual Time-of-Flight Reflectron Mass Spectrometer. 

Labels are described in the text. 
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Figure 2.2 Perry-type multipass mirror setup. 
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2.3 Laser Systems 

 
These studies employed two Nd:YAG lasers (Continuum Powerlite 8020 and 

Minilite II), a custom-made tunable Nd:YAG-pumped IR laser (LaserVision), and a 

pulsed, tunable CO2 laser (Infralight SP) in these studies. The Nd:YAG lasers will be 

briefly described. Due to installation of the new IR laser system and first time use, It 

will be discussed in detail in section 2.3.2. 

2.3.1 Nd:YAG Lasers 

 
Powerlite 8020 and Surelite I series are high energy Q-switched Nd-YAG lasers; 

the lasing medium is a Nd:YAG rod (Nd+3 ion at low concentration in yttrium aluminum 

garnet) excited by the discharge of energy from high voltage flashlamps. The aim of Q-

switching is to achieve a large population inversion in the absence of the resonant 

cavity, then to force the population-inverted medium into a cavity, and hence to obtain a 

sudden pulse of radiation. In practice, Q-switching gives pulses of about 5 ns duration. 

The technique allows the production of light pulses with extremely high peak power, 

much higher than would be produced by the same laser if it were operating in a 

continuous wave mode.  

The Powerlite 8020 can produce >l J/pulse output at 1064 nm, ~ 550 mJ/pulse at 

532 nm, and ~ 300 mJ/pulse at 355 nm. We can use a maximum of 550 mJ/pulse at 

1064 nm to pump the IR laser system. The linewidth is ~0.7 cm-1 at 1064 nm. In 

addition, the oscillator can be injection seeded, reducing the linewidth to ~ 0.001 cm-1. 

This is useful in mixing the Nd:YAG fundamental with the dye laser output, or for 

pumping a narrow band optical parametric oscillator (OPO) such as our IR laser system. 
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The Surelite I-20 produces ~420 mJ/pulse at 1064 nm, ~160 mJ/pulse at 532 nm, and 

~60 mJ/pulse at 355 nm.  The Minilite laser is used for ablation of the metal rod. 

Usually, 15 mJ power per pulse at 532 nm is enough for vaporization. All Nd:YAG 

lasers operate at 20 Hz repetition rate. The ablation laser flash lamps are triggered by a 

digital delay generator. The Q-switch is internally clocked to fire ~ 150 µs later. 

Because of the experimental need for precise timing of the dissociation lasers, the 

flashlamps and Q-switch are separately and externally triggered by the pulse generator. 

This timing is particularly important for the vibrationally mediated photodissociation 

experiments, where the delay between the IR and visible lasers is ~40 ns.  

2.3.2 IR Laser 

 
 

The IR laser system used in our experiment is a two-stage nonlinear device 

designed to convert the fixed-frequency output of a Nd:YAG laser system into tunable 

radiation in the mid-infrared.  Using a combination of a 532 nm pumped optical 

parametric oscillator (OPO) and a 1064 nm pumped optical parametric amplifier (OPA), 

the system will produce an output that is tunable from 712 to 880 nm and from 1.35 to 

5.0 microns using a single set of nonlinear crystals.  

The system is pumped by an injection seeded Powerlite 8020 Nd:YAG laser 

producing roughly 550 mJ/pulse at 1064 nm.  A beamsplitter divides the horizontally 

polarized incoming 1064 nm pump into two separate beam lines.  One beam is 

frequency doubled in KTP to provide the 532 nm pump light for the OPO while the 

second is directed through a delay before recombination with the idler output of the first 
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stage.  The combined beams are then directed into a 1064 nm pumped OPA stage for 

difference-frequency generation. 

In both the 532 and 1064 nm stages, pairs of crystals of equal length are used 

and counter-rotated to compensate for beam displacement.  Two KTP crystals are used 

in the 532 nm pumped oscillator stage. The OPO “divides” light at 532 nm (18797 cm-1) 

into a visible signal beam (tunable from 710 nm to 880 nm, or 11364 – 14085 cm-1) and 

a complementary near-IR idler beam (2.1 – 1.35 microns, or 7433 – 4712 cm-1). The 

OPO uses a grazing incidence grating cavity design, which reduces the bandwidth of the 

visible output to ~0.2 cm-1. The OPA uses four KTA crystals to produce the near-IR 

difference between the 1064 nm (9398 cm-1) pump beam and the idler beam, nominally 

producing light from 1965 to 4686 cm-1 (2.1 – 5.1 microns). In practice, the IR laser can 

produce 5 mJ/pulse from 712 to 880 nm,  12 mJ/pulse for the range 1.5 to 3.5 microns, 

7 mJ/pulse at 3.7 microns, 4.5 mJ/pulse at 4.0 microns, 3 mJ/pulse at 4.5 microns, and 

0.5 mJ/pulse at 4.9 microns. The drop in power at longer wavelength is due to 

absorption by the KTA. If the IR laser is pumped by a seeded Nd:YAG laser, the 

linewidth in the mid-IR is determined by the grating and is ~0.2 cm-1. If an unseeded 

Nd:YAG is used for pumping, the linewidth is ~0.7 cm-1 (the linewidth of the Nd:YAG 

fundamental). For survey scans, a mirror can be used instead of the grating, which also 

leads to ~ 1 cm-1 linewidth, but gives higher power. 

The wavelength is controlled by a servo motor; the crystal angles are each 

controlled by a servo, as the optimum crystal angle depends quite strongly on 

wavelength. All OPO and OPA crystals are controlled through a Microsoft Windows 
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based program running on a personal computer.  Calibration of the IR laser system is 

discussed in section 2.5. 

2.3.3 CO2 Laser 

 

The CO2 laser is a custom-made short pulse, tunable laser made by 

Optosystems, Ltd.  Most CO2 lasers operate either continuously, or in pulsed mode, 

with millisecond pulses.  In our experiments, the ion packet is in the reflectron for such 

a short time that any light lasting longer than ~200 ns does not overlap the ion beam.  

Our CO2 laser produces short pulses by using platinum electrodes (rather than nickel) 

and by using a gas mixture of 15% CO2 and 4% N2 in helium.  The typical gas mixture 

used in longer-pulse CO2 lasers is 5% CO2 and 15% N2 in helium. 

The CO2 laser is line-tunable over the P and R branches of two bands.  The 

available wavelengths and powers are shown in table 2.2.  The relationship between the 

grating angle and the wavelength is given by the grating equation: 

λ  =A sin(Θ + Θo)      (2.8) 

where λ is in microns.  To calibrate the laser, one fires the beam through a bag 

containing some ammonia; a loud “snap” is heard if the CO2 laser line is coincident 

with an NH3 absorption (photoacoustic effect).  In this way one identifies a few lines in 

each band. For our laser, A=13.36922 microns and  Θo = 124.78º. The known and 

predicted line positions are shown in table 2.2. 
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Line # Position Position Line µm cm-1 Energy predict Diff. 
 deg.sec deg.    mJ/pulse cm-1 cm-1 
 
1 1.36 1.600 10P36 10.764 929.02 50 929.060 0.040 
2 1.46 1.767 10P34 10.741 931.01 80 931.059 0.049 
3 1.55 1.917 10P32 10.719 932.92 50 932.872 -0.048 
4 2.05 2.083 10P30 10.696 934.93 360 934.903 -0.027 
5 2.15 2.250 10P28 10.675 936.77 110 936.951 0.181 
6 2.24 2.400 10P26 10.653 938.7 100 938.808 0.108 
7 2.33 2.550 10P24 10.632 940.56 440 940.679 0.119 
8 2.41 2.683 10P22 10.611 942.42 495 942.354 -0.066 
9 2.49 2.817 10P20 10.591 944.2 470 944.040 -0.160 
10 2.58 2.967 10P18 10.571 945.98 300 945.950 -0.030 
11 3.07 3.117 10P16 10.551 947.78 190 947.875 0.095 
12 3.15 3.250 10P14 10.532 949.49 140 949.597 0.107 
13 3.23 3.383 10P12 10.513 951.2 140 951.332 0.132 
14 3.3 3.500 10P10 10.494 952.93 180 952.858 -0.072 
15 3.38 3.633 10P8 10.476 954.56 190 954.614 0.054 
16 3.45 3.750 10P6 10.459 956.11 120 956.160 0.050 
17 4.36 4.600 10R8 10.334 967.68 240 967.698 0.018 
18 4.48 4.800 10R12 10.303 970.59 430 970.484 -0.106 
19 4.54 4.900 10R14 10.289 971.91 130 971.888 -0.022 
20 5 5.000 10R16 10.274 973.33 350 973.299 -0.031 
21 5.05 5.083 10R18 10.260 974.66 490 974.480 -0.180 
22 5.11 5.183 10R20 10.247 975.9 200 975.904 0.004 
23 5.22 5.367 10R24 10.220 978.47 260 978.532 0.062 
24 5.27 5.450 10R26 10.207 979.72 390 979.735 0.015 
25 5.32 5.533 10R28 10.195 980.87 350 980.943 0.073 
26 5.37 5.617 10R30 10.182 982.13 270 982.156 0.026 

 
 
 
 
Table 2.2 CO2 laser line assignment and calibration 
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27 5.41 5.683 10R32 10.170 983.28 190 983.131 -0.149 
28 5.46 5.767 10R34 10.159 984.35 100 984.353 0.003 
29 5.51 5.850 10R36 10.147 985.51 50 985.580 0.070 
30 8.51 8.850 9P34 9.675 1033.59 60 1033.401 -0.189 
31 9.05 9.083 9P30 9.639 1037.45 300 1037.437 -0.013 
32 9.18 9.300 9P26 9.604 1041.23 250 1041.229 -0.001 
33 9.25 9.417 9P24 9.588 1042.97 455 1043.288 0.318 
34 9.31 9.517 9P22 9.569 1045.04 320 1045.063 0.023 
35 9.37 9.617 9P20 9.552 1046.9 50 1046.848 -0.052 
36 9.48 9.800 9P16 9.520 1050.42 160 1050.143 -0.277 
37 9.55 9.917 9P14 9.504 1052.19 176 1052.257 0.067 
38 10 10.000 9P12 9.488 1053.96 130 1053.775 -0.185 
39 10.06 10.100 9P10 9.473 1055.63 60 1055.604 -0.026 
40 10.54 10.900 9R8 9.342 1070.43 20 1070.594 0.164 
41 10.58 10.967 9R10 9.329 1071.93 220 1071.872 -0.058 
42 11.02 11.033 9R12 9.317 1073.31 310 1073.154 -0.156 
43 11.07 11.117 9R14 9.306 1074.58 110 1074.764 0.184 
44 11.11 11.183 9R16 9.294 1075.96 467 1076.056 0.096 
45 11.15 11.250 9R18 9.282 1077.35 340 1077.354 0.004 
46 11.19 11.317 9R20 9.271 1078.63 60 1078.655 0.025 
47 11.22 11.367 9R22 9.261 1079.8 50 1079.635 -0.165 
48 11.27 11.450 9R24 9.250 1081.08 230 1081.273 0.193 
49 11.3 11.500 9R26 9.240 1082.25 280 1082.259 0.009 
50 11.34 11.567 9R28 9.230 1083.48 280 1083.578 0.098 
51 11.38 11.633 9R30 9.220 1084.63 210 1084.902 0.272 
52 11.41 11.683 9R32 9.210 1085.74 190 1085.898 0.158 
53 11.44 11.733 9R34 9.201 1086.84 50 1086.897 0.057 

 

Line # Position Position Line µm cm-1 Energy predict Diff. 
 deg.sec deg.    mJ/pulse cm-1 cm-1 

 

 

Table 2.2, Continued CO2 laser line assignment and calibration
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2.4 Photofragment Spectroscopy 

 

 Photodissociation requires the absorption of a photon with sufficient energy to 

break a bond; furthermore, bond cleavage must occur on a time scale faster than that for 

fluorescence. In photofragment spectroscopy, monitoring fragment yield at a single 

wavelength produces a time of flight mass spectrum, identifying the dissociation 

products and corresponding branching ratios. If over a series of runs the area under one 

fragment peak is integrated with respect to a varying wavelength, then a 

photodissociation spectrum will be produced showing those molecules which absorb a 

photon to give a particular fragment. 

 After each run (each time the dissociation laser is fired, at a particular 

wavelength, and fragments are detected), a conventional time-of-flight mass spectrum is 

produced. Measuring a mass spectrum with the laser ON and subtracting one obtained 

with the laser OFF give a difference mass spectrum, see figure 2.3. This measurement 

immediately reveals the percent dissociation of the parent. It also gives information on 

the masses of the fragment ions produced, and their branching ratios. 

 Monitoring the yield of a particular fragment ion as a function of laser 

wavelength gives the photodissociation spectrum.  This is the product of the absorption 

spectrum and the photodissociation quantum yield.  The photodissociation spectrum is 

measured using a gated integrator for each fragment of interest, and one for the parent, 

for normalization.  In some cases, monitoring different fragments gives different 

photodissociation spectra, as is observed in chapters 3.3.3.1 and 4.3.2. 
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Figure 2.3 Difference mass spectrum obtained from photodissociating [HO-Fe-CH3]

+ at 
300 nm. 
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2.5 Laser Calibration 

 
Calibration of the wavelengths of our laser systems is essential for the 

assignment of the peaks in the spectra and to ensure accurate spectroscopy. There are 

two fundamental methods of determining the wavelength of a laser, spectroscopic 

calibration and instrumental measurement.5 Instrumental measurement of is very 

difficult for pulsed lasers, so we use spectroscopic calibration. 

Recording standard spectra is the simplest way to measure laser wavelength. In 

each spectroscopic region, this can be achieved by absorption spectra of simple, well-

characterized systems. The choice of species depends entirely on the region of the 

spectrum under study, but in general small, stable molecules are employed.6 To record 

the absorption spectra we typically use the photoacoustic technique.  For calibration in 

the mid-IR, we typically use water and methane.  A small portion of calibration spectra 

in two regions are shown in figure 2.4. 
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Figure 2.4 Calibration of the IR laser. Photoacoustic spectra are compared to tabulated 
intensities (HITRAN database). 7 
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CHAPTER 3 

 

VIBRATIONAL SPECTROSCOPY OF INTERMEDIATES IN 

METHANE-TO-METHANOL CONVERSION BY FeO+ 

 

3.1 Introduction 

Methanol, one of the top 25 chemicals produced worldwide, is mainly used as a 

primary feedstock for the chemical industry. It has been proposed as the basis for a new 

energy economy by developing its utility as a liquid fuel.1 Currently, commercial 

methane to methanol production is via the indirect synthesis gas (syn-gas) route: 

CH4 + O2 → CO + 2H2 → CH3OH    (3.1)   

The main drawback of this method is the large energy requirement of the first, highly 

endothermic step. Methanol production via direct partial oxidation of methane is 

exothermic and thus has the potential to be significantly more economical and energy 

efficient than the syn-gas process. An efficient method for direct methane to methanol 

conversion is thus highly desirable.2-5  

In nature, efficient conversion of methane to methanol at moderate temperatures 

is observed in methanotrophs, bacteria which obtain all the energy and carbon they need 

for life from methane.2  The reaction is catalyzed by the enzyme methane mono-

oxygenase (MMO), which contains non-heme iron centers in the active site.6, 7  

Although chemists have yet to develop a direct, efficient methane-methanol conversion 

process, significant advances have been made using iron-containing catalysts. An 
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FePO4 catalyst with N2O and H2/O2 as the oxidizing agents shows high catalytic 

selectivity for direct oxidation of methane to methanol at temperatures below 400 °C, 

but the reaction yield is low.4, 8 Other promising approaches include direct oxidation to 

a methyl ester using a platinum catalyst9 and direct methane-methanol conversion using 

an iron-doped zeolite.10 Also noteworthy is the recent report of synthetically useful 

oxidation of unactivated C-H bonds using an iron-based catalyst with H2O2 as the 

oxidant.11 

 As we mentioned in the introduction chapter, in 1990 Schröder and Schwarz 

reported that gas-phase FeO+ directly converts methane to methanol under thermal 

conditions. 12  In later experiments, they compared the efficiency and selectivity of the 

methane to methanol conversion by using different transition metal oxide cations. 13 

The key intermediates in the reaction are the OFe+(CH4) entrance channel 

complex, [HO-Fe-CH3]
+ insertion intermediate and Fe+(CH3OH) exit channel complex. 

Vibrational spectra of intermediates of the neutral MO + CH4 reaction have been 

measured in inert gas matrices for several transition metals.14-16 For HO-Fe-CH3, the O-

H stretch is at 3744.8 cm-1 and the Fe-O stretch at 687.5 cm-1 in solid argon.14, 15 

Our group has studied the electronic spectroscopy of intermediates of the FeO+ 

+ CH4 reaction in the visible and near-UV region. By using specific ion-molecule 

reactions, the key insertion intermediate [HO-Fe-CH3]
+ of the FeO+ + CH4 reaction was 

prepared. Photoexcitation of [HO-Fe-CH3]
+ near 320 nm produces FeOH+ + CH3 and 

also activates the “half-reaction” to yield Fe+ + CH3OH. The photodissociation 

spectrum has well-resolved vibrational structure, with progressions in the Fe-C stretch 

(478 cm-1) and shorter progressions in the Fe-O stretch (861 cm-1) and O-Fe-C bend 
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(132 cm-1).17 These experiments give us information about the vibrations of the 

molecule in its excited electronic state. However, as no vibrational hot bands are 

observed, they don’t provide information on vibrations in the ground electronic state. In 

this work we measure vibrational spectra of intermediates of methane to methanol 

oxidation by FeO+ in the C-H and O-H stretching regions. 

 

3.2 Experimental and Theoretical Methods 

Vibrational spectra are measured using a dual time-of-flight reflectron 

photofragment spectrometer. The instrument is described in chapter 2.18, 19 Iron cations 

are generated by laser ablation of an iron rod (Sigma-Aldrich, 99.8% pure). Fe+ cations 

react with a suitable organic precursor diluted in a carrier gas (He, Ar, or a mixture) to 

produce the target molecule. The choice of precursors is guided by the collisional 

activation (CA) studies of Schröder et al.20 and by our electronic spectroscopy studies of 

this system.17 Details of the precursors used and characterization of the intermediates 

produced are discussed in section 3.3.2. Ions produced in the source expand 

supersonically into vacuum and cool to a rotational temperature of ~10 K.21 Ions are 

accelerated to 1800 V kinetic energy, then re-referenced to ground potential before 

entering the field-free flight tube. Mass-selected ions are photodissociated at the turning 

point of the reflectron. Energetically, photodissociation of [HO-Fe-CH3]
+ requires at 

least three photons in the O-H stretching region. So, vibrational spectra are obtained 

using infrared multiple photon dissociation (IRMPD) of [HO-Fe-CH3]
+ and 

Fe+(CH3OH) and IR resonance enhanced photodissociation (IR-REPD) of argon tagged 

molecules [HO-Fe-CH3]
+(Ar)n and Fe+(CH3OH)(Ar). The photodissociation efficiency 
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is greatly improved by using a multi-pass mirror arrangement22, 23 in which the laser 

makes 21 passes through the ion cloud (see chapter 2). The light source is a Nd:YAG 

pumped optical parametric oscillator which is tunable from 2 to 5 µm, producing ~10 

mJ/pulse near 3600 cm-1. The IR beam path is purged with nitrogen to minimize 

absorptions by water vapor.  The laser wavelength is calibrated using H2O and CH4 

absorptions. Fragment ions and undissociated parent ions are detected by a dual micro-

channel plate detector. 

The ion signal is amplified, collected on a digital oscilloscope or a gated 

integrator, and averaged with a LabView based program.  The photodissociation 

products are identified using a difference spectrum, which is generated by subtracting 

time-of-flight spectra collected at a specific wavelength with the dissociation laser 

blocked from when it is unblocked.  The photodissociation spectrum is obtained by 

monitoring the yield of the fragment ion of interest as a function of wavelength and 

normalizing to parent ion signal and laser fluence.  The photodissociation spectrum is 

the product of the absorption spectrum and the photodissociation quantum yield. 

Computations are carried out with the Gaussian 2003 program package.24 

Optimized geometries of the reactants, intermediates, transition states and products are 

calculated using the Becke Lee-Yang-Parr hybrid HF/DFT method (B3LYP). 

Complementary density functional calculations were also carried out using the PBEPBE 

functional. For iron, the basis set is the SDD basis and relativistic effective core 

potential, as partially uncontracted by Dolg et al.25 The large aug-cc-pVTZ basis set is 

used for the remaining atoms. Vibrational frequencies are computed to ensure that all 

optimized geometries correspond to a local minimum or a first-order saddle point (for  
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transition states). Energies were also calculated the coupled clusters singles and doubles 

with perturbative triples (CCSD(T)) method and the complete basis set (CBS-QB3) 

procedure.26, 27 

 

3.3 Results and Discussion 

This section is organized as follows. First, the calculated potential energy 

surface (PES) and mechanism of the FeO+ + CH4 reaction will be presented. Then, 

precursors and source conditions used to generate specific reaction intermediates and 

their identification will be discussed. Finally, vibrational spectroscopy will be used to 

characterize the O-H and C-H stretches of the intermediates. 

3.3.1 Mechanism of the FeO+ + CH4 Reaction 

Several groups have examined the mechanism for the FeO+ + CH4 reaction, 

characterizing the potential energy surface (PES) at various levels of theory.17, 20, 28-30 

Schröder et al. studied the intermediates using second order Møller-Plesset perturbation 

theory (MP2).20  Later, Yoshizawa and co-workers calculated the geometries and 

relative energies of reactants, products, intermediates, and the transition states between 

them for methane to methanol conversion by all of the first-row transition metal oxide 

cations using B3LYP hybrid density functional theory.28, 29 Our group also examined 

the FeO+ + CH4 PES using the B3LYP method.17   Here, we use CCSD(T) and CBS-

QB3 methods to obtain more accurate energies, as B3LYP calculations have been found 

to underestimate reaction barriers.31, 32 

Figure 3.1 shows the potential energy surface for the FeO+ + CH4 reaction 

calculated using the CBS-QB3 method. Methanol production occurs in a two-step  
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Figure 3.1 Schematic potential energy surface for the FeO+ + CH4 → Fe+ + CH3OH 

reaction and structures of intermediates and transition states. Energies (in kJ/mol) are 

calculated at the CBS-QB3 level of theory. The solid line represents the sextet and 

dashed line the quartet surface. 
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concerted manner through the formation of the hydroxy intermediate [HO-Fe-CH3]

+. 

The minimum energy path involves first producing the OFe+(CH4) entrance channel 

complex. Hydrogen abstraction via TS1 leads to the key [HO-Fe-CH3]
+ insertion 

intermediate.  The FeO+ reactant and Fe+ product have sextet ground states.21 However, 

sextet TS1 lies significantly above the reactants.  Thus, at thermal energies the reaction 

proceeds via low-spin, quartet TS1.  This “two-state” reactivity is a fundamental feature 

of many organometallic reactions and has been examined in detail by Shaik and co-

workers for the FeO+ + CH4 and related FeO+ + H2 reactions33-35 and by Yoshizawa and 

co-workers for the FeO+, NiO+ and CoO+  + CH4 systems.28, 36  The overall reaction 

efficiency is determined by the probability that reactants will cross TS1, which is 

determined by the energy of quartet TS1 and by how readily the initially formed sextet 

entrance channel complex undergoes a spin change to the quartet state. Once produced, 

the [HO-Fe-CH3]
+ insertion intermediate can dissociate to FeOH+ + CH3 or isomerize 

via TS2 to form the Fe+(CH3OH) exit channel complex, which subsequently dissociates 

to Fe+ + CH3OH.  The selectivity to produce methanol rather than methyl radical is 

primarily determined by the relative energies of TS2 and methyl radical products.  

Methyl radical is produced by simple bond fission, so it is entropically favored over 

methanol production, which occurs via the tight transition state TS2.  If TS2 is at an 

energy close to or above methyl radical products, then MOH+ + CH3 products dominate, 

as is observed for MnO+.13, 28  For FeO+ + CH4, TS2 lies somewhat below methyl 

radical products, so both pathways have similar yields at thermal energies, but higher 

translational energy strongly favors methyl radical formation.37 
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To establish the accuracy of the computational methods used, we compare 

calculated and accurate experimental results for the sextet-quartet energy splitting in 

Fe+, the Fe+-O bond enthalpy, and the overall exothermicity of the FeO+ + CH4 → Fe+ + 

CH3OH reaction (Table 3.1).  Experimentally, the ground state of Fe+ is 6D (3d6 4s), 

with the 4F (3d7) state 23.9 kJ/mol higher. Calculations at the B3LYP/6-311+G(d,p) 

level incorrectly predict a quartet ground state, 19.8 kJ/mol below the sextet state. This 

is a well known failure of the B3LYP method with this type of basis set.38, 39  The 

corresponding calculation with the SDD basis set correctly predicts the energy ordering 

of the Fe+ states, as do CCSD(T) calculations. The CCSD(T) method is less sensitive to 

the quality of the reference wave function than other single reference ab initio methods. 

This makes the method quite attractive for transition metals since multi-reference 

methods are often prohibitively expensive for such systems due to the large active space 

which is required for an adequate multi-reference treatment.38 Unfortunately, CCSD(T) 

results often converge very slowly with increasing basis set size, as can be seen in Table 

3.1. An attractive alternative to rigorous (and expensive) CCSD(T) calculations are 

hybrid methods developed for accurate thermochemistry, such as the complete basis set 

CBS-QB3 approach.26, 27 In CBS-QB3, one first optimizes the geometry and calculates 

harmonic frequencies at the B3LYP level. Then, from a series of single point energy 

calculations at various levels of theory and with different basis sets, one extrapolates the 

result of a large basis set calculation at a very high level of theory. CBS-QB3 

thermodynamics have similar accuracy to an extrapolated series of CCSD(T) 

calculations with very large basis sets, and are significantly more accurate than a single 

CCSD(T) calculation with a modest basis set.40  CBS-QB3 calculations also correctly   
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 B3LYP 

6-311+G(d,p) 

B3LYP 

SDD;aug-cc-

pVTZ 

CCSD(T) 

6-311+G(d,p) 

CCSD(T) 

6-311+G(3df,p) 

CBS-QB3 Expt. 

Fe+(6D-4F) -19.8 12.6 32.5 17.3 28.2 23.9 

D0(Fe+-O) 327.3 320.5 

 

277.4 308.5 337.8 340±241 

335±542 

∆Hrxn -22.6 -41.0 -51.2 -45.8 -40.6 -31±2 

 

Table 3.1 Experimental and calculated values of thermodynamic quantities related to 

the FeO+ + CH4 � Fe+ + CH3OH reaction. All values are in kJ/mol, at 0 K. CCSD(T) 

values are at the B3LYP/6-311+G(d,p) geometry, with zero-point energy at the 

B3LYP/6-311+G(d,p) level. The experimental ∆Hrxn is based on Do(FeO+)41 and ∆Hf
o 

of O, CH4 and CH3OH. 
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predict the ordering of the Fe+ states, with the quartet 28.2 kJ/mol above the sextet.  The 

B3LYP calculations slightly underestimate the dissociation enthalpy of FeO+; this is 

consistent with previous B3LYP calculations on FeO+.39 

The CCSD(T) value is low, but improves significantly for the larger basis set. 

The CBS-QB3 calculations are in excellent agreement with experiment.41, 42 For the 

FeO+ + CH4 → Fe+ + CH3OH reaction enthalpy, all the methods are in good agreement 

with experiment.  Table 3.1 shows that, overall, CBS-QB3 calculations most accurately 

predict atomic excitation energies and bond strengths of reactants and products. 

 The potential energy surface for the FeO+ + CH4 reaction at the CCSD(T)/6-

311+G(3df,p) level (Table 3.2) is similar to the CBS-QB3 result. One key difference is 

that the CCSD(T) calculations predict that quartet FeO+ lies 45 kJ/mol above the sextet; 

20 kJ/mol higher than the CBS-QB3 prediction. The relatively higher energies for the 

quartet states persist from the reactants through TS2.  As a result, the CCSD(T) 

calculations predict that quartet TS1 is 12 kJ/mol above reactants, which is inconsistent 

with the observed reaction rate at thermal energies.12, 37 The use of a larger basis set in 

the CCSD(T) calculations would likely improve the results, but significantly larger 

calculations are prohibitively expensive. 

The potential energy surface in Figure 3.1 is similar to previous B3LYP results 

by Yoshizawa and co-workers.28, 29 However, there is one significant difference.  The 

specific basis set used for iron in their B3LYP calculations predicts that quartet Fe+ lies 

89 kJ/mol above sextet Fe+.  This substantial (65 kJ/mol) error leads to the incorrect 

prediction that reaction to form quartet Fe+ + CH3OH is endothermic. In a detailed  
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 CCSD(T)/6-311+G(d,p) CCSD(T)/6-311+G(3df,p) 

Species Quartet Sextet Quartet Sextet 

FeO++ CH4 50 0 45 0 

OFe+(CH4) -51 -92 -63 -99 

TS1 34 59 12 60 

[HO-Fe-CH3]
+ -139 -153 -153 -159 

TS2 -30 -9 -44 -16 

Fe+(CH3OH) -185 -174 -197 -210 

Fe+ + CH3OH -21 -54 -31 -49 

 

Table 3.2 Calculated CCSD(T)/6-311+G(d,p) and CCSD(T)/6-311+G(3df,p) 

energies of stationary points for the FeO+ + CH4 � Fe+ + CH3OH reaction. All energies 

are at the B3LYP/6-311+G(d,p) geometry and include zero-point energy at B3LYP/6-

311+G(d,p). Energies are in kJ/mol. 
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examination of spin changes in the FeO+ + CH4 reaction, Shiota and Yoshizawa find 

that the spin-orbit coupling decreases during the course of the reaction, from 133.6 cm-1 

for OFe+(CH4), to 21.4 cm-1 for [HO-Fe-CH3]
+ and 0.3 cm-1 for Fe+(CH3OH).  As a 

result, in the thermal reaction, the spin changes from sextet to quartet in the entrance 

channel region, but is unlikely to revert to sextet, so quartet Fe+ + CH3OH is 

produced.28, 36 

 

3.3.2 Synthesis and Characterization of [HO-Fe-CH3]
+ and Fe+(CH3OH) 

 

Our group has studied the electronic spectroscopy of intermediates of the FeO+ 

+ CH4 reaction in the visible and near-UV.17 The photodissociation spectrum of [HO-

Fe-CH3]
+ has well-resolved vibrational structure, with progressions in the Fe-C stretch, 

Fe-O stretch and O-Fe-C bend. These experiments give us information on the vibrations 

of the molecule in its excited electronic state but they do not provide information on 

vibrations in the ground electronic state. This motivated the present study of the 

vibrational spectroscopy of the intermediates. 

A major challenge in these studies is to find suitable precursors and reaction 

conditions to selectively produce specific intermediates.  In our earlier study, [HO-Fe-

CH3]
+ was synthesized by reacting ablated Fe+ with methanol, isopropanol or acetic 

acid.  In this work, we find that reaction with methanol produces [HO-Fe-CH3]
+ and 

Fe+(CH3OH), with the relative amounts depending on the source conditions. Measuring 

the types of fragment ions produced by UV photodissociation is a fast, convenient 

method to optimize source conditions to most selectively produce different  
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Figure 3.2  Difference spectra at 320 nm of [FeCH4O]+ ions formed by reacting Fe+ 

with methanol in argon (top) and in helium (bottom). Reaction in argon produces [HO-

Fe-CH3]
+, while the FeH+, CH3

+ and CH3OH+ fragments indicate that reaction in helium 

also forms Fe+(CH3OH). 
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intermediates.  The intermediates are then identified based on the fragments found in 

UV photodissociation and infrared multiple photon dissociation, as well as by their 

vibrational and electronic photodissociation spectra.  Figure 3.2 (top) shows a 

difference mass spectrum obtained by UV photodissociation of ions with stoichiometry 

[FeCH4O]+ made by reacting Fe+ with 0.5% methanol in argon.  The Fe+ and FeOH+ 

fragments observed indicate dissociation of the [HO-Fe-CH3]
+ insertion intermediate. 

They are the only photofragments observed in our earlier electronic spectroscopy study 

of [HO-Fe-CH3]
+. They are also the dominant fragment ions detected when [HO-Fe-

CH3]
+ ions are accelerated to 8 keV and collide with helium in the collisional activation 

(CA) studies of Schröder et al.20 In contrast, photodissociation of [FeCH4O]+ ions 

produced using 0.5% methanol in helium reveals several additional fragments: CH3
+, 

CH2OH+, CH3OH+ and FeH+ (Figure 3.2, bottom).  Collisional activation studies show 

that these additional channels are characteristic of the Fe+(CH3OH) exit channel 

complex.20 CH3OH+ and CH3
+ are also major products in the UV photodissociation of 

Zn+(CH3OH).43 Hydrogen abstraction occurs from the carbon, as confirmed by 

observation of FeD+ and no FeH+ in photodissociation of Fe+(CD3OH). Under these 

conditions, the source produces a mixture of Fe+(CH3OH) and [HO-Fe-CH3]
+.  From 

290 to 330 nm, the photodissociation spectrum of Fe+(CH3OH) (obtained by monitoring 

FeH+, CH3
+, or CH3OH+) is broad and structureless. The relative CH3

+ yield increases at 

longer wavelength, while the CH3OH+ yield decreases.  This is in contrast to the 

spectrum of [HO-Fe-CH3]
+, which has well-resolved vibronic features.17 Although our 

previous study was also carried out in helium, we did not observe Fe+(CH3OH), 
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presumably because much higher methanol concentrations were used (11% vs 0.5%), as 

well as a lower stagnation pressure (1 atm vs. 4 atm). 

 

3.3.3 Vibrational Spectroscopy of the [HO-Fe-CH3]
+ Insertion Intermediate and 

Fe+(CH3OH) Exit Channel Complex 

Vibrational spectra of [HO-Fe-CH3]
+ and Fe+(CH3OH) were measured using 

photofragment spectroscopy. A challenge in obtaining vibrational spectra using 

photofragment spectroscopy is that absorption of a photon needs to lead to bond 

breaking. One photon in the O-H stretching region only has ~43 kJ/mol of energy, so 

photodissociation of [HO-Fe-CH3]
+ or Fe+(CH3OH) requires at least three photons. As a 

result, vibrational spectra were measured using infrared multiple photon dissociation 

(IRMPD) and by IR resonance enhanced photodissociation (IR-REPD) of argon-tagged 

molecules [HO-Fe-CH3]
+(Ar)n (n=1,2) and Fe+(CH3OH)(Ar). These techniques have 

been discussed in chapter 1. 

 

3.3.3.1  IRMPD of Insertion Intermediate and Exit Channel Complex 

The UV photodissociation results show that reacting Fe+ with methanol in argon 

produces [HO-Fe-CH3]
+.  Infrared multiple photon dissociation of these ions in the O-H 

stretching region produces Fe+ + CH3OH and FeOH+ + CH3 in a 45:55 ratio, with little 

wavelength dependence.  The photodissociation spectrum obtained by monitoring 

FeOH+ has an asymmetrical peak at 3623 cm-1, with a shoulder at 3576 cm-1 (Fig. 3.3, 

black trace; a deconvolution showing the two components is shown in Fig. 3.4).  The 

UV photodissociation studies show that reacting Fe+ with methanol in helium produces  
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Figure 3.3 Experimental (top) and calculated (bottom) vibrational spectra of [FeCH4O]+ 
in the O-H stretching region. Vibrational spectra are obtained by IRMPD of [FeCH4O]+ 
produced by reacting Fe+ with CH3OH in 100% Ar, monitoring FeOH+ (black) and by 
reacting Fe+ with CH3OH in 90% He/10% Ar and monitoring Fe+ (light green) and 
FeOH+ (dark green). Dissociation of [HO-Fe-CH3]

+ peaks at 3623 cm-1 and primarily 
produces FeOH+. Dissociation of Fe+(CH3OH) primarily produces Fe+ and is 
responsible for the increased intensity from 3400 to 3570 cm-1. Calculated spectra are at 
the B3LYP/SDD;aug-cc-pVTZ level, with frequencies scaled by 0.956. For the 
simulations, solid lines represent sextet and dashed lines quartet states. 
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Figure 3.4 Spectra of [HO-Fe-CH3]
+  (top) and [HO-Fe-CH3]

+(Ar) (bottom),  

along with fits to sum of two Gaussians and contributions from each Gaussian.  

Fitting parameters : peak (FWHM) in cm-1:  

           [HO-Fe-CH3]
+: 3576 (28); 3621 (49) 

           [HO-Fe-CH3]
+(Ar): 3632 (40); 3647 (24)
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Figure 3.5 Difference spectra of [FeCH4O]+ from CH3OH/90% He /10% mix at 3610 

cm-1 and 3450 cm-1. The small peaks ~0.7 µs before each major peak are due to the 

iron-54 isotopomer.
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Figure 3.6 Fe+/FeOH+ fragment ratios from IRMPD of [FeCH4O]+ produced by 

reacting Fe+ with methanol in argon (red) and 90% helium/10% argon (green). IRMPD 

of Fe+(CH3OH) predominately produces Fe+, while dissociation of [HO-Fe-CH3]
 + 

primarily forms FeOH+. 
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[HO-Fe-CH3]

+ and Fe+(CH3OH).  The infrared studies use a 90% He/10% Ar mixture 

rather than pure helium, so that spectra of argon-tagged and untagged molecules can be 

measured under the same conditions.  IRMPD of these ions also gives Fe+ and FeOH+, 

but with a very different, wavelength-dependent ratio ranging from 52:48 at ~3620 

cm-1, near the [HO-Fe-CH3]
+ peak, to 65:35 near 3450 cm-1. IRMPD difference spectra 

and branching ratios are shown in figures 3.5 and 3.6.  The photodissociation spectra 

obtained by monitoring Fe+ and FeOH+ in the same scan are shown in figure 3.3 (light 

and dark green traces).  Disentangling the contributions from the insertion intermediate 

and the exit channel complex is difficult, as the two spectra overlap, and both dissociate 

to Fe+ and FeOH+, although the insertion intermediate primarily produces FeOH+ while 

the exit channel complex mostly forms Fe+. Monitoring FeOH+ gives a similar, but 

broader spectrum to the [HO-Fe-CH3]
+ spectrum obtained using argon.  The broadening 

is likely due to overlapping spectra due to quartet and sextet states of the insertion and 

exit channel intermediates, as well as to preferential photodissociation of vibrationally 

hot molecules produced in the source. Figure 3.3 shows that monitoring Fe+ gives 

additional intensity from 3400 to 3570 cm-1. This is due to photodissociation of 

Fe+(CH3OH). 

  

3.3.3.2 Vibrational Spectroscopy: Argon-Tagged Insertion Intermediate and Exit 

Channel Complex   

 

Photodissociation spectra obtained by IRMPD tend to emphasize contributions 

from vibrationally excited ions, which leads to broadening, especially to lower photon 
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energy.  Photodissociation spectra obtained from argon-tagged molecules are often  

narrower, as only one photon is required to dissociate the complex and the low argon 

binding energy ensures that argon-tagged molecules are vibrationally cold.  Argon-

tagged [HO-Fe-CH3]
+ and Fe+(CH3OH) are produced with the same gas mixtures and 

source conditions as for the respective IRMPD experiments. Argon binding energies 

have not been measured for these molecules, but they should be similar to that of Fe+-

Ar (900±600 cm-1).53 Our B3LYP/SDD;aug-cc-pVTZ calculations predict that argon 

binds quite strongly to the quartet ground state of Fe+(CH3OH) (3500 cm-1), while it 

binds weakly to the sextet, excited, state (500 cm-1).  Argon binding energies to  

[HO-Fe-CH3]
+ are similar for the two spin states: 2700 cm-1 for the first argon and 1300 

cm-1 for the second (Table 3.3). Absorption of one photon in the O-H stretching region 

should readily lead to dissociation, and we observe much higher dissociation yields than 

for untagged molecules, with loss of argon the only dissociation pathway. The 

photodissociation spectrum of [HO-Fe-CH3]
+(Ar) consists of a sharp peak at 3647 cm-1 

with a shoulder at 3632 cm-1 (Fig. 3.7, and Fig. 3.8, top, blue trace; a deconvolution of 

the spectrum into two components is shown in Fig. 3.4).  The small peak near 3700 cm-1 

is likely due to a combination band of the O-H and Fe-Ar stretches. The 

photodissociation spectrum of [FeCH4O]+(Ar) from the 90% He/10% Ar mix (brown 

trace, Fig. 3.7) extends substantially further to the red. This is due to absorption from 

Fe+(CH3OH)(Ar) at ~3620 cm-1.  This is 60 cm-1 red shifted from the O-H stretch in 

bare methanol (3681 cm-1).54 

Figure 3.8 compares the spectra of [HO-Fe-CH3]
+(Ar)n (n=0,1,2) obtained using 

argon carrier gas. The shoulders to the red of the main peaks in the n=0 and 1 spectra  
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 B3LYP/6-311+G(d,p) 
 

B3LYP/6-311+G(3df,p) 

[HO-Fe-CH3]
+- Ar sextet 

 
22.2 28.2 

[HO-Fe-CH3]
+- Ar quartet 
 

23.9 29.6 

[HO-Fe-CH3]
+Ar-Ar sextet 
 

15.2 18.9 

[HO-Fe-CH3]
+Ar-Ar quartet 14.8 

 
17.7 

Fe+(CH3OH)-Ar sextet 3.3 
 

5.6 

Fe+(CH3OH)-Ar quartet 36 
 

42.5 

 

Table 3.3 Calculated argon binding energies. All energies are at the B3LYP/6-

311+G(d,p) geometry and include zero-point energy at B3LYP/6-311+G(d,p). All 

energies are 0 Kelvin values, in kJ/mol. 
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Figure 3.7 Experimental (top) and calculated (bottom) vibrational spectra of 

[FeCH4O]+(Ar) in the O-H stretching region. Spectra are measured by monitoring argon 

loss. A 100% argon mix (blue) produces [HO-Fe-CH3]
+(Ar) while the 90% He/10% Ar 

mix (brown) also produces Fe+(CH3OH)(Ar), which leads to enhanced absorption near 

3620 cm-1. Calculated spectra (right axis) are at the B3LYP/SDD;aug-cc-pVTZ level, 

with frequencies scaled by 0.956. For the simulations, solid lines represent sextet and 

dashed lines quartet states. 
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Figure 3.8 Experimental (top) and calculated (bottom) vibrational spectra of  

[HO-Fe-CH3]
+(Ar)n (n=0-2) in the O-H stretching region.  The spectrum of 

[HO-Fe-CH3]
+ was obtained by IRMPD, monitoring FeOH+; those of 

[HO-Fe-CH3]
+(Ar)n (n=1,2) were measured by argon loss.  Spectra were calculated at 

the B3LYP/SDD;aug-cc-pVTZ level and frequencies scaled by 0.956.  Spectra of 

[HO-Fe-CH3]
+(Ar)n are in black, blue and red for n=0, 1, 2, respectively. For the 

simulations, solid lines represent sextet states and dashed lines quartet states. 
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suggest that two spin states or isomers of the molecule contribute to the spectrum.  The 

same [HO-Fe-CH3]
+(Ar) spectrum is obtained using acetic acid, which previous 

studies17, 20 have shown produces [HO-Fe-CH3]
+.  This again confirms that we are 

studying [HO-Fe-CH3]
+ rather than Fe+(CH3OH), and that the peak and shoulder are 

likely due to the sextet and quartet states of [HO-Fe-CH3]
+(Ar)n.  In addition, spectra  

obtained with the two precursors, and under varying source conditions, show the same 

relative intensity of the shoulder.  This suggests that the two spin states are in 

equilibrium in our source, which implies that the sextet and quartet states are at similar 

energies and that they can interconvert readily.  This is consistent with the calculated36 

21 cm-1 spin-orbit coupling between sextet and quartet [HO-Fe-CH3]
+. The evolution of 

the [HO-Fe-CH3]
+(Ar)n (n=0,1,2) spectra is very informative.  Adding one Ar leads to a 

24 cm-1 blue shift in the main O-H stretching peak, and a second Ar causes an 

additional shift of 15 cm-1. For the shoulders, the spectral shifts are larger, with addition 

of one Ar leading to a 56 cm-1 shift.  As a result, the separation between the shoulder 

and main peak decreases with increasing n, until for [HO-Fe-CH3]
+(Ar)2 a 20 cm-1 

FWHM peak at 3662 cm-1 with no shoulder is observed. 

To better characterize the quartet and sextet states of the insertion intermediate, 

we measured the photodissociation spectra of [HO-Fe-CH3]
+(Ar)n (n=1,2) in the C-H 

stretching region. Of the three C-H stretches, calculations predict that the lowest 

frequency, symmetric vibration near 2850 cm-1 is the most intense. Measuring this 

vibration is very challenging, as it is calculated to be an order of magnitude weaker than 

the O-H stretch. As a result, we were unable to measure the IRMPD spectrum of  
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Figure 3.9 IR photodissociation spectrum of [HO-Fe-CH3]
+(Ar)  in the C-H and O-H 

stretching regions; the Ar loss channel is detected. The inset shows an expanded view of 

the C-H stretching region, along with simulated spectra for the sextet (solid) and quartet 

(dashed) states at the B3LYP/SDD;aug-cc-pVTZ level, with the vibrational frequency 

scaled by 0.956. 
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Figure 3.10 IR photodissociation spectrum of [HO-Fe-CH3]
+(Ar)2  in the C-H and O-H 

stretching regions; the Ar loss channel is detected. The inset shows an expanded view of 

the C-H stretching region, along with simulated spectra for the sextet (solid) and quartet 

(dashed) states at the B3LYP/SDD;aug-cc-pVTZ level, with the vibrational frequency 

scaled by 0.956
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[HO-Fe-CH3]
+ in this region.  The photodissociation spectra of [HO-Fe-CH3]

+(Ar) and 

[HO-Fe-CH3]
+(Ar)2 are shown in Figures 3.9 and 3.10.  The C-H stretch is much less 

intense than the O-H stretch, so it is magnified in the insets. In this region, the spectrum 

of [HO-Fe-CH3]
+(Ar) consists of a single, broad peak at 2888 cm-1 with 35 cm-1 

FWHM. Due to low signal levels, the spectrum of [HO-Fe-CH3]
+(Ar)2 was measured by  

integrating the area under difference spectra taken at ~5 cm-1 intervals. The [HO-Fe-

CH3]
+(Ar)2 spectrum shows two, narrow peaks in this region: at 2855 cm-1 (15 cm-1 

FWHM) and 2891 cm-1  (6 cm-1 FWHM).   

To help assign the spectra, we calculated geometries, energies and harmonic 

frequencies of the quartet and sextet states of [HO-Fe-CH3]
+(Ar)n and 

Fe+(CH3OH)(Ar)n (n=0-2).  Calculations were carried out using the B3LYP hybrid 

density functional with the SDD basis set on Fe and aug-cc-pVTZ on the remaining 

atoms.  Calculated harmonic frequencies are scaled by 0.956, which is the average ratio 

of the experimental to calculated C-H and O-H stretching frequencies in bare methanol. 

The calculations predict that the geometries of sextet and quartet [HO-Fe-CH3]
+ differ 

in the O-Fe-C angle (138º vs 111º) and slightly in the Fe-O bond length (1.738 Å vs 

1.703 Å), see Table 3.4.  Calculated, scaled C-H and O-H frequencies and intensities for 

bare and argon-tagged insertion intermediates are shown in Table 3.5.  Anharmonic 

calculations are shown in Table 3.6. In principle these should be more accurate than 

scaled harmonic frequencies, as they include anharmonicity by calculating third 

derivatives. However, for this system spin contamination leads to small energy shifts 

that cause substantial error in the third derivatives, and hence in the anharmonic 

frequencies.  Complementary calculations using smaller basis sets with the B3LYP and 
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the PBEPBE density functional were also carried out to assess the robustness of the 

computational results. Frequencies at the PBEPBE/SDD;aug-cc-pVTZ level are given 

in Table 3.7. While the computed frequencies vary slightly with functional and basis 

set, the calculations consistently make several predictions: the O-H stretch of quartet 

[HO-Fe-CH3]
+ lies below that of the sextet state; argon-tagging shifts both to higher 

energy, but the shift is larger for the quartet state, so that the quartet-sextet gap 

decreases with sequential addition of argon. Our assignment of spectra in the O-H 

stretching region is based on the agreement between these predictions and experiment.  

In addition, spectra obtained using helium expansions contain contributions from the 

Fe+(CH3OH) complex, which is not present in argon expansions. 

Figures 3.3, 3.7 and 3.8 show simulated O-H stretching spectra for sextet and 

quartet states of bare and argon-tagged [HO-Fe-CH3]
+ and Fe+(CH3OH). Exit channel 

complexes are predicted to have the lowest O-H stretching frequencies, with very small 

shifts on argon-tagging.  The IRMPD spectra measured using a 90% He/10% Ar mix 

extend significantly to the red of the other spectra measured.  The calculations predict 

that this is due to dissociation of sextet Fe+(CH3OH).  The remaining breadth of this 

peak is likely due to contributions from quartet Fe+(CH3OH) and [HO-Fe-CH3]
+, as well 

as to preferential dissociation of vibrationally excited ions. 

The IRMPD spectrum of [HO-Fe-CH3]
+, obtained using argon carrier gas, has a 

distinct shoulder, indicating contributions from two species.  The calculations predict 

that the O-H stretching frequency of quartet [HO-Fe-CH3]
+ is lower than that of the 

sextet, suggesting that the main peak is due to the sextet and the shoulder to the quartet.  

This assignment is supported by the argon-tagging results.  Argon-tagging sequentially  
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 r(O-H) 
Å 

r(C-H) 
Å 

r(Fe-C) 
Å 

r(Fe-O) 
Å 

r(C-O) 
Å 

Θ(O-Fe-C) 
degrees 

CH3OH 0.961 1.090 
1.097 
1.097 

- - 1.42 - 

[HO-Fe-CH3]
+ 

Sextet 
0.967 1.095 

1.094 
1.094 

1.987 1.742 - 137.83 

[HO-Fe-CH3]
+ 

Quartet 
0.968 1.108 

1.088 
1.088 

1.967 1.707 - 109.30 

[HO-Fe-CH3]
+(Ar) 

Sextet 
0.967 1.095 

1.094 
1.094 

1.990 1.751 - 133.04 

[HO-Fe-CH3]
+(Ar) 

Quartet 
0.966 1.099 

1.088 
1.088 

1.994 1.709 - 102.92 

[HO-Fe-CH3]
+(Ar)2 

Sextet 
0.966 1.094 

1.093 
1.093 

2.001 1.757 - 129.00 

[HO-Fe-CH3]
+(Ar)2 

Quartet 
0.966 1.098 

1.087 
1.087 

1.994 1.717 - 102.48 

Fe+(CH3OH)  
Sextet 

0.969 1.088 
1.088 
1.087 

- 2.06 1.48 - 

Fe+(CH3OH)  
Quartet 

0.966 1.089 
1.089 
1.087 

- 1.98 1.47 - 

Fe+(CH3OH).(Ar)  
Sextet 

0.969 1.088 
1.088 
1.087 

- 2.06 1.48 - 

Fe+(CH3OH).(Ar)  
Quartet 

0.966 1.089 
1.089 
1.086 

- 1.971 1.47 - 

Table 3.4 Geometries of bare and argon tagged [HO-Fe-CH3]
+ and Fe+(CH3OH) 

calculated at the B3LYP/6-311+G(d,p) level. 
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O-H stretch (cm-1)  C-H stretches (cm-1) 

CH3OH 
 

3660(31) 2972(24), 2906(53), 2862(63) 

[HO-Fe-CH3]
+ quartet 

 
3612(313) 3055(7), 2988(5), 2800(34) 

[HO-Fe-CH3]
+ sextet 

 
3625(456) 2984(8), 2977(9), 2878(34) 

[HO-Fe-CH3]
+(Ar) quartet 

 
3633(297) 3054(4), 2995(1), 2884(21) 

[HO-Fe-CH3]
+(Ar) sextet 

 
3633(385) 2980(5), 2979(3), 2881(24) 

[HO-Fe-CH3]
+(Ar)2 quartet 

 
3643(273) 3055(3), 3000(1), 2880(19) 

[HO-Fe-CH3]
+(Ar)2 sextet 

 
3644(344) 2986(2), 2981(2), 2885(16) 

Fe+(CH3OH) quartet 
 

3610(151) 3045(1), 3029(0.2), 2939(4) 

Fe+(CH3OH) sextet 
 

3574(124) 3035(1), 3028(0.1), 2935(2) 

Fe+(CH3OH)(Ar) quartet 
 

3620(152) 3044(1), 3025(1), 2937(6) 

Fe+(CH3OH)(Ar) sextet 
 

3582(111) 3030(0.3), 3030(1), 2935(3) 

 

Table 3.5 Harmonic vibrational frequencies for bare and argon-tagged intermediates at 

the B3LYP/SDD; aug-cc-pVTZ level. IR intensities (km/mol) in parentheses. 

Frequencies are scaled by 0.956 
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 O-H stretch 
 

C-H stretches 

CH3OH 
 

3697(30) 2992(27), 2919(64), 2873(68) 

[HO-Fe-CH3]
+ quartet 

 
3640(394) 2993(19), 2968(6), 2818(38) 

[HO-Fe-CH3]
+ sextet 

 
3642(543) 2974(7), 2965(9), 2878(33) 

[HO-Fe-CH3]
+(Ar) quartet 

 
3642(337) 3044(3), 2994(1), 2874(20) 

[HO-Fe-CH3]
+(Ar) sextet 

 
3654(461) 2972(5), 2970(3), 2881(24) 

[HO-Fe-CH3]
+(Ar)2 quartet 

 
3651(319) 3052(3), 2999(0.4), 2884(18) 

[HO-Fe-CH3]
+(Ar)2 sextet 

 
3674(420) 2977(2), 2968(2), 2885(17) 

 
Table 3.6 Anharmonic vibrational frequencies for bare and argon-tagged insertion 

intermediates at the B3LYP/6-311+G(d,p) level, in cm-1. IR intensities (km/mol) in 

parentheses.
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O-H stretch 
(cm-1) 

 C-H stretches (cm-1) 

[HO-Fe-CH3]
+ quartet 

 
3640(394) 2993(19), 2968(6), 2818(38) 

[HO-Fe-CH3]
+ sextet 

 
3642(543) 2974(7), 2965(9), 2878(33) 

[HO-Fe-CH3]
+(Ar) quartet 

 
3642(337) 3044(3), 2994(1), 2874(20) 

[HO-Fe-CH3]
+(Ar) sextet 

 
3654(461) 2972(5), 2970(3), 2881(24) 

[HO-Fe-CH3]
+(Ar)2 quartet 

 
3651(319) 3052(3), 2999(0.4), 2884(18) 

[HO-Fe-CH3]
+(Ar)2 sextet 

 
3674(420) 2977(2), 2968(2), 2885(17) 

 

Table 3.7 Harmonic vibrational frequencies for bare and argon-tagged intermediates at 

the PBEPBE/SDD;aug-cc-pVTZ level in cm-1. IR intensities (km/mol) in parentheses. 

Frequencies are scaled by 0.986 
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blue-shifts the spectrum, as shown in figure 3.8. The blue shift on argon binding is 

predicted to be larger for the quartet state.  This agrees with the observation that the 

separation between the shoulder and main peak decreases with added argon.  The peak 

at 3623 cm-1 in the IRMPD spectrum is thus assigned to the O-H stretch of sextet [HO-

Fe-CH3]
+, while the O-H stretch of the quartet is at 3576 cm-1. In the ion source, 

ground-state, sextet Fe+ can insert into the C-O bond in methanol to produce sextet 

[HO-Fe-CH3]
+.  This can convert to the quartet state via intersystem crossing or 

collisions with the argon buffer gas.  Spectra obtained with different source conditions 

(timing and backing pressures) and different precursors (methanol and acetic acid) are 

very similar, with the shoulder having the same relative intensity. This suggests that 

sextet and quartet [HO-Fe-CH3]
+ are in equilibrium in the ion source, so they are at 

similar energies and can interconvert readily. 

Compared to bare methanol,54  vOH=3681 cm-1, the O-H stretching frequencies 

of [HO-Fe-CH3]
+ are 58 and 105 cm-1 red-shifted for the sextet and quartet states, 

respectively. This correlates with the O-H bond lengths, which are calculated to be 

~0.006 Å longer for the insertion intermediates than for methanol. Also, the calculations 

predict that the observed blue shift on argon binding is due to partial charge transfer to 

argon, reducing the charge of the [HO-Fe-CH3]
+ core. Mulliken population analysis 

predicts that the charge on the [HO-Fe-CH3]
+ moiety in [HO-Fe-CH3]

+(Ar)n is +0.89 for 

n=1 and only +0.82 for n=2. This is supported by the observation that the O-H stretch in 

neutral14, 15 HO-Fe-CH3 shows a substantial additional blue shift, to 3744.8 cm-1. 
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Of the three C-H stretches, the symmetric C-H stretch is predicted to be by far 

the most intense, and lies at lowest wavenumbers. For bare [HO-Fe-CH3]
+, the 

symmetric C-H stretching frequencies of sextet and quartet states are predicted to differ 

by ~80 cm-1. Unfortunately, signal levels for IRMPD of the insertion intermediate in the 

C-H stretching region are too low to measure its spectrum directly.  Instead, we measure 

C-H stretching spectra of Ar-tagged molecules. However, binding to argon lengthens 

the Fe-C and contracts the C-H bonds in quartet [HO-Fe-CH3]
+, which leads to a ~80 

cm-1 blue shift in the calculated symmetric C-H stretch.  The perturbation is much 

smaller for the sextet state.  As a result, the calculations predict very similar symmetric 

C-H stretch frequencies for sextet and quartet argon-tagged insertion intermediates.  For 

[HO-Fe-CH3]
+(Ar), both spin states contribute to the broad peak at 2888 cm-1 (Fig. 3.9, 

inset).  For [HO-Fe-CH3]
+(Ar)2, two narrow peaks are observed (Fig. 3.10, inset).  The 

calculations consistently predict that the symmetric C-H stretching frequency of quartet 

[HO-Fe-CH3]
+(Ar)2 is lower than that of the sextet state.  However, the calculated 

difference is small.  We thus tentatively assign the peak at 2855 cm-1 to the quartet state 

and the 2891 cm-1 peak to the sextet state.  These values are slightly blue-shifted from 

the lowest C-H stretch in bare methanol, 2844 cm-1, consistent with slightly shorter 

calculated C-H bond lengths. 

It is interesting that reaction of laser-ablated Fe+ with methanol produces 

Fe+(CH3OH) and [HO-Fe-CH3]
+, depending on source conditions.  Both products have 

been seen in previous studies. In an early ion cyclotron resonance mass spectrometry 

(ICR) study, Allison and Ridge observed that Fe+ inserts into the C-O bond in methanol, 

even under very gentle conditions.55  They reacted FeCO+ with CH3OH. The 
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[FeCH4O]+ product was isolated, then reacted with CD3OH.  They produce 

[FeCH2D3O2]
+ + CH3 and do not observe loss of CD3.  This indicates that the two 

methyl groups are not equivalent and that reaction of FeCO+ with CH3OH produces 

[HO-Fe-CH3]
+ rather than Fe+(CH3OH).  At higher pressure in a chemical ionization 

source, Schröder et al. conclude that the Fe+ + CH3OH reaction primarily produces 

Fe+(CH3OH), based on collision-induced dissociation of the products.20  Production of 

[HO-Fe-CH3]
+ rather than Fe+(CH3OH) is determined by competition between insertion 

into the C-O bond via TS2 (the reverse of the reaction shown in Fig. 3.1) and collisional 

cooling of the initially-formed, internally excited [Fe+(CH3OH)]*.  Quartet Fe+ should 

readily insert into the C-O bond, due to the low quartet barrier over TS2.  However, the 

calculations predict that, for the sextet state, TS2 lies above Fe+ + CH3OH.  As a result, 

production of [HO-Fe-CH3]
+ requires sufficient translational energy to overcome the 

barrier, which could occur in a laser ablation source, or a spin change to the quartet 

state, which is unlikely for [Fe+(CH3OH)]*, which should have small spin-orbit 

coupling.36  Our observation that production of [HO-Fe-CH3]
+ dominates under certain 

source conditions suggests that the calculations overestimate the barrier for sextet TS2. 

Ideally, one would like to study the Fe+ + CH3OH reaction under single-collision 

conditions as a function of collision energy, as has been done by Armentrout and 

coworkers for the Co+ + CH3OH reaction.56 

 

3.4 Summary and Conclusions 

Vibrational spectra of two intermediates of the gas-phase FeO+ + CH4 � Fe+ + 

CH3OH reaction have been measured.  Spectra of the quartet and sextet states of 
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[HO-Fe-CH3]
+, the key insertion intermediate, are obtained from IRMPD of the bare ion 

and from resonance-enhanced photodissociation of argon-tagged ions in the C-H and O-

H stretching regions. [HO-Fe-CH3]
+ is produced using argon carrier gas. Based on the 

IRMPD spectrum, sextet [HO-Fe-CH3]
+ has νOH=3623 cm-1 while quartet 

[HO-Fe-CH3]
+ has νOH≈3576 cm-1. Using 90% helium/10% argon rather than pure 

argon as the carrier gas also produces the Fe+(CH3OH) exit channel complex, whose O-

H stretch is measured using IRMPD. Photodissociation produces both Fe+ and FeOH+, 

and the ratio depends on wavelength. [HO-Fe-CH3]
+ primarily dissociates to FeOH+, 

while Fe+(CH3OH) mainly forms Fe+.  The O-H stretching frequencies of sextet and 

quartet [HO-Fe-CH3]
+(Ar)n become more similar with increasing n. For the sextet, 

νOH=3647 cm-1 for [HO-Fe-CH3]
+(Ar) and 3662 cm-1 for [HO-Fe-CH3]

+(Ar)2. The 

photodissociation spectrum of [FeCH4O]+(Ar) produced using 90% He/10% Ar extends 

to the red of the spectrum of [HO-Fe-CH3]
+(Ar), implying that Fe+(CH3OH)(Ar) has 

νOH≈3620 cm-1.   

Hybrid density functional theory calculations aid in assigning the spectra. They 

correctly predict the direction, but slightly underestimate the magnitude, of the 

frequency shift due to adding argon to sextet and quartet [HO-Fe-CH3]
+.  An improved 

potential energy surface for the FeO+ + CH4 reaction is developed based on calculations 

at the complete basis set (CBS-QB3) and coupled clusters (CCSD(T)) levels.  The 

calculations predict that the reaction proceeds through the initial formation of a 

OFe+(CH4) complex followed by isomerization over TS1 to the [HO-Fe-CH3]
+ insertion 

intermediate. The insertion intermediate can dissociate to produce FeOH+ + CH3 

products or isomerize via TS2 to the Fe+(CH3OH) exit channel complex, which then 
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dissociates to Fe+ + CH3OH.  Although the reactant and product ground states are 

sextets, at thermal energies the reaction requires a spin change from sextet to quartet to 

overcome the barrier at TS1.  Production of quartet Fe+ + CH3OH is energetically 

allowed. The calculations predict that sextet and quartet [HO-Fe-CH3]
+ are at similar 

energies, and our experiments suggest that they can interconvert. This mechanism 

agrees with the results of kinetics and spectroscopic experiments, by several groups.   
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CHAPTER 4 

VIBRATIONAL SPECTROSCOPY OF INTERMEDIATES IN 

BENZENE-TO-PHENOL CONVERSION BY FeO+ 

 

4.1 Introduction 

 

Phenol is an important commodity chemical, with 9 million metric tons produced 

worldwide.  It is used to make materials such as polycarbonate, nylon and epoxy resins, 

drugs such as aspirin and cosmetics such as sunscreens and hair dyes.1 Industrially, 

phenol is mainly produced from benzene via the cumene process: benzene � cumene 

� cumene hydroperoxide � phenol.  This three-step process is energy intensive and 

has a low phenol yield. Thus, direct conversion of benzene to phenol has attracted great 

attention due to its economical and industrial importance. Promising direct benzene-

phenol oxidation techniques include Fe-doped ZSM-5 zeolites with N2O as the oxidant2, 

3 and direct oxidation using O2 and H2 through a Pd membrane.4 Some bacteria can 

directly convert benzene to phenol under mild conditions using toluene 

monooxygenases, which have a di-iron active site.5  The biotoxicity of benzene in 

mammals is enhanced by its conversion to phenol by cytochrome P450, which has an 

Fe-heme active site.6, 7 

Schwarz, Schröder and coworkers showed that, under thermal conditions, several gas-

phase metal oxide cations MO+ react efficiently with benzene to produce phenol with 

good selectivity (Table1.3)8  The reaction of FeO+ has been particularly well-studied.  It 
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primarily produces Fe+ + phenol (56%) and Fe(C5H6)
+ + CO (37%).9 They subsequently 

produced several [FeC6H6O] + isomers by reacting Fe+ with different precursors in a 

chemical ionization source and characterized them using fragmentation patterns 

observed following collisional activation in a tandem mass spectrometer.10 

This prototypical arene oxidation reaction has also been studied computationally.  

Yoshizawa et al. calculated the energetics of reactants, intermediates and transition 

states for benzene-phenol conversion by FeO+ using B3LYP hybrid density functional 

theory.11  They considered a mechanism in which FeO+ first binds to the ring, forming a 

OFe+(C6H6) entrance channel complex, then hydrogen abstraction via transition state 

TS1 forms the insertion intermediate HO-Fe+-C6H5. Phenyl or hydroxyl migration 

through TS2 produces the Fe+(C6H5OH) exit channel complex, which subsequently 

dissociates to Fe+ + C6H5OH. Molecular dynamics simulations on this potential energy 

surface predict that the reaction is rapid, and that the hydrogen transfer at TS1 leads to 

O-H stretch excitation in the insertion intermediate.12  They later also considered two 

other possible mechanisms.  A radical mechanism involving direct H atom abstraction 

via a Fe-O-H transition state was considered unlikely on energetic grounds. An oxygen 

insertion mechanism which proceeds via an arenium intermediate [FeOC6H6]
+ with 

covalent Fe-O-C bonds was considered to be favorable if the FeO+ was also ligated.13  

The oxygen insertion mechanism was also studied  by Kwapien et. al.14 

Our group has studied the vibrational and electronic spectroscopy of intermediates of 

methane to methanol conversion by FeO+.15, 16 By extending these studies to benzene-

phenol conversion by FeO+ we can evaluate the effect of the aromatic ring on the 

reaction mechanism. 
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4.2 Experimental and Theoretical Methods 

Vibrational spectra are measured using a dual time-of-flight reflectron photofragment 

spectrometer (See chapter 2 for details).17, 18 Iron cations are generated by laser ablation 

of an iron rod (Sigma-Aldrich, 99.8% pure). Fe+ cations react with either 0.01% phenol 

in helium or a mixture of 2% N2O and 0.5% benzene in helium to produce the target 

molecule. The choice of precursors is guided by the collision-induced dissociation 

(CID) studies of Becker et al.10 and is discussed in more detail below. Ions produced in 

the source expand supersonically into vacuum and cool to a rotational temperature of 

~10 K.19 Ions are accelerated to 1800 V kinetic energy, then re-referenced to ground 

potential before entering the field-free flight tube. Mass-selected ions are 

photodissociated at the turning point of the reflectron. Energetically, photodissociation 

of [HO-Fe-C6H5]
+ requires at least four photons in the O-H stretching region. So, 

vibrational spectra are obtained using infrared multi-photon dissociation (IRMPD) of 

[HO-Fe-C6H5]
+ and Fe+(C6H5OH). The photodissociation efficiency is greatly improved 

using a multi-pass mirror arrangement20 in which the laser makes 21 passes through the 

ion cloud (See chapter 2 for details). The light source is a Nd:YAG pumped optical 

parametric oscillator which is tunable from 2 to 5 µm, producing ~10 mJ/pulse near 

3600 cm-1. The IR beam path is purged with nitrogen to minimize absorptions by water 

vapor.  The laser wavelength is calibrated using H2O absorptions. Fragment ions and 

undissociated parent ions are detected by a dual micro-channel plate detector. The ion 

signal is amplified, collected on a digital oscilloscope or a gated integrator, and 
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averaged with a LabView based program. The photodissociation spectrum is obtained 

by monitoring the yield of the fragment ion of interest as a function of wavelength and 

normalizing to parent ion signal and laser fluence.  In this study we separately and 

simultaneously monitor the Fe+ and FeOH+ fragments. The photodissociation spectrum 

is the product of the absorption spectrum and the photodissociation quantum yield. 

Computations are carried out with the Gaussian 2003 program package.21 Optimized 

geometries of the reactants, intermediates, transition states and products are calculated 

using the Becke Lee-Yang-Parr hybrid HF/DFT method (B3LYP) with the 6-

311+G(d,p) basis set. Vibrational frequencies are computed to ensure that all optimized 

geometries correspond to a local minimum or a first-order saddle point (for transition 

states). To obtain more accurate energies we calculated single-point energies using the 

complete basis set CBS-QB3 method, which is optimized for thermodynamics.22, 23 All 

energies include zero point energy and correspond to 0 Kelvin values. 

 

4.3 Results and Discussion 

4.3.1 Potential Energy Surface for the FeO+ + C6H6 Reaction 

To establish the accuracy of the computational method used, we compare calculated and 

accurate experimental results for the sextet-quartet energy splitting in Fe+, the Fe+-O 

bond enthalpy, and the overall exothermicity of the FeO+ + C6H6 � Fe+ + C6H5OH 

reaction.  Experimentally, the ground state of Fe+ is 6D (3d6 4s), with the 4F (3d7) state 

23.9 kJ/mol higher. Calculations at the B3LYP/6-311+G(d,p) level incorrectly predict a 

quartet ground state, 19.8 kJ/mol below the sextet state. This is a well known failure of 

the B3LYP method.24, 25  An attractive alternative to rigorous and expensive high level 
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correlated ab initio calculations are hybrid methods developed for accurate 

thermochemistry, such as the complete basis set CBS-QB3 approach.22, 23 In CBS-QB3, 

one first optimizes the geometry and calculates harmonic frequencies at the B3LYP 

level. Then, from a series of single point energy calculations at various levels of theory 

and with different basis sets, one extrapolates the result of a large basis set calculation at 

a very high level of theory. CBS-QB3 thermodynamics have similar accuracy to an 

extrapolated series of CCSD(T) calculations with very large basis sets, and are 

significantly more accurate than a single CCSD(T) calculation with a modest basis set.26  

CBS-QB3 calculations correctly predict the ordering of the Fe+ states, with the quartet 

30.1 kJ/mol above the sextet.  For the dissociation enthalpy of FeO+, CBS-QB3 

calculations predict 337.8 kJ/mol, in excellent agreement with experiment (340±2 

kJ/mol;27 335±5 kJ/mol).28  For the FeO+ + C6H6 � Fe+ + C6H5OH reaction enthalpy, 

CBS-QB3 predicts -88 kJ/mol, in excellent agreement with experiment, -85±2 kJ/mol.27, 

29 

Figure 4.1 shows the potential energy surface for the FeO+ + C6H6 reaction calculated 

using the CBS-QB3 method. Phenol production occurs in a two-step concerted manner 

through the formation of the hydroxy intermediate [HO-Fe-C6H5]
+. The minimum 

energy path involves first producing the OFe+(C6H6) entrance channel complex. For the 

sextet state, the FeO+ is not centered on the ring, but rather binds to adjacent carbons in 

a η2 configuration, with r(Fe-C)=2.34 Å.  Quartet FeO+ is nearly  
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Figure 4.1 Schematic potential energy surface for the FeO+ + C6H6 � Fe+ + C6H5OH 

reaction and structures of intermediates and transition states. Energies (in kJ/mol) are 

calculated at the CBS-QB3 level of theory. The solid line represents the sextet and 

dashed line the quartet surface. The imaginary frequencies for transition states TS1 and 

TS2 are 1930i and 390i for quartet states and 1916i and 352i for sextet states, 

respectively. The corresponding vibrations are shown in the figure. All geometries 

shown are those of the quartet states. 
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centered on the ring, with r(Fe-C)=2.32 Å.  Hydrogen abstraction via TS1 leads to the 

key [HO-Fe-C6H5]
+ insertion intermediate. For the quartet state, the Fe-O-H group is 

perpendicular to the ring, with r(Fe-C)=1.878 Å, r(Fe-O)=1.705 Å and r(O-H)=0.964 Å.  

In the sextet state, the Fe-O-H group is in the plane of the ring, with slightly longer 

bonds to iron: with r(Fe-C)=1.908 Å, r(Fe-O)=1.729 Å and r(O-H)=0.961 Å. The FeO+ 

reactant and Fe+ product have sextet ground states.19 The minimum energy pathway 

involves quartet intermediates.  However, since both sextet TS1 and sextet TS2 lie 

below the reactants, the reaction can proceed completely along the sextet pathway 

without changing spin. The overall reaction efficiency is determined by the probability 

that reactants will cross TS1, which can occur in two ways: by crossing sextet TS1, or 

by changing spin and crossing the low-lying quartet TS1. This is a major difference 

from the FeO+ + methane reaction (Ch.3), where sextet TS1 lies above reactants.  As a 

result, FeO+ reacts with benzene at the collision rate,9 while it reacts with methane at 

only ~20% of the collision rate.30, 31  Once produced, the [HO-Fe-C6H5]
+ insertion 

intermediate can isomerize via TS2 to form the Fe+(C6H5OH) exit channel complex, 

which subsequently dissociates to Fe+ + C6H5OH.  The calculations predict that 

production of FeOH+ + C6H5 is 20 kJ/mol endothermic. So, it is not surprising that is 

not observed as a product of the FeO+ + C6H6 reaction.9  This is another significant 

difference with the FeO+ + CH4 system, where FeOH+ + CH3 is energetically allowed, 

is a significant product at thermal energies, and dominates at high collision energy.31  

Manganese is the only first-row transition metal for which MOH+ is observed as a 

product of the MO+ + benzene reaction.8  The calculations predict two isomers of the 
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Fe+(C6H5OH) exit channel complex.  A σ-complex in which the Fe+ binds to the oxygen 

lone pair, and a π-complex, where the Fe+ binds to the ring.  The π-complex is predicted 

to lie lower in energy, at -284 kJ/mol (sextet state) and -363 kJ/mol (quartet state), 

relative to FeO+ + C6H6. In the σ-complex, the Fe+ is not in the plane of the ring, and is 

1.952 Å from the oxygen for the quartet state. The Fe-O distance is substantially longer 

for the sextet state, at 2.071 Å.  The quartet π-complex has a very interesting geometry.  

The carbons ortho and meta to the –OH group pucker towards the Fe+, leading to η4 

coordination, with r(Fe-C)=2.20 Å.  Sextet Fe+ binds much more weakly and leads to 

much less distortion of the ring.  The Fe+ is slightly displaced towards a meta carbon, 

with r(Fe-C)=2.53 Å. The electron in the large 4s orbital leads to much weaker non-

covalent interactions for sextet Fe+ (3d6 4s electron configuration) than for quartet Fe+ 

(3d7 configuration). Our potential energy surface for the FeO+ + C6H6 reaction is similar 

to one calculated by Yoshizawa et al. at the B3LYP/6-311+G(d,p) level.11 One key 

difference is that the B3LYP calculations predict that the [HO-Fe-C6H5]
+ insertion 

intermediates are ~20 kJ/mol more stable relative to reactants.  As a result, TS1 and TS2 

are also predicted to be ~20 kJ/mol lower. Previous studies of the FeO+ + C6H6 reaction 

have also considered two other mechanisms: a radical and an oxygen insertion 

mechanism.13, 14 We measure the spectra of [FeC6H6O]+ intermediates in the O-H 

stretching region.  The C-H stretches are weak and they are not distinctive for different 

intermediates. We did not carry out calculations on the intermediates in the alternate 

mechanisms as they do not contain an O-H bond. In addition, as our experiments 

measure spectra in the O-H stretching region, we are not sensitive to the presence of 

other likely intermediates such as the OFe+(C6H6) entrance channel complex or the key 
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arenium intermediate [FeOC6H6]
+ in the proposed oxygen insertion mechanism, as these 

species do not contain O-H bonds.  

 

4.3.2 IRMPD Spectroscopy of [FeC6H6O]+ 

A major challenge in studies of intermediates of ion-molecule reactions is to find 

suitable precursors and reaction conditions to selectively produce specific intermediates.  

The identity of the intermediates produced is deduced from their vibrational spectrum 

and dissociation pathways. Vibrational spectra of [HO-Fe-C6H5]
+ and Fe+(C6H5OH) in 

the O-H stretching region were measured using photofragment spectroscopy. A 

challenge in obtaining vibrational spectra using photofragment spectroscopy is that 

absorption of a photon needs to lead to bond breaking. One photon in the O-H 

stretching region only has ~43 kJ/mol of energy, so photodissociation of [HO-Fe-

C6H5]
+ or Fe+(C6H5OH) requires at least four photons. So, vibrational spectra were 

measured using infrared multi-photon dissociation (IRMPD).  We previously used 

IRMPD to measure vibrational spectra of the [HO-Fe-CH3]
+ and Fe+(CH3OH) 

intermediates of the FeO+ + CH4 � Fe+ + CH3OH reaction (Chapter 3).15  They are not 

ideal candidates for IRMPD due to the high binding energy and small size of the 

molecules, which leads to relatively slow intramolecular vibrational redistribution 

(IVR) of energy.  Intermediates of the FeO+ + C6H6 reaction are much better suited to 

IRMPD studies, and we observe higher dissociation yields and significantly narrower 

spectra for the larger system. 

In this study, we find that reacting ablated Fe+ with phenol or benzene + N2O produces 

[HO-Fe-C6H5]
+ and Fe+(C6H5OH), with the relative amounts depending on the 
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precursor.  IRMPD of ions generated by reacting Fe+ with 0.01% phenol in helium 

primarily produces Fe+ and FeOH+ photofragments. Along with a small amount of 

Fe+(C6H4) + H2O, trace amounts of Fe+(C5H6) + CO and Fe+(C5H5) + HCO are also 

observed.  The maximum dissociation yield is ~15%. Figure 4.2 (top) shows IRMPD 

spectra obtained by monitoring Fe+ (blue) and FeOH+ (red). The two channels give 

completely different vibrational spectra, indicating that two or more intermediates are 

produced in the source, and each channel monitors a different intermediate or group of 

intermediates. The Fe+(C6H4) and Fe+ channels have a similar wavelength dependence.  

Photodissociation of [FeC6H6O]+ ions produced using 0.5% benzene and 2% N2O in 

helium also gives Fe+ and FeOH+ as the major fragments.  Again, spectra obtained by 

monitoring Fe+ and FeOH+ are different (Figure 2, bottom). The observed dissociation 

products and vibrational frequencies (see below) indicate that IRMPD of Fe+(C6H5OH) 

produces Fe+ + C6H5OH while IRMPD of [HO-Fe-C6H5]
+ forms FeOH+ + C6H5.  

Becker et al. generated several [FeC6H6O]+ isomers by reacting Fe+ produced by 

electron bombardment of Fe(CO)5 with organic molecules in a chemical ionization 

source and characterized them by collisional activation (CA).10  CA of Fe+(C6H5OH) 

primarily leads to Fe+(C6H4) + H2O and Fe+ + phenol, while Fe+(C5H6) + CO and 

FeOH+ + C6H5 are major products in CA of [HO-Fe-C6H5]
+.  So, the fragment ions 

observed by CA and IRMPD are similar. 
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In the O-H stretching region, IRMPD of [FeC6H6O]+ produced by reacting Fe+ with 

phenol in helium generates FeOH+ + C6H5 or Fe+ + C6H5OH, depending on wavelength.  

The spectrum of Fe+(C6H5OH), obtained by monitoring Fe+, consists of a 45 cm-1 

FWHM peak at 3598 cm-1.  This is 59 cm-1 red shifted from the O-H stretch in bare 

phenol (3657 cm-1).32 Under the same conditions, the FeOH+ channel gives a much less 

intense, 50 cm-1 FWHM peak at ~3700 cm-1.  Dissociating [FeC6H6O]+ formed by 

reacting Fe+ with N2O/benzene in helium also produces Fe+ and FeOH+. The relative 

intensity of the FeOH+ channel increases eight fold (figure 2 bottom), but its peak 

position and shape are unchanged. This is consistent with reaction of Fe+ with N2O and 

benzene producing more [HO-Fe-C6H5]
+ than reaction of Fe+ with phenol.  The peak 

obtained by monitoring Fe+ is slightly narrower for the N2O/benzene precursor than for 

phenol.  This suggests that more than one isomer or spin state of Fe+(C6H5OH) 

contributes to the spectrum or, more likely, that the ions have slightly different 

vibrational temperatures in the two cases.  IRMPD spectra are more sensitive to 

internally excited molecules than one-photon spectroscopies, as fewer photons may be 

required to dissociate hot molecules. 

To help assign the spectra, we calculated geometries, energies and frequencies of the 

quartet and sextet states of insertion intermediate [HO-Fe-C6H5]
+ and exit channel 

complexes Fe+(C6H5OH) (Table 4.1).  Calculations were carried out using the B3LYP 

hybrid density functional with the 6-311+G(d,p) basis set.  Calculated harmonic 

frequencies are scaled by 0.954, which is the ratio of the experimental to calculated O-H 

stretching frequencies in bare phenol. 
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Figure 4.2 Vibrational spectra of [FeC6H6O]+ in the O-H stretching region. Spectra are 

obtained by IRMPD of ions produced by reacting Fe+ with C6H5OH (top) and by 

reacting Fe+ with N2O and C6H6 (bottom). Spectra obtained by monitoring Fe+ and 

FeOH+ are in blue and red, respectively.  The two product channels are formed by 

dissociation of different [FeC6H6O]+ isomers, and the relative amounts of these isomers 

depends on the precursor. 
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4.3.3 Vibrational Spectroscopy of the [HO-Fe-C6H5]
+ Insertion Intermediate 

IRMPD of the [HO-Fe-C6H5]
+ insertion intermediate produces FeOH+ + C6H5. Reacting 

laser-ablated Fe+ with N2O and benzene produces significantly more [HO-Fe-C6H5]
+ 

than does reaction with phenol. Both precursors lead to a vibrational spectrum with a 

peak at ~3700 cm-1 and a shoulder at ~3670 cm-1 (red traces in Figs. 4.2 and 4.3). 

 The calculations predict O-H stretch vibrations at 3700 cm-1 and 3674 cm-1 for 

the sextet and quartet states of the insertion intermediate, respectively. The sextet has 

somewhat higher oscillator strength, while the quartet is predicted to lie 36 kJ/mol 

lower in energy. Both spin states appear to contribute to the spectrum: the peak at 3700 

cm-1 is due to the sextet state, and the quartet state is responsible for the shoulder at 

~3670 cm-1.  In our study of the insertion intermediate for the FeO+ + CH4 reaction, we 

also found that both spin states contribute to the vibrational spectrum. IRMPD of [HO-

Fe-CH3]
+ gives an asymmetrical peak at 3623 cm-1 with a shoulder at 3576 cm-1, which 

were assigned to the sextet and quartet states, respectively.15 Adding argon atoms to 

[HO-Fe-CH3]
+ removes charge from the metal center and leads to progressively larger 

blue shifts in the O-H stretch frequencies. The O-H stretch in neutral HO-Fe-CH3 

shows an even larger blue shift, to 3745 cm-1.33, 34 Mulliken population analysis shows a 

charge of +0.77 for the Fe-O-H moiety in [HO-Fe-CH3]
+, which drops to 0.56 in [HO-

Fe-C6H5]
+. Relative to [HO-Fe-CH3]

+, the O-H stretches of [HO-Fe-C6H5]
+ exhibit a 

~80 cm-1 blue shift.  Thus, this system continues a trend we observed previously: 

removing charge from the Fe-O-H group blue-shifts the O-H stretch frequency. 
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Figure 4.3. Experimental and calculated vibrational spectra of [HO-Fe-C6H5]

+ in the O-

H stretching region.  The experimental spectrum is obtained by IRMPD of ions 

produced by reacting Fe+ with N2O and C6H6 and monitoring FeOH+ fragments (red).  

Calculated spectra (right axis) are at the B3LYP/6-311+G(d,p) level, with frequencies 

scaled by 0.954. For the simulations, solid lines represent sextet states and dashed lines 

quartet states. 
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 O-H stretches 
(cm-1) 

C-H stretches 
(cm-1) 

C6H5OH 3657(61) 3049(4), 3042(17), 3029(17), 
3003(14) 

OFe+(C6H6) quartet 
 

- 3063(0), 3058(42), 3050(0), 
3049(0), 3044(0), 

OFe+(C6H6) sextet 
 

- 3064(5), 3057(13), 3053(9), 
3048(3), 3045(3), 3037(0), 

[HO-Fe-C6H5]
+ quartet 3674(467) 3056(2), 3050(3), 3041(1), 

3027(5), 
 

[HO-Fe-C6H5]
+ sextet 3700(849) 3058(1), 3052(0), 3041(0), 

3027(0), 3016(0) 
Fe+(C6H5OH) quartet 

π-structure 
3619(158) 3063(3), 3059(10), 3052(1), 

3047(0), 3032(1) 
Fe+(C6H5OH) sextet 

π-structure 
3617(175) 3065(7), 3058(14), 3051(3), 

3046(1), 3033(2) 
Fe+(C6H5OH) quartet 

σ-structure 
3605(195) 3060(0), 3054(0), 3046(1), 

3039(0), 3037(1) 
Fe+(C6H5OH) sextet 

σ-structure 
3562(173) 3061(0), 3056(0), 3048(0), 

3042(1), 3039(7) 
 

Table 4.1 Harmonic vibrational frequencies for intermediates of the FeO+ + C6H6 � 

Fe+ + C6H5OH reaction at the B3LYP/6-311+G(d,p) level. IR intensities (km/mol) in 

parentheses. Frequencies are scaled by 0.954. 
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Our spectroscopic observation that reaction of Fe+ with N2O and benzene produces  

[HO-Fe-C6H5]
+ is a bit surprising in light of collisional activation (CA) and ion 

cyclotron resonance (ICR) studies which find no clear evidence for the [HO-Fe-C6H5]
+ 

intermediate in the FeO+ + C6H6 reaction.8-10  A possible explanation is that this 

reaction can occur via several mechanisms and the different conditions in our laser 

ablation source and in the ICR favor different reaction pathways. Our IRMPD results do 

not address whether other intermediates, such as the OFe+(C6H6) entrance channel 

complex or intermediates proposed for the oxygen insertion mechanism,13, 14 are also 

present.  These intermediates do not contain an O-H bond and thus would not be 

detected in our study.  Another possibility is that in our laser ablation source 

[HO-Fe-C6H5]
+ is not produced by 

Fe+ + N2O � FeO+ + N2   (4.1) 

followed by reaction of FeO+ with benzene, but rather is formed by 

Fe+ + C6H6 � Fe+(C6H6)   (4.2) 

followed by reaction of Fe+(C6H6) with N2O. Although we use a 4:1 N2O:C6H6 ratio, 

kinetics favors reaction (4.2). The high-pressure limiting bimolecular rate k2 is 1.2 x 10-

9 cm3molecule-1sec-1 for Co+ and should be similar for Fe+.8 At thermal energies 

reaction (4.1) is much slower:35 k1=3.1 x 10-11 cm3molecule-1sec-1.  However, CID and 

ICR reaction studies36 as well as flow tube studies37 show that the Fe+(C6H6) + N2O 

reaction produces OFe+(C6H6) (the entrance channel complex in Fig. 4.1) rather than the 

insertion intermediate. Our spectroscopic results show that reacting laser-ablated Fe+ 

with N2O and benzene produces [HO-Fe-C6H5]
+.  However, our experiments do not 
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determine whether [HO-Fe-C6H5]
+ is formed by reaction of FeO+ with benzene, or by 

reaction of Fe+(benzene) with N2O. 

4.3.4 Vibrational Spectroscopy of the Fe+(C6H5OH) Exit Channel Complex 

 The Fe+(C6H5OH) exit channel complexes are predicted to have the lowest O-H 

stretching frequencies, with two different possible geometries. The Fe+ can bind above 

the benzene ring (π-complex) or to the oxygen lone pair (σ-complex).  The CBS-QB3 

calculations predict that the lowest energy structure is clearly the quartet state of the π-

complex, which is predicted to be bound by 275 kJ/mol relative to sextet Fe+ + phenol.  

The sextet π-complex is bound by 196 kJ/mol, while the quartet and sextet σ-complexes 

are bound by 166 and 161 kJ/mol, respectively.  The preference for Fe+ to bind to the 

aromatic ring rather than to oxygen is consistent with the greater measured binding 

energy for Fe+-benzene (207±10 kJ/mol) than for Fe+-H2O (128±5 kJ/mol).38 The 

quartet and sextet π-complexes and quartet σ-complex are predicted to have very similar 

O-H stretching frequencies.  All are in excellent agreement with the observed O-H 

stretch at 3598 cm-1 (Figure 4.4). The O-H stretch for the sextet σ-complex is predicted 

to lie well below the observed peak. 

 The O-H stretching frequency in Fe+(phenol) is 3598 cm-1, which is 59 cm-1 

below the O-H stretch in bare phenol (3657 cm-1).32 Vaden and Lisy measured 

vibrational spectra of M+(phenol)(Ar) (M=Na, K) in the O-H stretching region, 

monitoring argon loss.39  For K+ they observed a narrow, symmetric peak at 3636 cm-1, 

which was assigned to the π-complex.  The spectrum of the Na+ complex consists of a 

peak at 3641 cm-1 with a clear shoulder at 3632 cm-1, which were assigned to the σ- and 

π-complexes, 
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Figure 4.4 Experimental and calculated vibrational spectra of Fe+(C6H5OH) in the O-H 

stretching region.  The experimental spectrum is obtained by IRMPD of ions produced 

by reacting Fe+ with C6H5OH and monitoring Fe+ fragments (blue).  Calculated spectra 

(right axis) are at the B3LYP/6-311+G(d,p) level, with frequencies scaled by 0.954. 

Spectra of Fe+(phenol) with Fe+ bound to the oxygen (σ-complex) and above the ring 

(π-complex) are shown. For the simulations, solid lines represent sextet states and 

dashed lines quartet states. 
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respectively. So, binding to Na+ or K+ leads to a ~20 cm-1 red shift in the O-H stretching 

frequency of bare phenol, significantly smaller than the 59 cm-1 red shift due to Fe+ 

binding. The observed red shifts correlate with the binding energies of M+(phenol), 

which are measured40 to be 74 kJ/mol for K+, 102 kJ/mol for Na+ and calculated to be 

275 kJ/mol for Fe+.  

 

4.4 Conclusions 

Vibrational spectra of two intermediates of the gas-phase FeO+ + C6H6 � Fe+ + 

C6H5OH reaction have been measured in the O-H stretching region.  Spectra of the 

quartet and sextet states of [HO-Fe-C6H5]
+, the key insertion intermediate, are obtained 

from IRMPD, monitoring the FeOH+ fragment. With the aid of B3LYP/6-311+G(d,p) 

calculations the main peak observed at 3700 cm-1 is assigned to the sextet state and the 

shoulder at ~3670 cm-1 to the quartet state. IRMPD of the Fe+(C6H5OH) exit channel 

complex primarily produces Fe+ + C6H5OH; Fe+(C6H4) + H2O is a minor product. The 

spectrum consists of a peak at 3598 cm-1.  Calculations suggest that quartet and sextet 

states of the Fe+(C6H5OH) π-complex and the quartet σ-complex could contribute. The 

spectrum of ions produced by reacting Fe+ with N2O and benzene is narrower than that 

obtained using Fe+ + phenol.  This could be due to different populations of the isomers 

or to different vibrational temperatures in the two cases.  In addition, a potential energy 

surface for the reaction has been calculated at the CBS-QB3 level. 
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CHAPTER 5 

 

 

COMPARISON OF IRMPD, Ar-TAGGING AND IRLAPS FOR VIBRATIONAL 

 

SPECTROSCOPY OF Ag+(CH3OH) 

 

5.1 Introduction 

Vibrational spectroscopy is widely used to measure structure and bonding of 

gas-phase ions.1-5  Due to low density of ions in most cases, direct absorption is not 

applicable. Thus photofragment spectroscopy is a nice tool to get the desired 

information. The primary challenge in applying photofragment spectroscopy to 

measuring vibrational spectra is that light absorption needs to lead to bond breaking. 

For many ions, one photon in the IR does not have enough energy to break a bond. 

Common techniques to overcome this problem are infrared multiple photon 

dissociation, messenger spectroscopy, and two-color techniques such as vibrationally 

mediated photodissociation. These techniques have been discussed in Chapter 1. They 

are useful methods but each has some drawbacks. In this chapter we focus on 

developing a method to get better vibrational spectra, especially for strongly bound 

ions. The method is called infrared laser assisted photodissociation spectroscopy 

(IRLAPS). In IRLAPS a tunable IR laser excites a vibration. The vibrationally excited 

ions absorb several photons from a second infrared laser and dissociate.6-10 

The application of IRLAPS to spectra of Ag+(CH3OH) is shown schematically 

in figure 5.1. A tunable IR laser system excites the O-H stretch vibration via one-photon 
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absorption.  Vibrationally excited molecules then selectively sequentially absorb several 

photons in the C-O stretching region from a high-power pulsed CO2 laser and 

dissociate. In principle, vibrationally mediated photodissociation (VMP) and IRLAPS 

can be used to measure vibrational spectra of unperturbed ions with laser-limited 

resolution.  These techniques require careful spatial and, in some cases, temporal 

overlap of both lasers with the ion cloud. In addition, one-laser background can 

interfere with the desired two-laser signal. Lee and coworkers first applied IRLAPS in 

their study of the O-H stretching vibrations of hydrated hydronium ions H3O
+(H2O)n 

(n=1-3).6  Eyler and coworkers used a tunable, pulsed CO2 laser to excite ions and a 

second, continuous wave (cw) CO2 laser to dissociate them, measuring the spectra of 

C3F6
+ and C2H5Cl+. They also quantified the two-laser signal dependence on the laser 

power, irradiation time, and time delay between the lasers.7 Dopfer, Maitre and 

coworkers observed very low signals in IRMPD of Ag+(phenol) using a free electron 

laser.  Combining the free electron laser with subsequent cw CO2 laser irradiation 

greatly increased the fragment ion yield, allowing them to measure the vibrational 

spectrum.11 The most extensive application of IRLAPS is by Rizzo and coworkers, who 

have used the technique to study vibrational overtone spectra of neutral molecules such 

as CH3OH and CF3H.8, 9 In this paper, we compare vibrational spectra of Ag+(CH3OH) 

obtained using IRMPD, IRLAPS and Ar tagging.  This allows us to compare the 

suitability of these techniques for measuring vibrational spectra of a strongly-bound ion 

produced in a laser ablation-molecular beam source. 
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Figure 5.1 Schematic representation of the two-laser infrared laser assisted 

photodissociation spectroscopy of Ag+(CH3OH). Molecules are vibrationally excited in 

the O-H stretching region, near 3600 cm-1. Vibrationally excited molecules sequentially 

absorb several 929 cm-1 photons and dissociate. 
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5.2 Experimental and Theoretical Methods 

 

Vibrational spectra are measured using a dual time-of-flight reflectron 

photofragment spectrometer described in detail in Chapter 2.12, 13 Silver cations are 

generated by laser ablation of a silver rod (Sigma-Aldrich, 99.8% pure). Ag+ cations 

interact with a pulse of 0.5% methanol in helium or argon at a stagnation pressure of 4-

5 atm. from a pulsed piezoelectric valve to produce Ag+(CH3OH) and Ag+(CH3OH)(Ar) 

respectively. Ions produced in the source expand supersonically into vacuum and cool 

to a rotational temperature of ~10 K.14 Ions are accelerated to 1800 V kinetic energy, 

then re-referenced to ground potential before entering the field-free flight tube. Mass-

selected ions are photodissociated at the turning point of the reflectron. Energetically, 

photodissociation of Ag+(CH3OH) requires at least four photons in the O-H stretching 

region. So, vibrational spectra are obtained using infrared laser-assisted 

photodissociation spectroscopy (IRLAPS) and infrared multiple photon dissociation 

(IRMPD). In the O-H stretching region, the light source is a Nd:YAG pumped optical 

parametric oscillator/optical parametric amplifier (OPO/OPA, Laservision Inc.) which 

is tunable from 2 to 5 µm, producing ~15 mJ/pulse near 3600 cm-1, with a beam 

diameter of 5 mm. The photodissociation efficiency is greatly improved by using a 

multi-pass mirror arrangement15, 16 in which light from the OPO makes 21 passes 

through the ion cloud. The IRLAPS experiments also use a TEA-CO2 laser to dissociate 

vibrationally excited molecules via multiple photon excitation of the C-O stretch. The 

CO2 laser (InfraLight SP, Optosystems, Ltd.) is line-tunable from 929.0-1086.8 cm-1, 

producing up to 50-500 mJ in a 100 ns pulse, depending on the line.  It makes one pass 
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through the ion beam. The CO2 laser beam is approximately rectangular, 4 mm x 8 mm. 

It is not focused. The OPO wavelength is calibrated using H2O absorptions and CO2 

laser emission lines are calibrated using NH3 absorptions. In the IRLAPS experiment, 

the OPO fires ~30 ns before the CO2 laser. The IR beam path is purged with nitrogen to 

minimize absorptions by water vapor. 

Fragment ions and undissociated parent ions are detected by a dual micro-

channel plate detector. The ion signal is amplified, collected on a gated integrator, and 

averaged with a LabView based program. The photodissociation spectrum is obtained 

by monitoring the yield of the fragment ion of interest as a function of wavelength and 

normalizing to parent ion signal and laser fluence.  In IRLAPS and IRMPD of 

Ag+(CH3OH), the only fragment observed is Ag+. As expected, photodissociation of 

Ag+(CH3OH)(Ar) leads solely to loss of argon. 

Computations are carried out with the Gaussian 2003 program package.17 The 

optimized geometries of Ag+(CH3OH) and Cu+(CH3OH) are calculated using the Becke 

Lee-Yang-Parr hybrid HF/DFT method (B3LYP) with the SDD relativistic effective 

core potential and basis set on the metal and 6-311+G(d,p) basis set on the remaining 

atoms. Vibrational frequencies are computed to ensure that optimized geometries 

correspond to a local minimum. Anharmonic frequency calculations use the 

opt=verytight and int=ultrafine keywords. Anharmonic frequencies are not scaled. All 

energies include zero-point energy and correspond to 0 Kelvin values. 
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5.3 Results and Discussion 

 

The Ag+(CH3OH) ion is a promising candidate for an IRLAPS study for several 

reasons.  First, it is relatively small and strongly bound, so simple IRMPD is expected 

to be inefficient. The O-H stretch is a strong IR chromophore that is also sensitive to the 

bonding in the molecule.  The C-O stretch in bare methanol is a good IR absorber in the 

rather limited CO2 laser tuning range.  The Ag+ cation has a 4d10, 1S ground state. As a 

result, Ag+(CH3OH) is the only stable isomer. In our calculations, we were unable to 

optimize an inserted [HO-Ag-CH3]
+ structure; all attempts rearrange to Ag+(CH3OH). 

This is in contrast to the open shell metal system we studied such as, Fe+ and Co+.  In 

addition, the first excited state of Ag+ (4d95s, 3D) lies 470 kJ/mol above the ground 

state, so only singlet Ag+(CH3OH) contributes to the vibrational spectrum.  This is in 

contrast to the iron system, where the quartet and sextet spin states of the [HO-Fe-CH3]
+ 

and Fe+(CH3OH) isomers are at similar energies and can contribute to the spectrum, 

depending on how the ions are produced (Chapter 3).18  

For bare CH3OH, the calculated anharmonic frequencies are νOH=3670 cm-1 and 

νCO=1015 cm-1.  These are very slightly below the experimental values νOH=3681 cm-1 

and νCO=1033 cm-1.19 The calculations predict that Ag+ binds to CH3OH at rAg-O = 2.21 

Å.  Binding to the metal lengthens the O-H bond by 0.004 Å, to 0.965 Å and lengthens 

the C-O bond by 0.040 Å, to 1.464 Å. As a result, the calculated anharmonic O-H 

stretching frequency is predicted to drop to 3644 cm-1 and the C-O stretching frequency 

drops to 927 cm-1. This is slightly below the 929 cm-1 lower limit of our CO2 laser. The 
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calculated Ag+-CH3OH dissociation energy is 145 kJ/mol. Thus, for IRMPD in the O-H 

stretching region, at least four photons are required to break the bond. Using the CO2 

laser alone, 13 photons need to be absorbed to dissociate the molecule.  In the IRLAPS 

experiment, after absorbing one photon in the O-H stretch region, dissociation requires 

9 additional CO2 photons. 

 

5.3.1 IRLAPS of Ag+(CH3OH) 

 

We measure the vibrational spectrum of Ag+(CH3OH) molecules using three 

techniques: IRLAPS, IRMPD, and argon-tagging, and the results are compared. In 

infrared laser assisted photodissociation spectroscopy (IRLAPS) one vibrationally 

excites the molecules using a tunable laser. Vibrationally excited molecules are then 

selectively photodissociated using a high-power laser such as a CO2 laser (Figure 5.1). 

Ideally, the molecules are vibrationally excited to an energy where the density of 

vibrational states is sufficiently high that they form a quasi-continuum, and they absorb 

CO2 laser photons much more readily than vibrationally unexcited molecules. In this 

ideal case, fragmentation is only observed when both lasers are present, and there is no 

background from either laser alone.  This has been observed in studies by Rizzo and 

coworkers, where it is achieved by exciting vibrational overtones, so that one reaches 

the quasi-continuum, even for small molecules.8, 9, 20  Background from the CO2 laser is 

minimized by tuning the CO2 laser to the red of the resonant absorption for vibrationally 

unexcited molecules and decreasing the CO2 laser power until it induces negligible 
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dissociation alone. Vibrational absorptions are shifted to the red for vibrationally 

excited molecules due to vibrational cross-anharmonicities.20 

Figure 5.2 shows the IRLAPS spectrum of the O-H stretching fundamental in 

Ag+(CH3OH). This is  obtained with 50 mJ/pulse at the 10P(36) CO2 laser transition, at 

929.0 cm-1, and with ~16 mJ/pulse at 3600-3700 cm-1.  In this experiment, there is 

significant one-laser background. Each laser alone dissociates ~4% of the ions. As a 

result, we measure the normalized fragment ion yield with both lasers on (brown trace) 

and subtract from it the fragment yield measured from each laser alone (green trace). 

The result is the IRLAPS spectrum, shown in blue. It consists of a slightly asymmetric 

peak at 3660 cm-1, with full-width half-max (FWHM) of 50 cm-1.  The anharmonic 

calculations predict an O-H frequency of 3644 cm-1, in good agreement with our 

experimental result. 

To optimize the signal to background in the IRLAPS experiment, we measured the 

dependence of the one-laser background and two-laser signal on the OPO and CO2 laser 

power and CO2 laser wavelength. The one-laser IRMPD background and two-laser 

IRLAPS signal were measured at OPO/OPA laser powers of 5 to 16 mJ/pulse and CO2 

laser powers of 25 to 50 mJ/pulse.  The IRMPD fragment yield depends on (OPO laser 

power)1.7  and on (CO2 laser power)1.9.  The IRLAPS signal depends linearly on the 

OPO laser power and depends on (CO2 laser power)1.6. As expected, IRLAPS is favored 

at lower power from each laser, but the effect is small.  This is in contrast to power 

dependencies measured by Rizzo and coworkers in IRLAPS studies of methanol 

overtones, where the threshold for IRLAPS is significantly lower than that for 

IRMPD.10 As a result, they were able to select laser powers at which they could obtain 
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reasonable IRLAPS signal with negligible one-color background.  There are two likely 

reasons for our having to use such high CO2 laser power: the choice of CO2 laser 

wavenumber, and whether the vibrationally excited molecule is in the quasi-continuum 

region. 
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Figure 5.2 IRLAPS spectrum of Ag+(CH3OH) in the O-H stretching region.  In addition 

to the two-color signal, there is significant one-color background. This background is 

shown in the green trace, which is the sum of the Ag+ fragment yield, normalized to 

laser power, from the CO2 laser (which is not scanned) alone and from IRMPD by the 

tunable OPO alone. The brown trace shows the normalized signal with both lasers on.  

The enhanced dissociation yield (the difference between the brown and green traces) is 

the net IRLAPS signal, and is shown in blue. The dips in the spectra are due to loss of 

laser power due to absorption by trace atmospheric water.  
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To optimize IRLAPS signal and minimize CO2 laser background, Rizzo and 

coworkers tune the CO2 laser to the red of the transition in the vibrationally unexcited 

molecule.  The anharmonic calculations predict that the C-O stretch in Ag+(CH3OH) 

lies at 927 cm-1. We find that the fragment ion yield for both IRLAPS and IRMPD 

improves with decreasing CO2 laser wavenumber. Unfortunately, the limited tuning 

range of the CO2 laser does not allow us to explore wavenumbers significantly to the 

red of the C-O stretch. The 929 cm-1 transition used is the lowest available for our laser. 

We also tried to measure νOH in Cu+(CH3OH) via IRLAPS. Although each laser 

produced photofragments, no net IRLAPS signal was observed. The anharmonic 

frequency calculations predict νCO=908 cm-1 in Cu+(CH3OH), significantly lower than 

the value in Ag+(CH3OH), and well below the CO2 laser tuning range. Large red-shifts 

in νCO upon binding to metal cations have also been quantified by Dietrich et al. for 

Aun
+(CH3OH)m using IRMPD with a CO2 laser.21 Clusters with fewer methanol 

molecules show progressively larger red shifts. The C-O stretch frequency lies below 

929 cm-1 even for Au+(CH3OH)2.  

Rizzo and coworkers also observe that the threshold CO2 laser power required 

for IRLAPS is lower for more highly vibrationally excited CH3OH.  This is a result of 

the steep increase in vibrational density of states ρvib with increasing internal energy.  At 

higher initial vibrational energies, the molecules are more likely to be in the quasi-

continuum region and to sequentially absorb CO2 laser photons more readily.  Also, 

fewer CO2 photons are required to dissociate the molecule.  For Ag+(CH3OH), we 

calculate that ρvib=50 states/cm-1 at vOH=1. This is not quite in the quasi-continuum, and 

may make CO2 laser absorption less efficient. This effect was also noted by Lee and 
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coworkers in their study of H3O
+(H2O)n.  For H5O2

+, at vOH=1, ρvib is only 38 states/cm-

1, so they observe less efficient absorption of CO2 photons than for H7O3
+ and H9O4

+, 

which have much higher densities of states at the same energy.22 In summary, both 

conditions-not tuning significantly to the red of  νCO in the unexcited molecule and the 

low density of states at vOH=1- are responsible for the significant one-color background. 

 

5.3.2 IRMPD of Ag+(CH3OH) 

 

  In the O-H stretching region, IRMPD of Ag+(CH3OH) requires at least four 

photons.  Using the multipass mirror arrangement, we observe ~4% dissociation near 

3635 cm-1.  The only fragment observed is Ag+.  The IRMPD spectrum is shown in 

figure 5.3 (green trace).  It consists of a peak at 3635 cm-1, with a width of 180 cm-1. 

This is 25 cm-1 red-shifted and significantly broader than the peak observed using 

IRLAPS.  The O-H stretches of several other M+(CH3OH) systems have also been 

measured using IRMPD.  Those spectra show similarly broad features.  Weinheimer 

and Lisy23 observe a peak at 3663 cm-1 (108 cm-1 FWHM) for  Cs+(CH3OH). For 

Mg+(CH3OH), Machinaga et al.24 obtain a 200 cm-1 wide peak at 3520 cm-1, and Furuya 

et al. measure a 130 cm-1 wide peak at 3490 cm-1 for Al+(CH3OH).25 

 



109 
 

100

80

60

40

20

0

R
el

at
iv

e 
In

te
ns

ity

3700365036003550
Photon Energy (cm-1)

 Ag
+
(CH3OH) IRLAPS

 Ag
+
(CH3OH) IRMPD

 Ag
+
(CH3OH)(Ar)

 Ag
+
(CH3OH) Simulation

 

 

 

 

Figure 5.3 Comparison of  vibrational spectra of Ag+(CH3OH) in the O-H stretching 

region. The spectra obtained using IRLAPS (blue) and argon tagging (red) are similar. 

The IRMPD spectrum is significantly broader, especially to lower wavenumber. 
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5.3.3 Argon-Tagged Ag+(CH3OH) 

Photodissociation of Ag+(CH3OH)(Ar) provides another means to measure the O-H 

stretching frequency.  The computed argon binding energy is 24 kJ/mol (2000 cm-1), so 

one photon in the O-H stretching region can break the bond. Ar tagging is calculated to 

blue-shift the O-H stretching frequency by 3 cm-1. Experimentally, loss of argon is the 

only photodissociation fragment observed.  The resulting photodissociation spectrum is 

shown in red in Figure 5.3. It consists of a peak at 3660 cm-1with a width of 60 cm-1.  

This is narrower than the IRMPD spectrum, but is slightly broader than that obtained by 

IRLAPS.  There is no significant shift between the Ar-tagging and IRLAPS spectra.  

The photodissociation spectrum of Ag+(CH3OH)(Ar) is broader than is typically 

observed for Ar-tagged ions.  Much of the width of the Ar-tagged and IRLAPS spectra 

is likely due to sequence bands from vibrationally excited ions. Attachment of Ag+ to 

CH3OH is 145 kJ/mol exothermic.  Ideally, collisions with the carrier gas in the ablation 

source and subsequent expansion remove this energy.  However, molecular beams cool 

vibrations much less efficiently than rotations.  As a result, the Ag+(CH3OH) can be 

vibrationally excited, particularly in the low-frequency intermolecular vibrations and 

CH3OH torsion. A similar effect is expected for Ag+(CH3OH)(Ar), except the 2000 cm-1 

Ar binding energy limits the vibrational energy. 

 Several groups have measured the O-H stretching frequencies of M+(CH3OH) 

complexes using IRMPD and Ar-tagging.  Binding to the metal lowers νOH from its 

value in bare methanol (3681 cm-1).  For many metals, this red shift is small.  For 

example, Weinheimer and Lisy measure νOH=3663 cm-1 in Cs+(CH3OH),23 and 3659 

cm-1 in Na+(CH3OH)2 (the value for Na+(CH3OH) is likely to be similar, as there is little 
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shift in going from Na+(CH3OH)n, n=4 to 2).26  We measure νOH=3660 cm-1 in 

Ag+(CH3OH).  Previously, we observed νOH=3630 cm-1 in Fe+(CH3OH) via Ar-tagging 

(Ch.3).18 Hirabayashi et al. measured O-H stretches for Nin
+(CH3OH), obtaining 

νOH=3634 cm-1 for n=3 and 3645 cm-1 for n=4.27 They measure similar values for 

Con
+(CH3OH).28  There are two metals which give much larger red shifts.  For 

Mg+(CH3OH), Machinaga et al. measure a broad peak at 3520 cm-1 using IRMPD and a 

much narrower peak at 3560 cm-1 using Ar tagging.24 Al+(CH3OH) shows a further red 

shift, to νOH=3490 (IRMPD) and νOH=3495 (Ar tagged), as measured by Furuya et al.25 

 

5.4 Summary and Conclusion                       

IRLAPS gives the narrowest vibrational spectrum of Ag+(CH3OH) in the O-H 

stretching region.  The spectrum obtained via Ar-tagging is slightly broader and shows 

no significant shift.  In contrast, IRMPD leads to a peak that is three times as broad, is 

25 cm-1 shifted to the red, and exhibits significant tailing to the red. With the same laser 

ablation source, for larger molecules, we find that IRMPD can give narrower peaks.  

For example, IRMPD of Fe+(phenol) gives a peak at 3598 cm-1, with 45 cm-1 FWHM 

(Ch.4).16 This is despite the fact that Fe+(phenol) is more strongly bound than 

Fe+(CH3OH).  The narrower spectrum is likely due to the greater IVR rate in 

Fe+(phenol), which allows for efficient sequential multiple photon absorption by rapidly 

transferring energy out of the O-H stretch vibration.  This also suggests that IRLAPS 

may be more efficient and give narrower features for larger molecules, as one O-H 

quantum is sufficient to reach the quasi-continuum region, facilitating subsequent 

absorption of CO2 laser photons. 
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CHAPTER 6 
 

RECOMMENDATIONS FOR FUTURE WORK 

 

6.1 Additional vibrational studies of FeO+ + CH4 reaction intermediates 

 

There are several directions in which we can extend the studies described in chapter 3 to 

gain addition information on the intermediates of the FeO+ + CH4 reaction. 

 

6.1.1 Spectroscopy of OFe+(CH4) 

 

The initial step in the FeO+ + CH4 reaction is formation of the OFe+(CH4) entrance 

channel complex. The vibrational spectroscopy of the OFe(CH4)+ entrance channel 

complex should be investigated to provide complete picture of the vibrational 

information for all the FeO+ + CH4 reaction intermediates. 

Binding to FeO+ weakens the C-H bonds in CH4, and vibrational spectroscopy is a 

sensitive probe of this effect. Figure 6.1 shows the calculated IR spectra of  two 

possible OFe+(CH4) complexes and of bare methane. Note that binding to FeO+ leads 

to substantial IR intensity for the IR-inactive symmetric stretch band in methane. Many 

electrostatically bound compounds have several possible structures with similar 

energies. We know that vibrational spectroscopy is really sensitive to the structure of 

the molecule. To find the ground state, we have to combine vibrational spectroscopy 

with electronic structure calculations of vibrational frequencies. In Figure 6.1, this 

situation is demonstrated by showing that the C-H stretching spectrum of η
3  
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coordinated OFe+(H3CH) is considerably different from that of the η
2 OFe+(H2CH2) 

complex. 

The biggest challenge to create OFe+(CH4) is finding a suitable precursor. Reasonable 

candidates are reacting Fe+ with N2O and CH4 in a specific ratio, or to use a mineral, 

e.g. hematite, to create FeO+ by ablation, which then reacts with the CH4. 

 

6.1.2 VMP studies of reaction intermediates 

 

A major challenge in characterizing the intermediates of an ion-molecule reaction is that 

the intermediates are all isomers and thus cannot be separated in a mass spectrometer.  

One way to circumvent this problem is through the use of different precursors to 

selectively prepare specific intermediates.  In some cases, this works quite well – see, 

for example, intermediates of the FeO+ + benzene reaction discussed in chapter 4. 

However, for systems like the FeO+ + CH4 reaction intermediates we have yet to find a 

chemical precursor and reaction conditions that produce only Fe+(CH3OH); it is always 

accompanied by [HO-Fe-CH3]
+.  One way to distinguish isomers is via a double 

resonance experiment.  The electronic spectra of the intermediates differ.  By 

combining electronic spectroscopy with vibrational spectroscopy we could selectively 

measure vibrational spectra of specific intermediates. 
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Figure 6.1 Calculated IR spectra of CH4 and ηηηη2 and ηηηη3 isomers of FeO+(CH4). 

Calculations at the B3LYP/6-311+G(d,p) level. The arrow indicates the position of the 

IR-inactive symmetric stretch in CH4. 
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  Vibrationally mediated photodissociation (VMP) could be used to measure vibrational 

spectra of isomer- and spin-state selected [HO-Fe-CH3]
+ with laser-limited resolution. 

In VMP, a laser vibrationally excites the molecules; a second laser selectively promotes 

vibrationally excited molecules to an excited electronic state, from which they 

dissociate. We have used VMP to measure the antisymmetric OCO stretch in V+(OCO), 

partially resolving rotational structure1 and to measure the O-H stretching vibrations in 

Co+(H2O).  In order for VMP to work, the electronic photodissociation spectrum of 

vibrationally excited molecules must be significantly different from that of the 

vibrationally unexcited ones.  Also, to measure spectra of specific intermediates, the 

electronic photodissociation of the vibrationally excited intermediate of interest must be 

much more efficient than that of other intermediates present. The quartet state of the 

insertion intermediate has a structured photodissociation spectrum in the 300-325 nm 

region (figure 6.2).  Follow-up experiments could thus selectively characterize the O-H 

and C-H stretches of bare quartet [HO-Fe-CH3]
+ using VMP. 

 

6.1.3 Vibrational spectra in the fingerprint region 

 

 Measuring vibrations directly involving the metal center would give much more 

information on bonding in intermediates such as [HO-Fe-CH3]
+.  We used electronic 

spectroscopy to measure the Fe-C and Fe-O stretches, and the O-Fe-C bend in an 

excited electronic state of [HO-Fe-CH3]
 + (Fig 6.2).2 We would like to characterize the 

corresponding vibrations in the ground electronic state. These vibrations are calculated 

to lie at 776 cm-1 (Fe-O stretch), 397 cm-1 (Fe-C stretch) and 130 cm-1 (O-Fe-C bend) in 
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quartet [HO-Fe-CH3]
+ and at  771cm-1 (Fe-O stretch), 480 cm-1 (Fe-C stretch) and 130 

cm-1 (O-Fe-C bend) in sextet [HO-Fe-CH3]
+. The Fe-C stretch frequency could be used 

to identify the spin state. 

Measuring these vibrations is more challenging than measuring O-H stretches.  

Laboratory lasers produce ~10 mJ/pulse in the O-H stretching region, but <0.1 mJ/pulse 

near 800 cm-1.  In addition, IRMPD in the fingerprint region requires substantially more 

photons than in the O-H stretch region, as each photon has only ~25% the energy.  

Spectra of molecules such as protonated benzene, protonated toluene3 and X-(H2O) 

(X=OH, O, F, Cl, Br)4 have been measured in the fingerprint region. Another possibility 

is to use VMP to selectively detect vibrationally excited molecules. 

 An alternate approach is to use a light source with substantially more intensity in 

the fingerprint region. The free electron lasers at FELIX (Netherlands) 5 and CLIO 

(France)6 have been used for IRMPD studies of vibrational spectra of a huge number of 

ions,7-10 as they are broadly tunable and produce ~30 mJ/macropulse down to ~600 

cm-1.   

 

6.2 Studies of intermediates of methane and benzene activation by other MO+ 

 

As was discussed in chapter 1, there are several MO+ which convert methane to 

methanol, with varying efficiencies and selectivities. Thus, it is of interest to study the 

spectroscopy of intermediates of the MO+ + CH4 reaction for a range of metals, and 

attempt to correlate the photofragment pathways and the vibrational and electronic 

spectroscopy of the intermediates with the reactivity patterns.  The CoO+ and PtO+  
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systems are particularly interesting, as they show very different efficiencies and 

selectivities (CoO+ shows 0.5% efficiency, but 100% selectivity for methanol, while 

PtO+ shows 100% efficiency, but only 25% selectivity for methanol, see table 1.1).  

 I have measured the electronic and vibrational spectra of the [HO-Co-CH3]
+ 

insertion intermediate and Co+(CH3OH) exit channel complex.  Photodissociation of 

[HO-Co-CH3]
+ in the visible produces only Co+ + CH3OH.  This is in sharp contrast to 

[HO-Fe-CH3]
 +, which dissociates to produce similar amounts of Fe+ + CH3OH and 

FeOH+ + CH3.  The observed photodissociation pathways mirror the bimolecular 

reaction results.  Figure 6.2 compares a portion of the electronic photodissociation 

spectra of [HO-Co-CH3]
+ and [HO-Fe-CH3]

+. They both show resolved vibrational 

progressions in the excited electronic state, particularly an extended progression in the 

metal-C stretch (335 cm-1 and 478 cm-1 respectively).  Calculations agree with the 

experimental findings, predicting that electronic excitation leads to lengthening of the 

M-C bond and slight contraction of the M-O bond.  Figure 6.3 shows the vibrational 

spectra of [HO-Co-CH3]
+ and [HO-Fe-CH3]

 + in the O-H stretching region, measured 

using argon-tagging. The spectra are very similar.  

A great deal could be learnt by extending these studies to intermediates of the MO+ + 

CH4 reaction for M=Pt, Ni, Mn, as they show interesting reactivities (table 1.1).  In 

addition, it would be instructive to study MO+ + benzene intermediates for these metals, 

as well as Co. 
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Figure 6.2 Electronic photodissociation spectra of [HO-Fe-CH3]
+ and [HO-Co-CH3]

+. 

M+ loss is detected. 
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Figure 6.3 Infrared photodissociation spectra of [HO-Fe-CH3]
+(Ar) and 

 [HO-Co-CH3]
+(Ar) in the O-H stretching region. Argon loss is detected.
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6.3 Spectroscopy of intermediates of M+ + C3H8 reactions  

 Alkanes are unusually stable compounds and they are also among the most 

abundant organic compounds in nature. The abundance of the alkanes makes them 

important raw materials for chemical synthesis. On the other hand the stability of the 

alkanes makes transformations into other compounds difficult. Therefore, the selective 

activation of alkane carbon-hydrogen and carbon-carbon bonds is a challenge to organic 

chemists. 

 Certain gas-phase transition-metal ions M+ are chemically interesting for their 

ability to activate C-H and C-C bonds of saturated alkanes. A summary of the observed 

reactions of the first row M+ with C3H8 at thermal energies is shown in Table 6.1.11  

Parentheses indicate the minor product in cases where both C-C and C-H activation are 

observed. At low kinetic energy V+ and Ti+ react exothermically with linear alkanes to 

yield primarily H2 elimination products, e.g.:  

 

Ti+ + C3H8  →   TiC3H6+ + H2         (6.1) 

On the other hand, exothermic reactions of Sc+, Fe+, Co+ and, Ni+ with larger alkanes 

branch between H2 and CH4 elimination.11 e.g.; 

 

Fe+ + C3H8       →    FeC3H6+ + H2       (6.2) 

Fe+ + C3H8      →    FeC2H4+ + CH4    (6.3) 
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It is obvious that the first-row transition metal cations do not react uniformly with 

hydrocarbons. Why do some (Sc+, Ti,+ V+ and Co+) give predominately C-H 

activation, others (Fe+ and Ni+) give predominantly C-C activation, while still others 

(Cr,+ Mn+, Cu+ and Zn+) are unreactive? Asymptotic studies of the reactants and 

products have suggested correlations between electron configuration and reactivity.11, 12 

For example the lack of reactivity of Cr,+ Mn+, Cu+ and Zn+ has been attributed to 

these ions having filled, or half filled d-orbitals. Other models have been based on 

conservation of spin during the reaction, the need for empty M+ orbitals of suitable 

symmetry into which the alkane can back-donate electron density, and non-adiabatic 

effects. 

The mechanism for the gas phase reaction is basically simple: on collision the reactants 

form an adduct, [M.RH]+, which can dissociate back to reactants or go on to products. 

Tonkyn et al. observed that the reaction of M+ with propane in helium buffer gas forms 

M+(C3H8) adducts for most M+.11 In crossed-beam studies Weisshaar’s group found 

that the Co+ + C3H8 reaction forms an adduct that lives for ≥8 µs at 0.01-0.21eV 

collision energy.13 These mass spectrometric studies were not able to characterize the 

structure of the M+(C3H8) adducts. Knowing the structure of the adduct is of immense 

help in characterizing the mechanism for the reaction. For example, comparing the 

structure of the adduct isolated for Cu+ + C3H8 with that for Fe+ + C3H8 would show 

why the Cu+ adduct reverts to Cu+ + C3H8 while the Fe+ adduct proceeds to FeC2H4+ + 

CH4. 
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Sc+ Ti+ V+ Cr+ Mn+ Fe+ Co+ Ni+ Cu+ Zn+ 
Ground Electronic State Configuration 

3d 4s  3d2 4s 3d4 3d5 3d5 4s 3d6 4s 3d8 3d9 3d10 3d10 
4s 

3D 4F 5D 6S 7S 6D 3F 2D 1S 2S 
Reaction with propane;11  C ⇒ C-C activation, H ⇒ C-H activation 

H,(C) H H None None C,(H) H,(C) C,(H) None None 
Excited Electronic States and their Energies (cm-1)14 

4s → 3d 
3d2  3d3   3d6 3d7     

4803 
(3F) 

908 
(4F) 

  14326 
(5D) 

1873 
(4F) 

    

12074 
(3P) 

9364 
(4P) 

   13474 
(4P) 

    

3d → 4s 
4s2 3d 4s2 3d3 4s 3d4 4s 3d4 

4s2 
3d54s2 3d7 4s 3d8 4s 3d9 4s 3d9 

4s2 
11736 
(1S) 

24961 
(2D) 

2605 
(5F) 

11962 
(6D) 

54846 
(5D) 

23318 
(6S) 

3351 
(5F) 

8394 
(4F) 

21929 
(3D) 

62722 
(2D) 

  13512 
(5P) 

   9818 
(3F) 

13550 
(2F) 

26265 
(1D) 

 

 
Table 6.1 Ground and low-lying electronic states of first row M+ and reactivity with 
propane 
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Depending on the nature of M+ and RH, possible forms for these adducts range 

from simple cluster ions, [M+.RH] held together by only electrostatic forces, to C-H, 

and C-C insertion forms [H-M+-R] [H3C-M+-R'] or rearrangement intermediates such 

as [H2-M+-R"] exhibiting new chemical bonds. Long-range attractive forces, of the type 

ion - induced dipole, exist between all M+-RH pairs. These forces will stabilize the 

adduct relative to both reactants and products.  

It would be interesting to study the vibrational spectroscopy of the adducts arising from 

reaction of the 3d transition metals with small alkanes such as propane to gain structural 

and thermochemical information on these molecules. The first systems could be 

M+(C3H8) where M= Fe, Co, Ni. These metals show both C-H and C-C activation at 

thermal energies. Elegant crossed beam studies by the Weisshaar group find that, at low 

collision energy Co+ + propane produces predominantly H2 elimination products in 

preference to CH4 elimination products.13 This contrasts sharply with the behavior of 

Fe+ and Ni+, its two nearest neighbors, both of which produce predominantly CH4.15-18 

Also, there have been high quality computational studies of the reactions of Fe+, Co+, 

Ni+  with small alkanes using DFT which have examined all important stationary points 

on the ground state surfaces.13, 15   

A preliminary IRMPD spectrum of Fe+(C3H8)2  in the C-H stretching region is shown in 

figure 6.4. The peak at 2970 cm-1 corresponds to stretching vibrations of C-H pointing 

away from the metal. This is similar to frequency observed in bare C3H8. The enhanced 

dissociation near 2750 cm-1 could be due to C-H stretches of C-H proximate to the 

metal.  
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Figure 6.4 IRMPD spectrum of Fe+(C3H8) 2  in the C-H stretching region.
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