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Gauge federation as an alternative to unification

John F. Donoghue∗ and Preema Pais†

Department of Physics, University of Massachusetts

Amherst, MA 01003, USA

We motivate and explore the possibility that extra SU(N) gauge groups may exist independently
of the Standard Model groups, yet not be subgroups of some grand unified group. We study the
running of the coupling constants as a potential evidence for a common origin of all the gauge
theories. Several different example are displayed. Some of the multiple options involve physics at
the TeV scale.

1. INTRODUCTION

The Standard Model employs the gauge groups
U(1), SU(2), SU(3). At the most simplistic level, this
leads one to ask: why not SU(4), SU(5)... etc? If gauge
theories associated with these groups were to exist in-
dependently, they would likely be unobserved at present
because they could become confining at much higher en-
ergies. For example, if pure SU(4) gauge theory shared
the same coupling strength as obtained in SU(2) and
SU(3) at their intersection point (4.7×1017 GeV), SU(4)
would be confining at 4×108 GeV. Higher SU(N) groups
would confine at yet higher energies.

The usual approach to the higher order gauge groups
is to attempt to embed the Standard Model group
into a larger Grand Unification group[1]. In this case,
U(1)⊗SU(2)⊗SU(3) emerge as the unbroken subgroups
of a single larger group. Although there is not really an
historical precedent for gauge unification1, it remains a
very attractive idea. Most of the present explorations
of physics beyond the Standard Model are predicated on
the unification paradigm.

However, alternatives are possible. For example, if
higher groups such as SU(4) etc. are added sequentially
and independently of the Standard Model groups, the
fermions of the new groups may modify the running of
the couplings in such a way that the couplings converge
on a common value at high energy. This could be the
signal of a common origin for all the gauge theories. In
this case, there may be a fundamental explanation for
the set of SU(N) gauge theories without having them all
be combined into a single unification group.

We explore this possibility in the present paper. We
will refer to the alternative as gauge federation. A feder-
ation is an alliance of nearly autonomous self governing

∗Email: donoghue@physics.umass.edu
†Email: ppais@physics.umass.edu
1 The combining of electric and magnetic fields was not a unifica-

tion of two gauge theories, but rather the identification of the
correct U(1) gauge theory. Likewise, the electroweak unification
is really gauge mixing instead of gauge unification because of the
two separate gauge groups.

units. In the present context the gauge theories them-
selves are autonomous and independent at low energies.
However, by hypothesis, they have a common origin and
share the same coupling strength at some high energy2.
The running of the couplings are also related because the
fermions carry charge under more than one gauge group.

A motivation for this possibility comes from idea of
emergence. For example, Holgar Nielsen [2, 3] has pro-
posed an intriguing rationale for why we see gauge the-
ories at low energies. If one has a complicated, maybe
random, fundamental theory at high energies with fluctu-
ations of many types, the only excitations that could be
expected to propagate at large distances are those which
are protected, by a symmetry, from picking up a large
mass scale. Gauge symmetries require that the gauge
bosons be massless, and so if there are competing types
of fluctuations, those associated with non-gauge theories
would be expected to share the scale of the fundamen-
tal theory while gauge degrees of freedom could propa-
gate and be active at low energy. There have been some
partial realizations of this idea in condensed-matter-like
systems[4] with theories in which the ground state has
photonic excitations although the original theory did not
have photons as degrees of freedom. If such theories were
to generate the U(1) ⊗ SU(2) ⊗ SU(3) groups, it would
be natural to produce higher gauge groups also.

Much like the grand unification paradigm, this idea
does not generate a unique theory as a result. There are
many possible theories that differ by adjustable assump-
tions. Our goal is to explore some of these possibilities.
We will find many options that are successful. Some are
relatively simple extensions of the Standard Model. Some
are able to achieve federation at the Planck scale, and
some can converge at infinite coupling. There are some
options that have the SU(4) group becoming strong at
the TeV scale. We treat these in separate sections below.
However, there are also some general features that we

2 As an alternative to GUTs, we are tempted to call this com-
mon proposed underlying theory the ”Federation of Independent
Groups” or FIGs (we thank Gene Golowich for the acronym)
which has the advantage of allowing us to refer to the resulting
new particles as “figments”.

http://arXiv.org/abs/0903.3929v1
mailto:donoghue@physics.umass.edu
mailto:ppais@physics.umass.edu
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attempt to summarize in the conclusion.

2. RUNNING COUPLINGS AND THE U(1)
AMBIGUITY

We will be exploring the running of
the coupling constants g1, g2, g3....gN of the
U(1), SU(2), SU(3), ....SU(N) gauge theories, starting
at the scale MZ and continuing up to high energy. We
will use the one loop beta functions [5] so that the
running of the couplings are described by

α−1
N (µ) = α−1

N (MZ) + 8πbN ln
µ

MZ

(1)

with the constant bN defined by

d

d lnµ
gN (µ) = −bNg

3
N (2)

The beta functions for N ≥ 2 have the form

bN =
11N − 2nf

48π2
(3)

where nf is the number of fermions in the fundamental
representation active at the energy scale µ. For U(1) the
results depend on the hypercharge assignments,

b1 = −
1

96π2

∑

i

[Y 2
Li + Y 2

Ri] (4)

where YL,R are the hypercharge assignments for left and
right chiral fields, with the covariant derivative

DµψL,R = [∂µ + i
g1
2
YL,RAµ]ψL,R . (5)

The contribution of the Standard model fields is

b1 = −
5

12π2
(6)

For starting values, we use[6]

α1(MZ) =
αQED(MZ)

cos2 θW (MZ)
= 0.0106

α2(MZ) =
αQED(MZ)

sin2 θW (MZ)
= 0.0338

α3(MZ) = 0.118 (7)

The normalization of the SU(N) charges are well de-
fined because the gauge bosons carry the charge. How-
ever, for U(1) this is not the case and we can choose
any normalization that we desire. A rescaling of the cou-
pling constant by a factor of ρ would be accompanied
by a change in the hypercharge assignments by a fac-
tor of 1/ρ. In the formulas above we have used what
we will call the “Standard Model normalization” corre-
sponding to hypercharge assignments of −1 for the lepton
left handed doublets and 1/3 for the quark left handed

FIG. 1: The running of the inverse Standard Model cou-
pling constants, with the GUT normalized U(1) coupling also
shown.

doublets. While this makes the Z0 − γ mixing formulas
look neat, there is really no compulsion to use this nor-
malization. For example, in describing the running cou-
pling constants in grand unified theories, most authors
use the “grand unification normalization” convention,

g
(GUT )
1 =

√

5

3
g
(SM)
1 (8)

which is appropriate for embedding the U(1) group
within the larger GUT group. The running of the Stan-
dard Model charges in both normalizations is shown if
Fig. 1. However, this normalization need not be appro-
priate for our efforts either.

This feature makes it clear that there is then an in-
herent ambiguity in our program, associated with the
normalization of the U(1) charge. From low energy in-
formation only, we have no way of knowing what the
appropriate U(1) charge normalization is3. Because our
goal is an exploration of the various possibilities for the
convergence of the couplings, we will allow ourselves to
rescale the U(1) charge by integer ratios at times in this
work. This freedom clearly opens up yet more possibili-
ties than found in the present work. For the explorations
of the present paper, we use the Standard Model normal-
ization, as we feel that this is sufficient to illustrate the
range of possible features.

3. SIMPLE EXTENSIONS

In this section we consider the simplest extensions of
the gauge groups, where one continues to add higher or-

3 For amusement we note that if we rescale the U(1) charge by

a factor of g
(special)
1 =

q

6
5
g
(SM)
1 we would bring the running

couplings of the SM groups into reasonable concordance at µ =
4.7 × 1017 GeV
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der groups. The examples cited will lead to a convergence
of the coupling constants. Throughout the paper, we do
not insist on absolutely perfect convergence. Besides the
fact that we use the leading order beta functions, there
likely would be threshold effects that modify the running
near the federation point. Our convergence criteria is rel-
atively simple - if the running couplings converge within
the thickness of the lines in our plots (which for SU(3) is
smaller than the experimental error bars) we will accept
the result as sufficiently converged.

3.1. Sequential extensions

FIG. 2: The evolution of coupling constants with higher order
groups up to SU(90) (solid red line) and SU(11000) (dashed
red line) given U(1) hypercharge. Higher order coupling con-
stants are shown in grayscale.

In a first instance, we give the fermions of the higher
groups a U(1) charge only. Since the SU(2) and SU(3)
running is not modified, the convergence point for the
couplings has to be the crossing of these theories in the
SM running MF = 4.7 × 1017 GeV. For this case we
chose to include 3 generations of fermions in each higher
order SU(N) group, with each generation containing one
fermion with vector hypercharge coupling of +1/N and
one of hypercharge −1/N . This situation readily has
no anomalies. The 1/N factors were tried because the
quarks of SU(3) carry hypercharge of multiples of 1/3,
and was accepted because the resulting pattern led to
gauge federations. We have included a ridiculously high
number of gauge groups - up to SU(11000). The U(1)
coupling does meet up with the other couplings at the
convergence point, as can be seen in Fig 2. The high num-
ber of gauge groups is somewhat illusory because com-
parable results can be obtained including a much smaller
number, such as N=90. The high N groups run so fast
that they decouple almost immediately. Of more interest
in the lightest gauge groups. The first few of these are
also shown in Fig. 2. SU(4) becomes strong at the scale
Λ4 = 105 GeV.

In the above exercise, we have assumed that the
fermion masses are of the same order as ΛN . This is

reasonable since the fermions are added in vector repre-
sentations and there is no gauge symmetry that forces
the masses to vanish, as happens in the Standard Model.
The only natural scale in the theory is then ΛN , and the
fermion masses should be comparable to this scale. If
this were not to be the case, there could in principle be
light bosonic bound states that would influence the run-
ning below the scale of ΛN . We have also been careful
to avoid anomalies in the gauge currents, as we will con-
tinue to do in what follows. Clearly the lack of gauge
anomalies is another key restriction on possible quantum
numbers of new fermions.

FIG. 3: The evolution of coupling constants with higher order
groups up to SU(7) with N generations of vector fermions and
a hypercharge assignment of ±1/N .

A second example of the same form is the same as the
above example but includes N generations of fermions
instead of 3 generations. Again the hypercharge assign-
ments within a generation are ±1/N . Because the run-
ning is faster, we are not able to include as many gauge
groups. We find that the convergence of the couplings
occurs when we include groups up to N=7. The running
of the couplings is shown in Fig. 3. We see that SU(4)
becomes strong at Λ4 = 2.5 TeV. The largest scale in the
theory is then Λ9 = 3 × 109 GeV.

For completeness, a related variation would have N
generations but using hypercharges ±1/3 in each gener-
ation. In this case we get convergence with only groups
up to N=5 with Λ4 = 2.5 TeV and Λ5 = 1.7 × 106 GeV.
The results are shown in Fig. 4.

3.2. Prime SU(N) couplings

Instead of simply extending the gauge groups sequen-
tially to higher N , Nielsen and Brene[3] argue for a more
specific pattern based on considerations on random dy-
namics. They make the case that the allowed groups
must correspond to N being a prime number. The Stan-
dard Model satisfies this. However, Nielsen and Brene are
not able to argue that the series should stop at N = 3.
Therefore we should expect further SU(N) groups with
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FIG. 4: Coupling constants with extra order gauge groups
SU(4) and SU(5) with N generations and hypercharge ±1/3.

N equal to a prime number. We will explore this case
also.

In this picture, the next gauge group would not be
SU(4) but SU(5). In Fig 5 we show an example of such
a theory with higher groups consisting of prime N up to
N = 11. This uses the N fermions with hypercharge 1/3.
If we change the hypercharge assignment to 1/N , we can
include groups up to extremely high values - probably in-
finite within the uncertainties. In Fig. 6 we show the evo-
lution of the couplings including groups up to SU(7919)
added.

FIG. 5: Coupling constants with higher order gauge groups
SU(5), SU(7) and SU(11) with N vector fermions given a
U(1) hypercharge of 1/3.

4. PLANCK SCALE FEDERATION

An attractive possibility is that federation occurs at
the Planck scale. In emergent theories, this would be
plausible if all the interactions, including the gravity and
underlying space-time structure, were emergent from a
common underlying theory. There is added theoreti-
cal motivation for this option from the Weinberg-Witten

FIG. 6: The evolution of coupling constants with higher order
groups up to SU(113) (solid red line) and SU(7919) (dashed
red line) given U(1) hypercharge. Higher order coupling con-
stants are shown in grayscale

theorem[7], which says that composite Yang-Mills gauge
bosons or gravitons cannot be formed from a Lorentz
invariant theory. A neat way around this is if the space–
time itself is emergent[8]. The Planck scale would then be
the dominant indicator of the underlying scale. The run-
ning of the gravitational strength is dominantly quadratic
in the energy because of the dimensionality of the cou-
pling constant. New particles will influence this modestly
through a renormalization of Newton’s constant, but will
not change the dominant quadratic running.

FIG. 7: The inverse coupling constants, with higher order
SU(N) added(up to SU(10), each with N vector fermions).

In order to achieve convergence of the coupling at the
Planck scale, we must also modify the running of SU(2)
and SU(3) by having some of the new fermions couple to
these groups also. One pattern that works is to allow the
SU(N) fermions to also carry a charge under SU(N − 2)
In Fig 7 we illustrate one solution that employs groups up
to N=10 with there are N fermions of each hypercharge.
Note the loss of asymptotic freedom that occurs because
the fermions in the higher SU(N) theory overwhelm the
gauge contributions in the SU(N − 2) theory, such that
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the latter starts off asymptotically free and then changes
when the SU(N) contributions turn on.

Further examples where the federation point is the
Planck scale are found in the next section.

5. INFINITE COUPLING

As one adds more gauge groups with more fermions,
one can readily lose the property of asymptotic freedom.
Some of the solutions shown above display this property.
A coupling constant in a non-asymptotically-free theory
would eventually run to infinity (i.e. 1/αi → 0) if the
running continues to high enough scale. This raises the
possibility that all the couplings could run to infinity
at the federation point. Then the low energy theories
would emerge from a more primitive theory correspond-
ing to infinite coupling. This would potentially be an
interesting option for the emergence idea sketched in the
introduction. We give an example of such a situation in
this section.

There is a obvious numerical issue about the approach
to strong coupling. We are using the lowest order beta
function. As the coupling gets strong, one needs higher
order contributions to the beta function. Approaching
infinite coupling would require all orders, including non-
perturbative contributions. Clearly this full description
is beyond our power. However, the one loop running can
still be used as a predictor of the energy scale when the
theory enters strong coupling. There is then some inher-
ent ambiguity into the subsequent evolution, including
the scale at which the coupling goes to infinity. This am-
biguity will be different for different gauge groups, which
then leads to a certain fuzziness in the concept of federa-
tion at infinite coupling. Given these limitations, we will
present an example of a situation where the lowest or-
der running leads to unification at infinite coupling, and
expect that there could be modest deviations from this
picture that would work in a more complete analysis.

Our first example has another nice feature - the cou-
plings run to infinity at the Planck scale. In order to
accomplish this we introduce the new fermions of the
SU(N) group such that they also carry charges under
SU(N − 2) as well as U(1). In this instance, we look at
a model with N vector fermions, with the meeting scale
at around the Planck scale (3.2 × 1019). Groups up to
SU(19) were added, with U(1) hypercharge 4/7. The
results are in Fig. 8

A similar example has a less unusual hypercharge as-
signment. In this next case we take 3 fermions with hy-
percharge +1/2 and three with -1/2, and include gauge
groups up to N = 21. The resulting running couplings
are shown in Fig 9. The merging of the final group is
less accurate than we has found in other cases through-
out the paper, but will accept it as illustrative of this
possibility. The federation point is 3.3× 1019 GeV, close
to the Planck scale.

Another working option has a smaller federation

FIG. 8: Higher order SU(N) groups added, with N fermions,
and SU(N + 2) fermions have SU(N) charge, with the cou-
plings meeting at Planck scale

FIG. 9: Higher order SU(N) groups have 6 fermions, with
the couplings meeting at the Planck scale.

scale. Again we give the SU(N) fermions charges un-
der SU(N −2), and include up to N = 21, but include N
fermions each of hypercharge ±2/3. The greater number
of fermions leads to a faster running and the coupling
constants all reach infinite strength at 6.8 × 1015 GeV,
as seen in Fig. 10. The SU(4) coupling blows up at 8.4
TeV.

6. SU(4) AT THE TEV SCALE

The last figure of the previous section, Fig. 10, has
a further interesting property - the SU(4) coupling also
becomes infinite at Λ4 = 8.4 TeV. This situation can
be found in other simulations also. For example both
the cases of Fig 3 and Fig 4 have a mass scale of Λ4 =
2.5 TeV. We need not take these specific numbers too
seriously, but it proved to be surprisingly common to
find TeV scales for the SU(4) group.

The phenomenology of this SU(4) group is reasonably
similar to that of earlier versions of Technicolor[9]. In
these forms of Technicolor, there was also a new confining
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FIG. 10: Higher order SU(N) groups added, with N fermions,
and SU(N + 2) fermions have SU(N) charge. The SU(4)
cutoff is at TeV scale.

group at the TeV scale, with SU(4) being a typical ex-
ample. However, the technifermions were endowed with
a chiral symmetry and were given chiral couplings to the
electroweak group. In this case, the dynamical breaking
of the chiral symmetry also lead to electroweak symmetry
breaking. In our situation, we have used vectorial assign-
ments which allows for a bare mass term for any SU(4)
fermion. The interaction of these fermions would not
lead to symmetry breaking. However, the fermions are
still coupled vectorially to either the hypercharge gauge
boson or to the SU(2) gauge bosons. While their pro-
duction properties would depend on the specifics of the
model, these couplings would lead to the expectation of
producing the new fermions through W, Z, γ interac-
tions. In the cases that we have studied, the new SU(4)
fermions do not couple to gluons.

The spectrum of the fermions would be expected to
be QCD-like. If the light quarks had a bare mass of
order ΛQCD, quark model arguments indicate that the
pseudoscalar states would still be the lightest mesons,
although they would not be pseudo-Goldstone bosons as
in QCD. The JPC = 1−− vector state would be the next
lightest, followed by the orbitally excited states. Because
they can be produced directly from a vector gauge boson,
the vector bound states would be seen as a resonance
in Drell-Yan production. Rates and signatures for this
would be similar to those predicted for the Techni-rho
states[10]. These vector states are searched for in the
WZ → ℓ+ℓ−ℓ±ν, Zγ → ℓ+ℓ−γ, ZZ, and µ+µ− final
states. The pseudoscalar states would decay into two
gauge bosons4. In this case, the decay P 0 → Z0Z0−

would be the most visible.

Detailed studies of signals of dynamical symmetry
breaking models show that many of the new hadronic

4 Because of our choice of vectorial couplings, the analog of of the
axial-vector transition π → W ∗

→ eν is not available.

states should be able to be uncovered at the LHC [10].
The specific details on individual channels depend on
the detector properties. In general signals for dynami-
cal symmetry breaking are somewhat uncertain because
there is no compelling model with unique predictions.
The couplings of our SU(4) theory is similar to QCD-
like Technicolor theories, up to modifications of order a
factor of two because of our use of vector couplings rather
than chiral couplings. These studies lead us to conclude
that within the federation scheme if Nature places the
SU(4) scale in the scale of a few TeV, the LHC should
be well suited to uncover evidence of this new physics.

7. CONCLUSIONS

We have shown that the running couplings can reach
a common value under the influence of higher SU(N)
groups. These higher gauge groups would not have been
seen yet because they decouple at higher energy. We have
called this possibility gauge federation and argued that
it may be an indicator of common underlying dynamics.
It makes the most sense in the context of emergent the-
ories rather than unified theories. Without a principle
to explain why only the Standard Model gauge groups
are emergent, we would also look forward to other gauge
groups.

We have found that it is relatively straightforward to
combine independent gauge theories in ways that do lead
to a common coupling at a high energy. While admit-
tedly some of the successful combinations that we have
found appear somewhat random, we conclude that there
are many plausible ways to implement the idea of gauge
federation. This is both good and bad. It is unfortunate
that there is not a very restricted possibility to achieve
federation, because if there were only a few instances
there would be firmer predictions. However, on the pos-
itive side it also means that it is more plausible that a
fundamental theory could have this property, and once
uncovered, could lead to predictions that differentiate it
from other theories.

In all cases however, there is a clear prediction of a hi-
erarchy in the scales of the gauge interactions. The next
lightest group is always SU(4), which occurs at scales
between a few TeV and 108 GeV depending on the fed-
eration point and the choice of fermion content. At the
lightest scales we might discover the particles directly.
It would be interesting to explore whether the higher
SU(N) groups could also have useful implications, for ex-
ample through modifications that could influence baryo-
genesis or inflation.
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