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An adaptive algorithm for n-body field expansions

Martin D. Weinberg

Department of Physics & Astronomy

University of Massachusetts, Amherst, MA 01003-4525

ABSTRACT

An expansion of a density field or particle distribution in basis functions

which solve the Poisson equation both provides an easily parallelized n-body

force algorithm and simplifies perturbation theories. The expansion converges

quickly and provides the highest computational advantage if the lowest-order

potential-density pair in the basis looks like the unperturbed galaxy or stellar

system. Unfortunately, there are only a handful of such basis in the literature

which limits this advantage. This paper presents an algorithm for deriving

these bases to match a wide variety of galaxy models. The method is based on

efficient numerical solution of the Sturm-Liouville equation and can be used for

any geometry with a separable Laplacian.

Two cases are described in detail. First for the spherical case, the lowest

order basis function pair may be chosen to be exactly that of the underlying

model. The profile may be cuspy or have a core and truncated or of infinite

extent. Secondly, the method yields a three-dimensional cylindrical basis

appropriate for studying galaxian disks. In this case, the vertical and radial

bases are coupled; the lowest order radial part of the basis function can be

chosen to match the underlying profile only in the disk plane. Practically, this

basis is still a very good match to the overall disk profile and converges in a

small number of terms.

Subject headings: methods: numerical — stellar dynamics — Galaxy:

structure — galaxies: structure

1. Introduction

The basis function n-body force solver is optimal for studying the global

response of galaxies to perturbations or stability (Earn & Sellwood 1995). This

technique was developed for astrophysical problems by Clutton-Brock (1972,

1973), Kalnajs (1976), Fridman & Polyachenko (1984) and more recently by

Hernquist & Ostriker (1992) who dubbed it the self-consistent field (SCF)

method. Orthogonal function expansions are attractive Poisson equation solvers

http://arXiv.org/abs/astro-ph/9805357v1


– 2 –

for two reasons: 1) the expansions can be chosen to filter the structure over an

interesting range of scales and simultaneously suppress small-scale noise; and

2) the algorithm is computationally efficient, scaling linearly with the number

of particles. Mathematically, this entire class of algorithms relies on the general

properties of the Sturm-Liouville equation (SLE) of which the Poisson equation

is a particular case. This same approach is common in perturbation theories

and so facilitates direct comparison between n-body simulation and linear

perturbation theory. In addition, this approach is straightforward to parallelize

(e.g. Hernquist, Sigurdsson & Bryan 1995); we find the algorithm scales linearly

with the number of processors with low overhead. If the basis set resembles the

equilibrium galaxy, most of the computational work is concentrated on resolving

the perturbation rather than the equilibrium.

This last point is also a disadvantage of this technique in applications

to date. If the equilibrium does not look like the basis set, the technique

becomes less efficient and noisy because the expansion series must be sufficiently

long to represent the equilibrium even without the perturbation. This paper

describes a general method based on a numerical construction of orthogonal

bases which remedies this situation. Solutions to the fundamental equation, the

Sturm-Liouville equation, are well-understood and well-behaved. A number of

recently published algorithms take advantage of the special properties of this

differential equation to yield high-accuracy solutions with low computational

work. Harnessing these developments to our needs leads to an algorithm for

computing orthogonal bases whose lowest-order function matches any given any

regular equilibrium; spherical and three-dimensional cylindrical solutions are

described in detail here. The basic algorithm will be described in §2.

For the spherical case, the proposed algorithm is competitive in performance

with evaluation by recursion relation used for the published bases cited above

and has reproduced them with high accuracy as a check. The cylindrical basis is

a bit more cumbersome: one may rely on the same numerical solution to tailor

the basis in the radial or vertical direction but not both simultaneously. Here,

I choose to derive the radial basis numerically. The lowest-order radial basis

functions then take the form f(r) exp(±ikz).1 These may then be adapted to

the background by principal component analysis. Although more cumbersome

to implement and more time consuming to execute than the spherical case, it is

still fast relative to non-expansion-based solvers. The details of the cylindrical

1Bases resulting the other choice has been explored by Earn (1996) using a different approach.
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basis are given in §3.2.1.

2. The algorithm

2.1. Motivation

Here, I will explicitly describe the spherical and three-dimensional disk cases

but all others are analogously derived with little change.

The Poisson equation separates in any conic coordinate system. Choice

of separation constants gives a differential equation in the SLE form for each

dimension. The simplest solution employs the eigenfunctions of the Laplacian

directly. For example, consider an expansion in spherical polar coordinates.

Assuming that the density is proportional to the potential, the solution to

Poisson’s equation takes the form of an eigenfunction of the Laplacian:

d2R(r)

dr2
+

2

r

dR(r)

dr
−

l(l + 1)

r2
R(r) = 4πGλR(r). (1)

The well-known full solution is the product of spherical harmonics in θ and φ

and Bessel functions in r. For a finite-radius mass distribution with an inner

core, the inner boundary condition is the usual dR/dr|0 = 0 and the multipole

expansion provides the outgoing boundary condition:

dR(r)

dr

∣

∣

∣

∣

∣

rt

= −(l + 1)
R(r)

r

∣

∣

∣

∣

∣

rt

, (2)

where rt is the outer edge of the profile. Using these boundary conditions and

the orthogonality relation of the Bessel functions leads to the following potential

and density pair:

plm
n (r) =

1

alm
n |Jl+1/2(alm

n )|

√

2

r
Jl+1/2(a

lm
n r/rt),

dlm
n (r) =

alm
n

r2
t |Jl+1/2(alm

n )|

√

2

r
Jl+1/2(a

lm
n r/rt), (3)

where alm
n is the nth zero of Jl−1/2 and rt is the outer edge of the profile (Fridman

& Polyachenko 1984). The functions plm
n and dlm

n have the following inner

product:
∫

∞

0

dr r2 plm
n (r)dlm ∗

n′ (r) = −δn n′. (4)

Properties of solutions to the SLE ensure that this expansion set is complete.

Therefore given a density distribution, the gravitational potential and force can
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be found directly by expansion. The set (pn, dn) are often called biorthogonal.

A similar expansion obtains for cylindrical polar coordinates.

This straightforward approach has flaws. Bessel functions do not look

like galaxian profiles and therefore accuracy demands high-order expansions.

The required number of functions increases for extended profiles since Bessel

functions are only orthogonal over a finite domain. To get around this, one may

map the radial coordinate from the semi-infinite real axis to a finite segment.

Appropriate choice of this transformation leads to new sets of biorthogonal

functions in both the spherical (Clutton-Brock 1973, Hernquist & Ostriker 1992)

and two-dimensional (Clutton-Brock 1972, Kalnajs 1976) and three-dimensional

(Earn 1996) cylindrical cases. This small number of choices results in a

mismatch between the lowest order basis functions and equilibrium profile. A

poor fit between the basis and the underlying density profile is a source of noise

in the force field which leads to relaxation (cf. Weinberg 1997). This is the

general situation unless one’s galaxy fortuitously coincides with particular sets

of orthogonal polynomials or functions analytically derived from exact solutions

of the Poisson equation.

The solution proposed here is a numerical solution of the SLE using recently

developed and published techniques (Marletta & Pryce 1991, Pruess & Fulton

1993, see Pryce 1993 for a review). This allows adaptive construction of an

expansion basis which matches the underlying density profile exactly and

thereby removes one of the major limitations of this approach. The details are

described in the next two sections.

Alternative solutions to the mismatch problem have been described by Allen,

Palmer & Papaloizou (1990) and Saha (1993). Both of these methods in their

general form rely on the orthogonalization of a covering but non-orthogonal

basis. There are two advantages to the approach developed here. First, the

background profile is represented in one basis function with potentially rapid

convergence in the perturbation. The basis evaluation is easily incorporated

into existing SCF codes. Second, the same biorthogonal series may be used in

linear perturbation analyses (e.g. Kalnajs 1976, Fridman & Polyachenko 1984,

Weinberg 1990) and coefficients directly compared with n-body simulation. This

development was motivated for precisely this reason and will underlie future

inquiry.



– 5 –

2.2. Reduction of the Poisson equation to Sturm-Liouville form

We present the cylindrical polar case here to be explicit but again the

others are analogous. The Laplace equation separates into the following three

equations for a potential of the form Ψ(r) = R(r)Z(z)Θ(θ):

1

r

d

dr
r

d

dr
R(r) −

(

k2 +
m2

r2

)

R(r) = 0

d2

dz2
Z(z) + k2Z(z) = 0

d2

dθ2
Θ(θ) + m2Θ(θ) = 0. (5)

Following the authors cited in 2.1, we can look for a solution to the Poisson

equation whose potential and density have the form

Ψ(r, z, θ) = Ψo(r)u(r)Z(z)Θ(θ)

ρ(r, z, θ) = ρo(r)u(r)Z(z)Θ(θ). (6)

The Poisson equation then takes the form

1

r

d

dr
r

d

dr
Ψo(r)u(r) −

(

k2 +
m2

r2

)

R(r) = 4πGλρo(r)u(r) (7)

together with second two of equation (5) above, where λ is an unknown constant.

The general form of the SLE is usually quoted as:

−
d

dx

(

p(x)
du

dx

)

+ q(x)u = λw(x)u (8)

where p(x), w(x) > 0 over the domain of interest, [a, b]. The eigenfunctions are

orthogonal (see Courant & Hilbert 1953 for extensive discussion) and may be

normalized:
∫ b
a dxw(x)u2 = 1. Equation (7) is easily rewritten in this form and

one finds:

d

dr

[

rΨ2

o(r)
du(r)

dr

]

−

[

k2Ψo(r) +
m2

r2
Ψo(r) −∇2

rΨo(r)

]

rΨo(r)u(r) =

4πGλrΨo(r)ρo(r)u(r) (9)

where ∇r denotes the radial part of the Laplacian operator. The unknown

constant λ is the eigenvalue. Comparing to the standard SLE form, we have

p(r) = rΨ2

o(r), (10)

q(r) =

[

k2Ψo(r) +
m2

r2
Ψo(r) −∇2

rΨo(r)

]

rΨo(r), (11)

w(r) = −4πGrΨo(r)ρo(r). (12)
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These coefficient functions now provide the input to the standard packaged SLE

solvers either in tabular or subroutine form. The orthogonality condition for

this case is

− 4πG
∫

∞

0

dr r Ψo(r)ρo(r)u(r)2 = −4πG
∫

∞

0

dr r Ψρ = 1. (13)

In other words, equations (6) are potential-density pairs. It is convenient to define

ρ̃ ≡ 4πGρ so that the biorthogonality relation becomes
∫

dr r Ψr(r)ρ̃s(r) = −δrs.

Analogous expressions obtain for the spherical polar case. This development

does not require that Ψo and ρo solve the Poisson equation but they must obey

the appropriate boundary conditions at the center and at the edge (which may

be r = ∞). If we choose Ψo and ρo to be a solution of the Poisson equation then

the lowest eigenvalue is unity and the eigenfunction u(r) is a constant function.

2.3. Numerical solution

For our problem, the SLE is well-conditioned and generally stable. Solutions

may be straightforwardly obtained by shooting methods and standard ODE

packages. Here, I used the Pruess method (Pruess 1973) as implemented by

Pruess & Fulton (1993) with excellent success. Rather than find an approximate

solution to the exact differential equation in the usual way, this approach

approximates the differential equation by a piecewise continuous function—a

discrete grid—and finds an exact solution to the approximate problem. The

grid may be successively refined to ensure convergence to the desired tolerance.

Additional numerical analysis provides the optimal choice of grid over the

domain (which, again, may be infinite). This choice of a non-uniform grid is the

numerical analog to transformation of the infinite interval to a discrete segment

which plays a defining role in Clutton-Brock’s approach.

The resulting numerical eigenfunctions must be tabulated for future use. By

contrast, the orthogonal polynomial schemes yield explicit recursion relations

and this lack is the only practical disadvantage to this approach. On the other

hand, the numerical SLE approach gives us the flexibility to specify Ψo and ρo

arbitrarily. For example, we may use the density profile from a previous n-body

simulation.

3. Examples and comparisons

3.1. Spherical solutions for galaxian halos and spheroids
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3.1.1. Method

The boundary conditions must be appropriate for the problem at hand. In

the case of spherical symmetry, there is a boundary at r = 0 and r = rt. The

inner boundary condition may be the traditional Ψ′ = 0 or that for a scale-free

cusp. The outer boundary condition follows from the multipole expansion:

dΨ(r)

dr
= −

l + 1

r
Ψ(r). (14)

We may have rt → ∞ in which case equation (14) applies in this limit. Once the

functions are tabulated, the force algorithm proceeds as usual for an SCF code.

Given Φo and ρo, equations (10)–(12) define the eigenvalue problem for the SLE.

For example, the Pruess & Fulton code returns the eigenfunctions u(r) and the

potential-density pairs follow from equations (6). The basis functions can be

periodically recomputed to adaptively fit an evolving distribution; we have not

implemented this for the spherical case here but see §3.2.1 and Weinberg (1996).

3.1.2. Examples

To test the spherical implementation, I assigned Ψo and ρo to the Hernquist

model (Hernquist 1990) and compared the SLE solution with the analytic

recursion relations (Hernquist & Ostriker 1992) for radial order n ≤ 16 and

m ≤ 2. Performance of the spherical algorithm is well-documented so a

comparison of potential pairs suffices. For m = 0, the numerically determined

functions differed from the results of the recursion relation by one part in 103

near the center and one part in 106 elsewhere. This difference is due to the

extrapolation of the cusp at r = 0. Here, the boundary condition for the cuspy

profile fixes the asymptotic value of ratio Ψ′

o/Ψo as r → 0. For m > 0 the

differences are obtained to the specified tolerance (one part in 106 for these

tests). To recover the Clutton-Brock (1973) set, one assigns Ψo and ρo according

to the Plummer law; in this case, differences between the SLE solution and

recursion relations are obtained for all m to the desired tolerance. In all cases,

the orthogonality relation remains accurate and the potential density pair is an

accurate solution of the Poisson equation.

The background galaxian profile need not have finite mass and may be

cuspy. For example, a basis set tailored to the singular isothermal sphere only

requires one to specify appropriate boundary conditions. Boundary conditions

corresponding to a disturbance not felt by in the singular core and at large radii
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Fig. 1.— Potential-density pairs for l = m = 0 labeled by order, n = 1, . . . 4 (upper and

lower panels, resp.) whose lowest order member (n = 1) is the singular isothermal sphere.

The density eigenfunctions are multiplied by r2.

are:
{

dΨ(r)/dr = 0 l = 0

Ψ(r) = 0 l 6= 0

}

r→0

(15)

and
{

dΨ(r)/dr = 0 l = 0

(l + 1)Ψ(r)/r + dΨ(r)/dr = 0 l 6= 0

}

r=rt

(16)

where Ψ(r) = Ψo(r)u(r). These same boundary conditions apply to the r1/4

profile above. The l = 0 boundary conditions ensure that the potential-density

pairs are asymptotic to the spherical background at small and large radii. The

l 6= 0 boundary condition at small radius is the standard zero potential that

ensures a single valued function. At large radius, we choose the condition

obtained for an outer multipole. The four lowest-order l = 0 pairs are shown

in Figure 1. The density functions are multiplied by r2 ∝ 1/ρo and, again, the
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Fig. 2.— Potential-density pairs for l = m = 0 labeled by order, n = 1, . . . 4 (upper and

lower panels, resp.) whose lowest order member (n = 1) is the spherical deprojection of

the r1/4 surface brightness law with Reff = 1. To better represent the cuspy density profile

graphically, the density eigenfunctions are shown relative to the deprojected r1/4 law.

lowest order relative density function is constant as expected.

In addition, the background galaxian profile need not have an analytic form.

For example, the spherically symmetric profile that results in the empirical r1/4

surface density law may be numerically deprojected, tabulated and used as input

to the SLE routines described above. A few of the lowest order potential-density

pairs are shown in Figure 2. The density functions are shown relative to the

background density. Notice that the lowest order relative density function is

constant as expected.

3.2. Three-dimensional cylindrical solutions for disks
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3.2.1. Method

For the cylindrical case, there are boundary conditions at r = 0, r = rt

and z = ±zt. Here the situation is a bit trickier: the general solution requires

matching outgoing boundary conditions in two dimensions. However as rt → ∞,

the multipole expansion implies that equation (14) applies to lowest order in

1/r with l replaced by m. This technical simplification is strong motivation for

adopting the radial domain r ∈ [0,∞) as is done here. Implicit in equations

(5) and (7) is a separation constant chosen to give oscillatory functions Z(z)

appropriate for a region of non-zero density. The functions match the outgoing

Laplace solution at the outer boundary. By choosing the outer boundary of

the ‘pill box’ sufficiently large (e.g. greater than ten scale heights), we obtain

boundary conditions appropriate for the isolated disk. The vertical biorthogonal

functions are then the sines and cosines of the discrete Fourier transform but

over a vertical domain with twice the height of interest. This ensures that that

force from density images do not affect potential (cf. Eastwood & Brownrigg

1979).

Experimentation suggests that 26 = 64 wave numbers are sufficient to

adequately resolve the vertical structure. Separating real and imaginary parts

(or equivalently, sine and cosine terms), this demands 128 coefficients per radial

basis function! Although this trigonometric basis does not look the underlying

basis, we can find an orthogonal transformation which rotates the basis into one

which look like the desired equilibrium. We do this by an empirical orthogonal

function analysis which is equivalent to principal component analysis (see

Weinberg 1996 for details). In short, let the vector Ψi = {pij} be the potential

basis functions evaluated at the position of the ith particle. The symmetric

matrix Sµν = 1

N

∑N
i=1 piµpiν measures the weight of the particle distribution on

the original basis. By diagonalizing this matrix, we determine an orthogonal

transformation to a new basis. The lowest order basis function—the one

with the largest eigenvalue—best represents the underlying point distribution

followed in eigenvalue ranking by next best, etc. The first few functions usually

represent most of the weight and this allows us to reduce the 128 coefficients to

between two and six.

Since the SLE solution is a good match to the radial profiles, we only need

the empirical transformation in the z-direction. As an example of these new

functions, Figure 3 shows the first three two-dimensional orthogonal functions

for the two lowest radial orders based on a Monte Carlo realization of the

exponential disk with unit scale length and scale height 1/10 using 105 particles.
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Fig. 3.— Six orthogonal potential and density pairs (left and right panels, resp.) labeled

by vertical index j and radial index n. Azimuthal order is m = 0. Five contour levels are

linearly spaced from from zero to the largest absolute peak value. Positive (negative) levels

are shown as solid (dotted) lines.

Following the symmetry of the equilibrium model, the adaptive algorithm

creates the lowest order modes with even symmetry about the disk midplane.

However, the four or five lowest-order functions represent enough of the odd

component to follow the evolution (cf. Fig. 3).

To summarize, the algorithm for the n-body force calculation for the

three-dimensional cylindrical basis is then as follows:

1. Compute Sµν from particle distribution using the basis derived from

equation (9) with Z(z) chosen as discussed above.

2. Compute transformation to new basis by solving for the eigenvectors.

3. Retain eigenvectors corresponding to the M largest eigenvalues. The

value of M may either be predetermined or computed adaptively from the

cumulative distribution of eigenvalues (see Weinberg 1996 for details).

4. Tabulate the new orthogonal set and use this to evaluate force for some

time-interval on order of a dynamical time for the problem of interest.

5. Goto 1.

The computational bottleneck in this procedure is the construction of Sµν

and computing Steps 1–3 can be a significant fraction of the integrated time
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to advance the particles using the tabulated orthogonal functions for several

hundred time steps (30% of the total for the case illustrated in Fig. 3).

Nonetheless, the overall force evaluation is still very fast compared to other

methods.

Although the underlying trigonometric basis is bounded vertically from

above and below, the boundary can be chosen large enough to permit arbitrarily

large vertical distortions. Large vertical boundaries require more wavenumber to

achieve a fixed resolution. In turn, more wavenumbers affect the computational

overhead in computing the empirical basis but do not add to the CPU time

required for the force evaluation itself. Therefore, large vertical boundaries

remain practical as long as the transform to the empirical basis described in the

algorithm above can be done infrequently.

3.2.2. Examples

Fig. 4.— First five density functions for m = 0 (left) and m = 1 (right) with k = 2π/5

ordered from bottom to top. The dotted curve on the lower-left-most panel shows the

background exponential disk for comparison.

Here we build a basis set that closely matches the typical exponential disk

profile. As described in §2.2, we adopt an axisymmetric separable density
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Fig. 5.— Expansion coefficient amplitudes for an exponential disk with sech2(z) vertical

profile as a function of radial order and vertical wavenumber.

profile, ρ(r, z) = ρr(r)ρz(z), chosen to match the background, ρr(r) = ρo(r). For

this test, Ψo ≡ −1/
√

1 + (r/a)2 takes care of the boundary conditions. Recall

that Ψo and ρo are not required to satisfy the Poisson equation; equation (7)

guarantees that the resulting basis functions will be orthogonal regardless. The

results are shown in Figure 4 for the four lowest radial terms for m = 0 and 1.

The exponential scale length a = 1 and vertical boundary L = 10 is chosen to

represent a disk with scale length to scale height ratio of 10:1. The wavenumbers

are k = 2πj/Lj, j = 0, 1, . . . , jmax for pill box of half-height L. The density

functions in the figure have k = 2π/5 (j = 2). The lowest order m = 0 case

is compared with the exponential disk (dotted). For large k, the lowest order

radial function falls off more rapidly than the exponential disk. However, the

series converges quickly in radial order and wavenumber as demonstrated in

Figure 5 which shows the coefficients for an expansion of Monte Carlo realization

of an exponential disk with ρz ∝ sech2(z). Good agreement demonstrates that

satisfactory results are obtained without exact Poisson solutions ρo and Φo. The

biorthogonality condition (eq. 13) is good to one part in 109.
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The grid points for the Sturm-Liouville solution described in §2.3 are

chosen by mapping the semi-infinite interval to the segment [−1, 1] using

x = (r − 1)/(r + 1) and choosing points evenly spaced in x. The Pruess &

Fulton algorithm can estimate the grid automatically to optimize accuracy but

this mapping provided sufficiently high-accuracy and rapid execution.

I checked accuracy and consistency of the final basis set by evaluating

the gravitational force for a Monte Carlo distribution of 105 bodies with the

proposed method and with a direct summation. Contours of constant force are

better than 1% except where the direct summation evaluation is badly affected

by discreteness noise.

4. Summary and conclusions

This paper presents a numerical algorithm for constructing biorthogonal

expansion bases for use in n-body force calculation and linear perturbation

theory and explores its performance. The major results of this investigation are

as follows:

1. This algorithm removes one of the remaining limitations of the self-

consistent field (SCF) method by providing basis sets tailored to any

background galaxian profile.

2. The algorithm is applicable to any separable coordinate system. This

paper details and benchmarks its implementation for spherical and

three-dimensional cylindrical bases.

3. Sturm-Liouville equation solvers are publically available (e.g. see Pruess &

Fulton 1993 for Fortran code) and a desired basis is readily obtained using

equations (10)–(12).

4. The main limitation of this method for n-body codes is the necessity to

tabulate the basis functions rather than derive them from recursion relation

on the fly (as in Clutton-Brock 1973 and Hernquist & Ostriker 1992). On

the other hand, this is largely a programming inconvenience; the algorithm

is still easily parallelized and the table lookup is not a computational

bottleneck.

5. For spherical expansions, the algorithm is conceptually equivalent to and

computationally competitive with the published SCF expansions. For

three-dimensional cylindrical expansions, the coupling of the vertical

and radial parts of the potential-density pairs requires an additional



– 15 –

orthogonalization step. This increases the computational overhead by up

to 50% but does not effect scaling with particle number or parallelizability.

6. The use of these basis sets is not limited to n-body simulation. They are

easily used in semi-analytic linear perturbation calculations and, moreover,

facilitate the comparison between the n-body and perturbation theory.

I thank Lars Hernquiust and Neal Katz for discussion and suggestions. This

work was supported in part by NSF grant# AST-9529328 and the Alfred P.

Sloan Foundation.

REFERENCES

Allen, A. J., Palmer, P. L., and Papaloizou, J. 1990, MNRAS, 243, 576.

Clutton-Brock, M. 1972, Astrophys. Space. Sci., 16, 101.

Clutton-Brock, M. 1973, Astrophys. Space. Sci., 23, 55.

Courant, R. and Hilbert, D. 1953, Methods of Mathematical Physics, Vol. 1,

Interscience, New York.

Earn, D. J. D. 1996, ApJ, 465, 91.

Earn, D. J. D. and Sellwood, J. A. 1995, ApJ, 451, 533.

Eastwood, J. W. and Brownrigg, D. R. K. 1979, J. Comput. Phys., 32, 24.

Fridman, A. M. and Polyachenko, V. L. 1984, Physics of Gravitating Systems,

Vol. 2, p. 282, Springer-Verlag, New York.

Hernquist, L. 1990, ApJ, 356, 359.

Hernquist, L. and Ostriker, J. P. 1992, ApJ, 386, 375.

Hernquist, L., Sigurdsson, S., and Bryan, G. L. 1995, ApJ, 446, 717.

Kalnajs, A. J. 1976, ApJ, 205, 745.

Marletta, M. and Pryce, J. D. 1991, Comp. Phys. Comm., 63, 42.

Pruess, S. 1973, SIAM J. Numer. Anal., 10, 55.

Pruess, S. and Fulton, C. T. 1993, ACM Trans. Math. Software, 63, 42.

Pryce, J. D. 1993, Numerical Solution of Sturm-Liouville Problems, Oxford.

Saha, P. 1993, MNRAS, 262, 1062.



– 16 –

Weinberg, M. D. 1990, Baryonic Dark Matter, Chapt. Wide Binaries and

Mass Limits on Dark Matter, pp 117–136, Kluwer Academic Publishers,

Netherlands.

Weinberg, M. D. 1996, ApJ, 470, 715.

Weinberg, M. D. 1997, MNRAS, in press.

This preprint was prepared with the AAS LATEX macros v4.0.


	University of Massachusetts Amherst
	ScholarWorks@UMass Amherst
	1999

	An adaptive algorithm for N-body field expansions
	MD Weinberg
	Recommended Citation


	arXiv:astro-ph/9805357v1  28 May 1998

