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Adiabatic Invariants in Stellar Dynamics:I. Basic conceptsMartin D. Weinberg1Department of Physics and AstronomyUniversity of Massachusetts/AmherstABSTRACTThe adiabatic criterion, widely used in astronomical dynamics, is based onthe harmonic oscillator. It asserts that the change in action under a slowlyvarying perturbation is exponentially small. Recent mathematical resultsprecisely de�ne the conditions for invariance show that this model does notapply in general. In particular, a slowly varying perturbation may causesigni�cant evolution stellar dynamical systems even if its time scale is longerthan any internal orbital time scale. This additional `heating' may have seriousimplications for the evolution of star clusters and dwarf galaxies which aresubject to long-term environmental forces.The mathematical developments leading to these results are reviewed, andthe conditions for applicability to and further implications for stellar systemsare discussed. Companion papers present a computational method for a generaltime-dependent disturbance and detailed example.1. IntroductionThere are two general methods for studying the evolution of stellar systems: 1)self-consistent integration of the equations of motion (e.g. n-body simulation); and 2)solution of the collisionless Boltzmann equation. The �rst is direct and straightforward inpractice. The second solves for the phase-space distribution of orbits rather than the orbitsthemselves. By Jeans' theorem, the distribution is function of the constants of motionor adiabatic invariants for the system2. The evolution is then determined by identifyingthe those orbits whose invariants are preserved and the change in those that are not.1Alfred P. Sloan Foundation Fellow2This assumes that our system may be so characterized, e.g. it is regular.



{ 2 {This approach allows the microphysical consequences of 105 to 1011 orbits to be treatedmacroscopically and for a galactic age, which is impractical with n-body simulation. Thissolution of the Boltzmann equation is especially useful when the system has a simplegeometry and the perturbation is slower than the orbital times themselves. Since this istrue for many scenarios, the adiabatic invariant has become a fundamental tool in stellardynamics.The concept of adiabatic invariance is often �rst encountered as a quantum mechanicsstudent. Indeed, a common example|the one-dimensional pendulum whose length is slowlychanging|dates from the 1911 Solvay Congress. This case has been studied extensively,perhaps because it can be, and is the de facto fundamental model for the adiabatic invariant.Although its limitations are well-known (e.g. Bogliubov & Mitropolsky 1961, Kruskal1962), a better but equally convenient model has not been found. Speci�cally, a slowlychanging perturbation to a harmonic oscillator may be parameterized as a time-varyingcharacteristic frequency for most cases of interest: �x+ !2(�t)x = 0. This problem may besolved using WKB theory (e.g. Berry and Mount 1972) to show that the change in actionis exponentially small in the ratio of the characteristic to perturbation frequency; that is,proportional to exp(�!=�). This leads to the often used adiabatic criterion: if the timescale for change of a perturbation is signi�cantly longer than the characteristic time scale,the action remains invariant. Unfortunately, the perturbed one-dimensional linear oscillatoris quite special and does not represent the generic case, as we will see below.Nonetheless, the standard adiabatic criterion remains widely used because it allowsthe importance and e�ect of time dependent perturbations to be easily ascertained. Thisis especially desirable in the astronomical context where isolated environments rarely exist.In particular, globular clusters su�er strong external perturbations by their embeddinggalaxies. In addition to the tidal strain and shear, globular clusters are \kicked" when theypass through the disk plane or through the inner galaxy on eccentric orbits. Because theduration of the kick, � , is small compared to the orbital periods their halo stars, P , this iscalled a gravitational shock. Orbits with P > � gain energy on average which heats andsubsequently expands the cluster. Orbits with P < � are assumed to show negligible changeby the adiabatic criterion. Accordingly, most researchers con�ned their attention to impulseapproximation (Ostriker et al. 1972). More recently, Cherno� et al.(1986) extended theimpulse approximation using Spitzer's (1958) treatment of tidal distortions based on thelinear oscillator model.Using recent results in the theory of classical non-linear systems, this paper willdescribe why the standard adiabatic criterion based on the oscillator model is false forgeneral systems with more than one degree of freedom and argue that signi�cant changes



{ 3 {can occur in the adiabatic regime. To begin, we will review the recent progress in adiabatictheorems (x2). Current theory predicts that orbits with periods short compared to theduration of the perturbation, and therefore adiabatically invariant by the standard criterion,may be signi�cantly perturbed nonetheless. Since stellar systems may be viewed as adistribution of non-linear oscillators, the insight from the recent mathematical results helpmotivate the detailed treatment of gravitational shocking (Paper II) and its application toFokker-Planck models for globular cluster evolution (Paper III). The implications of thebasic mechanism for stellar dynamical systems is discussed in x3.2. Theory of adiabatic invariantsThe problem of an integrable Hamiltonian system with a slowly varying perturbationhas been studied for the last hundred years, perhaps beginning in earnest with the work ofPoincar�e. In 1899, Poincar�e proved a theorem on the non-existence of integrals of motionin nearly-integrable systems (see Benettin et al.1985a for a discussion and references).The essence of this work is well-known today as the problem of vanishing denominatorsand the breakdown of canonical perturbation theory. Two relatively recent theorems, theKolmogorov-Arnold-Moser (KAM) and the Nekhoroshev theorem, partially address thesede�ciencies of classical canonical perturbation theory. The �rst shows that most adiabaticinvariants are not completely destroyed by the existence of resonances and the secondsalvages the classical averaging theorem. For systems with many degrees of freedom, werely on a weaker but more general averaging theorem due to Neistadt (1976). Lochak andMeunier (1988, LM) give a thorough review of the literature on which I will draw heavily.2.1. Adiabatic invariants in one-dimensional systems2.1.1. Summary of known resultsOne-dimensional systems are the most exhaustively studied although they are themost restricted in application. Since they are straightforwardly understood analytically andillustrate fundamental concepts, their properties are worth a summary.Adiabatic theorems may be divided into two classes: periodic and asymptoticallyautonomous (see Table 1). These classes are not meant to be inclusive but representative ofcases that may be precisely de�ned. A periodic perturbation is imposed at some amplitude� (assumed to be small) for all time. Choosing the unit of time to be the characteristicperiod, a rough statement of the claim is as follows:



{ 4 {Table 1: One-dimensional adiabatic theoremsMethodType Linear NonlinearPeriodic Lie series KAM(harmonic oscillator)Asymptoticallyautonomous WKB Nekhoroshev theoremIf a perturbed Hamiltonian system which depends on a slowly varying parameter � ,H = H(p; q; � ) with � � �t, has a non-zero bounded frequency, 
 = @H=@I > 
o > 0where 
o is a non-zero constant, then the long-term change in action is bounded andof order �.A stronger version of this claim is proven by the KAM theorem (e.g. Arnold 1978).Although one can think of many mechanical systems in this class, the second class,asymptotically autonomous systems, is more relevant astronomically. The claim, which isproven by Nekhoroshev's theorem (see Benettin et al.1984 for an overview and Benettin etal.1985b for details), may be stated as follows:Begin with a Hamiltonian depending on a parameter which is slowly varying withtime, H = H(p; q; �(� )), and for which lim�!�1 �(� ) exists. If the system can berewritten in the following form H = H(p; q; �) = H0(I; �) + �H1(I; �; �) where Iand � are the action-angle variables for H0 and whose frequency is bounded asbefore, 
 = @H=@I > 
o > 0, then the change in action is bounded and given by�I � jI(1)� I(�1)j = O(e�c=�).The astrophysicist's familiar de�nition of adiabatic invariant for a perturbation which isslowly \turned on" and \turned o�" �ts naturally into this class. Note that the invariantis exponentially controlled [that is, its change is O(e�c=�) with some constant c], consistentwith one-dimensional harmonic oscillator results of Spitzer (1958). In a one-dimensionalsystem this asymptotic behavior obtains even if the zeroth-order Hamiltonian is non-linearsuch as for the pendulum. The proof of Nekhoroshev's theorem is based in part on thefamiliar averaging theorem from canonical perturbation theory (see e.g. Lichtenberg &Liebermann 1983, LL). The overall method of proof will help intuitively motivate the �nalresult and is sketched below.



{ 5 {2.1.2. Sketch of Nekhoroshev's theoremThe averaging principle follows from canonical perturbation theory and is a methodto remove the oscillatory dependence on angle variables, from a perturbed Hamiltonian.This is desirable since if the procedure is successful, the new momenta are constants of themotion and the problem is solved.To summarize this procedure, let us begin with perturbed Hamiltonian of the followingform: H = H0(I; � ) + �H1(I; �; � ) + � � � : (1)We then attempt to �nd a canonical transformation to new Hamiltonian, (I; �) ! (�I; ��),such that the new Hamiltonian independent of �� to �rst order:�H = �Ho + � �H1(�I; � ) + � � � : (2)We do this by de�ning the near identity canonical transformation:S = �I�+ �S1(�I; �; � ) + � � � (3)where S is a canonical generating function. To determine S1, substitute the newly generatedcanonical variables into the Hamiltonian, expand in orders of � and solve to �rst order in �.Following LL, this yields: �H = H0 + �hH1i���I = I + �fH1g��
 (4)where 
 = @H0=@ �I. The notation hH1i�� denotes the phase-averaged value of H1 at �xed� and fH1g�� denotes the rapidly-oscillating phase-dependent part with zero mean. Thisprocedure may be continued to higher order. Most importantly, from equation (4) it is clearthat this procedure only works for orbital frequencies 
 > 
o > 0 as stated above.Now because the motion is for a quasiperiodic, the perturbed Hamiltonian may berepresented as a Fourier series at �xed � :H1(I; �; � ) = Xl Fl(I; � )eil��= Xjlj�N Fl(I; � )eil��+ Xjlj>N Fl(I; � )eil��; (5)where l is an integer and N will be appropriately chosen below. The analytic partNekhoroshev's method applies the averaging scheme to the �rst term in equation (5),



{ 6 {Table 2: Multidimensional adiabatic theoremsType MethodIntegrable NeistadtErgodic \Thermodynamic"yielding an expression of the form �I = I + � Xjlj�N Qll � 
 : (6)Successively applying the averaging theorem leaves only an exponentially-small oscillatingremainder for the �rst term of the Hamiltonian (eq. 5). In addition, one can show thatthe terms proportional to � in resulting action series are also exponentially small (Benettinet al.1985b). Finally, assuming that the perturbation is itself analytic, one �nds that forsu�ciently large N , the order of remainder (jlj > N) may be estimated using the fact thatjjFljj � e��jlj (7)for some order unity constant �; in other words, the Fourier series converges quickly forsmooth perturbations. Similar arguments apply for most averaging theorems far fromresonance (jl � 
j su�ciently far from zero). Much of the full proof is concerned withbehavior near resonances, placing limits on the measure of trajectories that linger near aresonance and su�er changes (see LM for details).2.2. Adiabatic invariants in multidimensional systems2.2.1. Summary of known resultsThere are many fewer de�nite results for multidimensional systems; those that existare for integrable (or nearly integrable) systems or ergodic systems (see Table 2).Let us �rst examine the known results, restricting our attention to the integrable case.The main result is an application of Neistadt's averaging theorem:Let � be a smooth function where �(�) > 0 and cp� � � for some constant c. If theHamiltonian system H = H(p;q; �(� )) (� = �t) is integrable at �xed �, then thechange in action is bounded and of order �(�) for time periods t �< 1=� for all but asmall measure of initial conditions.



{ 7 {Note that the statement take a similar form to the one-dimensional case above but with the\control parameter", � of order greater than p� rather than � or exp(�c=�).Why is the adiabatic theorem in multidimensional case so much weaker than in theone-dimensional case? This can be understood by returning to the averaging procedureand discussion including equations (5){(7) in particular. In the multidimensional case, themethod is the same except the actions and angles become vector quantities, (I; �)) (I; �),the Fourier expansion index l becomes an array of integers l (cf. eq. 5). As long as l �
remains non-zero, the method is still valid. However, the simple condition 
j > 
o > 0is no longer su�cient to guarantee that denominators do not vanish: l � 
 = 0. Acommensurability indicates that there is a linear combination of phases which becomesstationary, and a stationary phase is clearly inconsistent with the approximations of thephase-averaging scheme.Faced with such a commensurability, we may canonically transform our system so thatthe one of the angle variables is this stationary one and focus separately on this degree offreedom. The perturbed Hamiltonian for one term alone in equation (5) now looks like thenon-linear pendulum equation: H = H0(�I) + �A(� ) cos�: (8)If we expand H0 about the value of �I at which the corresponding phase becomes stationary,the identi�cation with the pendulum becomes exact: H = Gp2=2 � F cos � whereG = @2H0=@ �I2, F = ��A and p = �I + c(� ), for some c. The value of p is slowly drifting dueto the perturbation.The point of stationary phase in our original Hamiltonian (eq. 5) corresponds to theunstable equilibrium of the pendulum model: the bob standing on its pivot. The unstabletrajectory carries the bob from its unstable point around the pivot and back (in an in�niteamount of time). If the disturbance is turned o�, A = 0, the motion is simple rotation with_� =constant. Increasing A from zero, the unstable equilibrium appears but far from thispoint the pendulum is rotating over its pivot with conserved action, I = H dq p=2�, equal tothe area under the trajectory in phase plot.Let us choose a trajectory with non-zero action. As we continue to increase A, theunstable trajectory approaches our original trajectory, which until this point has conservedits action. As the unstable trajectory moves through our original trajectory, the pendulumreverses direction of rotation in most cases and changes its action by twice the action ofthe unstable trajectory. It readily follows from the equations of motion that this change inaction is proportional to qF=G. Finally returning to our particular term in equation (5),F = Hl = O(�), we have shown that the commensurability causes a change in the action



{ 8 {proportional to p�. This is the basic reason for the order of the control parameter � in thestatement of the multidimensional adiabatic invariant given above. The many problems ofastronomical interest, 0:01 �< � �< 0:3, so a change of order p� can not be ignored.3. DiscussionEach orbit in a galaxy or star cluster is a multidimensional nonlinear oscillator. In aspherical system, a star's trajectory is planar with both a radial and azimuthal oscillation.In a triaxial system, an orbit may have three distinct frequencies. A realistic stellar systemis an collection of multidimensional nonlinear oscillators whose frequencies are continuouslyrepresented in some �nite range. The gravitational potential determines the possible rangeof frequencies and nearly all physically realistic models will have accidental degeneracieswhere l �
 = 0. Commensurate or nearly commensurate orbits may be strongly a�ectedby a slowly varying external perturbation by the mechanism discussed in x2.2. Formally, acommensurability is only a surface in phase space, but the time-varying amplitude for arealistic perturbation gives the surface �nite width. Although many orbits in the systemremain invariant, but not all do. Then, averaging over the entire distribution gives asigni�cant contribution, even if 
=� � 1 everywhere. The overall change to the systemcan be as strong as for an impulsive perturbation (this will be explicity calculated in thecompanion papers). The orbits which change communicate this change to the entire systemthough their contribution to the overall gravitational potential, leading to global evolution.The conditions for which adiabatic heating is e�ective are general:� The model must be nondegenerate. This is not a serious limitation since most systemsare nondegenerate. A degenerate system has l �
 = 0 identically for some l over alarge fraction of its phase space. For example, a binary star system is degeneratebecause 
1 = 
2 and 
3 = 0. Similarly, the center of a large homogeneous galaxiancore has an harmonic potential and therefore 
1 = 
2 = 
3.� The phase space distribution must be smooth and continuous. Again, this is truefor most realistic systems. Without this condition, one could conspire to evacuatephase space around the surfaces l �
 = 0 which will eliminate or greatly reduce theadiabatic heating.Although gravitational shocking of globular clusters by the Galactic disk is emphasizedin Papers II and III, there are many other scenarios that may be changed by adiabaticheating. A list describing those currently being investigated follows:



{ 9 {� The globular system appears to contain a distinct thick-disk population as Zinn (1985)has pointed out. The periodic but slow shocking of a thick-disk globular cluster maylead to distinctly di�erent dynamical evolution than the halo population.� The time-dependent external force felt by a globular on an eccentric orbit is also agravitational shock, often called a \bulge shock" in its extreme form (e.g. Aguilar etal.1988). However, shock-induced evolution may important for moderate eccentricitiesdue to the enhanced heating in the adiabatic limit leading to increased disruptionrates overall.� Cannibalized dwarf galaxies with high phase space densities are thought to survivetidal disruption in the halo because their stellar orbital frequencies exceed that oftheir orbit in the `parent' galaxy. However, the same heating e�ects may unbind suchdwarfs before they reach the core.� The seminal shocking problem, the response of a star cluster to a passing molecularcloud (Spitzer 1958), may be performed similarly to include the additional heatingexperienced for slow encounter speeds.� Similarly, environmental e�ects of the embedding molecular cloud on protostellarclusters surely cause evolution evolution. This theory allows one to predictsimultaneously the initial conditions for those which will survive to be open clustersand the resulting binary star frequencies.4. SummaryAdiabatic invariants are NOT exponentially controlled3 for all orbits if the numberdegrees of freedom for the system is greater than one. Orbits in a general stellar systemhave two or three degrees of freedom and therefore some may be strongly perturbed even ifthe characteristic frequency 
 is always much larger than the perturbing frequency �. Thisleads to measurable heating in the adiabatic regime of satellite galaxies and star clusters.The heating does not depend on any special phase-space conditions other than a continuousdistribution function and orbital frequencies which are not everywhere integral multiples ofeach other; both conditions should obtain for nearly all realistic cases.3proportional to e�
=� where � and 
 are the perturbation and characteristic orbital frequencies,respectively



{ 10 {Since the adiabatic criterion has been widely used in astronomical dynamics, it ispossible that the magnitude of evolution in interacting systems has been underestimated,and signi�cantly so in some cases. Most a�ected will be heating and disruption rates ofrelatively small bound subsystems due to both the time-dependent e�ects of their large-scaleorbits and graininess. A general method for applying these ideas computationally will bediscussed in the companion paper, and followed up with a detailed example of disk shockingof globular clusters.I thank David Cherno�, Greg Fahlman, Chigurupati Murali, Doug Richstone and ScottTremaine for stimulating discussions, and the Institute for Theoretical Physics in SantaBarbara for its hospitality. This work was supported in part by NSF grant PHY89-04035to ITP and NASA grant NAGW-2224.REFERENCESAguilar, L., Hut, P., and Ostriker, J. P. 1988, Astrophys. J., 335, 720.Arnold, V. I. 1978, Mathematical Methods of Classical Mechanics, Springer-Verlag, NewYork.Benetin, G., Galgani, L., and Giorgilli, A. 1984, Nature, 311, 444.Benetin, G., Galgani, L., and Giorgilli, A. 1985a, in R. Live and A. Politi (eds.), Advancesin nonlinear dynamics and stochastic processes, pp 1{21, World Scienti�c Publ. Co.,Singapore.Benetin, G., Galgani, L., and Giorgilli, A. 1985b, Celest. Mech., 37, 1.Berry, M. V. and Mount, K. E. 1972, Rep. Prog. Phys., 35, 315.Bogliubov, N. N. and Mitropolsky, Y. A. 1961, Asymptotic methods in the theory ofnonlinear oscillations, Gordon and Breach, New York.Cherno�, D. F., Kochanek, C. S., and Shapiro, S. L. 1986, Astrophys. J., 309, 183.Kruskal, M. 1962, J. Math. Phys., 3, 806.Lichtenberg, A. J. and Lieberman, M. A. 1983, Regular and stochastic motion, Vol. 38 ofApplied Mathematical Sciences, Springer-Verlag, New York.



{ 11 {Lochak, P. and Meunier, C. 1988, Multiphase Averaging for Classical Systems, Vol. 72 ofApplied Mathematical Sciences, Spring-Verlag, New York.Neistadt, A. I. 1976, Sov. Phys. { Dokl., 21(2), 80.Ostriker, J. P., Spitzer, L., and Chavalier, R. A. 1972, Astrophys. J., Lett., 176, L47.Spitzer, L. 1958, Astrophys. J., 127, 17.Weinberg, M. D. 1994a, Adiabatic Invariants in Stellar Dynamics: II. Gravitationalshocking, submitted (Paper II).Weinberg, M. D. 1994b, Adiabatic Invariants in Stellar Dynamics: III. Application toglobular cluster evolution, submitted (Paper III).Zinn, R. 1985, Astrophys. J., 293, 424.
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