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An effective theory of initial conditions in inflation

Hael Collinﬂ
Department of Physics, University of Massachusetts, AsatddA 01003

R. Holmadl
Department of Physics, Carnegie Mellon University, Pitisin PA 15213
(Dated: February 1, 2008)

We examine the renormalization of an effective theory dpon of a general initial state set in an isotrop-
ically expanding space-time, which is done to understandl twinclude the effects of new physics in the
calculation of the cosmic microwave background power spett The divergences that arise in a perturbative
treatment of the theory are of two forms: those associatéutve properties of a field propagating through the
bulk of space-time, which are unaffected by the choice ofitft@l state, and those that result from summing
over the short-distance structure of the initial state. Wasthat the former have the same renormalization and
produce the same subsequent scale dependence as for tferdteacuum state, while the latter correspond to
divergences that are localized at precisely the initiabtigpersurface on which the state is defined. This class
of divergences is therefore renormalized by adding inbi@indary counterterms, which render all of the per-
turbative corrections small and finite. Initial states thgproach the standard vacuum at short distances require,
at worst, relevant or marginal boundary counterterms. eStttat differ from the vacuum at distances below
that at which any new, potentially trans-Planckian, physiecomes important are renormalized with irrelevant
boundary counterterms.

PACS numbers: 11.10.Gh,11.10.Hi,11.15.Bt,98.80.Cq

I. INTRODUCTION stantially more and as a consequence the structures on the
largest cosmological scales today would have had their ori-
. L . . in in quantum fluctuations which occurred at sub-Planckian
This article is the second in a series that develops a renof*

. . - S engths during inflation. This peculiar feature of inflatjdts
malizable effective theory description of the initial stdor ) X | o
inflation. The first articlel|1] described the constructidran trans-Planckian problemv’L[4], suggests the possibilititt

effective initial state in Minkowski space while this onenge extremely short-distance physics, well beyond that culyen
eralizes the setting to an isotropicaFI)Iy expanding spémergt accessible in accelerator experiments, could be impriated
The main idea is to establish a perturbative descriptiohef t the very largest of observable scales. Although the term sug

signals of new physics as it affects the short-distancestre gests physics above the Planck scale, here we shall ggnerall

of the state. showing exlicitly how anv divergences associrefer toanysort of new physics sufficiently above the Hubble
! g explicitly y 9 scale during inflation as “trans-Planckian.”

ated with this short-distance structure are renormalized.

The accelerated expansion of the universe during infla- With this opportunity and with the prospect of significantly

tion [Z] produces an extremely rapid growth in the size of abetter measurements of the cosmic microwave background

causally connected region while at the same time the Hub&"d the large scale structure, it is increasingly important

ble size remains essentially unchanged. The exact amoths‘Ve an accurate estimate of the generic trans-Plancigan si

of expansion depends upon the details of the inflationar)rﬂal' One approach for determining this signal is to choose a

model, but with 60—7@-folds of inflation, the entire universe SPecific model for what happens above the Planck scale and
seen today could have grown from a single, suitably Sma”then to calculate its corrections to the primordial flucimat
causally connected region. This mechanism can explain th ectrum r5 GUAlE, .9]' Such mode_ls ha\_/e been very use-
extreme uniformity of the universe observed on large scale lin p_rowd_lng an estimate of the typlcal size fqr the trans
or at early times, but even more importantly, inflation also lanckian signal. However, the details of a particular nhode

predicts a tiny departure from perfect homogeneity caused'® have reIative]y Iittlg motivation from lower energy phe
by quantum fluctuations which are similarly stretched ta Vasnomenology or might simply not correspond to what actually

scales. The spectrum of these fluctuations is exactly thre for occurs in nature.

of the synchronized acoustic oscillations which have been A second approach does not attempt to form a complete
measured precisely by the Wilkinson Microwave Anisotropypicture of the physics above the Planck scale, but rather
Probe (WMAP) [3]. seeks to develop an effective theory description of itsaign

Most models for inflation have no difficulty in producing [1,10,11712, 13, 14]. Any new physics near the Planck scale

the required amount of inflation. Typically they produce-sub first appears as a generic set of effects during inflation kwvhic
are specified by a small number of parameters. While they

assume specific values in any particular model for the new

physics, to a low energy observer they simply appear as free
*Electronic addres$: hael@physics.umass.edu parameters to be fixed experimentally. The effective apgroa
tElectronic address: rh4a@andrew.cmul edu is based on a perturbative expansion that uses the smallness
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of the ratio of the two natural scaledd--the Hubble scale erators represents the generic signal of the hidden degfees
during inflation, andM, the scale associated with the possiblefreedom whose dynamics are associated with a much smaller
new physics. If the signal is suppressed only{H¥M, it could  characteristic length,/M. What makes the theory calculable
well be observable either by future cosmic microwave satelat low energiest: <« M, is that all of the operators in this sec-
lites such as Planck[l15] or, still more likely, by futureseys  ond set are naturally suppressed by saffigoower of E /M,
[L€] of the large scale structure, which traces the samequrim with only a finite number appearing at each orderFor an
dial fluctuations. experiment conducted at an enefgyand which measures an
From the perspective of the effective theory principle, newobservable to an accurady we need only include the set of
physics can appear in either the time evolution of the infla0operators whose ordersatisfies
ton and its fluctuations or in their “initial” states. The firs h
of these—how the system evolves—is more familiar since the (E) > d. (1.2)
evolution of the quantum fluctuations of the inflaton is deter M)

mined by its interaction Hamiltonian. The form of the gethera \, . o1, experiment finally probes energies of the otler
set of possible corrections that we can add to this Hamllto]\/I where the effective theory becomes nonpredictive, it un-
nian, encoding the effects of the unknown physics, is ratheEovers the hidden degrees of freedom and their symmetries

constrained by the space-time symmetries. Given these CORL 4 the original effective theory is replaced by a new effec-

strla![_nts,tth?hsmle (g‘_the cozjr_e(t:_tlonfs from_tr}le ?nknown pigls' tive theory including these new fields which is applicable up
relative to the leading prediction for an inflationary mo to some still higher energy.

_usually suppressed by a fa_ctor @ﬂ/M)Z [10]. _The other The point of an effective description of an initial state is

ingredient—the state of the inflaton—is more d'reCtly.Mt similarly to divide the aspects of a state into components
.to.t_he trans-Planckian problem .because Itis the detailsef t which are important either at long or at short distances. A
initial state we have chosen which are being stretched  vagy o ¢onstructed only from the former agrees with the stan-

scales. The leading correction from these iﬁeCt_S, 1S t}‘ﬁ"ca dard vacuum at arbitrarily short distances. Yet even fohsuc
much less SuPpre_SSG(.j’ scaling instead Al [5, 16,17 .8: 9]‘_ states, if the difference between the actual state and &me st
The standard view is that the correct state to choose is thgarg vacuum diminishes sufficiently slowly, some new diver-
vacuum state. In an expanding background, this vacuum cofjences appear in the perturbative corrections. These-diver
responds to the maximally symmetric state that matches Wltgences only occur at the initial time, precisely where tigest
the Minkowski space vacuum at very short distances, wherg ;g defined, and so must be cancelled by adding new coun-
the curvature of the space-time should be negligible. Thigerterms. localized at the initial boundary, which are niveat
requirement is made so that when a quantum field theory ig; rejevant according to a boundary action.
placed in a curved background, it inherits the same renermal The short-distance components, which contain the effects
izabili_ty it had in Minkowski space, although its behavi@nc ¢ trans-Planckian physics, describe states which divieoge
be quite different on large scales. the standard vacuum at distances beloi1 This behavior
Despite the apparent simplicity of this view, it contains anis completely consistent as an effective theory and only pro
inherent ambiguity. Even in Minkowski space, there is ne readuces initial-time divergences which are cancelled by ragidi
son to trust that the vacuum, defined in terms of the eigeesstat irrelevant counterterms to the boundary action. As with the
of a low energy effective theory, has the correct structurew  standard setting for an effective theory, for a measurement
extrapolated to arbitrarily short distances. The true uatu at low energies, which for inflation corresponds to the Hub-
determined by the eigenstates of the complete theory, mosfie scaleH, the effects of the trans-Planckian components of
likely departs from a perfect agreement with the extragalat the state are suppressed by powersl gi leading to a com-
low energy vacuum on sufficiently small scales. An effectivepletely predictive theory.
theory description of an initial state then provides a métho  An effective theory of any form is always inherently ap-
for characterizing these departures such that they onlg Bav plicable only up to a particular energy scale. In an expand-
small effect on long-distance measurements and moreover dag background, this property also sets a limit to the estrlie
not lead to any uncontrolled divergences which would prevenpossible time at which it can be applied while still remainin
a perturbative calculationl[1]. perturbative[[1213]. While this limit implies that we sHdu
The effective theory principle [L7] provides a powerfulpre choose our “initial” state no earlier than that time at which
scription for understanding some phenomena over a limitededshifting would undo the suppression of the radigM, it
range of length or energy scales, while at the same time palso implies that we should not use a formalism, such as the
rameterizing the possible leading signals of unknown @sysi S-matrix, which would require integrating over any times-ear
that lies just beyond those scales. For a quantum field thdier than this initial time.
ory propagating through the bulk of space-time, this idea is What underlies the success of an overall space-time view
implemented by first identifying all of the observed fieldslan such as th&-matrix in Minkowski space is that scales do not
symmetries of a physical system and then constructing all po alter over time. If we define some departure between the stan-
sible operators out of these fields that are invariant untlier adard vacuum and the true vacuum at some very small scale in
of the symmetries. A finite, and usually small, subset oféhes an asymptotic past, that scale remains unchanged during the
operators describes the theory well at very large distammces period when the parts of the system interact and further on
equivalently at low energies. The remaining infinite set@f 0 into some asymptotic future. In contrast, with the contunsio
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stretching of scales during inflation, it is not possiblepplg  mogeneous and isotropic so we shall consider backgrounds
a such an overall space-time view since the asymptoticsstatevhere the metric only depends on time,
would need to be defined in a regime where all the features re-
sponsible for the shape of the microwave background would ds” = dt* — a’(t) dx- dx, (2.2)
have been infinitesimally smaller than the Planck scale. In- . _ )
stead, the correct approach is to use the Hamiltonian tavevol although the setting can be readily generalized to less sym-
the entire system continuously forward, starting from esta metric backgrounds as well. Thls general Robertson-Walker
defined at an appropriate initial time [ 18] 19| 20, 21, 22]. metric can also be expressed in a conformally flat form,

The next section begins by describing how to set the initial 2 2
state in a Robertston-Walker space-time by using a boundary ds’ = g dX'dx’ = a’(n) [dr] —dx dX} ’ (2.3)
pondition speci.fie.zd.along a spacelike surface. To renormalby defining a conformal time with
ize the theory, it is important to extract the exact behasior
asymptotically short distances, which is accomplishee bgr t dt’
applying an adiabatic expansion for the state. For a fukktim nt) = /o m (2.4)
dependent description of the effects of a general initatiest

the theory must describe how the information in this initial and settinga(n) = a(n(t)). We shall work in this conformal
state propagates forward, so in 9ed. Ill we construct a propaoordinate system since the conformal time has a usefulphys
gator which is also consistent with the initial boundarydien ical interpretation. In units where= 1, the conformal time
tion. corresponds to the distance traveled by a massless particle
Our ultimate interest is to calculate the generic transsince the earliest of times. Thus, simultaneous points-sepa
Planckian signal in the microwave backgrouhd [23] which,rated by a spatial distance greater thanere never in causal
although a tree-level calculation, implicitly assumed fher-  contact. The conformal time is moreover used in the standard
turbative corrections are small and finite. It is therefoee-n inflationary calculations of the primordial power spectrum
essary to establish the renormalizability of the the thdory The simplest curved background of this Robertson-Walker
a general initial condition. This calculation begins in 88  form is de Sitter space,
with a statement of an appropriate renormalization cooliti
for this setting and its implications for the renormalipatand 1 2 dn? — dx- dx
running of the bulk parameters of the theory are presented in a(n) = o ds"= H2n2 (2.5)
Sec[¥. The renormalization and running of the initial con-
dition are examined in SeE_IVI, which shows how the renor-The curvature of de Sitter space is everywhere consiast,
malizable and nonrenormalizable classes of initial cooiét ~ 12H2, so that in this case the mass term and the curvature
are associated with relevant or irrelevant boundary cotinte term in the action are redundant and the curvature term can
erms respectively. We also show how the standard CallarPe absorbed by a suitable rescaling of the mass. de Sitter
Symanzik equation applies also to the running of the initialspace is sometimes used as an idealization of the conditions
conditions! Section[¥Il concludes with a brief outline of expected to occur during inflation, where the background cur
how initial state effects must be treated to address cdyriaet ~ vature, while not constant, varies only slowly over time.
question of back-reaction as well as to calculate the eepect We shall consider here a completely general isotropically
trans-Planckian signal in the primordial power spectrum.  expanding background. In such a background, the rate of ex-
pansion is characterized by the Hubble parameter,

Il. BOUNDARY CONDITIONS IN AN EXPANDING n) = a _1loa (2.6)

SPACE-TIME a _ aon’

I

We begin with the action for a free scalar field propagatingIn terms of which the scalar curvature is
in classical curved background, 6 ) 6 a’
_ R(n)E—Z[H +H ]:—2—. (2.7)
4 1.4 1R02 — 12 a as a
S= [ d*/=g[30"000v0 — 3ERG* — 39| (2.1) _ . ) _ ) i
. Varying the action with respect to the field yields the Klein-

whereg = de(g,,) andR is the scalar curvatue.On very ~ Gordon equation,

large scales or at early times, the universe appears highly h

0%¢ +ERY +nPp = 0. (2.8)

Since the spatial part of the metric is flat, the spatial eigen
modes are plane waves so that the expansion of the field, as a
linear sum of creation and annihilation operators, can be ex
pressed as

1 An unrelated but quite interesting appearance of a Caljana®zik equa-
tion in an inflationary setting occurs for a flow within the spaof infla-
tionary models{[24].

2 Our convention for the signature of the Riemann curvatursdeis defined .
by Ry = 0oy — T + Mol % — M6 and the scalar curvature cor- s

responds tR=gR, . o o(n,%) =/ Gk [Uk(n)e&"‘aﬁUk*(n)e*iﬁ'*‘aﬂ. (2.9)
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In Minkowski space, the time-dependent eigenmote§)), at scales much lower thav, the details of the state above
are also simple exponential functions but in an expandind/ should be unimportant, since in Minkowski space there is
background these mode functions are instead determined byno evolution of scales—what we mean by a small momentum
compared tdM, once specified, remains fixed at all times.
UY +2HU, + [k? + Ea?R+a?m?] U = 0 (2.10) The absence of these two principles which held in flat
. space—the existence of a conserved Hamiltonian and the

wherek = |k|. The solutions to this Klein-Gordon equation time-independence of scales—affects how we choose an ap-
are completely determined once we have specified two corpropriate state for inflation. At very short intervals ancgov
stants of integration; actually, one of these is alreadydftxe  brief changes in time, the curvature of the background is not
the equal time commutation relation. If the creation and-ann apparent and so we can choose our modes so that they match

hilation operators are normalized to satisfy with the Minkowski modes in this regime. More specifically,
: a3 o the leading behavior of the solution to the Klein-Gordonaqu
a8, ] = (2)°8°(k—K), (2.11)  tion ZID) at short distancds;> ayv/R,am is described by
i i i . e~ k(n-no) gk(n—no)
and the standard equa_l time commutation relation holds be Us(n) = ok tdh g (2.16)
tween the fieldh(x) and its conjugate momentumix), a(n)v/2k a(n)v2k

[M(n,%),6(n,9)] = —i¥(X—y), m=a2¢/, (2.12) Ifwedefineour state again atsome initial times no, rescal-
ing coordinates so that
then the mode functions must satisfy the following Wronskia

condition, a(no) = 1, (2.17)
a2 [UkanUQ‘ —Uk*anUk] i (2.13) then over short intervals—such th@t — no)H(no) < 1—

away from this spacelike surface we can also neglect the red-
§_hifting of the scales. In this limit, the change in confotrma

The second constant of integration is then fixed by some as> " ™. . ; e
ime is essentially the same as the change in cosmic time,

sumption about the state that is appropriate for the phlysic

setting being examined. t—to 1 a(to)
—No=—— |1—=—2(t—t el &t =t 2.18
n—no alto) > a(to)( o)+ 0, (2.18)
A. Initial states so that the mode functions become the positive and negative

energy modes of Minkowski space,
In the usual calculation of the primordial spectrum of per-

: R A g—k(n—no) gk(n—no)
turbations, the state chosen during inflation is assume&to b Uy (n ~no) = ¢ +dg +--. (2.19)
the vacuum. In Minkowski space this statement is completely vk vk

unambiguous and is little affected by the evolution of tiest  \ve then obtain the usual vacuum structure at intervals where
over time. For example, we could fix the state at some initiakne hackground curvature is not noticeable by setting 0.

time to be the lowest energy eigenstate for the free Hamilto- Thjs prescription defines the Bunch-Daviés| [25] vacuum
nian. This condition can be expressed more explicitly @ithestate |E)2 We shall write the modes associated with this
by simply stating that the modé#{*(t) are the positive en-  state agJE(n). Just as in the case of the Minkowski vacuum

ergy eigenmodes, above, we can specify the state either by simply stating that
ikt its modes are asymptotically proportional to the Minkowski
Uﬂat(t) 0 € (2.14)  vacuum modes,
k V2k’ _
£ e~ ik(n—no)

up to an arbitrary phase, or equivalently by establishing an Ugc(n) — AV ask — oo, (2.20)
initial condition on the modes of the form

P or by a differential initial condition on the modes,

—ufiat = —ikUfa(to). 2.15 :

o W, = ) 219 CWUE(M0) = —iadnoUEMe).  (2.21)

Here we have neglected the effects of the mass since in inFhe differential operator here is the covariant derivaitivéne
flation it is generally assumed to be small. If the free the-direction normal to the initial surface,

ory begins to break down at some scMe so that the free 0. = n'0 299
Klein-Gordon equation receives nonnegligible correctian n =Mt (2.22)
this scale, the modes used in Hg.(2.14) might not be the cor-

rect eigenmodes of the full Klein-Gordon equationkar M.

In terms of the differential form of the initial condition in I . L
Eq. [ZI¥), the simple constant of proportionalitik could Our notation is adopted from _that of de Sitter space Whelse S_tate |s
aq x ; . also frequently called the Euclidean vacuum, since it isuthigue invari
receive more general corrections such as those which sg€ale a ant state that is regular when analytically continued toetowalf of the

k/M to some power. As long as we only evaluate processes Euclidean sphere.
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For a simple spacelike surface suchmas no, the unit normal Our goal here is to implement an effective theory descrip-
to the surface is, = (a(n),0). We shall frequently abbrevi- tion of the initial state. From this perspective, the state i
atewx[no] by wx, but it is important to remember that it can Eq. (Z2Z8) is only meant to be appropriate for observables
depend on the initial time, measured at scales well beldw and not that for a complete
_ theory which is applicable to measurements made at any.scale
|anUkE(rlo) As a consequence, the effective states can contain stesctur
No) = ——" -
a(No)Uyc (No)

which are the analogues of the nonrenormalizable operators
used in an effective field theory Lagrangian. In both cases,

When considering more general initial states it will be usef the theory remains predictive at long distances since tisere

to choose a particular phase convention for the Bunch-Baviea natural small parameter given by the ratio of the energy or

(2.23)

modes, so we hereafter shall let momentum of the process being studied to the scale of new
UE _ UE* 294 physicsM. In both cases too, renormalization of the theory
i (No) = Ui (No)- (2.24) " can introduce further higher order corrections so that &n in

Although we have chosen the state by considering thé‘ite number of constants is often needed to make a prediction
asymptotic behavior of the modes at large momehta; to arbitrary accuracy;_but to any finite accuracy, only a_$mal
av/R, as we continue to yet shorter distances we encounté'}u'ﬁnber are needed since the rest are suppressed by high pow-

the same possibility mentioned before for flat space—theat th&rs if the Sma”(;at'o _Of _scalljes. lf‘t dscale; nyartrr:e effec- .
free Klein-Gordon equation could receive substantialeorr 1V€ Lagrangian description breaks down but at these ee®rgi

tions fork ~ M and above. For exampl} could correspond we should be able to observe the dynamics which produced

to the scale at which some new dynamics becomes strong € nonre_nqrmalizable operators in the .IOW energy effectiv
interacting with the inflaton or it could represent the seele 1€Ory- Similarly, once we probe short distances direats,
which the classical description of gravity breaks down. should see corrections to the Klein-Gordon equation and the

To include such effects, let us consider a more general ini[nodesUk(r]) given in Eq. [2.25) should be replaced with the

tial state determined by the boundary condition, correct short-distance eigenmodes.
) The remaining significant departure from Minkowski space
OnUk(no) = —im[Nno] Uk(No)- (2.25) s the constant redshifting of scales inherent to an expand-

. ing background, which is responsible for the trans-Plaancki
From a low energy perspective, where we assume that t!‘g

Bunch-Davi des d be the * " lated roblem. The effective theory description of the initisatst
unch-Davies modes describe the “vacuum® extrapolated g )ja5 non the smallness of the measured sdalg, com-
arbitrarily short distances, it is convenient to express th

des for thi | stat ¢ ¢ i tthe B ared with the scale of new physidd, but this ratio is also
modes for this general state as a transformation of the Bunchl, .enced by the expansion,
Davies modes,

Uk(n) = N¢ [UE(n) +e*UE*(n)], 2.26

k(n) k[ k (ﬂ) K (I‘])} ( ) a(nnow) %) <1 (2.29)

where thenitial state structure function® is a(No)
T Sl (2.27) and the earliest time for which perturbative calculatiorrkgo
Wy + Wk is one which does quite saturate this bound,
Both the general modes and the Bunch-Davies modes obey _
the Wronskian condition given earlier in Eq.{2.13), so the a(ngmesy  Keyp
normalization is completely determined 8%, up to an arbi- a(Nnow) M (2.30)
trary phase,
1 Although this time dependence of scales limits the applicab

Ne = m' (2.28) ity of the effective theory, it should not be seen as anything
mysterious or thatp must be chosen either at this bound or at
Note that although we have chosen a particular phase for theetime when some nontrivial dynamics is occurring. To study
Bunch-Davies modes with Eq._{Z2]24), we can always choosthe inflationary prediction for the cosmic microwave back-
an arbitrary relative phase between the two terms in a generground power spectrum, for example, it is sufficient to cleoos
mode by suitably choosing the phasee®. an “initial time” when all of the features of the currently-ob
The structure functiom®« describes how the state differs served power spectrum are just within the horizon during in-
from the assumed vacuum at different scales. At very largéation and which still satisfies the condition in EQ.(2.26) f
distances, if we are considering an excited state the stru@ well behaved perturbation theory. What the effective the-
ture function need not vanish; but the signals of new physicery approach accomplishes is not a complete description of
should not be very apparent since the approximation that ththe theory to an arbitrarily early time, but rather it prossd
theory is that of a nearly free scalar field is good far belddw  a completely generic parameterization of the effects ofehe
In this regime, it is natural for the effects of new physické earlier epochs or of higher scale physics once the state has
suppressed by powers kfM. entered a regime where they can be treated perturbatively.



B. Adiabatic modes where we have introduced an effective, time-dependent mass
defined by
Solving for the analytic form of the eigenmode functions 1
in a completely general Robertson-Walker background is fre M 2(r]) =mP+ [E — 6} R(n). (2.38)

guently not possible, so instead we must find a consistent
method for approximating the modes. A standard approacRjote that in the extreme ultraviolet limit, the leading beiba
for approximating the Bunch-Davies modes is provided by th&impiifies to
adiabatic modesThe adiabaticity here refers to assuming that
the time derivatives are small compared to the scales we are Qx(n) =~k (2.39)
examining. For our purpose of renormalizing the theory, we
usually need to know the detailed form for the modes for larggeproducing the correct asymptotic behavior of a Bunch-
momenta, while the exact dependence at longer wavelengthBavies mode, as in E.{Z120).
which is important for detailed finite effects, does not effe
the divergences or the accompanying running of the parame-
ters of the theory. Ill. PROPAGATION
We begin by writing the Bunch-Davies mode functions in a
form that superficially resembles that of the flat space modes In a pure Bunch-Davies state, the propagator straight-
SN e forwardly generalizes the Feynman propagator for the
g 1Jngdn’ k() . .
E(n) = (2.31) Minkowski vacuum,

Ucn) = ———.
a(n)/2%(n) —IGE(xX) = ©(n—N') (E[p(x)(X)[E)
|

The generalized frequendynction Qg (n) is determined by /

the differential equation, " +OM -n)EPXPKIE). GBI
" 2 From the perspective of the low energy theory, this initiates

Qf =K +an? + [E - %} a’R— %% + §Q—'§, (2.32)  is empty of all information about any higher scale physios, s
k40 this Green’s function onl tes the inf ti i
y propagates the information esso

which is derived by substituting the modes in Hg.{2.31) intoated with sources moving through the bulk of space-time and

the Klein-Gordon equation, E.{2]10). We shall see by theno separate information propagates from the initial sexfac

end of this section that these modes indeed satisfy the Bunch 5( )

Davies condition. 2 E X—X

In the adiabatic approximation, time derivatives, whetifer (B P ]GE(x.xX) = —gx) (3.2)
the scale factoa(n) or of the generalized frequen€¥(n),
are small. This assumption allows Ef.{2.32) to be solvedor a more general initial state, the Green’s function wekd

through a series of successively better approximations, also to include consistently the propagation of this ihgtate
) 0, 2 @ 2 information.
Qi(n) = [Q " (M) + [ ()] + -, (2.33) One way to express this consistency is to impose the same

boundary condition on the propagator as that which deter-

starting at zeroth order with mined the mode functions. For the Bunch-Davies propagator,

Ql((O)m) — ) +a2(n)?, (2.34) written in its spatial momentum representation,
L . . . - 43
and then proceeding iteratively, using a lower order sofuti GE (x ¥ :/ dk gk (%-%)gE / 33
to fix the next order, F00X) (2m)3 <(n.n) (3:3)

with

1] 109" 3 [Qf(o)’
2k S
2 QI(<) 4

Q)7 = [z—— R
k Q|((0)

5 r. (2.35)

—iGk(n,n") = O —n")Uc(Uc*(n")

In particular, inserting the zeroth order expression itig t + e(ﬂ'—rl)UkE*(ﬂ)UkE(ﬂ’), (3.4)
equation yields

we find that in the physical region—those times subsequent to

I 2\ 42
[Qi((Z)]Z — {E _ }} R— 1 (H —;ZHZ)_a m? the initial time—this propagator is consistent with a boanyd
6 2 ketaim? condition for each of its arguments,
+§m (2 36) E / ; E /
4 (k21 a2me)2’ ' OGN 1m0 = 164Gk (M0,
The form of the generalized frequency becomes a little sim- n*0’ GE ) yn, = i ' GE n,No . (3.5)
pler if we retain only the leading terms in the limiit;> amn Gk d ong Gl )|”>”°

to second order in the adiabatic solution we have . L .
Note that the right side is the complex conjugate of the co-

Qf(n) = [K*+a(ma 2(n)] +- -, (2.37) efficient of the boundary condition defined for the modes.



The reason is that fon = ng and n’ > no, for exam-  The remaining condition we impose is that the propagator
ple, the non-vanishin@-function is that accompanying the should be time-translationally invariant so that it shooifdy
UE*(N)UE(n’) factor and not its conjugate, so the time- depend ort —t’ and nott +t’ since the boundary condition
derivative acts upodE*(n). in Eq. (311) does not itself break time translation invari-

The nontrivial new element is that the normal derivativesance. This last condition requirelg = 0 so that the standard
also act on th®-functions associated with the time-ordering. Minkowski space propagator is obtained.
In the Bunch-Davies propagator, the opposite ordering of Now consider a boundary condition in Minkowski space
the arguments in the tw®-functions causes the resultidg  which explicitly breaks the time-translation invariance,
function terms to cancel between its forward and backward . ¢
propagating terms. In fact, the boundary condition in EG)3 O Gi(t,) ’t —to, />ty iKGx(to, t')
is not quite sufficient to determine completely the propagat at’Gk t,t') | )
but choosing the propagator to be locally time-translatilyn t
invariant over infinitesimally short intervals fixes the @m  applying this condition yields instead
ing ambiguity.

To understand how the propagator is determined in more G>(t t') [ b } [ k() | ofitcgk(2to—t— t)]
detail, we shall make a short excursion into Minkowski space ’

, p

There we can write a propagator very generally as +by [elk ") 4 e kg ik(2o—t=t! )}

G(t,t) =0t —t) Gy () +O(t' —t) G (t,t')  (3.6) G (t,t)

t'>tg

= IKGk (t,to) |t>t ; (3.13)

=tp, t>tp

_ [2k+bk} [elkt ) 4 fikgk(2o—t- t)]

where we shall use tildes to denote the propagator in flaespac +by[e o ik(t—t) +e*ake*‘k(2‘0*t*t/)] (3.14)

described by the coordinatésX). The Wightman functions
2> <
G~ (t,t') are partially fixed by three conditions: the propa- yhere we have defined the Minkowski space initial state struc

gator should be continuoustatt’, ture function by
Gp (t,t) = G (t,t), (3.7) 3 _
l 3 ik = K=K (3.15)
it should satisfy the correct discontinuity in its first dextive k+K

to produce a correctly weighted point-source, Sendingk — k sendsefk — 0 so we should recover the vac-

[&éf(t,t') —atéf(t t’)] -1 (3.8) uum propagator in this limit. This requirement fixes the re-
maining ambiguity in a propagator consistent with a general

and away from the point-source, it should satisfy the Klein-initial state by settindpy =0
Gordon equation,

ék(t,t/) = Ot : e ik(t- t)+@( )ﬁ(eik(t’t')

) 5
d? d? 2k
+R|GS () =0= | o + K| G, “(t,t'). (3.9 -
|:dt2 :| k ( ) |:dt/2 :| ( ) ( ) _’_ieﬁkelk(ﬁoftft’). (316)
To avoid any possible confusion with the& defined earlier,
we have set the mass to zero for this example. Applying alSometimes it is convenient to write this propagator in a more

three conditions gives suggestive form by defining an image times= 2t —t,
&t — Cik(t—t) | p, dk(t—t) XN ot ek t) ket
e (1) [Zk +.ak} .+ K Gi(t,t") = Ot t)2ke +O(t'—1) 5 €
+oe KT 4 g ght+t) +O(t —t) = 2k kg ik(t —t')
Rty —ik(t—t") k(t—t')
G (t,t) = ae +[2k+b}e'

i & /
+O(t' —t,) = kel —t), (3.17)
e k) g gkt (3.10) (t-1) 2k

Since the theory is only applicable to the region subsedoent
the initial surfacet,t’ > to this propagator always agrees with
Eq. (3I®) in this region and is moreover still consisterthwi
the boundary condition in EQC{3113). In this form, the ini-

= ikGE (to,t) ], ; _ _
i (fo, 1) >to tial state propagator contains two sources, one for theighys
= KGR (tto)|y,  (3.11)

If we further apply a boundary conditiontgtanalogous to the
Bunch-Davies condition above,

A GE(t
athk( ) )

’t =tp, t'>tg

t'=tg, t>tg

we very nearly obtain the correct Feynman propagator,

4 Actually, we could have a coefficiett, that only diminishes faster than

GE*> (t’t’) = Lefik(tft/) + dkeik(tﬂl) €k, but we exclude this possibility by demanding that a peetidn theory

2_k based on our propagator should be free of uncontrolled giveres, such
~E,< N k-t ik(tt! as those |8, 26. 217, 128.129] occurring in thevacua of de Sitter space [30],
Gk (t’t ) - ﬁ(el =) + dkel ( )' (3'12) which would occur for nonzero values bof.
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point-source and one for a fictitious image source which enappear intermediate processes where a field ranges over all
codes the initial state information. possible momenta, including arbitrarily large ones. Sungnmi
Returning to a general expanding background, if we impos@ver this arbitrarily large momentum behavior, or equindie

the analogous conditions on the propagator—continuity, athe short-distance features of the theory, can produce-dive
appropriate jump in its first derivative for a point souro@n€  gences. But since these divergences are constant, notdiepen
sistency with the Klein-Gordon equation—as well as a gdneraing on any measurable quantity, they can be absorbed by a
initial condition, suitable rescaling of the parameters of the theory and imger

of these renormalized quantities, the terms of the pertimba
n'>no series are finite at each order. In the process, we lose the ide
g of constant parameters—masses or couplings—and the renor-
im Gy (N, No) ’n>n0’ (3.18)  malized parameters depend now on the scale at which they are

defined. This scale dependence is not arbitrary, but is id fixe

n*OuGy (ﬂ,n/)\ n-=no
n’>ng

nuDLGE (ﬂaﬂ/)‘ n'=ng

n>No

i Gk (No,N’)

then we obtain a unique propagator structure, by renormalization conditionsvhich express how or at what
scale a particular physical parameter is defined.
—iGE(n.n") = ©(n—n")Ug(nUc*(n’) When a field starts in an initial state which contains some
+0M = U MUEn) structure at short distances that differs from the naiee iof
a1 E, a vacuum based on extrapolating the free theory to arbitrary
+ UE(MUEM’), (3.19)

scales, the intermediate processes in the perturbaticesser

which matches with the Bunch-Davies propagator in the Iimit"jlISO sum over all of this shprt-dstancg structure of thisedni
where the initial state structure function vanishes state which can produce divergences in addition to those as-

The origin of this propagator has an elegant interpretatioriﬁﬁlaé?(; V‘;g;fg;grospiigffhf a;gispsrggggggrﬁimﬁtﬂsuc
as the generalization of the time-ordering in the usual waecu P : y

propagator. Recall that in Minkowski space the time-onugri :Ere_ o.ft.thlet.|n|t|z_a’ILstat§,tLh|s class of dlvzr%ences IS "lf’@' at th
produces the forward propagation of positive frequenaigs a the ni Iat t'rr]r.]e.f.l.alnb 83(; are r(e)move y renlprnéat;]z&:g i
the backward propagation of negative frequencies. If we sta cory at this inftial bouncary. Unce renormalize e,

with a different initial state, we must also account for prop thelzzosré l;eli?ffi‘:’lns :ﬁrgietggggnstsgtz?ggus:égmecfi;/er encesecan b
agation of the initial state information as well. This prop- 9 P 9

agation from the boundary should contain only the forwar r_enormahzed is important even if we are only interested ini

propagation of one set of modes since the backward propag!‘;{‘:ﬂ”y.In evaluating _the Iead|_ng term in the per_tu_rbanve X
tion would be into the region befor,. Thus we have only pansion, where all intermediate momenta are finite. Phrtial

theUE (N)UE (n') term in the propagator and not its complex this importance lies in the fact that this leading resulydrds

conjugate, which would represent the backwards propaga?—ny meaning if the corrections to it are finite and are small

ing negative frequency modes associated with the initzést lcorg_pared tolt'(tj' Butdfurthehr, e\tlﬁnttr?e detailed fo;m ?f thed
This interpretation becomes clearer when we rewrite thppro ceading result depencs on how the theory propagates forwar
the information contained in the initial state and whetlés t
agator as Lo ) . : )
propagation is consistent is what is being checked when we
—iGZ(n,n") O (M- UEMU;N) renormalize the perturbative corrections. Thus knowing ho
UEMUEM). (3.20) to renormalize the higher order corrections—for example in
+0OM —nU(nUc’). G the two-point function—tells us also the correct form foe th
Its asymmetric form reflects the fact that signals from the!eadmg, tree-level prediction for the trans-Planckigmature

. o in the cosmic microwave background.
point-source propagate both forward and backwards in time For the S'matrix in Minkowski space, a standard set of

depending upon the energy of the modes—uwhile the boundarly lizati diti : lied h as th hi
effects only propagate forward, since we never evaluatesim enormaiization conditions IS applied, such as the vangni
of the one-particle expectation value or the location are th

earlier than the time at which the conditions are imposed. residue of the pole associated with the physical mass of the
particle. During inflation, the physical setting differsiigu
IV. THE RENORMALIZATION CONDITION dramatically from that assumed for tl®ematrix so the form
of the renormalization conditions must be modified appropri
: . , - ately. A typical inflationary model contains a scalar fieltg t
In an interacting field theory it is extremely rare that theinflaton, which we divide into a spatially independent class

evolution of a system can be solved exactly, even in flat space, . -
. ; ) ; ’ al zero mod and a fluctuatio X) about this value,
and what is done instead is to describe processes perturba- @n) b(n,%)

tively. If successive perturbative corrections are sudfity d(n,%) = @(n) +Y(n,x). (4.1)
convergent, then the theory can be predictive as long as the

experimental error is larger than the error we make in trunThe zero mode drives the overall inflationary era and itsevalu
cating the series. The energies and the momenta in all parthanges slowly as the field rolls down its potential. The fluc-
of the leading term in this series are usually completelydini tuations, combined with the scalar component of the fluctua-
being fixed by the actual momenta of the external, physicalions of the gravitational background, produce the pattérn
fields being measured. However, in all the higher correstionnearly scale-invariant, nearly Gaussian primordial pésdu



tions that seed the density perturbations seen both in the te _18%(H' +2H?) (M + A¢P)

perature fluctuations, observed by WMAP, and the observed 2 K+ta(mP+ 3_2L)\(p2)
large-scale structure, before nonlinear dynamics havia set , 2
Because the zero mode corresponds to the classical expec- _é O’ + ¢”+ AHoy
tation value of the field, the vanishing of the expectatidnea 412+ a2 (M + 3A¢R)
of the fluctuations provides a natural renormalization ¢ond 4 1 1 2
tion for this settingl[31, 32], +§a [H (P + 5A¢7) + ?)‘(p;ﬂ . (4.8)
4 [ke+a?(m?+ i)

(ak(n)[p(x)ak(n)) = 0. (4.2)

However at very short distances, where the divergences in
As we shall see below, because the fluctuation couples to theop corrections occur,
classical zero mode, this tadpole condition will allow us to
define the renormalized mass and the coupling by refering to
their values for the zero mode.

R
The method for constructing an effective description of ath hiftin the effecti ol b
general initial condition described earlier applies to antgr- € shilt in the efiective mass SImply appears as a correspon

acting field theory so we shall illustrate the boundary renoring shiftin the generalized mass defined earlier. Thus t:le

malization with the relatively simple example provided by a N9 Short-distance part of the generalized frequency torse:c
guartic interaction,

order in the adiabatic expansion is still

@ 5 a2n?. argt, N+ (4.9)

S:/d”v—ggd“q@mm—%amz—%ﬁ¢?—ﬁmwy Qn) =k +adn)a )+ (4.10)
Decomposing the full field into its zero mode and fluctuating ut with 2 (n) now given by
components yields M2n) =P+ I+ (E- 1R (4.11)

S=Sp+ S+ St (4.4)

In the interaction picture, the free Hamiltonian deterrsine

: . . . the evolution of operators while the interaction Hamiltmi
whereS, is the classical action for the zero mode obtained byH|, determines the corresponding evolution of the states.

i i int . : .
settingd — @in Eq. [4.3) a_”cst andSy’ are the free and the  \yhen the operator consists of a product of fields, the evmiuti
interacting parts of the action for the fluctuations, is already contained in their time-dependence so the éualut

A ) of the tadpole from an initial state definedrpt ng to a later
s = /d xv=g{30,00"y — HRY timens is given in the Schwinger-Keldysh approady
—3 [P+ 3@+ (E- 2RI’} (4.5)

(o(no) W™ (e, R)ow(n1))
_ (afTa(wt (01, o T gy
a (| To (& o NI HIW Ty g

and

| (4.12)
S = /d“x\/—_g[— [O%@+ ERp+ P+ IA@®|

—%)\(NJ?' _ 2_14)““4} . (4.6) where|ag) =|ak(no)). Since both théoy) state anday| state

have been time-evolved, we have two parts of the time evolu-
Notice that in expanding the interactio? we find a tion operator correspondingto each of these_ componenes. Th
term that is quadratic in the fluctuationg?y?, which acts " fields are associated with the former while the™fields
as a time-dependent correction to the mass. Therefore wi€ associated with the latter and the relative minus sign be
have not included this term among the interactions but ratheWeen the two appearances of the interaction Hamiltonian is
have grouped it with the other quadratic terms to form afromthe Hermitian conjugation of the unitary operator evol
time-dependent effective mass tem — m? + JA¢?(n). we N9 the(oy| state. _ _ o
would have found the same shift had we treated this effect as From the action in EqL[{416), the interaction Hamiltonian
an interaction once we summed the entire set of all possiblEr & simple quartic theory is

insertions of this term in the frag propagator. N s 4rro N
The contribution of the zero mode to the effective mass sim-  Hi[U™] = /d ya'[[O°e+ ERp+ P+ %A(pB] Y

ilarly shifts the form of the adiabatic modes. For exampie, t
zeroth order adiabatic mode becomes,

(O)m)]Z =K%+ az(r]) (m2+ %)\(Pz(r])) )

k
while the second order correction is now

) = [e-gler

Q (4.7)

)

[

+ I3+ LagH. (4.13)

5 A more detailed explanation of the Schwinger-Keldysh apphoapplied
to this setting is given in the Appendix A af [1] which definé® thotation
used here and explains the correct time-ordering for cotitrzs of any
combination ofp* (x) fields.
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FIG. 1: The leading contributions to the running of the miasand
the couplingA in a$* theory. The solid lines represent propagating z
. +

Y fields while the dashed lines correspond to the zero ngode
X y X Yy z

02 +2H0, + ER+nv

X G- T ox T FIG. 3: Further graphs that contribute to the tadpole atrsg:coder.
y
The last of these graphs contains the leading nontriviakction to
. the wavefunction renormalization.

. Substituting the expressions for the Green’s functions in
terms of the modes in Eq.{4]15) into the tadpole yields
FIG. 2: The shaded blob corresponds to the following two lgsap

note that the time derivatives act on the classig)) field. {ak )Wt (X)|ak(ns))
nf
=) dna*(n)g (nf,n)
which yields the following leading contribution to the tad@ ° A
matrix element, X {chp(r]) +ERQ(N) + mPo(n) + gcﬁ(n)
0 = (o)Wt (¥)ax(ne)) A /d_3R € (m)UE*
+200) | Gz Y (U ()

-r'If "
— [ dna’(n) [ d% [G5 (x.y) — G5 (x.Y)] 3
A / +500) [ s SUEMUEM) +- }4.16)

< {CPg) +ERm)0) + ) + 2*()

iA } where the externa) leg has been abbreviated by
—5®N)Gqy (YY) + - (4.14)
2

G(ne.n) =i[U§(NeUE () —UE (npUEM)].  (4.17)

The external leg is independent of the initial state. The firs
line within the braces in EqQ[{Z1L6) is the equation of motion
- for the zero mode before we have included the corrections
G (y,2) = i/ d>k ik-(y—2) from its interactions with the fluctuations.
arr (2m)3 At leading order, the tadpole contains two terms with loop
E Ex(n/\ 1 o051 1E E(pn/ integrals, which appear in the last two lines of Eq._(#.16)e T
x [Uk (MU () + XU ) (n )} first of these contains no dependence on the initial state; it
d3k = produces the need to renormalize the mass and the coupling of
Ga(y,2) =i / 23 k-2 the bulk 3+ 1 dimensional field theory, as is shown in the next
section. In the second, the initial state structure fumcép-
% [UKE*(r])UkE(r]’) + e“ﬁUkE(r])UkE(r]’)} .(4.15)  pears explicitly so all of the new divergences associatehl wi
the fine structure of the initial state arise at this ordemftbis
The Wightman functions labeled with a 0 subscript corre-ferm. Because of its importance in establishing the renbrma
spond to those obtained by settie = 0. They appear izability of an effective description of a state bearing som
here since in taking the differend®; (x,y) — G5 (x,y), the  trans-Planckian information, we shall treat it in much more
boundary-dependent terms of each function are the same afi§tail separately, after first examining how the standatki bu
cancel each other. renormalization proceeds in this inflationary setting.
Diagrammatically, the leading contribution to the tadpole
is shown in Figs[1Id2 where @ propagator is represented
by a solid line and a dashed line represents the zero mode V. BULK RENORMALIZATION
@. At this order we shall encounter divergences which re-
quire the renormalization of the mass and the coupling of the Through the coupling of the fluctuations to the zero mode,
field, but the leading contribution to the renormalizatibthe = demanding that the one-point function for the fluctuations
field only appears at two-loop-order through the last diagra should vanish provides a simple and elegant origin for the
shown in Fig[B. renormalization and running of the bulk parametensi, &.

wherex = (n,X), y = (n,Yy) andz= (n’,Z). The Wightman
functions,Gg "= (x,y), are defined by




11

Recall that the bare theory we have been considering, we can perform this loop integral, extracting the pole ara th

dependence on the renormalization sg¢gle
£ =3g"V0u00vd — 3ERP* — 3mP9% — HA¢*,  (5.1) ,

. ) A 2 1 4T

can be also expressed in terms of the renormalized parameter — @cp(n)M (n) s +1-y+In 272

by
£ = 3gM0u0r0vOR— SERROZ — 2mP0R — L ARDR

(5.8)

Adding this result to the other boundary-independent terms
that appear in the tadpole integrand in EEq.(#.16) and gubsti

l(Za - 1)g“VDu¢RDv¢R — 3(Zs — 1)€rR0% ing in the expression for the effective massfrom Eq. [Z11)

1 Zo 1 msz)R 24 (Z1— )?\R¢é- (5.2) produces the following bulk effect corrected to first order,
The perturbative corrections to a Green’s function cateda (k)W (¥)ax(n))
from the first line of this renormalized Lagrangian are very . /" 4 E Ex Ex E
frequently divergent; these divergences arise from imern ' /. dna*(n) [Ug(nt)Ug"(n) —Ug*(n1)Ug (n)]
loops which sum over all possible momenta and contain a 1 2
sufficiently small number of propagators. Since these diver X{thp+ o [1— Frw [ +1- y—i—In—H
gences appear only in the infinite momentum region of the 32re a2
loop integrals, they equivalently correspond to shortadise —(p3 [ {1 1oyt InﬂZH
divergences and therefore can be cancelled by local caunter 3212 Y a2

erms of the form shown in the second two lines of Eq.(5.2).

2
Choosing these counterterms correctly, the total valudef t +Ro [E - Lz <E - }> [} +1-y+In 4%”
perturbative corrections at a given order is completelydini 32 6/ Le M
The bare and renormalized parameters are related to each
) ; +eee (5.9)
other through a simple rescaling,
o= Z%/zq)R £ éﬁ In this expression we have omitted finite contributions Mhic

do not affect the renormalization or the running and we have
Zo 1 also not written any of the terms that depend explicitly o th
' = Z_3m%i A= Z}‘R' (5:3)  choice of the initial state, since these effects are diszlissp-
arately in the next section. To fix the scale-independentgiar
To leading order in the coupling we only need to determine the rescalings from the bare to the renormalized parameters
Zo, Z3 andZ; since the first correction t@; only appears at We apply the standadS prescription which sets

two loop order,A2. To control the divergences that appear

in the perturbative corrections to a process, we must apply Zo=14+— A T [1 +1-— y+|n4n} (5.10)
a regularization scheme such as dimensional regularizatio 32re
which we use here.
The bulk divergences occur at one loop order in the term 3\ rl
X . =1t { y+|n4n} b (5.11)
E Ex
Son) | g VEUE () (54)  ang
appearing in the integrand of the tadpole in Q. (#.16); here , _ 1_} +} Al L Inard + .- 512
we have excised the external leg. Substituting in the génera 3 (E 6) 32 [8 Y } 12)

form for the Bunch-Davies modes, ) o )
to leading nontrivial order in th&. In terms of the renormal-

£ e 1 npdn’ Q(n’) ized parameters then, the tadpole is given by
Uc(n) = A 20.m) (5.5) R R
a(n)v2(n) CAURITIEAGE)
and applying the adiabatic approximation to second orderto _ _: /”f dna® UE UE*(n) — UE* UE
extract the leading behavior &Bs— « as in Eqs.[Z0=411), I. No nat(n) [Ug (n1)Ug™(n) ~ Yo" (n1)Ug (n)]

the divergent part of this loop is contained in

x{mchmnnﬁcp(n)[l—%lni}

Aon) [ d% 1 Mr(N)
- +---. (5.6) A
42a%(n) / (2m3 | k2 +a2(n)ar 2(n) ch3 [ 16“2 R in %}
By extending the number of spatial dimensions te Z, 1\ Ar H
N ( )Wl)[ER— (ER é)ﬁ —MR(H)}

d3-2k 1
T612(rl)/ (23 /K2 +a2(n)a2(n)’ ®- +} (5.13)
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again up to finite and boundary-dependent contributions.  have the standard running of the bulk parameters at leading
Despite the added complexity inherentin an inflationary en-order,
vironment, the cancellation of the bulk divergences has pro

ceeded exactly as in a Minkowski spa@enatrix calculation. BOR) = 3R L.

The reason for this simplicity is that although both the back 16m2 ’

ground and the initial state are nontrivial, neither has efay AR

fect on the bulk renormalization. The divergences occur at Ym(Ar) = o T

infinitesimally short distances where the background curva 17 Ar

ture is not apparent, except as a classical source such as in B:(Ar) = [ER_ 6} ee (5.20)

the renormalization of the coupling of the field to the curva-

ture. Further, once we are sufficiently far from the boundaryNotice that the coupling to the curvature does not run at this

how the field propagates through the bulk should be insensiprder when the field is conformally coupled, igg.= %

tive to the short-distance structure of that boundary. gher The Ca”an-Symanzik equation depends upon the running

fore, although there can be new divergences associated wid} hoth the bulk parameters and those describing the bound-

the initial state, they are completely disjoint from thekodi-  ary since once we have imposed a renormalization condition

vergences. there exists a single renormalization sqala the theory. The
The renormalization scaleis an artifact of our ignorance fact that there is a unique scale for both, rather than sepa-

of the true, bare theory. If we had calculated a matrix elémenrate scales, is particularly clear from a Wilsonian pertipec

solely in terms of the properties of the bare theory, theltesu [33]. In the functional integral description of the theolfl},[

would be completely independent of this scale, the generating functional contains information about tiké b
theory, in the action, and the initial state, in the sourcmte

Ui<ak(ﬂf)|¢(x)|0(k(ﬂf)> -0 (5.14)  Tounderstand how the short-distance physics affects waat w

du mean by a particular parameter, whether for the bulk physics

) . or the initial state, we start with theory defined up to a dutof
But as the matrix element calculated in either the bare or th \vhich is equivalent to truncating the functional integtal

renormaliz_ed theory_is exactly the same, up to a factor of the,, 1 q4es above this scale. We can then determine how the pa-
wave function rescaling, rameters flow as we alter the cutoff scale fronto A’ (< A)
12, R R by integrating out the field modes between these scales. The
(ak(ne) W) aw(ng)) = Zg" (o (ne)[Wr(X) o (N ) resulting effective theory based on the cutaffwill have its
(5.15)  bulk parameters affected in the usual way. But the form of our
we have a similar equation for the scale dependence of theffective description of the initial state will also be sbif as
matrix element of the renormalized theory, well, since how accurately we can describe the featureseof th
q initial state also depends on the field modes available in our
a R R _ functional integral. Thus only one gquantity, whetiéy A for
{udu+Y(AR)} (o) wrlaic(n)) =0 (5-16) a cutoff theory o for a dimensionally regularized t};leory, is
needed to describe the running of both the bulk and bound-
wherey(Ag) is the anomalous dimension of the field, ary effects since the origin of this running is common to both
aspects of theory.

1d
VAR) = 3HgyInZs. (5.17)

All the renormalized parameters depend upon the renormal- VI BOUNDARY RENORMALIZATION

ization scale so we introduce the usual functions that dsescr

their running, Thus far, we have written the structure function for the ini-
tial state,e”, without specifying how it varies with the mo-
dAR M dmg dér mentum. We shall require a more detailed form to show un-
B(Ar) = ”d—u’ Ym(AR) = mR dp’ Be(Ar) = W der what conditions a general initial state, when renorzedlj

(5.18) produces a theory with finite perturbative correctionshi$t
in terms of which we obtain the Callan-Symanzik equation, renormalization is genuinely associated only with the itketa
of the initial state, then it should be sufficient to apply the

0 0 0 renormalization only at the initial time and the theory sldou
g+ BOW) 33+ MRy (Am) 5 y 4

OAR oM remain finite at all subsequent times. This reasoning sugges
P that if we regard the rescaling of the initial state as thaapp
+BE(AR)E +YAR) + | (aR(nN1) [W(X)[oaR(ng)) =0 priate addition of counterterms, chosen to cancel the diver

gences at the initial time, then these counterterms shoaild b
(5.19) expressed through a three dimensional boundary action,

up to corrections which do depend on the boundary condi- 3
tions. From the expression for the renormalized tadpole, we Sh=no = /d XV —hLsa(9). (6.1)
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h denotes the determinant of the induced meltfic on the  as renormalizable or nonrenormalizable according to véreth
n = no boundary. Using again the time-like normal vector its difference from the vacuum state diminishes or grows at
n* that is orthogonal to the boundary, the induced metric isshorter and shorter distances. The nonrenormalizabialinit

obtained from the full metric by states are not necessarily nonpredictive—they can be under
stood as an effective description of the state. For exanfple,
hy = G — Ny (6.2)  weassociate a heavy mass sddlaith these effects, it gener-

ically will require an infinite set of dimensiom> 3 countert-
erms to render the theory finite. However, since these terms
hy dx'dx’ = —a?(n) dx- dx (6.3) aresuppressed by factors(®f/M)"3, as long a /M < 1
only a very small subset of the parameters describing a gener
andy/—h = a3(n). From the induced metric we can construct nonrenormalizable initial state are required in practice.

For the conformally flat metric,

an induced scalar curvature, which we denotd&pwhile the - We shall dgscribe a general initial state by an e)gp_@nsion
extrinsic curvature tensor is defined by projecting the deva in the generalized frequenc@(to), evaluated at the initial
ant derivative of the normal back onto the initial surface, surface,
- : o H" o . Q¢(no)
K = 64 eiiyqt0 s G0
2.5 0no) 2, "o

This tensor as well as its trade€ = h*K,,, provide additional _ _ _ _ _
dimension 1 ingredients out of which we can construct operaThese two series are respectively associated with therétfra
tors for the boundary action. For an expanding background, jand ultraviolet aspects of the initial state. We have chosen

is proportional to the Hubble parameter, an expansion in the frequency, rather than just the momen-
tum k, since this quantity has several useful properties. It is

K(n) = 3H(n) (6.5) finite, although of a complicated form, in the- O limit and

a(n) it has a natural transition in its behaviorkat H(no). Above

this scaleQy(no) — k, while below this scale the curvature-

The operators contained in the counterterm Lagrangiafenendent effects become dominant compared with its ex-
are classified according to whether their mass dimension igjicit momentum dependence.

greater or less than, or equal to, the dimension of the bound- |, ¢ first series, we need a reasonable dynamical scale
ary, but the fields inherit their scaling dimension from th f ¢, separating the long from the short distances on our ini-
3+1 dimensional theory. Thus, for e>§ample,. in our scalar,| syrface so we have chosen the expansion @),
theory with ag — —¢ symmetry, there is a unique relevant i, get this scale. Since at extremely short distances, where
operator of dimension 2, QR(no) ~ K", these terms become diminishingly important

2 (6.6) oncek > H(no). More generally, we should use a linear com-
’ bination ofm andH (no) in the numerators of this expansion
while there are two marginal operators, to obtain the a quantity which does not vanish entirely in the
Minkowski space limit, but in slowly rolling models of infla-
00nd, Ko (6.7)  tionm< H(n) so we shall neglect the mass in this expansion.

. . . Notice that in the extreme ultraviolet limik,— oo, all of the
Compared with a flat background, the number of higher diyg s in this series vanish except for the marginal teign,

mensional operators rapidly proliferates since we can also g the first series describes features of the state which ar
build counterterms with curvz_;lture-dependent objects susch important at long distances and can be viewed as some non-
the extrinsic curvature or the md_uced curvature. For e>tamp_ vacuum ensemble since in this regime the idea of the vacuum
the complete set of irrelevant, dimension 4 operators eBISi yefined with respect to the free Klein-Gordon equation holds
of very well. The signals of trans-Planckian physics lies prop

0%, 020, (Tnd)2, Fio - Cio, in the second series in E@.(6110). Unlike the terms in the firs

2.2 iy ’ 2 5.2 series, .these grow in importance at extremely short distanc

K %, KK ¢, Ko Ond, (0nK) 9, Rp“.  (6.8) Assuming that the scale of new physics is above the Hubble
scale,M > H(no)/a(no), these terms are essentially a series
in k/M. Since the structure functia@fk accompanies the ini-
tial state contribution to the propagator and to the modes, i
might seem that these growing terms do not describe a sensi-

0%, 0020, (0nd)2, D0 - Do, K292, KoOad.  (6.9)  ble state at extremely short distances. But if we are meaguri
some process at a scale much lower thgrthe contributions
The idea then is to label specific aspects of the initial statérom then™ term in this series is naturally suppressed by the

by the type of counterterms associated with them so thata pan" power of the ratio of the scale we measurdtoOf course,
ticular piece of the boundary condition is relevant, maafgr ~ loop corrections sample over all momenta, so the large dif-
irrelevant according to the dimension of the boundary counference between the state and the extrapolated vacuum will
terterms needed to remove the divergences it produces. Aproduce divergences in these corrections; but since these d
ternatively, a boundary condition can also be characterizevergences occur from the large momentum—short distance—

For particular, highly symmetric backgrounds, only a stibse
of this list might be required. Only the first four are needed i
flat space and the complete list for de Sitter space is
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part of the loop integral evaluated at the initial time, ticey A. Renormalizable boundary conditions
always be cancelled by adding the appropriate local cotinter
erms on the initial boundary. Renormalizable boundary conditions correspond to those

In [1] we showed that the divergences from the new initialyyhijch may differ substantially from the Bunch-Davies vac-
condition only appear at the initial-time surfage= no. More  yum at long distances but which become indistinguishable
precisely, the divergences only occur in a boundary l00p COffrom this vacuum at very short distances. These states
rection when the term isimultaneouslyevaluated afy =No  therefore do not generally contain information about trans
andwe sum over arbitrarily large values of the loop momentapjgnckian physics and resemble some excited ensemble, from
Since the Bunch-Davies state matches with the flat space vagye perspective of the low energy, weakly interacting the-
uum states at large values of the momenta, the theory in gry. Despite this simplicity at short distances, in a fewesas
curved background inherits exactly the same divergengestr \yhere the difference between the initial and the Bunch-8gvi
ture from the short-distance features of the initial statfl@  states does not diminish sufficiently fast, these initiates
space. The only new feature is that the invariants assakciatean produce new divergences isolated at the initial times Th
with the curvature aIIovx_/ for a richer family of boundary ceun (engrmalizable states thus provide the simplest examjthesof
terterms, as was seen in E.{6.8). boundary renormalization which is necessary for a geneial i

_The prescription for extracting the short-distance bomnda tia| state and which results in a controlled, finite perttistea
divergences is then as follows. We first define a family ofgescription of the interacting theory.

kernel functions, If we restrict to an initial condition described only by nega
&% 2 [ dn' Q) tive powers of the generalized frequen@y,(no), Eq. [E10),
2 [
K®P () z/ € , (6.11) .
(212 o7 P(n)Qf (no) e Zod“Hn(rIO)’ (6.12)
n= Qk(no)

which arise from inserting the expansion of the initial stat

structure function in EqI{6.10) into a loop integral. Insthi we can obtain a sense of which terms will require renormaliza

kernel, the terms evaluatedrat are associated with the series tion at the initial boundary by expanding the initial comafit

expansion for the initial state and the remainitdependent  on the modes in EqL{ZP5) gt= ng and looking at the short

factors are associated with the loop propagators. These kedistancek — oo, limit,

nel functions have been constructed so that they only aontai

a mild—integrable—logarithmic singularity at = no. The 1 0 —
. . Uk(No) iUk (No)

loop integrals do not always appear exactly in the form of one a(no) an

of these kernels, but they can always be expressed in terms of —ikUk(no)

somen' derivative of them, up to explicitly finite terms. By 2do

Ji [

Q

then integrating these kernel-derivatives by partsnes, we K+ 2H (no)dzl] Uk(No)-

obtain a finite term wher&(P) (n) appears in thdn-integrand 1+do (1+do)

as well as a set of boundary terms, some evaluatgd and 1o H2(no) Uk(No) (6.13)

some at)p. The former are finite while the latter are divergent k kiMo)- '

and can be regularized using dimensional regularizatibwe. T

resulting set of divergent terms determines the set of boundAt momenta well above the Hubble scake> H(no), all the

ary counterterms that we should add to the theory to render terms aside frondp andd; have no effect.

finite. The behavior of these kernels, their regularizatiod The leading contribution to the tadpole that depends on the

their derivatives, is explained more fully in Appenfiik A. details of the initial state appears in the last term inctlithe
We begin in the next subsection first with an illustration of Eq. (4.18),

this procedure for the renormalizable initial state. Aligh

the prescription applies to any type of initial state, itiims _é e 4 d3k P E
pler in the case of the renormalizable state since fewer inte ~ 2/, dta (ﬂ)g(nf,r])(p(r])/ (2n)? kU ()Y (n).
grations by parts are necessary. What we shall find is that for (6.14)

a theory with ap* interaction, only the first two termsglf and  In terms of the adiabatic modes and the leading terms of our
d;) require any renormalization and are associated with thexpansion fore® given in Eq. [ER), this contribution be-

renormalizable set of counterterni$?, ¢ nd, Ko?}. comes
ANt 4 ko E E
- k
), EGnen) [ G EUEMUEM)
A i ¥k e 2o dn’ u(n’) ¥k e 2 o dn’ Qu(n’)

= [ g e mem{do [ 55

No

+diH (o) /

Qx(n) (2m3 Qx(n)Q«(no)
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- @3k e 2 pdn’ Q)
+d2H2 No / _|_}
(1) | B Gmiazing)

(6.15)

The terms associated with higher moments are associatied wit To show that the divergences associated with the initige sta
loop integrals that are manifestly finite. For thiBterminthe  are genuinely confined to the initial surface, let us reespre
moment expansion, the large momentum region of the acconthe loop integrals as derivatives of the kernels definedezarl

panying loop integral behaves as in Eg. (611). Just as in the case of theterm, these kernels
are only logarithmically divergent ifn — no), so that with an
- Bk e 2 npdn’ () dy [ dK 2ikn-no) appropriate number of integrations by parts we can isofege t
/ (23 Q) Q0 (No) T o '/IHW k-1 0 divergent pieces explicitly. Noting that
+-e- (6.16)

Bk e 2dhpdnun) 4 o N
which is finite forn > 2. The cases = 0,1,2 produce a /(2n)3 an —zK77(n)+UVfinite (6.17)

quadratic pole, a simple pole and a logarithmic singulaaity
n = no, respectivelyi[l]. Because of the remaining conformal,
time integration in Eq{&.15), the logarithmic singulgattu-

ally only gives a finite contribution to the tadpole so thalyon 3z 2 [ d ()
the first two terms produce divergences, as was suggested by d°k e~ Mo _ —iK(l)/(r])—i—UV finite (6.18)
examining the short-distance structure of the initial Goor. (23 Qk(n)Q«(no) 2i
Therefore, for the rest of this section we shall det= 0 for
n>2. and substituting these expressions into Eq.{6.15) yields,
A [0 d*k SUE E
—5 [ dta'(n)g(ns,n )(p(n)/ ekU(n)Uc (n)
2. No ( )

= %{—az(%)g (N,N0)®(N0)K©’(no) —a2(N¢)dn G (N,N) ’ﬂ:m oK (ny)

+0n [22(n)g (1.m@(n)],_, K (o) + r;:quag[ ()6 (MoK n )}

g0 {006 (100K o)+ [ dndn &) . metm) | K V() f 4
= 20 )G (0] K O 10) - S (n0)E(10)6 (M1, M) 0K V() + fiite (6.19)

after integrating by parts and using thatn+,ns) = 0. The singular kernels can be regularized by extending timeber of
spatial dimensions to 3 2¢ as has been done in AppendiX A which allows us to extract thespase — 0 as well as the
dependence on the renormalization sg¢gle

A 0
2 " dtat(n)g (ne.n )(p(n)/( o
- %an [aZ(H)G(f]f,n)(p(n)]n:no [% —y+In

= U (MUE(M)

4m2 ]
a2(no)™ 2(no)
2

H(no)a*(No)6 (N, No)®No) E—y+|n ( A

m} +finite. (6.20)

32 T[2

These are the divergences associated with the “bare”liniticcounterterms to the interaction Hamiltonian
condition and can be renormalized by adding the following
o
/dsy {20 (n—no) o

a2(n)
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+é 3(n —no) Kwi} (6.21) then from Eq.[6.26) we have that

2 an) A
which vanish except at the initial boundary. We can equiva- [30()\R) = —%
lently regard these terms as the addition of the followimgeh And
dimensional boundary action to the theory, Bi(AR) = _Zanz (6.28)
_1{ B/ R + 2 +
Ssd=3 /nod y —h{zon“Dp((qu ) - (Zl - :7320) Koy } Here we have used the Callan-Symanzik equation
(6.22)
Note that we could have also included the dimension 2 coun- 0 0 0
. 1 . ) ; — AR) =— AR)=—
terterm, m@*, but its role is suppressed in an inflationary {“aﬁﬁ( R) OAR + MRYm(AR) omR
background where the extrinsic curvature term provides the d R d - d
dominant contribution. The leading contribution to the-tad +BEO\R)£ +Y(AR) +BO()\R)% +BLAR) 55
pole from these counterterms is R 1
R + R
-+ [{a X)|a =0, 6.29
(aRte) Wi ()[R () + ]< k() Wr (o (ne)) (6.29)

= .41 2
B +3%0n [a (H)G(ﬂfaﬂ)tp(rl)} No which now includes the renormalizable initial condition pa
— %21a3(r]o)g (n+,N0)®(no)K(no).  (6.23)  rameters as well as the bulk parameters, to determine the run

ning of the boundary conditions. The equation is not yetdn it

The inclusion of the boundary counterterms is the boundary., . y|ete form since we have notincluded the nonrenormaliz-
analogue of scaling the bulk parameters which translates b%ble initial effects. which we discuss next

tween the bare and the renormalized theories. Becausesof thi
role, the counterterms will properly contain two composent

n = Z+2 B. Nonrenormalizable boundary conditions
z = 4+aW, (6.24)

] o ] ) .. The signals of trans-Planckian physics reside in the non-
representing the infinite scale-independent piece, whsch ivenormalizable part of the initial state. Such an initiatet
fixed by the renormalization scheme, and a finite scaleis one which differs increasingly from the the vacuum state
dependent piece, which is fixed by the overall scale indepeny; shorter distances or which equivalently requires nasen
dence of the matrix element. In tdS scheme, the scale- jizaple counterterms in the boundary action to render the
independent part is fixed to cancel the pole and the usua finityheory finite. In terms of our expansion, these featuresef th
artifacts of dimensional regularization, initial state are those described by a series of positivegpew

A 1 of the generalized frequency,
4= 2wty
321t € i o QE(WO)
%% = z cni) (6.30)
n=1

AL :
£ = d; | —y+Inan. (6.25) a(no)M"

48 TR

The resulting contribution to the tadpole from those pafts oM, as usual, represents the scale at which some new dynamics
the renormalized initial condition that depend on the renorpecomes important.

malization scale is contained in the terms, A great advantage of an effective description of an initial
R 4 R state is in its applicability to any idea for how the physics
<Gk(ﬂ1f)|UJR (X)|(;\k Ejm» above the expansion scale might be modified. Different
_ 5 ROo M 2 ideas—minimum lengths, modified uncertainty relations or

= = + —=Ih——|0dy|& ) . . =z P
2 [ZO(U) 16m aMR} n[ G s n)(p]”:”O new dispersion relations—can be distinguished by the val-

1. Ard: H 3 ues of their coefficients, in the series of Eq{6.80). Even
3 {Zl(li) t o WR] ag(Ni,No)Ka|,_. more importantly for observations, since at best only thele
(6.26) ing nonvanishing term is likely to be observable, the genera
' ' trans-Planckian signal is determined by the single quantit
Among the many terms not explicitly written in this equa- €1/M, assuming is the first nonvanishing coefficient. This
tion are all the other boundary-independgrdependent con-  Property allows us to extract a generic prediction for agran
tributions from the bulk, evaluated in EG_{5113). If we mtr  Planckian signal in the cosmic microwave background which

duce boundar@-functions forzy andz, can then be contrgsted with other ways for generating de-
. partures from the simple vacuum prediction, such as through
[“30()\R) _ dz modifications of the inflaton potential.
du Since our goal here is to show how renormalization pro-
f& (AR) udil (6.27) ceeds for a nonrenormalizable state and that perturbative ¢
1(AR) = .

du’ rections remain small wheH (no) < M, we shall examine



the renormalization of a state for the leading trans-Plamck
effect with

1a*(no)n?
T oM 7] '

2 oing | O

Since limc_0 Qk(no) # 0, the nonrenormalizable terms do not
vanish at long distances so we have added an extra renormal-

izable term, scaling as/Q(n), to subtract some of this long

distance behavior so that the condition represents a genuin

trans-Planckian effect.

The one loop contribution from this boundary condition to

the tadpole is of the form

(ak(ne) W (x)|ok(ng))

A
= “ZamoM ), dna?(n)g (n,n)®n)
- d3k }aZ(nO)mZ Qk(no)e*Zifr?odﬂ'Qk(ﬂ')
< (2m? [1 2 0Z(no) } Q)

o (6.32)

Introducing the kernel
d3k Qk(ﬂo)efzi fr?o dn’ Q(n’)
/ (23 Q(n)

1
T8

—KED” () + LV finite
(6.33)

to represent the divergent part of the first term in the loep in
’(n) as before in Eq[618) for the second, we

tegral ancK (@
integrate by parts until all the divergent contributionpegr
explicitly as term evaluated on the boundary,

(ak(ne) W (¥)]ak(nt))
= 3A2|(|\:/1|a(r11 ;9 &g (ne.men)] K2 (o)
+%Cma(ﬂo)§(ﬂf,ﬂo)¢(ﬂo)
X {K( l>"(r]o)—Zaz(ﬂo)mzK(n(no)}
L (6.34)

Here we have only retained the terms that would diverge if wi

performed the remaining loop integrations. Using the expre
sions for dimensionally regularized kernels from Appeilix
we find that

(ak(ne) W™ (x)|ak(nt))

A afl 4
- 128n2M[E_V+mm}
1
xmaﬁ [82(n)g (e, me(n)],_,
Aol 4mé
TeaEM { w“”M}
<a(n0)g (n1.10) £ | o Rino)
A2 (1 4m
1281'[2M1[ - ”'”W}
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a®(No)g (Nt,N0)%*(No)
oo (6.35)

These divergences are cancelled by adding the following
counterterms to the interaction Hamiltonian,

[ ead) [12 8 (0 no)
o= [y >{2M 2(n)

+228(n o) [£- 5| Ry
s - .

which can also be regarded as adding the following boundary
action to the theory,

S =~ | IV 2000 + Sk ()
+22(0nK) Q™ + 22K 2™

+2a e 8] Ry + 3y .

(6.37)

From either perspective, the contribution from these bamynd
counterterms to the tadpole calculation is

(aR(no)lwh ()]ag(ne))

122 1 2

5 a0 FEG e,

(NJi

(6.36)

—%Ma (No)G (Nf,No) [E— %Mﬂo)R(WO)

1zy 4
———a
4 M

o (6.38)

As before, the coefficients of the counterterms can be broken
into a scale-independent infinite part and a scale-depénden
finite part,

(N0)6 (N+,N0)@*(No)

n=2%+2n), zu=27+u), (6.39)
where the infinite part is completely fixed by a renormaliza-

2 =2+ 2(W),

ion scheme such as thaS scheme,

)\Cl (1
% = g ¢ Ve
)\Cl (1
zcé = m _E+1—y+|n4n]
)\201 (1
Z = 5 _E+1—y+|n4n], (6.40)

while the finite part is determined by the Callan-Symanzik
equation,

0
0&Rr

YR + zoénw)%] (@R )|wR 0 al(n)).
(6.41)

0 - [uau BOR) 5o+ TRYn(\R) 5+ BelA) 3o
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which has been finally expressed in its complete form. The Adding together the boundary effects in Hq.(6.34) and the
sum has been written with an infinite number of bound&ry counterterms contribution of Eq.{6138), after applyingMs
functions to represent the possibility of including higbeder ~ scheme, yields all of the renormalization scale dependence

nonrenormalizable initial conditions. that is associated with the initial state,
117 ARC 1 1
R + R _ Tt s ARG o 2 [52
<Gk(r]f)|L|JR(X)|Gk(r]f)> - 2M _Zz(l.l) 322 n a(nO)MR(HO)_ a(no)ar] [a (n)G(nfan)(p(n)] n=no

IEEN PP T 1
5 _23(u) 62 amo)MRmo)_a(no)ez‘(nf,no) &~ 5| ®no)R(o)
117, A2cy u 1 3

——— ———=In a , + ey 6.42
4M _Z4(l~l) 162 a(nO)MR(HO)_ (nO)G(nf r]O)(pg(rIO) ( )

which, from the Callan-Symanzik equation, implies that thephysics, we are defining the vacuum precisely in a regime near

boundary parameters run as follows, where the low energy free theory is no longer applicable. An
effective description attempts to provide a generic patariie
@2(7\R) _ )\301 ... zation of this ambiguity between an extrapolated free vacuu
32im? and the true vacuum, without making any assumptions about
f53(7\R) _ ARC1 the physics in the trans-Planckian regime.
16 Because of the time-evolution of the background, it is not
@4()\R) = )‘3012 (6.43)  appropriate to choose states based upon their properts in
16T asymptotically distant past. Instead, the state is fixedhat a

“initial” time during the regime when the effective theory i
predictive, that is, when the perturbative corrections ¢ea-

eral process are still small. In essence, an effective yhisor

an application of the principle of decoupling—thatthe ghys

of large scales should be relatively independent of theiphys

at short distances. To make this idea more precise, we de-
scribe the initial state through a power series, as in[EGO)6.

VIl. CONCLUSIONS which contains terms which either diminish or grow at short
distances. The former are the analogues of the renormaliz-
dable part of a bulk effective field theory and they are fixed by
I’}’{Ee observed long-distance structure of the state. Butliteis

So far we have let the parametarbe complex, but if the
evolution is to remain unitary, it is clear that should be
purely imaginary so that its contribution to the boundamyrco
terterm action is real. By similar reasonirj,should also be
purely imaginary whiledg is real.

Although the effective theory principle has been widely an
advantageously applied in field theory, its role has usual
been reserved for describing the evolution of a system fro
one state to another rather than for describing properfies
the actual states involved. For a field theory in Minkowski
space, such a simplification is usually sufficient sinceeseal
including that which divides long-distances from the regim
where new physics could modify the structure of the true vac
uum state away from a vacuum based on extrapolating th
eigenstates of the low energy theory—are time-independent The main idea of this article has been to establish the renor-
Furthermore, the initial and final states are measured in aalizability of this approach, showing explicitly that anthe
rather subdued environment, in an asymptotic past or futurdivergences have been all removed, the signals of the trans-
where the fields no longer interact with each other and wher@lanckian physics are suppressed by powers of the small ra-
the states become essentially those of the free Minkowskio of the Hubble scale during inflation and the scale of the
space Hamiltonian. new physicsH /M. These new divergences result from sum-

The conditions prevailing during inflation are dramatigall ming over the short-distance structure of the initial stateus
different and can imply a more significant role for the short-they appear in a perturbative correction only when we simul-
distance properties of the states. In particular, the st@hd taneously sum over arbitrarily high spatial momenta and we
vacuum choice is defined to be that state which resembles trevaluate it at the initial time, and as a consequence the-coun
Minkowskivacuum at distances where the curvature is not noterterms are local operators confined to the same initial sur
ticeable k > H. However, when the Hubble scditis itself ~ face at which the state was defined. The power counting for
an appreciable fraction of the scaefor the trans-Planckian these counterterms parallels that of an ordinary bulk theor

tter that contain the signals of trans-Planckian phyaics
dhey form the initial-state analogue of the nonrenormaliza
operators of a bulk effective theory. It is important to reme
ber that in this setting the detailed structure of the swteot
meant to be part of a complete theory, but only an effective
one applicable up to the scale of the unknown trans-Planckia
ghysics.



19

with relevant or marginal boundary counterterms removing APPENDIX A: KERNELS
the short-distance divergences from the renormalizabie pa
of the initial state and with irrelevant boundary counterie In Sec[¥] we introduced a family of kernel functions

removing the divergences from the trans-Planckian part.
One reason for showing the renormalizability of a state with
a nontrivial trans-Planckian component is to demonsttie t KP(n) = /
tree-level calculations, such as that of the primordial @ow (
spectrum of fluctuations, are perturbatively stable. Bateh
is a subtle consequence of this result which has a much mosghich occur generically in the loop corrections to a process
direct effect even on a tree-level calculation. The seaoch f with a nonrenormalizable initial condition. The parts tHat
a renormalizable description of a state is equivalent to-findpend on an arbitrary timg come from the loop propagator
ing the correct propagator for the short-distance infoiomat and the part evaluated only on the boundarnatresulted
which is contained in this state that does not lead to unconfrom the form of the power series we used to describe the ini-
trolled divergences—and it is this same propagator that alstial state, as in Eq[{6.10). In fact, our choice for this powe
appears in the tree-level estimate of a process. For examplseries was made to obtain a relatively simple form for theloo
in the Bunch-Davies vacuum, the two-point function and theintegrals, such as the kernel above, when evaluated on the
propagator evaluated for equal times are equivalent, lisit thinitial boundary. The structure of the kernels is also chose
equivalence no longer holds for a more general initial stateso that they only diverge logarithmically {im — no) after we
The extra term, encoding how the information in the initial perform the momentum integral. Thus if a kernel function ap-
state propagates forward, influences the precise calonlafi  pears within ardn-integral whose integrand, apart from the
both the primordial power spectrurn {11, 13] and the gravi-kernel factor, is well behaved, then the result is finite. The
tational back-reactior[12, B4]. Quantum mechanicallis th point of introducing these functions is that the loop intdgr
term represents the interference between the fields being mewe encounter can be written in terms of an appropriate num-
sured and the initial state information. As a result, thejsee  ber of derivatives oK (P)(n) which we proceed to integrate
calculation of the trans-Planckian signal requires follayv by parts until all the derivatives have been removed from the
this quantum mechanical interference as it affects thesials  kernel still occurring with the conformal time integral. &h
spectrum of primordial fluctuations, as will be donelin [23]. boundary terms which result from this process that are evalu
ated at the initial surface isolate all the new divergenses-a
ciated with having a nonstandard initial condition on theagest
Acknowledgments The remaining momentum integrals can be then regularized,
for example by extending the number of spatial dimensions to
This work was supported in part by DOE grant No. DE-FG03-3 — 2¢.
91-ER40682 and the National Science Foundation grant In this article, we shall not need to consider more than three
No. PHY02-44801. derivatives of the kernels,

d3k e 2o dn’' k()
22 0 P()QR(No)

(A1)

KP/(n) — / &k a1 an'aun

(3—p)Q(n) }
(2m)®

{ o pn>Q (o) QF P(n)QP(no)
ko — [ K e avayn 4 2(5-2pQ4n)  (3-pPA | (B-pA-pA’
W / (3 { Q; pn)Q (o) | 0 PmoPne)  ©F "(m2fno) Qi"(n)fz&’mo)}
{ n)

KB — / d%K 21 an'ouin 122 p)Oj(n) | 2(8—3p)%(n) _6i(3— P)*Qi(n)
(293 © czp (no) Q¢ PMQEMo) O P(MQEMo) 2 P()Qf (o)
(B-p Q/”(n) L 3B=PE-PAMKM) B P)(A—P)(E- PN }
Q‘k‘ P(n)QE(no) Q; P()Qf(no) Qp P()QL(no)

(A2)

In the extreme ultraviolet limit, where the leading partloét these kernel functions are all finite exceptiat no where
generalized frequency approact@gn) — k, it is only the  there is no longer any oscillatory suppression in the tehat t
first term in each of these expressions which contains a-shorare not already manifestly finite. Because each of the deriva
distance divergence and which is thus important for determi tives in Eq. [A2) will be integrated by parts at least once, th
ing how the initial state should be renormalized. Moreoveractual divergences we encounter are found by settiagno
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in encountered and can be regulated by continuing to an anpitra

R real number of dimensions,-3 3 — 2¢,

KPP (no) = /d_3k 1

o) = (23 Q2(no) .32k e

o rd% 1 &a) = / (2% % [IZ + a2ar 7572
(219% OF(no) _ VITE—5) 1 4me e 3 a (ag
k1 = ST ez PO 49

KP"(no) = —4 [ Zsors b (A3) 2
(213 Qk(no)

] ) . Evaluating the infinite and the finite, nonvanishing, terors f
Note that these divergent parts are independent of the indgke cases — {3,1} yields

p. The leading behavior of the adiabatic modes for large mo-

menta is approximated by 5

- + |1 mls
Ko = 4re [5 y+in az(rlo)Mz(ﬂo)] - (A7)

Qx(Mo) ~ /K2 +2%(no)a« 2(no), (A4)

as was derived in EC{ZB7), so that, up to the prefactoct, ea @nd
of the divergent parts of the kernels can be written in thg ver
general form, K(P (1) (A8)

_ @ (no) *(no) 2

. 43 1 4
d3k 1 (A5) = T [E +1-y+in—

1(0,a) :'/ (2m0)3 [K2+ a2ar 2072

(nowzmo)] L

Except for the fact that we are integrating over three ratheNote thatK (P)’(n) is finite once its momentum integral has
than four dimensions, this general integral is of the usiahf ~ been dimensionally regularized.
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