University of Massachusetts Amherst
ScholarWorks@UMass Amherst

Physics Department Faculty Publication Series Physics

1996

Low Energy Tests of Chiral Symmetryl

BR Holstein

holstein@physics.umass.edu

Follow this and additional works at: https://scholarworks.umass.edu/physics_faculty pubs
& Dart of the Physical Sciences and Mathematics Commons

Recommended Citation

Holstein, BR, "Low Energy Tests of Chiral Symmetry1" (1996). Physics Department Faculty Publication Series. 526.
Retrieved from https://scholarworks.umass.edu/physics_faculty pubs/526

This Article is brought to you for free and open access by the Physics at ScholarWorks@UMass Amherst. It has been accepted for inclusion in Physics
Department Faculty Publication Series by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please contact

scholarworks@library.umass.edu.


https://scholarworks.umass.edu?utm_source=scholarworks.umass.edu%2Fphysics_faculty_pubs%2F526&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/physics_faculty_pubs?utm_source=scholarworks.umass.edu%2Fphysics_faculty_pubs%2F526&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/physics?utm_source=scholarworks.umass.edu%2Fphysics_faculty_pubs%2F526&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/physics_faculty_pubs?utm_source=scholarworks.umass.edu%2Fphysics_faculty_pubs%2F526&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/114?utm_source=scholarworks.umass.edu%2Fphysics_faculty_pubs%2F526&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/physics_faculty_pubs/526?utm_source=scholarworks.umass.edu%2Fphysics_faculty_pubs%2F526&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@library.umass.edu

arXiv:hep-ph/9606228v1 4 Jun 1996

Low Energy Tests of Chiral Symmetryf]

Barry R. Holstein
Department of Physics and Astronomy

University of Massachusetts
Ambherst, MA 01003

Abstract

The present status of low energy tests of chiral invariance via chiral per-
turbation theory is reviewed, both in the meson and baryon sectors, and
future prospects are discussed.

1 Introduction

When I was a student back in the 1960’s, the goal of particle and nuclear physicists
was to seek the fundamental laws of nature, and one of the requirements of such
a “fundamental” law was that it be renormalizable. Well now it’s 1996 and we've
learned a few things in these three decades. One is that nonrenormalizable effective
field theories can be just as if not more useful than their renormalizable siblings in
certain situations. One of these is the case of QCD, where we have what we feel is
a correct model of nature. However, it is written in terms of the “wrong” degrees of
freedom (quarks and gluons rather than hadrons) and is impossible to solve because
of its strong coupling and inherent nonlinearity. Much more useful in the arena of low
energy physics is an effective Lagrangian, which is written in terms of experimental
degrees of freedom—mesons and baryons—and which encodes the symmetries of the
underlying QCD interaction—specifically for our purposes chiral symmetry, which
exists in the limit in which the quark mass can be taken as vanishing. This is a
program which was begun in the 60’s with the effective two-derivative Lagrangian([]

£(2)—F—’?TD UDMUT F—’ETQB U+ Ut 1
= Dy +4rom(+) (1)

which describes the interaction of the Goldstone fields ¢;,7 = 1..8. Here F, = 92.4
MeV is the pion decay constant, m is the quark mass matrix, By is a phenomenological
constant and

.8
U = exp(g 3 As6) 2)

is a nonlinear function of the fields which transforms as LU R under chiral rotations.
When used at tree level this interaction is rather successful in predicting low energy
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Coefficient Value Origin
Ly 0.65 £0.28 | 77 scattering
Lo 1.89 4+ 0.26 and
Ls —3.06 = 0.02 Ky decay
Ls 2.340.2 Fy/Fx
Ly 7.14+0.3 <r?>
Lyg —-5.6£0.3 ™ — evy

Table 1: Gasser-Leutwyler coefficients L; and the means of determination.

interactions.|[[] For example, expanding to fourth order in the fields one finds the
well-known Weinberg predictions for 77 scattering lengths[p]

T,
32mF?

Mgy
167 F2

ap = ap = — (3)
which are confirmed by experiment. However, in order to go further and include loop
effects one must include additional four-derivative pieces into the effective Lagrangian,
with ten phenomenological constants L;,7 = 1...10 which can be determined experi-
mentally as shown by Gasser and Leutwyler,[[J] yielding values for these parameters

as given in Table 1.

2 Mesons

As mentioned above, the one loop chiral expansion has been carried out in the cae of
Goldstone boson interactions by many investigators. As emphasized by Weinberg, [
this is basically an expansion in energy-momentum with a scale parameter A, ~ 1
GeV, so that one is entitled to quit at one loop provided that energies are small
compared to this scale. It is this for this reason that this is called chiral perturbation
theory (xpt). Although ten seems at first like a large number of parameters, ypt is
very predictive and the extent to which these predictions are valid is at some level
a probe of the validity of QCD itself. This subject has been extensively reviewed
in many places[fj] and there is in general very good agreement between predicted
and measured quantities as shown in Table 2 The one area here where there is a
possible problem has to do with the required relationship between the charged pion
polarizability o, and the axial structure function h, in radiative pion decay[g]

OéhA
V2Fm,

The chirally required value for the polarizability—2.8 x 10~* fm?®—is at variance with
the value found at Serpukov via radiative pion scattering[fj] but not with that found

(4)

ap =

2



Reaction Quantity Theory Expt.
v — mtr <72 > (fm?) 0.44 (input) | 0.44 £ 0.02
v — KTK- <72 > (fm?) 0.44 0.34 4 0.05
1t — etuy hy(m:t) 0.027 0.029 £ 0.017
ha/hy 0.46 (input) | 0.46 4+ 0.08
K+ — ety (ha + hy)(m:h) 0.038 0.043 £ 0.003
7t —etvete™ | ra/hy 2.6 2.6 +0.6
vt — At (o + Bar)(10~4) fm? 0 1.4+3.1
(10~ *m?) 2.8 6.8 & 1.4[f
2.2+ 1.1[f]
K — metu, ¢ = f_(0)/£+(0) -0.13 —0.20 4 0.08
Ay (fm?) 0.067 0.065 4 0.005
Ao (fm?) 0.040 0.050 £ 0.012

Table 2: Comparison between chiral predictions and experimental values for param-
eters in the Goldstone sector.

at SLAC in vy — 7t~ .[[]] This is clearly an area which deserves further study and
work in this regard is presently underway at DA®NE, Fermilab and Mainz.

3 Baryons

In the case of pion-nucleon intereactions, chiral perturbative calculations can also be
performed. However, things are much less clean for reasons which will become clear.
One begins as before with the simplest 7N Lagrangian having chiral symmetry

Loy = NG D —my + %2 gis)N (5)

where D, is a covariant derivative, g is a coupling constant to be determined, and
u, = 'V, ,Uul with u* = U. Expanding to lowest order we find

Loy =N 9= my —iga? frs — 27 W+ )N (6)

so that g4 is to be identified with the axial coupling in neutron beta decay. Also we
see that chiral symmetry requires the Goldberger-Treiman relation between g, and
the 7NN coupling constant[f]

F7rg7rNN =mnga (7)
Using the best present values we have

1201 MeV = 924 MeV x 13.0 vs. 939MeV x 1.26 = 1183 MeV (8)



mN — wN  Scattering lengths, o,y

mN — mw N LET’s, mm Scattering lengths
YN — vN  Polarizabilities, DHG sum rule
YN — 7N LET’s

v*N — 7N LET’s, g4(¢?)

4N — 7N Chiral loop effects in 7%7°

Table 3: Examples of nucleon reactions which have been examined via ypt.

and the agreement to better than two percent strongs confirms the validity of chiral
invariance in the nucleon sector. A second probe in this arena arises from the fea-
ture that the nucleon matrix element of the axial current also includes a pion pole
contribution, leading to a prediction that in the muon capture process one requires|[[J]

2= —-0.9m> 2
rp= 22 W _ I g (9)
ga(g> = —=09m2)  m2 +0.9m?2
which can be experimentally checked. Present results are
7.4+ 2.0[11] p~ capture *He
rp =1 6.5+ 24[[J p~ capture H (10)

10+ 1[I3 radiative u~ capture H

Obviously the discrepancy in the case of the radiative capture needs to be further
explored.

In order to go further one requres loop corrections, just as in the mesonic case. A
problem arises here that for the nuclons one has an additional dimensionful paramter—
my—which is the same size as the chiral scale, which makes the entire renormalization
procedure doubtful. This problem can be gotten around, however, by using so-called
heavy baryon methods, which are equivalent to the use of a Foldy-Wouthuysen trans-
formation and which make a consistent power counting scheme possible. Of course,
renormalization introduces new low energy constants (six, e.g. at O(p?)) but never-
theless this program has been carried out, predominantly by the group of Bernard,
Kaiser, and Meissner,[[4] and applications are reported in many systems: One area
of particular interest here is that of pion photoproduction. In this case for charged
production the feature that the pion derivative in Eq. [ is covariant leades to the
Kroll-Ruderman predictions for the Fy, (electric dipole) multipole at threshold

a _ [ V2D(1=3u+0(?) 7tn
At = A, T (”)

where D = eg,nn/8mmy = 23.9 (x1073/m,) and g = m,/my. In this case theory
and experiment are in good agreement, as shown below However, the experimental

4



theory expt.

El(rmtn) | 263 | 27.9+0.5[
28.8 & 0.7[L4]
Eft (m7p) | -31.3 | —31.4+ 1.3]f
—31.2 + 1.2[[7

Table 4: Threshold values of Fy, for charged pion photoproduction (x1073/m,).

theory expt.

Eor (1°D)(x1073/my) | -1.2 —1.31 £ 0.08P0
—1.3+£0.5+ 0.6[2]]
Py/|q(7%p)(xGeV™2) | 0.480 0.47 £ 0.01[27]
0.41 £ 0.03[21]

Table 5: Threshold parameters for neutral pion photoproduction.

numbers quoted are from old emulsion measurements and resutls from the recent SAL
experiment are eagerly awaited.

In the case of neutral pion photoproduction, things are more interesting. In this
case the venerable Low Energy Theorems (LET) for the threshold Ey, multipole

0+ —D (512K, + O(1?)) = +0.5 7n

were shown in 1991 to be incorrect due inappropriate assymptions concerning analyticity. [[L§]
New loop contributions at O(u?)

AEY, = ~Dp* (1) (13)
are large and destroyed the agreement which appeared to exist between the original
LET predictions and preliminary 7°p experiments at both Mainz and at Saclay. How-
ever, there has been a good deal of recent activity. On the theoretical side, Bernard
et al. have performed an analysis at O(p*).[I§ In doing so they require the values
of two counterterms. Estimating these via A, p,w dominance, they predict a value
for Eyy in good agreement with new experiments performed at both MAMI and SAL
This may be somewhat accidental, as the convergence of the series appears slow—
Eyy = C(1 —1.26+0.59+...). However, it has been pointed out that the P-wave
calculations do not suffer from this slow convergence, yielding what should be a very
solid prediction

1
@Pl = (M1+ — Ml_ + 3E1+)



theory expt.

o, | 105 | 11.6+0.6 £0.6[29
Pl 3.5 2.6 7 0.6 F 0.6]29

o’y 134 | 12.6 £1.5+2.0Pg
I¥: 7.8 3.2F 1.5 F2.0q

Table 6: Experimental values of electric and magnetic polarizabilities compared to
chiral predictions at O(p*). (All x10~*fm?)

D 1 gngN(lO — 3m) _ -2
= M—N[1+f€p—,u(1+§f-€p— yr )+...] =0.480GeV™= (14)

There may be a remaining problem in the size of the ), multipole,[R1] but this
involves a significant theoretical cancellation.

A second arena of activity is that of Compton scattering. In this case recent precise
measurements of both the proton and neutron polarizabilities have been performed
yielding values as shown below. As can be observed, the electric polarizability of
the neutron is comparable to but slightly larger than its proton counterpart. This is
interesting since a valence quark model cannot produce such a result, yielding instead
a prediction[RJ]

!
b —ah = ——(<ri>— <r?>)~4.6(x107" fm* 15
- of = (<1 ) ~ 46 ) (15)
On the other hand a chiral expansion of the polarizability does not have this problem,
starting off from equal values for the proton and neutron[2J]
e’ g4 5

——JA (2D 4 ) =124(x107* fm? 16
99 F 20y 2 ) (<107t (16)

ol = alh = 108}, = 108} =
A full O(p*) calculation of both electric and magnetic polarizabilities, with coun-
terterms evaluated via resonance dominance yields very satisfactory results as shown
Table 6, although again the convergence of the series is in doubt.[R4] Similarly a
good deal of work has been done in the case of polarized Compton scattering, both
experimentally and theoretically, but we do not have the space to discuss this here.

4 Conclusions

Obviously in a short report such as this the discussion above can provide only a brief
introduction to the multitude of work which is presently underway. Additional areas
of activity include



i) vp — 77 for which the significant near threshold cross section observed via
the TAPS group at Mainz is being confronted with the pion loop corrected
amplitude. The loop correction is large but it is too early to tell whether it
agrees with the experimental findings.

ii) v*p — 7% for which k* ~ —0.1 GeV? data from both NIKHEF and MAMI
seems to contradict at least some of the chiral perturbative predictions. How-
ever, this value of momentum transfer is probably above the range where one
can expect agreement, and we await the lower k? data to be taken at Mainz.

iii) 7N — 7w N for which previous analysis in order to extract the 77 scattering
lengths has utilized the Olsson-Turner parameterization, which is inconsistent
with a modern chiral analysis.

iv) Ky4 measurements at DAPNE and elsewhere should be able to resolve the ques-
tion concerning the use of standard vs. generalized chiral perturbation theory.

v) 7P — 7p measurements at CEBAF and elsewhere combined with precise reso-
nance photoproduction data should shed light on the validity of the DHG sum
rule.

vi) on the theoretical side it is important to include effects of the A(1240) as a
baryonic degree of freedom and not just as a heavy state which contributes to
a counterterm. Work to this end is underway and should appear soon.

Overall then I hope that I have been able to convey the sense that the area of low
energy tests of the standard model via chiral perturbation theory is an active and
exciting one, with plenty of work remaining to be done on both the theoretical and
experimental sides.

Acknowledgement: This research is supported in part by the National Science
Foundation. It is a pleasure to acknowledge the warm hospitality of the Oberlin
College physics department where this work was performed.
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