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An effective theory of initial conditions in inflation

Hael Collins∗

Department of Physics, University of Massachusetts, Amherst MA 01003

R. Holman†

Department of Physics, Carnegie Mellon University, Pittsburgh PA 15213
(Dated: February 1, 2008)

We examine the renormalization of an effective theory description of a general initial state set in an isotrop-
ically expanding space-time, which is done to understand how to include the effects of new physics in the
calculation of the cosmic microwave background power spectrum. The divergences that arise in a perturbative
treatment of the theory are of two forms: those associated with the properties of a field propagating through the
bulk of space-time, which are unaffected by the choice of theinitial state, and those that result from summing
over the short-distance structure of the initial state. We show that the former have the same renormalization and
produce the same subsequent scale dependence as for the standard vacuum state, while the latter correspond to
divergences that are localized at precisely the initial time hypersurface on which the state is defined. This class
of divergences is therefore renormalized by adding initial-boundary counterterms, which render all of the per-
turbative corrections small and finite. Initial states thatapproach the standard vacuum at short distances require,
at worst, relevant or marginal boundary counterterms. States that differ from the vacuum at distances below
that at which any new, potentially trans-Planckian, physics becomes important are renormalized with irrelevant
boundary counterterms.

PACS numbers: 11.10.Gh,11.10.Hi,11.15.Bt,98.80.Cq

I. INTRODUCTION

This article is the second in a series that develops a renor-
malizable effective theory description of the initial state for
inflation. The first article [1] described the construction of an
effective initial state in Minkowski space while this one gen-
eralizes the setting to an isotropically expanding space-time.
The main idea is to establish a perturbative description of the
signals of new physics as it affects the short-distance structure
of the state, showing explicitly how any divergences associ-
ated with this short-distance structure are renormalized.

The accelerated expansion of the universe during infla-
tion [2] produces an extremely rapid growth in the size of a
causally connected region while at the same time the Hub-
ble size remains essentially unchanged. The exact amount
of expansion depends upon the details of the inflationary
model, but with 60–70e-folds of inflation, the entire universe
seen today could have grown from a single, suitably small,
causally connected region. This mechanism can explain the
extreme uniformity of the universe observed on large scales
or at early times, but even more importantly, inflation also
predicts a tiny departure from perfect homogeneity caused
by quantum fluctuations which are similarly stretched to vast
scales. The spectrum of these fluctuations is exactly the form
of the synchronized acoustic oscillations which have been
measured precisely by the Wilkinson Microwave Anisotropy
Probe (WMAP) [3].

Most models for inflation have no difficulty in producing
the required amount of inflation. Typically they produce sub-
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stantially more and as a consequence the structures on the
largest cosmological scales today would have had their ori-
gin in quantum fluctuations which occurred at sub-Planckian
lengths during inflation. This peculiar feature of inflation, its
“trans-Planckian problem” [4], suggests the possibility that
extremely short-distance physics, well beyond that currently
accessible in accelerator experiments, could be imprintedon
the very largest of observable scales. Although the term sug-
gests physics above the Planck scale, here we shall generally
refer toanysort of new physics sufficiently above the Hubble
scale during inflation as “trans-Planckian.”

With this opportunity and with the prospect of significantly
better measurements of the cosmic microwave background
and the large scale structure, it is increasingly importantto
have an accurate estimate of the generic trans-Planckian sig-
nal. One approach for determining this signal is to choose a
specific model for what happens above the Planck scale and
then to calculate its corrections to the primordial fluctuation
spectrum [5, 6, 7, 8, 9]. Such models have been very use-
ful in providing an estimate of the typical size for the trans-
Planckian signal. However, the details of a particular model
may have relatively little motivation from lower energy phe-
nomenology or might simply not correspond to what actually
occurs in nature.

A second approach does not attempt to form a complete
picture of the physics above the Planck scale, but rather
seeks to develop an effective theory description of its signal
[1, 10, 11, 12, 13, 14]. Any new physics near the Planck scale
first appears as a generic set of effects during inflation which
are specified by a small number of parameters. While they
assume specific values in any particular model for the new
physics, to a low energy observer they simply appear as free
parameters to be fixed experimentally. The effective approach
is based on a perturbative expansion that uses the smallness
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of the ratio of the two natural scales—H, the Hubble scale
during inflation, andM, the scale associated with the possible
new physics. If the signal is suppressed only byH/M, it could
well be observable either by future cosmic microwave satel-
lites such as Planck [15] or, still more likely, by future surveys
[16] of the large scale structure, which traces the same primor-
dial fluctuations.

From the perspective of the effective theory principle, new
physics can appear in either the time evolution of the infla-
ton and its fluctuations or in their “initial” states. The first
of these—how the system evolves—is more familiar since the
evolution of the quantum fluctuations of the inflaton is deter-
mined by its interaction Hamiltonian. The form of the general
set of possible corrections that we can add to this Hamilto-
nian, encoding the effects of the unknown physics, is rather
constrained by the space-time symmetries. Given these con-
straints, the size of the corrections from the unknown physics
relative to the leading prediction for an inflationary modelis
usually suppressed by a factor of(H/M)2 [10]. The other
ingredient—the state of the inflaton—is more directly related
to the trans-Planckian problem because it is the details of the
initial state we have chosen which are being stretched to vast
scales. The leading correction from these effects is typically
much less suppressed, scaling instead asH/M [5, 6, 7, 8, 9].

The standard view is that the correct state to choose is the
vacuum state. In an expanding background, this vacuum cor-
responds to the maximally symmetric state that matches with
the Minkowski space vacuum at very short distances, where
the curvature of the space-time should be negligible. This
requirement is made so that when a quantum field theory is
placed in a curved background, it inherits the same renormal-
izability it had in Minkowski space, although its behavior can
be quite different on large scales.

Despite the apparent simplicity of this view, it contains an
inherent ambiguity. Even in Minkowski space, there is no rea-
son to trust that the vacuum, defined in terms of the eigenstates
of a low energy effective theory, has the correct structure when
extrapolated to arbitrarily short distances. The true vacuum,
determined by the eigenstates of the complete theory, most
likely departs from a perfect agreement with the extrapolated
low energy vacuum on sufficiently small scales. An effective
theory description of an initial state then provides a method
for characterizing these departures such that they only have a
small effect on long-distance measurements and moreover do
not lead to any uncontrolled divergences which would prevent
a perturbative calculation [1].

The effective theory principle [17] provides a powerful pre-
scription for understanding some phenomena over a limited
range of length or energy scales, while at the same time pa-
rameterizing the possible leading signals of unknown physics
that lies just beyond those scales. For a quantum field the-
ory propagating through the bulk of space-time, this idea is
implemented by first identifying all of the observed fields and
symmetries of a physical system and then constructing all pos-
sible operators out of these fields that are invariant under all
of the symmetries. A finite, and usually small, subset of these
operators describes the theory well at very large distances, or
equivalently at low energies. The remaining infinite set of op-

erators represents the generic signal of the hidden degreesof
freedom whose dynamics are associated with a much smaller
characteristic length, 1/M. What makes the theory calculable
at low energies,E ≪ M, is that all of the operators in this sec-
ond set are naturally suppressed by somenth power ofE/M,
with only a finite number appearing at each ordern. For an
experiment conducted at an energyE and which measures an
observable to an accuracyδ, we need only include the set of
operators whose ordern satisfies

(

E
M

)n

≥ δ. (1.1)

When an experiment finally probes energies of the orderE ∼
M, where the effective theory becomes nonpredictive, it un-
covers the hidden degrees of freedom and their symmetries
and the original effective theory is replaced by a new effec-
tive theory including these new fields which is applicable up
to some still higher energy.

The point of an effective description of an initial state is
similarly to divide the aspects of a state into components
which are important either at long or at short distances. A
state constructed only from the former agrees with the stan-
dard vacuum at arbitrarily short distances. Yet even for such
states, if the difference between the actual state and the stan-
dard vacuum diminishes sufficiently slowly, some new diver-
gences appear in the perturbative corrections. These diver-
gences only occur at the initial time, precisely where the state
was defined, and so must be cancelled by adding new coun-
terterms, localized at the initial boundary, which are marginal
or relevant according to a boundary action.

The short-distance components, which contain the effects
of trans-Planckian physics, describe states which divergefrom
the standard vacuum at distances below 1/M. This behavior
is completely consistent as an effective theory and only pro-
duces initial-time divergences which are cancelled by adding
irrelevant counterterms to the boundary action. As with the
standard setting for an effective theory, for a measurement
at low energies, which for inflation corresponds to the Hub-
ble scaleH, the effects of the trans-Planckian components of
the state are suppressed by powers ofH/M leading to a com-
pletely predictive theory.

An effective theory of any form is always inherently ap-
plicable only up to a particular energy scale. In an expand-
ing background, this property also sets a limit to the earliest
possible time at which it can be applied while still remaining
perturbative [12, 13]. While this limit implies that we should
choose our “initial” state no earlier than that time at which
redshifting would undo the suppression of the ratioH/M, it
also implies that we should not use a formalism, such as the
S-matrix, which would require integrating over any times ear-
lier than this initial time.

What underlies the success of an overall space-time view
such as theS-matrix in Minkowski space is that scales do not
alter over time. If we define some departure between the stan-
dard vacuum and the true vacuum at some very small scale in
an asymptotic past, that scale remains unchanged during the
period when the parts of the system interact and further on
into some asymptotic future. In contrast, with the continuous
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stretching of scales during inflation, it is not possible to apply
a such an overall space-time view since the asymptotic states
would need to be defined in a regime where all the features re-
sponsible for the shape of the microwave background would
have been infinitesimally smaller than the Planck scale. In-
stead, the correct approach is to use the Hamiltonian to evolve
the entire system continuously forward, starting from a state
defined at an appropriate initial time [18, 19, 20, 21, 22].

The next section begins by describing how to set the initial
state in a Robertston-Walker space-time by using a boundary
condition specified along a spacelike surface. To renormal-
ize the theory, it is important to extract the exact behaviorat
asymptotically short distances, which is accomplished here by
applying an adiabatic expansion for the state. For a full time-
dependent description of the effects of a general initial state,
the theory must describe how the information in this initial
state propagates forward, so in Sec. III we construct a propa-
gator which is also consistent with the initial boundary condi-
tion.

Our ultimate interest is to calculate the generic trans-
Planckian signal in the microwave background [23] which,
although a tree-level calculation, implicitly assumes that per-
turbative corrections are small and finite. It is therefore nec-
essary to establish the renormalizability of the the theoryfor
a general initial condition. This calculation begins in Sec. IV
with a statement of an appropriate renormalization condition
for this setting and its implications for the renormalization and
running of the bulk parameters of the theory are presented in
Sec. V. The renormalization and running of the initial con-
dition are examined in Sec. VI, which shows how the renor-
malizable and nonrenormalizable classes of initial conditions
are associated with relevant or irrelevant boundary countert-
erms respectively. We also show how the standard Callan-
Symanzik equation applies also to the running of the initial
conditions.1 Section VII concludes with a brief outline of
how initial state effects must be treated to address correctly the
question of back-reaction as well as to calculate the expected
trans-Planckian signal in the primordial power spectrum.

II. BOUNDARY CONDITIONS IN AN EXPANDING
SPACE-TIME

We begin with the action for a free scalar field propagating
in classical curved background,

S=

∫

d4x
√−g

[1
2gµν∇µϕ∇νϕ− 1

2ξRϕ2− 1
2m2ϕ2] (2.1)

whereg = det(gµν) andR is the scalar curvature.2 On very
large scales or at early times, the universe appears highly ho-

1 An unrelated but quite interesting appearance of a Callan-Symanzik equa-
tion in an inflationary setting occurs for a flow within the space of infla-
tionary models [24].

2 Our convention for the signature of the Riemann curvature tensor is defined
by Rλ

µνρ = ∂ρΓλ
µν −∂νΓλ

µρ +Γλ
ρσΓσ

µν −Γλ
νσΓσ

µρ and the scalar curvature cor-

responds toR= gµνRλ
µλν.

mogeneous and isotropic so we shall consider backgrounds
where the metric only depends on time,

ds2 = dt2−a2(t)d~x·d~x, (2.2)

although the setting can be readily generalized to less sym-
metric backgrounds as well. This general Robertson-Walker
metric can also be expressed in a conformally flat form,

ds2 = gµν dxµdxν = a2(η)
[

dη2−d~x·d~x
]

, (2.3)

by defining a conformal time with

η(t) =
∫ t

0

dt′

a(t ′)
(2.4)

and settinga(η) = a(η(t)). We shall work in this conformal
coordinate system since the conformal time has a useful phys-
ical interpretation. In units wherec = 1, the conformal time
corresponds to the distance traveled by a massless particle
since the earliest of times. Thus, simultaneous points sepa-
rated by a spatial distance greater thanη were never in causal
contact. The conformal time is moreover used in the standard
inflationary calculations of the primordial power spectrum.

The simplest curved background of this Robertson-Walker
form is de Sitter space,

a(η) → 1
Hη

, ds2 =
dη2−d~x·d~x

H2η2 . (2.5)

The curvature of de Sitter space is everywhere constant,R=
12H2, so that in this case the mass term and the curvature
term in the action are redundant and the curvature term can
be absorbed by a suitable rescaling of the mass. de Sitter
space is sometimes used as an idealization of the conditions
expected to occur during inflation, where the background cur-
vature, while not constant, varies only slowly over time.

We shall consider here a completely general isotropically
expanding background. In such a background, the rate of ex-
pansion is characterized by the Hubble parameter,

H(η) =
a′

a
≡ 1

a
∂a
∂η

, (2.6)

in terms of which the scalar curvature is

R(η) ≡ 6
a2

[

H ′ +H2] =
6
a2

a′′

a
. (2.7)

Varying the action with respect to the field yields the Klein-
Gordon equation,

∇2ϕ+ ξRϕ+m2ϕ = 0. (2.8)

Since the spatial part of the metric is flat, the spatial eigen-
modes are plane waves so that the expansion of the field, as a
linear sum of creation and annihilation operators, can be ex-
pressed as

ϕ(η,~x) =

∫

d3~k
(2π)3

[

Uk(η)ei~k·~xa~k +U∗
k (η)e−i~k·~xa†

~k

]

. (2.9)
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In Minkowski space, the time-dependent eigenmodes,Uk(η),
are also simple exponential functions but in an expanding
background these mode functions are instead determined by

U ′′
k +2HU ′

k +
[

k2 + ξa2R+a2m2]Uk = 0 (2.10)

wherek ≡ |~k|. The solutions to this Klein-Gordon equation
are completely determined once we have specified two con-
stants of integration; actually, one of these is already fixed by
the equal time commutation relation. If the creation and anni-
hilation operators are normalized to satisfy

[

a~k,a
†
~k′

]

= (2π)3δ3(~k−~k′), (2.11)

and the standard equal time commutation relation holds be-
tween the fieldϕ(x) and its conjugate momentumπ(x),

[

π(η,~x),ϕ(η,~y)
]

= −iδ3(~x−~y), π = a2ϕ′, (2.12)

then the mode functions must satisfy the following Wronskian
condition,

a2[Uk∂ηU∗
k −U∗

k ∂ηUk
]

= i. (2.13)

The second constant of integration is then fixed by some as-
sumption about the state that is appropriate for the physical
setting being examined.

A. Initial states

In the usual calculation of the primordial spectrum of per-
turbations, the state chosen during inflation is assumed to be
the vacuum. In Minkowski space this statement is completely
unambiguous and is little affected by the evolution of the state
over time. For example, we could fix the state at some initial
time to be the lowest energy eigenstate for the free Hamilto-
nian. This condition can be expressed more explicitly either
by simply stating that the modesUflat

k (t) are the positive en-
ergy eigenmodes,

Uflat
k (t) ∝

e−ikt
√

2k
, (2.14)

up to an arbitrary phase, or equivalently by establishing an
initial condition on the modes of the form

∂
∂t

Uflat
k (t)

∣

∣

∣

t=t0
= −ikUflat

k (t0). (2.15)

Here we have neglected the effects of the mass since in in-
flation it is generally assumed to be small. If the free the-
ory begins to break down at some scaleM, so that the free
Klein-Gordon equation receives nonnegligible corrections at
this scale, the modes used in Eq. (2.14) might not be the cor-
rect eigenmodes of the full Klein-Gordon equation fork > M.
In terms of the differential form of the initial condition in
Eq. (2.15), the simple constant of proportionality−ik could
receive more general corrections such as those which scale as
k/M to some power. As long as we only evaluate processes

at scales much lower thanM, the details of the state above
M should be unimportant, since in Minkowski space there is
no evolution of scales—what we mean by a small momentum
compared toM, once specified, remains fixed at all times.

The absence of these two principles which held in flat
space—the existence of a conserved Hamiltonian and the
time-independence of scales—affects how we choose an ap-
propriate state for inflation. At very short intervals and over
brief changes in time, the curvature of the background is not
apparent and so we can choose our modes so that they match
with the Minkowski modes in this regime. More specifically,
the leading behavior of the solution to the Klein-Gordon equa-
tion (2.10) at short distances,k≫ a

√
R,am, is described by

Uk(η) = ck
e−ik(η−η0)

a(η)
√

2k
+dk

eik(η−η0)

a(η)
√

2k
+ · · · . (2.16)

If we define our state again at some initial time,η = η0, rescal-
ing coordinates so that

a(η0) = 1, (2.17)

then over short intervals—such that(η − η0)H(η0) ≪ 1—
away from this spacelike surface we can also neglect the red-
shifting of the scales. In this limit, the change in conformal
time is essentially the same as the change in cosmic time,

η−η0 =
t − t0
a(t0)

[

1− 1
2

ȧ(t0)
a(t0)

(t − t0)+ · · ·
]

≈ t − t0, (2.18)

so that the mode functions become the positive and negative
energy modes of Minkowski space,

Uk(η ≈ η0) = ck
e−ik(η−η0)

√
2k

+dk
eik(η−η0)

√
2k

+ · · · . (2.19)

We then obtain the usual vacuum structure at intervals where
the background curvature is not noticeable by settingdk = 0.

This prescription defines the Bunch-Davies [25] vacuum
state, |E〉.3 We shall write the modes associated with this
state asUE

k (η). Just as in the case of the Minkowski vacuum
above, we can specify the state either by simply stating that
its modes are asymptotically proportional to the Minkowski
vacuum modes,

UE
k (η) → e−ik(η−η0)

a(η)
√

2k
ask→ ∞, (2.20)

or by a differential initial condition on the modes,

∇nU
E
k (η0) = −iωk[η0]U

E
k (η0). (2.21)

The differential operator here is the covariant derivativein the
direction normal to the initial surface,

∇n ≡ nµ∇µ. (2.22)

3 Our notation is adopted from that of de Sitter space where this state is
also frequently called the Euclidean vacuum, since it is theunique invari-
ant state that is regular when analytically continued to lower half of the
Euclidean sphere.



5

For a simple spacelike surface such asη = η0, the unit normal
to the surface isnµ =

(

a(η),~0
)

. We shall frequently abbrevi-
ateωk[η0] by ωk, but it is important to remember that it can
depend on the initial time,

ωk[η0] =
i∂ηUE

k (η0)

a(η0)UE
k (η0)

. (2.23)

When considering more general initial states it will be useful
to choose a particular phase convention for the Bunch-Davies
modes, so we hereafter shall let

UE
k (η0) = UE∗

k (η0). (2.24)

Although we have chosen the state by considering the
asymptotic behavior of the modes at large momenta,k ≫
a
√

R, as we continue to yet shorter distances we encounter
the same possibility mentioned before for flat space—that the
free Klein-Gordon equation could receive substantial correc-
tions fork∼ M and above. For example,M could correspond
to the scale at which some new dynamics becomes strongly
interacting with the inflaton or it could represent the scaleat
which the classical description of gravity breaks down.

To include such effects, let us consider a more general ini-
tial state determined by the boundary condition,

∇nUk(η0) = −iϖk[η0]Uk(η0). (2.25)

From a low energy perspective, where we assume that the
Bunch-Davies modes describe the “vacuum” extrapolated to
arbitrarily short distances, it is convenient to express the
modes for this general state as a transformation of the Bunch-
Davies modes,

Uk(η) = Nk
[

UE
k (η)+eαkUE∗

k (η)
]

, (2.26)

where theinitial state structure function eαk is

eαk =
ωk−ϖk

ω∗
k + ϖk

. (2.27)

Both the general modes and the Bunch-Davies modes obey
the Wronskian condition given earlier in Eq. (2.13), so the
normalization is completely determined byeαk, up to an arbi-
trary phase,

Nk =
1

√

1−eαk+α∗
k

. (2.28)

Note that although we have chosen a particular phase for the
Bunch-Davies modes with Eq. (2.24), we can always choose
an arbitrary relative phase between the two terms in a general
mode by suitably choosing the phase ofeαk.

The structure functioneαk describes how the state differs
from the assumed vacuum at different scales. At very large
distances, if we are considering an excited state the struc-
ture function need not vanish; but the signals of new physics
should not be very apparent since the approximation that the
theory is that of a nearly free scalar field is good far belowM.
In this regime, it is natural for the effects of new physics tobe
suppressed by powers ofk/M.

Our goal here is to implement an effective theory descrip-
tion of the initial state. From this perspective, the state in
Eq. (2.26) is only meant to be appropriate for observables
measured at scales well belowM, and not that for a complete
theory which is applicable to measurements made at any scale.
As a consequence, the effective states can contain structures
which are the analogues of the nonrenormalizable operators
used in an effective field theory Lagrangian. In both cases,
the theory remains predictive at long distances since thereis
a natural small parameter given by the ratio of the energy or
momentum of the process being studied to the scale of new
physicsM. In both cases too, renormalization of the theory
can introduce further higher order corrections so that an infi-
nite number of constants is often needed to make a prediction
to arbitrary accuracy; but to any finite accuracy, only a small
number are needed since the rest are suppressed by high pow-
ers of the small ratio of scales. At scales nearM, the effec-
tive Lagrangian description breaks down but at these energies
we should be able to observe the dynamics which produced
the nonrenormalizable operators in the low energy effective
theory. Similarly, once we probe short distances directly,we
should see corrections to the Klein-Gordon equation and the
modesUk(η) given in Eq. (2.26) should be replaced with the
correct short-distance eigenmodes.

The remaining significant departure from Minkowski space
is the constant redshifting of scales inherent to an expand-
ing background, which is responsible for the trans-Planckian
problem. The effective theory description of the initial state
relies upon the smallness of the measured scale,kexp, com-
pared with the scale of new physics,M, but this ratio is also
influenced by the expansion,

a(ηnow)

a(η0)

kexp

M
≪ 1, (2.29)

and the earliest time for which perturbative calculation works
is one which does quite saturate this bound,

a(ηearliest
0 )

a(ηnow)
∼ kexp

M
. (2.30)

Although this time dependence of scales limits the applicabil-
ity of the effective theory, it should not be seen as anything
mysterious or thatη0 must be chosen either at this bound or at
a time when some nontrivial dynamics is occurring. To study
the inflationary prediction for the cosmic microwave back-
ground power spectrum, for example, it is sufficient to choose
an “initial time” when all of the features of the currently ob-
served power spectrum are just within the horizon during in-
flation and which still satisfies the condition in Eq. (2.29) for
a well behaved perturbation theory. What the effective the-
ory approach accomplishes is not a complete description of
the theory to an arbitrarily early time, but rather it provides
a completely generic parameterization of the effects of these
earlier epochs or of higher scale physics once the state has
entered a regime where they can be treated perturbatively.
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B. Adiabatic modes

Solving for the analytic form of the eigenmode functions
in a completely general Robertson-Walker background is fre-
quently not possible, so instead we must find a consistent
method for approximating the modes. A standard approach
for approximating the Bunch-Davies modes is provided by the
adiabatic modes. The adiabaticity here refers to assuming that
the time derivatives are small compared to the scales we are
examining. For our purpose of renormalizing the theory, we
usually need to know the detailed form for the modes for large
momenta, while the exact dependence at longer wavelengths,
which is important for detailed finite effects, does not affect
the divergences or the accompanying running of the parame-
ters of the theory.

We begin by writing the Bunch-Davies mode functions in a
form that superficially resembles that of the flat space modes,

UE
k (η) =

e−i
∫ η

η0
dη′ Ωk(η′)

a(η)
√

2Ωk(η)
. (2.31)

The generalized frequencyfunction Ωk(η) is determined by
the differential equation,

Ω2
k = k2 +a2m2 +

[

ξ− 1
6

]

a2R− 1
2

Ω′′
k

Ωk
+

3
4

Ω′2
k

Ω2
k

, (2.32)

which is derived by substituting the modes in Eq. (2.31) into
the Klein-Gordon equation, Eq. (2.10). We shall see by the
end of this section that these modes indeed satisfy the Bunch-
Davies condition.

In the adiabatic approximation, time derivatives, whetherof
the scale factora(η) or of the generalized frequencyΩk(η),
are small. This assumption allows Eq. (2.32) to be solved
through a series of successively better approximations,

Ω2
k(η) = [Ω(0)

k (η)]2 +[Ω(2)
k (η)]2 + · · · , (2.33)

starting at zeroth order with

Ω(0)
k (η) =

√

k2 +a2(η)m2, (2.34)

and then proceeding iteratively, using a lower order solution
to fix the next order,

[Ω(2)
k ]2 =

[

ξ− 1
6

]

R− 1
2

Ω(0)′′
k

Ω(0)
k

+
3
4

[

Ω(0)′
k

Ω(0)
k

]2

. (2.35)

In particular, inserting the zeroth order expression into this
equation yields

[Ω(2)
k ]2 =

[

ξ− 1
6

]

R− 1
2

(H ′ +2H2)a2m2

k2 +a2m2

+
5
4

H2a4m4

(k2 +a2m2)2 . (2.36)

The form of the generalized frequency becomes a little sim-
pler if we retain only the leading terms in the limit,k ≫ am;
to second order in the adiabatic solution we have

Ω2
k(η) =

[

k2 +a2(η)M 2(η)
]

+ · · · , (2.37)

where we have introduced an effective, time-dependent mass
defined by

M 2(η) ≡ m2 +
[

ξ− 1
6

]

R(η). (2.38)

Note that in the extreme ultraviolet limit, the leading behavior
simplifies to

Ωk(η) ≈ k (2.39)

reproducing the correct asymptotic behavior of a Bunch-
Davies mode, as in Eq. (2.20).

III. PROPAGATION

In a pure Bunch-Davies state, the propagator straight-
forwardly generalizes the Feynman propagator for the
Minkowski vacuum,

− iGE
F(x,x′) = Θ(η−η′)〈E|ϕ(x)ϕ(x′)|E〉

+ Θ(η′−η)〈E|ϕ(x′)ϕ(x)|E〉. (3.1)

From the perspective of the low energy theory, this initial state
is empty of all information about any higher scale physics, so
this Green’s function only propagates the information associ-
ated with sources moving through the bulk of space-time and
no separate information propagates from the initial surface,

[

∇2
x +m2]GE

F(x,x′) =
δ4(x−x′)
√

−g(x)
. (3.2)

For a more general initial state, the Green’s function will need
also to include consistently the propagation of this initial state
information.

One way to express this consistency is to impose the same
boundary condition on the propagator as that which deter-
mined the mode functions. For the Bunch-Davies propagator,
written in its spatial momentum representation,

GE
F(x,x′) =

∫

d3~k
(2π)3 ei~k·(~x−~x′)GE

k (η,η′) (3.3)

with

− iGE
k (η,η′) = Θ(η−η′)UE

k (η)UE∗
k (η′)

+ Θ(η′−η)UE∗
k (η)UE

k (η′), (3.4)

we find that in the physical region—those times subsequent to
the initial time—this propagator is consistent with a boundary
condition for each of its arguments,

nµ∇µGE
k (η,η′)

∣

∣ η=η0
η′>η0

= iω∗
kGE

k (η0,η′)
∣

∣

η′>η0

nµ∇′
µGE

k (η,η′)
∣

∣

η′=η0
η>η0

= iω∗
kGE

k (η,η0)
∣

∣

η>η0
. (3.5)

Note that the right side is the complex conjugate of the co-
efficient of the boundary condition defined for the modes.
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The reason is that forη = η0 and η′ > η0, for exam-
ple, the non-vanishingΘ-function is that accompanying the
UE∗

k (η)UE
k (η′) factor and not its conjugate, so the time-

derivative acts uponUE∗
k (η).

The nontrivial new element is that the normal derivatives
also act on theΘ-functions associated with the time-ordering.
In the Bunch-Davies propagator, the opposite ordering of
the arguments in the twoΘ-functions causes the resultingδ-
function terms to cancel between its forward and backward
propagating terms. In fact, the boundary condition in Eq. (3.5)
is not quite sufficient to determine completely the propagator,
but choosing the propagator to be locally time-translationally
invariant over infinitesimally short intervals fixes the remain-
ing ambiguity.

To understand how the propagator is determined in more
detail, we shall make a short excursion into Minkowski space.
There we can write a propagator very generally as

G̃k(t,t
′) = Θ(t − t ′)G̃>

k (t, t ′)+ Θ(t ′− t)G̃<
k (t, t ′) (3.6)

where we shall use tildes to denote the propagator in flat space
described by the coordinates(t,~x). The Wightman functions
G̃>,<

k (t,t ′) are partially fixed by three conditions: the propa-
gator should be continuous att = t ′,

G̃>
k (t, t) = G̃<

k (t, t), (3.7)

it should satisfy the correct discontinuity in its first derivative
to produce a correctly weighted point-source,

[

∂tG̃
>
k (t, t ′)− ∂tG̃

<
k (t, t ′)

]

t′=t = 1, (3.8)

and away from the point-source, it should satisfy the Klein-
Gordon equation,

[ d2

dt2
+k2

]

G̃>,<
k (t, t ′) = 0 =

[ d2

dt′2
+k2

]

G̃>,<
k (t,t ′). (3.9)

To avoid any possible confusion with theωk defined earlier,
we have set the mass to zero for this example. Applying all
three conditions gives

G̃>
k (t,t ′) =

[ i
2k

+ak

]

e−ik(t−t′) +bke
ik(t−t′)

+cke
−ik(t+t′) +dke

ik(t+t′)

G̃<
k (t,t ′) = ake

−ik(t−t′) +
[ i

2k
+bk

]

eik(t−t′)

+cke
−ik(t+t′) +dke

ik(t+t′). (3.10)

If we further apply a boundary condition att0 analogous to the
Bunch-Davies condition above,

∂tG̃
E
k (t,t ′)

∣

∣

t=t0, t′>t0
= ikG̃E

k (t0, t
′)
∣

∣

t′>t0

∂t′G̃
E
k (t,t ′)

∣

∣

t′=t0, t>t0
= ikG̃E

k (t, t0)
∣

∣

t>t0
, (3.11)

we very nearly obtain the correct Feynman propagator,

G̃E,>
k (t, t ′) =

i
2k

e−ik(t−t′) +dke
ik(t+t′)

G̃E,<
k (t, t ′) =

i
2k

eik(t−t′) +dke
ik(t+t′). (3.12)

The remaining condition we impose is that the propagator
should be time-translationally invariant so that it shouldonly
depend ont − t ′ and nott + t ′ since the boundary condition
in Eq. (3.11) does not itself break time translation invari-
ance. This last condition requiresdk = 0 so that the standard
Minkowski space propagator is obtained.

Now consider a boundary condition in Minkowski space
which explicitly breaks the time-translation invariance,

∂tG̃k(t,t
′)
∣

∣

t=t0, t′>t0
= iκG̃k(t0,t

′)
∣

∣

t′>t0

∂t′G̃k(t,t
′)
∣

∣

t′=t0, t>t0
= iκG̃k(t,t0)

∣

∣

t>t0
; (3.13)

applying this condition yields instead

G̃>
k (t,t ′) =

[ i
2k

+bk

]

[

e−ik(t−t′) +eα̃keik(2t0−t−t′)]

+bk
[

eik(t−t′) +e−α̃ke−ik(2t0−t−t′)]

G̃<
k (t,t ′) =

[ i
2k

+bk

]

[

eik(t−t′) +eα̃keik(2t0−t−t′)]

+bk
[

e−ik(t−t′) +e−α̃ke−ik(2t0−t−t′)] (3.14)

where we have defined the Minkowski space initial state struc-
ture function by

eα̃k ≡ k−κ
k+ κ

. (3.15)

Sendingκ → k sendseα̃k → 0 so we should recover the vac-
uum propagator in this limit. This requirement fixes the re-
maining ambiguity in a propagator consistent with a general
initial state by settingbk = 0,4

G̃k(t,t
′) = Θ(t − t ′)

i
2k

e−ik(t−t′) + Θ(t ′− t)
i

2k
eik(t−t′)

+
i

2k
eα̃keik(2t0−t−t′). (3.16)

Sometimes it is convenient to write this propagator in a more
suggestive form by defining an image time,tI ≡ 2t0− t,

G̃k(t,t
′) = Θ(t − t ′)

i
2k

e−ik(t−t′) + Θ(t ′− t)
i

2k
eik(t−t′)

+Θ(tI − t ′)
i

2k
eα̃ke−ik(tI−t′)

+Θ(t ′− tI)
i

2k
eα̃keik(tI−t′). (3.17)

Since the theory is only applicable to the region subsequentto
the initial surface,t,t ′ > t0 this propagator always agrees with
Eq. (3.16) in this region and is moreover still consistent with
the boundary condition in Eq. (3.13). In this form, the ini-
tial state propagator contains two sources, one for the physics

4 Actually, we could have a coefficientbk that only diminishes faster than
eα̃k , but we exclude this possibility by demanding that a perturbation theory
based on our propagator should be free of uncontrolled divergences, such
as those [8, 26, 27, 28, 29] occurring in theα-vacua of de Sitter space [30],
which would occur for nonzero values ofbk.
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point-source and one for a fictitious image source which en-
codes the initial state information.

Returning to a general expanding background, if we impose
the analogous conditions on the propagator—continuity, an
appropriate jump in its first derivative for a point source, con-
sistency with the Klein-Gordon equation—as well as a general
initial condition,

nµ∇µGα
k (η,η′)

∣

∣ η=η0
η′>η0

= iϖ∗
kGα

k (η0,η′)
∣

∣

η′>η0

nµ∇′
µGα

k (η,η′)
∣

∣

η′=η0
η>η0

= iϖ∗
kGα

k (η,η0)
∣

∣

η>η0
, (3.18)

then we obtain a unique propagator structure,

− iGα
k (η,η′) = Θ(η−η′)UE

k (η)UE∗
k (η′)

+ Θ(η′−η)UE∗
k (η)UE

k (η′)

+ eα∗
kUE

k (η)UE
k (η′), (3.19)

which matches with the Bunch-Davies propagator in the limit
where the initial state structure function vanishes.

The origin of this propagator has an elegant interpretation
as the generalization of the time-ordering in the usual vacuum
propagator. Recall that in Minkowski space the time-ordering
produces the forward propagation of positive frequencies and
the backward propagation of negative frequencies. If we start
with a different initial state, we must also account for prop-
agation of the initial state information as well. This prop-
agation from the boundary should contain only the forward
propagation of one set of modes since the backward propaga-
tion would be into the region beforeη0. Thus we have only
theUE

k (η)UE
k (η′) term in the propagator and not its complex

conjugate, which would represent the backwards propagat-
ing negative frequency modes associated with the initial state.
This interpretation becomes clearer when we rewrite the prop-
agator as

− iGα
k (η,η′) ∝ Θ(η−η′)UE

k (η)U∗
k (η′)

+ Θ(η′−η)U∗
k (η)UE

k (η′). (3.20)

Its asymmetric form reflects the fact that signals from the
point-source propagate both forward and backwards in time—
depending upon the energy of the modes—while the boundary
effects only propagate forward, since we never evaluate times
earlier than the time at which the conditions are imposed.

IV. THE RENORMALIZATION CONDITION

In an interacting field theory it is extremely rare that the
evolution of a system can be solved exactly, even in flat space,
and what is done instead is to describe processes perturba-
tively. If successive perturbative corrections are sufficiently
convergent, then the theory can be predictive as long as the
experimental error is larger than the error we make in trun-
cating the series. The energies and the momenta in all parts
of the leading term in this series are usually completely finite,
being fixed by the actual momenta of the external, physical
fields being measured. However, in all the higher corrections

appear intermediate processes where a field ranges over all
possible momenta, including arbitrarily large ones. Summing
over this arbitrarily large momentum behavior, or equivalently
the short-distance features of the theory, can produce diver-
gences. But since these divergences are constant, not depend-
ing on any measurable quantity, they can be absorbed by a
suitable rescaling of the parameters of the theory and in terms
of these renormalized quantities, the terms of the perturbation
series are finite at each order. In the process, we lose the idea
of constant parameters—masses or couplings—and the renor-
malized parameters depend now on the scale at which they are
defined. This scale dependence is not arbitrary, but is is fixed
by renormalization conditionswhich express how or at what
scale a particular physical parameter is defined.

When a field starts in an initial state which contains some
structure at short distances that differs from the naı̈ve idea of
a vacuum based on extrapolating the free theory to arbitrary
scales, the intermediate processes in the perturbation series
also sum over all of this short-distance structure of the initial
state which can produce divergences in addition to those as-
sociated with the properties of a field propagating through the
bulk of space-time. Since they are associated with the struc-
ture of the initial state, this class of divergences is localized at
the initial time [1] and they are removed by renormalizing the
theory at this initial boundary. Once renormalized there, the
theory remains finite for all subsequent times.

Establishing that these state-dependent divergences can be
renormalized is important even if we are only interested ini-
tially in evaluating the leading term in the perturbative ex-
pansion, where all intermediate momenta are finite. Partially
this importance lies in the fact that this leading result only has
any meaning if the corrections to it are finite and are small
compared to it. But further, even the detailed form of the
leading result depends on how the theory propagates forward
the information contained in the initial state and whether this
propagation is consistent is what is being checked when we
renormalize the perturbative corrections. Thus knowing how
to renormalize the higher order corrections—for example in
the two-point function—tells us also the correct form for the
leading, tree-level prediction for the trans-Planckian signature
in the cosmic microwave background.

For the S-matrix in Minkowski space, a standard set of
renormalization conditions is applied, such as the vanishing
of the one-particle expectation value or the location and the
residue of the pole associated with the physical mass of the
particle. During inflation, the physical setting differs quite
dramatically from that assumed for theS-matrix so the form
of the renormalization conditions must be modified appropri-
ately. A typical inflationary model contains a scalar field, the
inflaton, which we divide into a spatially independent classi-
cal zero modeφ(η) and a fluctuationψ(η,~x) about this value,

ϕ(η,~x) = φ(η)+ ψ(η,~x). (4.1)

The zero mode drives the overall inflationary era and its value
changes slowly as the field rolls down its potential. The fluc-
tuations, combined with the scalar component of the fluctua-
tions of the gravitational background, produce the patternof
nearly scale-invariant, nearly Gaussian primordial perturba-
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tions that seed the density perturbations seen both in the tem-
perature fluctuations, observed by WMAP, and the observed
large-scale structure, before nonlinear dynamics have setin.

Because the zero mode corresponds to the classical expec-
tation value of the field, the vanishing of the expectation value
of the fluctuations provides a natural renormalization condi-
tion for this setting [31, 32],

〈αk(η)|ψ(x)|αk(η)〉 = 0. (4.2)

As we shall see below, because the fluctuation couples to the
classical zero mode, this tadpole condition will allow us to
define the renormalized mass and the coupling by refering to
their values for the zero mode.

The method for constructing an effective description of a
general initial condition described earlier applies to anyinter-
acting field theory so we shall illustrate the boundary renor-
malization with the relatively simple example provided by a
quartic interaction,

S=
∫

d4x
√−g

[

1
2gµν∇µϕ∇νϕ− 1

2ξRϕ2− 1
2m2ϕ2− 1

24λϕ4] .

(4.3)
Decomposing the full field into its zero mode and fluctuating
components yields

S= Sφ +S0
ψ +Sint

ψ (4.4)

whereSφ is the classical action for the zero mode obtained by
settingϕ → φ in Eq. (4.3) andS0

ψ andSint
ψ are the free and the

interacting parts of the action for the fluctuations,

S0
ψ =

∫

d4x
√−g

{

1
2∇µψ∇µψ− 1

12Rψ2

− 1
2

[

m2 + 1
2λφ2 +

(

ξ− 1
6

)

R
]

ψ2} (4.5)

and

Sint
ψ =

∫

d4x
√−g

[

−
[

∇2φ+ ξRφ+m2φ+ 1
6λφ3]ψ

− 1
6λφψ3− 1

24λψ4]. (4.6)

Notice that in expanding the interactionλϕ4, we find a
term that is quadratic in the fluctuation,λφ2ψ2, which acts
as a time-dependent correction to the mass. Therefore we
have not included this term among the interactions but rather
have grouped it with the other quadratic terms to form a
time-dependent effective mass termm2 → m2 + 1

2λφ2(η). We
would have found the same shift had we treated this effect as
an interaction once we summed the entire set of all possible
insertions of this term in the freeψ propagator.

The contribution of the zero mode to the effective mass sim-
ilarly shifts the form of the adiabatic modes. For example, the
zeroth order adiabatic mode becomes,

[Ω(0)
k (η)]2 = k2 +a2(η)

(

m2 + 1
2λφ2(η)

)

, (4.7)

while the second order correction is now

[Ω(2)
k (η)]2 =

[

ξ− 1
6

]

a2R

−1
2

a2(H ′ +2H2)
(

m2 + 1
2λφ2

)

k2 +a2
(

m2 + 1
2λφ2

)

−λ
4

φφ′′ + φ′2 +4Hφφ′

k2 +a2
(

m2 + 1
2λφ2

)

+
5
4

a4
[

H
(

m2 + 1
2λφ2

)

+ 1
2λφφ′

]2

[

k2 +a2
(

m2 + 1
2λφ2

)]2 . (4.8)

However at very short distances, where the divergences in
loop corrections occur,

k2 ≫ a2m2,a2λφ2,
λ(φφ′′ + φ′2)

R
, (4.9)

the shift in the effective mass simply appears as a correspond-
ing shift in the generalized mass defined earlier. Thus the lead-
ing short-distance part of the generalized frequency to second
order in the adiabatic expansion is still

Ωk(η) =
√

k2 +a2(η)M 2(η)+ · · · (4.10)

but withM 2(η) now given by

M 2(η) ≡ m2 + 1
2λφ2 +

(

ξ− 1
6

)

R. (4.11)

In the interaction picture, the free Hamiltonian determines
the evolution of operators while the interaction Hamiltonian,
HI , determines the corresponding evolution of the states.
When the operator consists of a product of fields, the evolution
is already contained in their time-dependence so the evolution
of the tadpole from an initial state defined atη = η0 to a later
timeη f is given in the Schwinger-Keldysh approach5 by

〈αk(η f )|ψ+(η f ,~x)|αk(η f )〉

=
〈αk|Tα

(

ψ+(η f ,~x)e
−i

∫ 0
η0

dη [HI [ψ+]−HI [ψ−]])|αk〉

〈αk|Tα
(

e−i
∫ 0

η0
dη [HI [ψ+]−HI [ψ−]])|αk〉

(4.12)

where|αk〉= |αk(η0)〉. Since both the|αk〉 state and〈αk| state
have been time-evolved, we have two parts of the time evolu-
tion operator corresponding to each of these components. The
“+” fields are associated with the former while the “−” fields
are associated with the latter and the relative minus sign be-
tween the two appearances of the interaction Hamiltonian is
from the Hermitian conjugation of the unitary operator evolv-
ing the〈αk| state.

From the action in Eq. (4.6), the interaction Hamiltonian
for a simple quartic theory is

HI [ψ±] =

∫

d3~ya4[[∇2φ+ ξRφ+m2φ+ 1
6λφ3]ψ±

+ 1
6λφψ±3 + 1

24λψ±4]. (4.13)

5 A more detailed explanation of the Schwinger-Keldysh approach applied
to this setting is given in the Appendix A of [1] which defines the notation
used here and explains the correct time-ordering for contractions of any
combination ofψ±(x) fields.
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+ ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

x y
:::::::::::::::::::::::::::::::::::::::::::::::: :::::::::::::::::::::::::::::::::::::::::::::::::::::::

FIG. 1: The leading contributions to the running of the massm and
the couplingλ in a ϕ4 theory. The solid lines represent propagating
ψ fields while the dashed lines correspond to the zero modeφ.::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::x y

= :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
x y

�2� +2H�� + ξR+m2
+ :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

x y

16λ

:::::::::::::::::::::::::::::::::::::::::::::::: :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
FIG. 2: The shaded blob corresponds to the following two graphs;
note that the time derivatives act on the classicalφ(η) field.

which yields the following leading contribution to the tadpole
matrix element,

0 = 〈αk(η f )|ψ+(x)|αk(η f )〉

= −
∫ η f

η0

dηa4(η)

∫

d3~y
[

G>
0 (x,y)−G<

0 (x,y)
]

×
{

∇2φ(η)+ ξR(η)φ(η)+m2φ(η)+
λ
6

φ3(η)

− iλ
2

φ(η)G>
α (y,y)+ · · ·

}

(4.14)

wherex = (η f ,~x), y = (η,~y) andz= (η′,~z). The Wightman
functions,G>,<

α (x,y), are defined by

G>
α (y,z) = i

∫

d3~k
(2π)3 ei~k·(~y−~z)

×
[

UE
k (η)UE∗

k (η′)+eα∗
kUE

k (η)UE
k (η′)

]

G<
α (y,z) = i

∫

d3~k
(2π)3 ei~k·(~y−~z)

×
[

UE∗
k (η)UE

k (η′)+eα∗
kUE

k (η)UE
k (η′)

]

. (4.15)

The Wightman functions labeled with a 0 subscript corre-
spond to those obtained by settingeα∗

k = 0. They appear
here since in taking the differenceG>

α (x,y)− G<
α (x,y), the

boundary-dependent terms of each function are the same and
cancel each other.

Diagrammatically, the leading contribution to the tadpole
is shown in Figs. 1–2 where aψ propagator is represented
by a solid line and a dashed line represents the zero mode
φ. At this order we shall encounter divergences which re-
quire the renormalization of the mass and the coupling of the
field, but the leading contribution to the renormalization of the
field only appears at two-loop-order through the last diagram
shown in Fig. 3.

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::x y z
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x y z

+ :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
x y

z
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:::::::::::::::::::::::::::::: ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: ::::::::::::::::::::::::::::::::::::
FIG. 3: Further graphs that contribute to the tadpole at second order.
The last of these graphs contains the leading nontrivial correction to
the wavefunction renormalization.

Substituting the expressions for the Green’s functions in
terms of the modes in Eq. (4.15) into the tadpole yields

〈αk(η f )|ψ+(x)|αk(η f )〉

= −
∫ η f

η0

dηa4(η)G (η f ,η)

×
{

∇2φ(η)+ ξRφ(η)+m2φ(η)+
λ
6

φ3(η)

+
λ
2

φ(η)
∫

d3~k
(2π)3 UE

k (η)UE∗
k (η)

+
λ
2

φ(η)
∫

d3~k
(2π)3 eα∗

kUE
k (η)UE

k (η)+ · · ·
}

(4.16)

where the externalψ leg has been abbreviated by

G (η f ,η) ≡ i
[

UE
0 (η f )U

E∗
0 (η)−UE∗

0 (η f )U
E
0 (η)

]

. (4.17)

The external leg is independent of the initial state. The first
line within the braces in Eq. (4.16) is the equation of motion
for the zero mode before we have included the corrections
from its interactions with the fluctuations.

At leading order, the tadpole contains two terms with loop
integrals, which appear in the last two lines of Eq. (4.16). The
first of these contains no dependence on the initial state; it
produces the need to renormalize the mass and the coupling of
the bulk 3+1 dimensional field theory, as is shown in the next
section. In the second, the initial state structure function ap-
pears explicitly so all of the new divergences associated with
the fine structure of the initial state arise at this order from this
term. Because of its importance in establishing the renormal-
izability of an effective description of a state bearing some
trans-Planckian information, we shall treat it in much more
detail separately, after first examining how the standard bulk
renormalization proceeds in this inflationary setting.

V. BULK RENORMALIZATION

Through the coupling of the fluctuations to the zero mode,
demanding that the one-point function for the fluctuations
should vanish provides a simple and elegant origin for the
renormalization and running of the bulk parameters:m, λ, ξ.



11

Recall that the bare theory we have been considering,

L = 1
2gµν∇µϕ∇νϕ− 1

2ξRϕ2− 1
2m2ϕ2− 1

24λϕ4, (5.1)

can be also expressed in terms of the renormalized parameters
by

L = 1
2gµν∇µϕR∇νϕR− 1

2ξRRϕ2
R− 1

2m2ϕ2
R− 1

24λRϕ4
R

+ 1
2(Z3−1)gµν∇µϕR∇νϕR− 1

2(Zξ −1)ξRRϕ2
R

− 1
2(Z0−1)m2

Rϕ2
R− 1

24(Z1−1)λRϕ4
R. (5.2)

The perturbative corrections to a Green’s function calculated
from the first line of this renormalized Lagrangian are very
frequently divergent; these divergences arise from internal
loops which sum over all possible momenta and contain a
sufficiently small number of propagators. Since these diver-
gences appear only in the infinite momentum region of the
loop integrals, they equivalently correspond to short-distance
divergences and therefore can be cancelled by local countert-
erms of the form shown in the second two lines of Eq. (5.2).
Choosing these counterterms correctly, the total value of the
perturbative corrections at a given order is completely finite.

The bare and renormalized parameters are related to each
other through a simple rescaling,

ϕ = Z1/2
3 ϕR ξ =

Zξ

Z3
ξR

m2 =
Z0

Z3
m2

R λ =
Z1

Z2
3

λR. (5.3)

To leading order in the couplingλ, we only need to determine
Z0, Z1 andZξ since the first correction toZ3 only appears at
two loop order,λ2. To control the divergences that appear
in the perturbative corrections to a process, we must apply
a regularization scheme such as dimensional regularization,
which we use here.

The bulk divergences occur at one loop order in the term

λ
2

φ(η)
∫

d3~k
(2π)3 UE

k (η)UE∗
k (η) (5.4)

appearing in the integrand of the tadpole in Eq. (4.16); here
we have excised the external leg. Substituting in the general
form for the Bunch-Davies modes,

UE
k (η) =

e−i
∫ η

η0
dη′ Ωk(η′)

a(η)
√

2Ωk(η)
, (5.5)

and applying the adiabatic approximation to second order to
extract the leading behavior ask → ∞ as in Eqs. (4.10–4.11),
the divergent part of this loop is contained in

λ
4

φ(η)

a2(η)

∫

d3~k
(2π)3

1
√

k2 +a2(η)M 2(η)
+ · · · . (5.6)

By extending the number of spatial dimensions to 3−2ε,

λµ2ε

4
φ(η)

a2(η)

∫

d3−2ε~k
(2π)3

1
√

k2 +a2(η)M 2(η)
, (5.7)

we can perform this loop integral, extracting the pole and the
dependence on the renormalization scaleµ,

− λ
32π2φ(η)M 2(η)

[

1
ε

+1− γ+ ln
4πµ2

a2M 2

]

. (5.8)

Adding this result to the other boundary-independent terms
that appear in the tadpole integrand in Eq. (4.16) and substitut-
ing in the expression for the effective massM from Eq. (4.11)
produces the following bulk effect corrected to first order,

〈αk(η f )|ψ+(x)|αk(η f )〉

= −i
∫ η f

η0

dηa4(η)
[

UE
0 (η f )U

E∗
0 (η)−UE∗

0 (η f )U
E
0 (η)

]

×
{

∇2φ+m2φ
[

1− λ
32π2

[

1
ε

+1− γ+ ln
4πµ2

M 2

]]

+
λ
6

φ3
[

1− 3λ
32π2

[

1
ε

+1− γ+ ln
4πµ2

M 2

]]

+Rφ
[

ξ− λ
32π2

(

ξ− 1
6

)[

1
ε

+1− γ+ ln
4πµ2

M 2

]]

+ · · ·
}

. (5.9)

In this expression we have omitted finite contributions which
do not affect the renormalization or the running and we have
also not written any of the terms that depend explicitly on the
choice of the initial state, since these effects are discussed sep-
arately in the next section. To fix the scale-independent part of
the rescalings from the bare to the renormalized parameters,
we apply the standardMS prescription which sets

Z0 = 1+
λ

32π2

[1
ε

+1− γ+ ln4π
]

+ · · · , (5.10)

Z1 = 1+
3λ

32π2

[1
ε
− γ+ ln4π

]

+ · · · (5.11)

and

Zξ = 1− 1
ξ

(

ξ+
1
6

) λ
32π2

[1
ε
− γ+ ln4π

]

+ · · · (5.12)

to leading nontrivial order in theλ. In terms of the renormal-
ized parameters then, the tadpole is given by

〈αR
k (η f )|ψ+

R(x)|αR
k (η f )〉

= −i
∫ η f

η0

dηa4(η)
[

UE
0 (η f )U

E∗
0 (η)−UE∗

0 (η f )U
E
0 (η)

]

×
{

∇2φ(η)+m2
Rφ(η)

[

1− λR

16π2 ln
µ
MR(η)

]

+
λR

6
φ3(η)

[

1− 3λR

16π2 ln
µ
MR(η)

]

+R(η)φ(η)
[

ξR−
(

ξR−
1
6

) λR

16π2 ln
µ
MR(η)

]

+ · · ·
}

(5.13)
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again up to finite and boundary-dependent contributions.
Despite the added complexity inherent in an inflationary en-

vironment, the cancellation of the bulk divergences has pro-
ceeded exactly as in a Minkowski spaceS-matrix calculation.
The reason for this simplicity is that although both the back-
ground and the initial state are nontrivial, neither has anyef-
fect on the bulk renormalization. The divergences occur at
infinitesimally short distances where the background curva-
ture is not apparent, except as a classical source such as in
the renormalization of the coupling of the field to the curva-
ture. Further, once we are sufficiently far from the boundary,
how the field propagates through the bulk should be insensi-
tive to the short-distance structure of that boundary. There-
fore, although there can be new divergences associated with
the initial state, they are completely disjoint from the bulk di-
vergences.

The renormalization scaleµ is an artifact of our ignorance
of the true, bare theory. If we had calculated a matrix element
solely in terms of the properties of the bare theory, the result
would be completely independent of this scale,

µ
d
dµ

〈αk(η f )|ψ(x)|αk(η f )〉 = 0. (5.14)

But as the matrix element calculated in either the bare or the
renormalized theory is exactly the same, up to a factor of the
wave function rescaling,

〈αk(η f )|ψ(x)|αk(η f )〉 = Z1/2
3 〈αR

k (η f )|ψR(x)|αR
k (η f )〉

(5.15)
we have a similar equation for the scale dependence of the
matrix element of the renormalized theory,

[

µ
d
dµ

+ γ(λR)

]

〈αR
k (η f )|ψR(x)|αR

k (η f )〉 = 0, (5.16)

whereγ(λR) is the anomalous dimension of the field,

γ(λR) =
1
2

µ
d
dµ

lnZ3. (5.17)

All the renormalized parameters depend upon the renormal-
ization scale so we introduce the usual functions that describe
their running,

β(λR) = µ
dλR

dµ
, γm(λR) =

µ
mR

dmR

dµ
, βξ(λR) = µ

dξR

dµ
,

(5.18)
in terms of which we obtain the Callan-Symanzik equation,

[

µ
∂
∂µ

+ β(λR)
∂

∂λR
+mRγm(λR)

∂
∂mR

+βξ(λR)
∂

∂ξR
+ γ(λR)+ · · ·

]

〈αR
k (η f )|ψ(x)|αR

k (η f )〉 = 0

(5.19)

up to corrections which do depend on the boundary condi-
tions. From the expression for the renormalized tadpole, we

have the standard running of the bulk parameters at leading
order,

β(λR) =
3λR

16π2 + · · · ,

γm(λR) =
λR

32π2 + · · · ,

βξ(λR) =
[

ξR−
1
6

] λR

16π2 + · · · . (5.20)

Notice that the coupling to the curvature does not run at this
order when the field is conformally coupled, i.e.ξR = 1

6.
The Callan-Symanzik equation depends upon the running

of both the bulk parameters and those describing the bound-
ary since once we have imposed a renormalization condition
there exists a single renormalization scaleµ in the theory. The
fact that there is a unique scale for both, rather than sepa-
rate scales, is particularly clear from a Wilsonian perspective
[33]. In the functional integral description of the theory [1],
the generating functional contains information about the bulk
theory, in the action, and the initial state, in the source term.
To understand how the short-distance physics affects what we
mean by a particular parameter, whether for the bulk physics
or the initial state, we start with theory defined up to a cutoff,
Λ, which is equivalent to truncating the functional integralfor
modes above this scale. We can then determine how the pa-
rameters flow as we alter the cutoff scale fromΛ to Λ′ (< Λ)
by integrating out the field modes between these scales. The
resulting effective theory based on the cutoffΛ′ will have its
bulk parameters affected in the usual way. But the form of our
effective description of the initial state will also be shifted as
well, since how accurately we can describe the features of the
initial state also depends on the field modes available in our
functional integral. Thus only one quantity, whetherΛ′/Λ for
a cutoff theory orµ for a dimensionally regularized theory, is
needed to describe the running of both the bulk and bound-
ary effects since the origin of this running is common to both
aspects of theory.

VI. BOUNDARY RENORMALIZATION

Thus far, we have written the structure function for the ini-
tial state,eα∗

k , without specifying how it varies with the mo-
mentum. We shall require a more detailed form to show un-
der what conditions a general initial state, when renormalized,
produces a theory with finite perturbative corrections. If this
renormalization is genuinely associated only with the details
of the initial state, then it should be sufficient to apply the
renormalization only at the initial time and the theory should
remain finite at all subsequent times. This reasoning suggests
that if we regard the rescaling of the initial state as the appro-
priate addition of counterterms, chosen to cancel the diver-
gences at the initial time, then these counterterms should be
expressed through a three dimensional boundary action,

Sη=η0 =

∫

d3~x
√
−hL3d(ϕ). (6.1)
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h denotes the determinant of the induced metrichµν on the
η = η0 boundary. Using again the time-like normal vector
nµ that is orthogonal to the boundary, the induced metric is
obtained from the full metric by

hµν = gµν−nµnν. (6.2)

For the conformally flat metric,

hµν dxµdxν = −a2(η)d~x ·d~x (6.3)

and
√
−h= a3(η). From the induced metric we can construct

an induced scalar curvature, which we denote byR̂, while the
extrinsic curvature tensor is defined by projecting the covari-
ant derivative of the normal back onto the initial surface,

Kµν = h λ
µ ∇λnν. (6.4)

This tensor as well as its trace,K = hµνKµν, provide additional
dimension 1 ingredients out of which we can construct opera-
tors for the boundary action. For an expanding background, it
is proportional to the Hubble parameter,

K(η) =
3H(η)

a(η)
. (6.5)

The operators contained in the counterterm Lagrangian
are classified according to whether their mass dimension is
greater or less than, or equal to, the dimension of the bound-
ary, but the fields inherit their scaling dimension from the full
3+ 1 dimensional theory. Thus, for example, in our scalar
theory with aϕ ↔ −ϕ symmetry, there is a unique relevant
operator of dimension 2,

ϕ2, (6.6)

while there are two marginal operators,

ϕ∇nϕ, Kϕ2. (6.7)

Compared with a flat background, the number of higher di-
mensional operators rapidly proliferates since we can also
build counterterms with curvature-dependent objects suchas
the extrinsic curvature or the induced curvature. For example,
the complete set of irrelevant, dimension 4 operators consists
of

ϕ4,ϕ∇2
nϕ,(∇nϕ)2,~∇ϕ ·~∇ϕ,

K2ϕ2,KµνKµνϕ2,Kϕ∇nϕ,(∇nK)ϕ2,R̂ϕ2. (6.8)

For particular, highly symmetric backgrounds, only a subset
of this list might be required. Only the first four are needed in
flat space and the complete list for de Sitter space is

ϕ4,ϕ∇2
nϕ,(∇nϕ)2,~∇ϕ ·~∇ϕ,K2ϕ2,Kϕ∇nϕ. (6.9)

The idea then is to label specific aspects of the initial state
by the type of counterterms associated with them so that a par-
ticular piece of the boundary condition is relevant, marginal or
irrelevant according to the dimension of the boundary coun-
terterms needed to remove the divergences it produces. Al-
ternatively, a boundary condition can also be characterized

as renormalizable or nonrenormalizable according to whether
its difference from the vacuum state diminishes or grows at
shorter and shorter distances. The nonrenormalizable initial
states are not necessarily nonpredictive—they can be under-
stood as an effective description of the state. For example,if
we associate a heavy mass scaleM with these effects, it gener-
ically will require an infinite set of dimensionn > 3 countert-
erms to render the theory finite. However, since these terms
are suppressed by factors of(H/M)n−3, as long asH/M ≪ 1
only a very small subset of the parameters describing a general
nonrenormalizable initial state are required in practice.

We shall describe a general initial state by an expansion
in the generalized frequency,Ωk(t0), evaluated at the initial
surface,

eα∗
k =

∞

∑
n=0

dn
Hn(η0)

Ωn
k(η0)

+
∞

∑
n=1

cn
Ωn

k(η0)

an(η0)Mn . (6.10)

These two series are respectively associated with the infrared
and ultraviolet aspects of the initial state. We have chosen
an expansion in the frequency, rather than just the momen-
tum k, since this quantity has several useful properties. It is
finite, although of a complicated form, in thek→ 0 limit and
it has a natural transition in its behavior atk∼ H(η0). Above
this scaleΩk(η0) → k, while below this scale the curvature-
dependent effects become dominant compared with its ex-
plicit momentum dependence.

In the first series, we need a reasonable dynamical scale
for separating the long from the short distances on our ini-
tial surface so we have chosen the expansion rate,H(η0),
to set this scale. Since at extremely short distances, where
Ωn

k(η0) ∼ kn, these terms become diminishingly important
oncek≫H(η0). More generally, we should use a linear com-
bination ofm andH(η0) in the numerators of this expansion
to obtain the a quantity which does not vanish entirely in the
Minkowski space limit, but in slowly rolling models of infla-
tion m≪ H(η) so we shall neglect the mass in this expansion.
Notice that in the extreme ultraviolet limit,k → ∞, all of the
terms in this series vanish except for the marginal term,d0.

Thus the first series describes features of the state which are
important at long distances and can be viewed as some non-
vacuum ensemble since in this regime the idea of the vacuum
defined with respect to the free Klein-Gordon equation holds
very well. The signals of trans-Planckian physics lies properly
in the second series in Eq. (6.10). Unlike the terms in the first
series, these grow in importance at extremely short distances.
Assuming that the scale of new physics is above the Hubble
scale,M ≫ H(η0)/a(η0), these terms are essentially a series
in k/M. Since the structure functioneα∗

k accompanies the ini-
tial state contribution to the propagator and to the modes, it
might seem that these growing terms do not describe a sensi-
ble state at extremely short distances. But if we are measuring
some process at a scale much lower thanM, the contributions
from thenth term in this series is naturally suppressed by the
nth power of the ratio of the scale we measure toM. Of course,
loop corrections sample over all momenta, so the large dif-
ference between the state and the extrapolated vacuum will
produce divergences in these corrections; but since these di-
vergences occur from the large momentum—short distance—
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part of the loop integral evaluated at the initial time, theycan
always be cancelled by adding the appropriate local countert-
erms on the initial boundary.

In [1] we showed that the divergences from the new initial
condition only appear at the initial-time surface,η = η0. More
precisely, the divergences only occur in a boundary loop cor-
rection when the term issimultaneouslyevaluated atη = η0
andwe sum over arbitrarily large values of the loop momenta.
Since the Bunch-Davies state matches with the flat space vac-
uum states at large values of the momenta, the theory in a
curved background inherits exactly the same divergence struc-
ture from the short-distance features of the initial state as flat
space. The only new feature is that the invariants associated
with the curvature allow for a richer family of boundary coun-
terterms, as was seen in Eq. (6.8).

The prescription for extracting the short-distance boundary
divergences is then as follows. We first define a family of
kernel functions,

K(p)(η) ≡
∫

d3~k
(2π)2

e−2i
∫ η

η0
dη′ Ωk(η′)

Ω3−p
k (η)Ωp

k(η0)
, (6.11)

which arise from inserting the expansion of the initial state
structure function in Eq. (6.10) into a loop integral. In this
kernel, the terms evaluated atη0 are associated with the series
expansion for the initial state and the remainingη-dependent
factors are associated with the loop propagators. These ker-
nel functions have been constructed so that they only contain
a mild—integrable—logarithmic singularity atη = η0. The
loop integrals do not always appear exactly in the form of one
of these kernels, but they can always be expressed in terms of
somenth derivative of them, up to explicitly finite terms. By
then integrating these kernel-derivatives by partsn times, we
obtain a finite term whereK(p)(η) appears in thedη-integrand
as well as a set of boundary terms, some evaluated atη f and
some atη0. The former are finite while the latter are divergent
and can be regularized using dimensional regularization. The
resulting set of divergent terms determines the set of bound-
ary counterterms that we should add to the theory to render it
finite. The behavior of these kernels, their regularizationand
their derivatives, is explained more fully in Appendix A.

We begin in the next subsection first with an illustration of
this procedure for the renormalizable initial state. Although
the prescription applies to any type of initial state, it is sim-
pler in the case of the renormalizable state since fewer inte-
grations by parts are necessary. What we shall find is that for
a theory with aϕ4 interaction, only the first two terms (d0 and
d1) require any renormalization and are associated with the
renormalizable set of counterterms,{ϕ2,ϕ∇nϕ,Kϕ2}.

A. Renormalizable boundary conditions

Renormalizable boundary conditions correspond to those
which may differ substantially from the Bunch-Davies vac-
uum at long distances but which become indistinguishable
from this vacuum at very short distances. These states
therefore do not generally contain information about trans-
Planckian physics and resemble some excited ensemble, from
the perspective of the low energy, weakly interacting the-
ory. Despite this simplicity at short distances, in a few cases
where the difference between the initial and the Bunch-Davies
states does not diminish sufficiently fast, these initial states
can produce new divergences isolated at the initial time. The
renormalizable states thus provide the simplest example ofthe
boundary renormalization which is necessary for a general ini-
tial state and which results in a controlled, finite perturbative
description of the interacting theory.

If we restrict to an initial condition described only by nega-
tive powers of the generalized frequency,Ωk(η0), Eq. (6.10),

eα∗
k =

∞

∑
n=0

dn
Hn(η0)

Ωn
k(η0)

, (6.12)

we can obtain a sense of which terms will require renormaliza-
tion at the initial boundary by expanding the initial condition
on the modes in Eq. (2.25) atη = η0 and looking at the short
distance,k→ ∞, limit,

1
a(η0)

∂
∂η

Uk(η0) = −iϖkUk(η0)

≈ −ikUk(η0)

+i

[

2d0

1+d0
k+

2H(η0)d1

(1+d0)2

]

Uk(η0).

+O

(

H2(η0)

k

)

Uk(η0). (6.13)

At momenta well above the Hubble scale,k≫ H(η0), all the
terms aside fromd0 andd1 have no effect.

The leading contribution to the tadpole that depends on the
details of the initial state appears in the last term included in
Eq. (4.16),

− λ
2

∫ η f

η0

dt a4(η)G (η f ,η)φ(η)
∫

d3~k
(2π)3 eα∗

kUE
k (η)UE

k (η).

(6.14)
In terms of the adiabatic modes and the leading terms of our
expansion foreα∗

k given in Eq. (6.12), this contribution be-
comes

−λ
2

∫ η f

η0

dt a4(η)G (η f ,η)φ(η)

∫

d3~k
(2π)3 eα∗

kUE
k (η)UE

k (η)

= −λ
4

∫ η f

η0

dηa2(η)G (η f ,η)φ(η)

{

d0

∫

d3~k
(2π)3

e−2i
∫ η

η0
dη′ Ωk(η′)

Ωk(η)
+d1H(η0)

∫

d3~k
(2π)3

e−2i
∫ η

η0
dη′ Ωk(η′)

Ωk(η)Ωk(η0)
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+ d2H2(η0)
∫

d3~k
(2π)3

e−2i
∫ η

η0
dη′ Ωk(η′)

Ωk(η)Ω2
k(η0)

+ · · ·
}

. (6.15)

The terms associated with higher moments are associated with
loop integrals that are manifestly finite. For thenth term in the
moment expansion, the large momentum region of the accom-
panying loop integral behaves as

dn

∫

d3~k
(2π)3

e−2i
∫ η

η0
dη′ Ωk(η′)

Ωk(η)Ωn
k(η0)

=
dn

2π2

∫

k→∞

dk
kn−1 e−2ik(η−η0)

+ · · · (6.16)

which is finite for n > 2. The casesn = 0,1,2 produce a
quadratic pole, a simple pole and a logarithmic singularityat
η = η0, respectively [1]. Because of the remaining conformal
time integration in Eq. (6.15), the logarithmic singularity actu-
ally only gives a finite contribution to the tadpole so that only
the first two terms produce divergences, as was suggested by
examining the short-distance structure of the initial condition.
Therefore, for the rest of this section we shall setdn = 0 for
n≥ 2.

To show that the divergences associated with the initial state
are genuinely confined to the initial surface, let us reexpress
the loop integrals as derivatives of the kernels defined earlier
in Eq. (6.11). Just as in the case of thed2 term, these kernels
are only logarithmically divergent in(η−η0), so that with an
appropriate number of integrations by parts we can isolate the
divergent pieces explicitly. Noting that

∫

d3~k
(2π)3

e−2i
∫ η

η0
dη′ Ωk(η′)

Ωk(η)
=−1

4
K(0) ′′(η)+UV finite (6.17)

and

∫

d3~k
(2π)3

e−2i
∫ η

η0
dη′ Ωk(η′)

Ωk(η)Ωk(η0)
=− 1

2i
K(1) ′(η)+UV finite (6.18)

and substituting these expressions into Eq. (6.15) yields,

−λ
2

∫ η f

η0

dt a4(η)G (η f ,η)φ(η)

∫

d3~k
(2π)3 eα∗

kUE
k (η)UE

k (η)

=
λd0

16

{

−a2(η0)G (η f ,η0)φ(η0)K
(0) ′(η0)−a2(η f )∂ηG (η f ,η)

∣

∣

η=η f
φ(η f )K

(0)(η f )

+∂η
[

a2(η)G (η f ,η)φ(η)
]

η=η0
K(0)(η0)+

∫ η f

η0

dη∂2
η
[

a2(η)G (η f ,η)φ(η)
]

K(0)(η)

}

−λd1

8i
H(η0)

{

a2(η0)G (η f ,η0)φ(η0)K
(1)(η0)+

∫ η f

η0

dη∂η
[

a2(η)G (η f ,η)φ(η)
]

K(1)(η)

}

+ · · ·

=
λd0

16
∂η

[

a2(η)G (η f ,η)φ(η)
]

η=η0
K(0)(η0)−

λd1

8i
H(η0)a

2(η0)G (η f ,η0)φ(η0)K
(1)(η0)+finite (6.19)

after integrating by parts and using thatG (η f ,η f ) = 0. The singular kernels can be regularized by extending the number of
spatial dimensions to 3− 2ε as has been done in Appendix A which allows us to extract the poles asε → 0 as well as the
dependence on the renormalization scaleµ,

−λ
2

∫ η f

η0

dt a4(η)G (η f ,η)φ(η)

∫

d3~k
(2π)3 eα∗

kUE
k (η)UE

k (η)

=
λd0

64π2∂η
[

a2(η)G (η f ,η)φ(η)
]

η=η0

[

1
ε
− γ+ ln

4πµ2

a2(η0)M 2(η0)

]

− λd1

32iπ2H(η0)a
2(η0)G (η f ,η0)φ(η0)

[

1
ε
− γ+ ln

4πµ2

a2(η0)M 2(η0)

]

+finite. (6.20)

These are the divergences associated with the “bare” initial
condition and can be renormalized by adding the following

counterterms to the interaction Hamiltonian

Hc.t.
I =

∫

d3~ya4(η)

{

z0

2
δ′(η−η0)

a2(η)
φψ±
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+
z1

2
δ(η−η0)

a(η)
Kφψ±

}

(6.21)

which vanish except at the initial boundary. We can equiva-
lently regard these terms as the addition of the following three-
dimensional boundary action to the theory,

S3d = 1
2

∫

η0

d3~y
√
−h

{

z0nµ∇µ
(

φψ±)

−
(

z1− 2
3z0

)

Kφψ±}

.

(6.22)
Note that we could have also included the dimension 2 coun-
terterm,mφψ±, but its role is suppressed in an inflationary
background where the extrinsic curvature term provides the
dominant contribution. The leading contribution to the tad-
pole from these counterterms is

〈αR
k (t f )|ψ+

R(x)|αR
k (t f )〉

= · · ·+ 1
2z0∂η

[

a2(η)G (η f ,η)φ(η)
]

η0

− 1
2z1a3(η0)G (η f ,η0)φ(η0)K(η0). (6.23)

The inclusion of the boundary counterterms is the boundary
analogue of scaling the bulk parameters which translates be-
tween the bare and the renormalized theories. Because of this
role, the counterterms will properly contain two components,

z0 = zε
0 + ẑ0(µ)

z1 = zε
1 + ẑ1(µ), (6.24)

representing the infinite scale-independent piece, which is
fixed by the renormalization scheme, and a finite scale-
dependent piece, which is fixed by the overall scale indepen-
dence of the matrix element. In theMS scheme, the scale-
independent part is fixed to cancel the pole and the usual finite
artifacts of dimensional regularization,

zε
0 = − λ

32π2d0

[1
ε
− γ+ ln4π

]

zε
1 = − λ

48iπ2d1

[1
ε
− γ+ ln4π

]

. (6.25)

The resulting contribution to the tadpole from those parts of
the renormalized initial condition that depend on the renor-
malization scale is contained in the terms,

〈αR
k (η f )|ψ+

R(x)|αR
k (η f )〉

=
1
2

[

ẑ0(µ)+
λRd0

16π2 ln
µ

aMR

]

∂η
[

a2G (η f ,η)φ
]

η=η0

−1
2

[

ẑ1(µ)+
λRd1

24iπ2 ln
µ

aMR

]

a3G (η f ,η0)Kφ
∣

∣

η=η0

+ · · · . (6.26)

Among the many terms not explicitly written in this equa-
tion are all the other boundary-independent,µ-dependent con-
tributions from the bulk, evaluated in Eq. (5.13). If we intro-
duce boundaryβ-functions forẑ0 andẑ1,

β̂0(λR) = µ
dẑ0

dµ

β̂1(λR) = µ
dẑ1

dµ
, (6.27)

then from Eq. (6.26) we have that

β̂0(λR) = −λRd0

16π2 + · · ·

β̂1(λR) = − λRd1

24iπ2 + · · · . (6.28)

Here we have used the Callan-Symanzik equation

[

µ
∂
∂µ

+ β(λR)
∂

∂λR
+mRγm(λR)

∂
∂mR

+βξ(λR)
∂

∂ξR
+ γ(λR)+ β̂0(λR)

∂
∂ẑ0

+ β̂1(λR)
∂

∂ẑ1

+ · · ·
]

〈αR
k (η f )|ψ+

R(x)|αR
k (η f )〉 = 0, (6.29)

which now includes the renormalizable initial condition pa-
rameters as well as the bulk parameters, to determine the run-
ning of the boundary conditions. The equation is not yet in its
complete form since we have not included the nonrenormaliz-
able initial effects, which we discuss next.

B. Nonrenormalizable boundary conditions

The signals of trans-Planckian physics reside in the non-
renormalizable part of the initial state. Such an initial state
is one which differs increasingly from the the vacuum state
at shorter distances or which equivalently requires nonrenor-
malizable counterterms in the boundary action to render the
theory finite. In terms of our expansion, these features of the
initial state are those described by a series of positive powers
of the generalized frequency,

eα∗
k =

∞

∑
n=1

cn
Ωn

k(η0)

an(η0)Mn . (6.30)

M, as usual, represents the scale at which some new dynamics
becomes important.

A great advantage of an effective description of an initial
state is in its applicability to any idea for how the physics
above the expansion scale might be modified. Different
ideas—minimum lengths, modified uncertainty relations or
new dispersion relations—can be distinguished by the val-
ues of their coefficientscn in the series of Eq. (6.30). Even
more importantly for observations, since at best only the lead-
ing nonvanishing term is likely to be observable, the general
trans-Planckian signal is determined by the single quantity
c1/M, assumingc1 is the first nonvanishing coefficient. This
property allows us to extract a generic prediction for a trans-
Planckian signal in the cosmic microwave background which
can then be contrasted with other ways for generating de-
partures from the simple vacuum prediction, such as through
modifications of the inflaton potential.

Since our goal here is to show how renormalization pro-
ceeds for a nonrenormalizable state and that perturbative cor-
rections remain small whenH(η0) ≪ M, we shall examine
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the renormalization of a state for the leading trans-Planckian
effect with

eα∗
k = c1

Ωk(η0)

a(η0)M

[

1+
1
2

a2(η0)m2

Ω2
k(η0)

]

. (6.31)

Since limk→0 Ωk(η0) 6= 0, the nonrenormalizable terms do not
vanish at long distances so we have added an extra renormal-
izable term, scaling as 1/Ωk(η), to subtract some of this long
distance behavior so that the condition represents a genuine
trans-Planckian effect.

The one loop contribution from this boundary condition to
the tadpole is of the form

〈αk(η f )|ψ+(x)|αk(η f )〉

= −λ
4

c1

a(η0)M

∫ η f

η0

dηa2(η)G (η f ,η)φ(η)

×
∫

d3~k
(2π)3

[

1+
1
2

a2(η0)m2

Ω2
k(η0)

]

Ωk(η0)e
−2i

∫ η
η0

dη′ Ωk(η′)

Ωk(η)

+ · · · . (6.32)

Introducing the kernel

∫

d3~k
(2π)3

Ωk(η0)e
−2i

∫ η
η0

dη′ Ωk(η′)

Ωk(η)
=

1
8i

K(−1) ′′′(η)+UV finite

(6.33)
to represent the divergent part of the first term in the loop in-
tegral andK(1) ′(η) as before in Eq. (6.18) for the second, we
integrate by parts until all the divergent contributions appear
explicitly as term evaluated on the boundary,

〈αk(η f )|ψ+(x)|αk(η f )〉

=
λ

32i
c1

M
1

a(η0)
∂2

η
[

a2(η)G (η f ,η)φ(η)
]

η0
K(−1)(η0)

+
λ

32i
c1

M
a(η0)G (η f ,η0)φ(η0)

×
[

K(−1) ′′(η0)−2a2(η0)m
2K(1)(η0)

]

+ · · · . (6.34)

Here we have only retained the terms that would diverge if we
performed the remaining loop integrations. Using the expres-
sions for dimensionally regularized kernels from AppendixA,
we find that

〈αk(η f )|ψ+(x)|αk(η f )〉

=
λ

128iπ2

c1

M

[

1
ε
− γ+ ln

4πµ2

a2(η0)M 2(η0)

]

× 1
a(η0)

∂2
η
[

a2(η)G (η f ,η)φ(η)
]

η=η0

+
λ

64iπ2

c1

M

[

1
ε

+1− γ+ ln
4πµ2

a2(η0)M 2(η0)

]

×a3(η0)G (η f ,η0)

[

ξ− 1
6

]

φ(η0)R(η0)

+
λ2

128iπ2

c1

M

[

1
ε

+1− γ+ ln
4πµ2

a2(η0)M 2(η0)

]

×a3(η0)G (η f ,η0)φ3(η0)

+ · · · . (6.35)

These divergences are cancelled by adding the following
counterterms to the interaction Hamiltonian,

Hc.t.
I =

∫

d3~y
a4(η)

a(η0)

{

1
2

z2

M
δ′′(η−η0)

a2(η)
φψ±

+
z3

M
δ(η−η0)

[

ξ− 1
6

]

R(η)φψ±

+
1
4

z4

M
δ(η−η0)φ3ψ±

}

, (6.36)

which can also be regarded as adding the following boundary
action to the theory,

Sη=η0 = − 1
2M

∫

d3~y
√
−h

{

z2∇2
n(φψ±)+ 5

3z2K∇n(φψ±)

+ 2
3z2(∇nK)φψ± + 2

3z2K2φψ±

+z3
[

ξ− 1
6

]

Rφψ± + 1
2z4φ3ψ±

}

.

(6.37)

From either perspective, the contribution from these boundary
counterterms to the tadpole calculation is

〈αR
k (η f )|ψ+

R(x)|αR
k (η f )〉

= −1
2

z2

M
1

a(η0)
∂2

η
[

a2(η)G (η f ,η)φ(η)
]

η=η0

−1
2

z3

M
a3(η0)G (η f ,η0)

[

ξ− 1
6

]

φ(η0)R(η0)

−1
4

z4

M
a3(η0)G (η f ,η0)φ3(η0)

+ · · · . (6.38)

As before, the coefficients of the counterterms can be broken
into a scale-independent infinite part and a scale-dependent
finite part,

z2 = zε
2 + ẑ2(µ), z3 = zε

3 + ẑ3(µ), z4 = zε
4 + ẑ4(µ), (6.39)

where the infinite part is completely fixed by a renormaliza-
tion scheme such as theMS scheme,

zε
2 =

λc1

64iπ2

[

1
ε
− γ+ ln4π

]

zε
3 =

λc1

32iπ2

[

1
ε

+1− γ+ ln4π
]

zε
4 =

λ2c1

32iπ2

[

1
ε

+1− γ+ ln4π
]

, (6.40)

while the finite part is determined by the Callan-Symanzik
equation,

0 =

[

µ
∂
∂µ

+ β(λR)
∂

∂λR
+mRγm(λR)

∂
∂mR

+ βξ(λR)
∂

∂ξR

+γ(λR)+
∞

∑
n=0

β̂n(λR)
∂

∂ẑn

]

〈αR
k (η f )|ψ+

R(x)|αR
k (η f )〉,

(6.41)
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which has been finally expressed in its complete form. The
sum has been written with an infinite number of boundaryβ-
functions to represent the possibility of including higherorder
nonrenormalizable initial conditions.

Adding together the boundary effects in Eq. (6.34) and the
counterterms contribution of Eq. (6.38), after applying theMS
scheme, yields all of the renormalization scale dependence
that is associated with the initial state,

〈αR
k (η f )|ψ+

R(x)|αR
k (η f )〉 = −1

2
1
M

[

ẑ2(µ)− λRc1

32iπ2 ln
µ

a(η0)MR(η0)

]

1
a(η0)

∂2
η
[

a2(η)G (η f ,η)φ(η)
]

η=η0

−1
2

1
M

[

ẑ3(µ)− λRc1

16iπ2 ln
µ

a(η0)MR(η0)

]

a3(η0)G (η f ,η0)

[

ξ− 1
6

]

φ(η0)R(η0)

−1
4

1
M

[

ẑ4(µ)− λ2
Rc1

16iπ2 ln
µ

a(η0)MR(η0)

]

a3(η0)G (η f ,η0)φ3(η0)+ · · · , (6.42)

which, from the Callan-Symanzik equation, implies that the
boundary parameters run as follows,

β̂2(λR) =
λRc1

32iπ2 + · · ·

β̂3(λR) =
λRc1

16iπ2 + · · ·

β̂4(λR) =
λRc1

16iπ2 + · · · . (6.43)

So far we have let the parameterc1 be complex, but if the
evolution is to remain unitary, it is clear thatc1 should be
purely imaginary so that its contribution to the boundary coun-
terterm action is real. By similar reasoning,d1 should also be
purely imaginary whiled0 is real.

VII. CONCLUSIONS

Although the effective theory principle has been widely and
advantageously applied in field theory, its role has usually
been reserved for describing the evolution of a system from
one state to another rather than for describing properties of
the actual states involved. For a field theory in Minkowski
space, such a simplification is usually sufficient since scales—
including that which divides long-distances from the regime
where new physics could modify the structure of the true vac-
uum state away from a vacuum based on extrapolating the
eigenstates of the low energy theory—are time-independent.
Furthermore, the initial and final states are measured in a
rather subdued environment, in an asymptotic past or future
where the fields no longer interact with each other and where
the states become essentially those of the free Minkowski
space Hamiltonian.

The conditions prevailing during inflation are dramatically
different and can imply a more significant role for the short-
distance properties of the states. In particular, the standard
vacuum choice is defined to be that state which resembles the
Minkowski vacuum at distances where the curvature is not no-
ticeable,k ≫ H. However, when the Hubble scaleH is itself
an appreciable fraction of the scaleM for the trans-Planckian

physics, we are defining the vacuum precisely in a regime near
where the low energy free theory is no longer applicable. An
effective description attempts to provide a generic parameteri-
zation of this ambiguity between an extrapolated free vacuum
and the true vacuum, without making any assumptions about
the physics in the trans-Planckian regime.

Because of the time-evolution of the background, it is not
appropriate to choose states based upon their properties inan
asymptotically distant past. Instead, the state is fixed at an
“initial” time during the regime when the effective theory is
predictive, that is, when the perturbative corrections to agen-
eral process are still small. In essence, an effective theory is
an application of the principle of decoupling—that the physics
of large scales should be relatively independent of the physics
at short distances. To make this idea more precise, we de-
scribe the initial state through a power series, as in Eq. (6.10),
which contains terms which either diminish or grow at short
distances. The former are the analogues of the renormaliz-
able part of a bulk effective field theory and they are fixed by
the observed long-distance structure of the state. But it isthe
latter that contain the signals of trans-Planckian physicsand
they form the initial-state analogue of the nonrenormalizable
operators of a bulk effective theory. It is important to remem-
ber that in this setting the detailed structure of the state is not
meant to be part of a complete theory, but only an effective
one applicable up to the scale of the unknown trans-Planckian
physics.

The main idea of this article has been to establish the renor-
malizability of this approach, showing explicitly that once the
divergences have been all removed, the signals of the trans-
Planckian physics are suppressed by powers of the small ra-
tio of the Hubble scale during inflation and the scale of the
new physics,H/M. These new divergences result from sum-
ming over the short-distance structure of the initial state. Thus
they appear in a perturbative correction only when we simul-
taneously sum over arbitrarily high spatial momenta and we
evaluate it at the initial time, and as a consequence the coun-
terterms are local operators confined to the same initial sur-
face at which the state was defined. The power counting for
these counterterms parallels that of an ordinary bulk theory,
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with relevant or marginal boundary counterterms removing
the short-distance divergences from the renormalizable part
of the initial state and with irrelevant boundary counterterms
removing the divergences from the trans-Planckian part.

One reason for showing the renormalizability of a state with
a nontrivial trans-Planckian component is to demonstrate that
tree-level calculations, such as that of the primordial power
spectrum of fluctuations, are perturbatively stable. But there
is a subtle consequence of this result which has a much more
direct effect even on a tree-level calculation. The search for
a renormalizable description of a state is equivalent to find-
ing the correct propagator for the short-distance information
which is contained in this state that does not lead to uncon-
trolled divergences—and it is this same propagator that also
appears in the tree-level estimate of a process. For example,
in the Bunch-Davies vacuum, the two-point function and the
propagator evaluated for equal times are equivalent, but this
equivalence no longer holds for a more general initial state.
The extra term, encoding how the information in the initial
state propagates forward, influences the precise calculation of
both the primordial power spectrum [11, 13] and the gravi-
tational back-reaction [12, 34]. Quantum mechanically, this
term represents the interference between the fields being mea-
sured and the initial state information. As a result, the precise
calculation of the trans-Planckian signal requires following
this quantum mechanical interference as it affects the classical
spectrum of primordial fluctuations, as will be done in [23].
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APPENDIX A: KERNELS

In Sec. VI we introduced a family of kernel functions,

K(p)(η) ≡
∫

d3~k
(2π)2

e−2i
∫ η

η0
dη′ Ωk(η′)

Ω3−p
k (η)Ωp

k(η0)
, (A1)

which occur generically in the loop corrections to a process
with a nonrenormalizable initial condition. The parts thatde-
pend on an arbitrary timeη come from the loop propagator
and the part evaluated only on the boundary atη0 resulted
from the form of the power series we used to describe the ini-
tial state, as in Eq. (6.10). In fact, our choice for this power
series was made to obtain a relatively simple form for the loop
integrals, such as the kernel above, when evaluated on the
initial boundary. The structure of the kernels is also chosen
so that they only diverge logarithmically in(η−η0) after we
perform the momentum integral. Thus if a kernel function ap-
pears within andη-integral whose integrand, apart from the
kernel factor, is well behaved, then the result is finite. The
point of introducing these functions is that the loop integrals
we encounter can be written in terms of an appropriate num-
ber of derivatives ofK(p)(η) which we proceed to integrate
by parts until all the derivatives have been removed from the
kernel still occurring with the conformal time integral. The
boundary terms which result from this process that are evalu-
ated at the initial surface isolate all the new divergences asso-
ciated with having a nonstandard initial condition on the state.
The remaining momentum integrals can be then regularized,
for example by extending the number of spatial dimensions to
3−2ε.

In this article, we shall not need to consider more than three
derivatives of the kernels,

K(p) ′(η) =
∫

d3~k
(2π)3 e−2i

∫ η
η0

dη′ Ωk(η′)
{

− 2i

Ω2−p
k (η)Ωp

k(η0)
− (3− p)Ω′

k(η)

Ω4−p
k (η)Ωp

k(η0)

}

K(p) ′′(η) =

∫

d3~k
(2π)3 e−2i

∫ η
η0

dη′ Ωk(η′)
{

− 4

Ω1−p
k (η)Ωp

k(η0)
+

2i(5−2p)Ω′
k(η)

Ω3−p
k (η)Ωp

k(η0)
− (3− p)Ω′′

k

Ω4−p
k (η)Ωp

k(η0)
+

(3− p)(4− p)Ω′2
k

Ω5−p
k (η)Ωp

k(η0)

}

K(p) ′′′(η) =

∫

d3~k
(2π)3 e−2i

∫ η
η0

dη′ Ωk(η′)
{

8i

Ω−p
k (η)Ωp

k(η0)
+

12(2− p)Ω′
k(η)

Ω2−p
k (η)Ωp

k(η0)
+

2i(8−3p)Ω′′
k(η)

Ω3−p
k (η)Ωp

k(η0)
− 6i(3− p)2Ω′2

k (η)

Ω4−p
k (η)Ωp

k(η0)

− (3− p)Ω′′′
k (η)

Ω4−p
k (η)Ωp

k(η0)
+

3(3− p)(4− p)Ω′
k(η)Ω′′

k(η)

Ω5−p
k (η)Ωp

k(η0)
− (3− p)(4− p)(5− p)Ω′3

k (η)

Ω6−p
k (η)Ωp

k(η0)

}

.

(A2)

In the extreme ultraviolet limit, where the leading part of the
generalized frequency approachesΩk(η) → k, it is only the
first term in each of these expressions which contains a short-
distance divergence and which is thus important for determin-
ing how the initial state should be renormalized. Moreover,

these kernel functions are all finite except atη = η0 where
there is no longer any oscillatory suppression in the terms that
are not already manifestly finite. Because each of the deriva-
tives in Eq. (A2) will be integrated by parts at least once, the
actual divergences we encounter are found by settingη = η0
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in

K(p)(η0) =
∫

d3~k
(2π)3

1

Ω3
k(η0)

K(p) ′(η0) = −2i
∫

d3~k
(2π)3

1

Ω2
k(η0)

+ · · ·

K(p) ′′(η0) = −4
∫

d3~k
(2π)3

1
Ωk(η0)

+ · · · . (A3)

Note that these divergent parts are independent of the index
p. The leading behavior of the adiabatic modes for large mo-
menta is approximated by

Ωk(η0) ≈
√

k2 +a2(η0)M 2(η0), (A4)

as was derived in Eq. (2.37), so that, up to the prefactors, each
of the divergent parts of the kernels can be written in the very
general form,

I(0,α) =

∫

d3~k
(2π)3

1

[k2 +a2M 2]α/2
. (A5)

Except for the fact that we are integrating over three rather
than four dimensions, this general integral is of the usual form

encountered and can be regulated by continuing to an arbitrary
real number of dimensions, 3→ 3−2ε,

I(ε,α) =

∫

d3−2ε~k
(2π)3−2ε

µ2ε

[k2 +a2M 2]α/2

=

√
π

8π2

Γ(ε− 3−α
2 )

Γ(α
2 )

[ 4πµ2

a2M 2

]ε
[aM ]3−α. (A6)

Evaluating the infinite and the finite, nonvanishing, terms for
the casesα = {3,1} yields

K(p)(η0) =
1

4π2

[

1
ε
− γ+ ln

4πµ2

a2(η0)M 2(η0)

]

+ · · · (A7)

and

K(p) ′′(η0) (A8)

=
a2(η0)M 2(η0)

2π2

[

1
ε

+1− γ+ ln
4πµ2

a2(η0)M 2(η0)

]

+ · · · .

Note thatK(p) ′(η0) is finite once its momentum integral has
been dimensionally regularized.
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