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ABSTRACT

GENERALIZED EMP AND NONLINEAR

SCHRÖDINGER-TYPE REFORMULATIONS OF SOME

SCALAR FIELD COSMOLOGICAL MODELS

MAY 2010

JENNIE D’AMBROISE,

B.S., UNIVERSITY OF MASSACHUSETTS AT AMHERST

Ph.D., UNIVERSITY OF MASSACHUSETTS AT AMHERST

Directed by: Professor Floyd L. Williams

We show that Einstein’s gravitational field equations for the Friedmann-

Robertson-Lemâıtre-Walker (FRLW) and for two conformal versions of the Bianchi

I and Bianchi V perfect fluid scalar field cosmological models, can be equivalently

reformulated in terms of a single equation of either generalized Ermakov-Milne-

Pinney (EMP) or (non)linear Schrödinger (NLS) type. This work generalizes or

presents an alternative to similar reformulations published by the authors who in-

spired this thesis: R. Hawkins, J. Lidsey, T. Christodoulakis, T. Grammenos, C.

Helias, P. Kevrekidis, G. Papadopoulos and F. Williams. In particular we cast much

of these authors’ works into a single framework via straightforward derivations of

the EMP and NLS equations from a simple linear combination of the relevant

vi



Einstein equations. By rewriting the resulting expression in terms of the volume

expansion factor and performing a change of variables, we obtain an uncoupled

EMP or NLS equation that is independent of the imposition of additional con-

servation equations. Since the correspondences shown here present an alternative

route for obtaining exact solutions to Einstein’s equations, we reconstruct many

known exact solutions via their EMP or NLS counterparts and show by numerical

analysis the stability properties of many solutions.
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C H A P T E R 1

INTRODUCTION

1.1 Einstein’s field equations (EFE)

Einstein’s gravitational field equations (EFE)

Gij = −κTij + Λgij (1.1)

for i, j ∈ {0, . . . , d}, are the essential equations of general relativity in d+ 1 space-

time dimensions. The Einstein tensor is Gij
def.
= Rij − 1

2
Rgij where Rij is the Ricci

tensor, R is the scalar curvature and gij is the metric. Also Λ is the cosmologi-

cal constant and κ is a generalization of 8πG, for G Newton’s constant, to d + 1

spacetime dimensions. In terms of Christoffel symbols of the second kind

Γk
ij

def.
=

1

2

∑

s=0

gsk (gsi,j − gij,s + gjs,i) (1.2)

for i, j, k ∈ {0, 1, . . . , d}, we define the Ricci tensor to be

Rij
def.
=

d
∑

k=0

(

Γk
kj,i − Γk

ij,k

)

+

d
∑

m=0

d
∑

n=0

Γn
imΓm

nj −
d
∑

m=0

d
∑

n=0

Γm
ijΓ

n
nm (1.3)

for i, j ∈ {0, 1, . . . , d} (note that others may define the Ricci tensor to be the

negative of (1.3), in which case the Einstein equations would be Gij = κTij −Λgij).

In (1.2), the subscript ,n denotes differentiation with respect to xn.

1



We will consider an energy-momentum tensor

Tij = T
(1)
ij + T

(2)
ij (1.4)

that is the sum of two terms. The first term is the energy-momentum tensor for a

minimally coupled scalar field φ with potential V so that

T
(1)
ij = ∂iφ∂jφ− gij

[

1

2

d
∑

k=0

∂kφ∂kφ+ V ◦ φ
]

, (1.5)

where ◦ denotes composition and ∂kφ
def.
=
∑d

l=0 g
kl∂lφ. We take φ(t) to depend only

on time x0 = t so that (1.5) reduces to

T
(1)
ij = δ0iδ0jφ̇

2 − gij

[

1

2
g00φ̇2 + V ◦ φ

]

(1.6)

where δ0i
def.
=











1 if i = 0

0 if i 6= 0
. The second term in (1.4) is defined as

T (2) =



























−ρ(t)g00

p(t)g11

p(t)g22

. . .

p(t)gdd



























(1.7)

for density and pressure functions ρ(t), p(t), and where the off-diagonal entries are

zero.

In the special case when the metric is diagonal and g00 = −1, (1.6) shows that

T
(1)
00 =

1

2
φ̇2 + V ◦ φ (1.8)

and

T
(1)
ii = gii

(

1

2
φ̇2 − V ◦ φ

)

(1.9)
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for 1 ≤ i ≤ d. That is, T
(1)
ij reduces to the energy-momentum tensor for a perfect

fluid with density and pressure

ρφ(t) =
1

2
φ̇2 + V ◦ φ and pφ(t) =

1

2
φ̇2 − V ◦ φ, (1.10)

respectively, in terms of the scalar field and potential.

In Chapter 2 we show the equivalence of solving three types of ordinary differ-

ential equations: a generalized Ermakov-Milne-Pinney type equation, a non-linear

Schrödinger type equation and a third equation that we will see arises in each of the

cosmological models considered in this thesis. Since the third type of equation is

derived from Einstein’s field equations in terms of scale factors, we will refer to it as

a scale factor equation. Each subsection of Chapters 3-7 shows the application of a

correspondence established in Chapter 2 to a specific cosmological model. Follow-

ing each theorem in Chapters 3-7, we consider special cases where exact solutions

of Einstein’s equations are derived from exact solutions of an NLS or EMP. For

many examples we show numerical (in-)stability graphs of the exact solutions. The

appendices show some extra calculations including some computations with exact

solutions to EMP and NLS equations [3, 7, 21].

This thesis is a partial response to the proposal by R. Hawkins and J. Lidsey

that EMP equations may appear in certain pure scalar field or other classes of

cosmological models [18]. The results in Chapters 3-7 either generalize or present

an alternative to the reformulations of Einstein’s equations seen in [5, 6, 9, 10, 12,

18, 20, 22, 24, 30, 31]. In [5] and [31], the presence of an exponential term in the

EMP formulation of a Bianchi I model couples the system to a second equation;

in contrast, we find a simpler term so that the Bianchi I EMP here is not coupled

to a second equation. The methods here have been noticed by other researchers

[16, 17] and have been used in some cosmological applications. A brief overview of

3



the methods in this thesis can be found in a shorter paper by the author [11]. For

future work one may consider whether the methods presented here can be extended

to non-Bianchi universes such as a Kantowski-Sachs.

1.2 Conservation equations

The divergence of Einstein’s tensor Gij = Rij − 1
2
Rgij is zero. Therefore by

Einstein’s equations (1.1) the divergence of the energy-momentum tensor is zero.

That is, the conservation equation

div(T )l =
∑

i,j

gij

[

∂iTlj −
∑

k

Γk
ijTlk −

∑

k

Γk
ilTkj

]

= 0 (1.11)

for i, j, k, l ∈ {0, 1, . . . d} is automatically satisfied by any solution gij of Einstein’s

equations. When Tij is taken to be a sum as in (1.4), one can further impose the

condition

div(T (2))l = 0 (1.12)

for 0 ≤ l ≤ d. The results of this thesis do not rely on T
(2)
ij satisfying (1.12), which

is not imposed in the theorems in Chapters 3-7. For example, if the scalar field φ(t)

and the potential V are non-constant, the conservation equation (1.12) may not

hold for arbitrary density ρ(t) and pressure p(t) satisfying a corresponding EMP

or NLS. To obtain T
(2)
ij satisfying (1.12) one can impose an analogue conservation

equation on the EMP or NLS side of the correspondence. We record in Appendix

F equivalent versions of the conservation equation (1.12) for l = 0, translated into

EMP and NLS variables for each of the theorems in Chapters 3-7.

4



1.3 Guide to numerical and exact solutions

The mapping of closed form solutions of EMP or NLS equations to solutions of

Einstein’s equations cannot always be executed analytically, but we will consider

some solutions for which an exact solution to Einstein’s equations can indeed be

(re-)derived via the correspondences in this thesis. Some exact solutions of Ein-

stein’s equations in the literature [1, 2, 4, 13, 14, 15, 16, 17, 19, 20, 23, 24, 26, 27, 29]

will be seen to arise from an exact solution of an EMP or NLS equation.

For some solutions we show a stability graph, where the exact solution is shown

in bold font for comparison. The numerical solutions were generated by running

the Livermore solver (LSODE) [28] on the second order EMP or NLS equation,

coupled to the differential equation for the reparameterization function. In all cases

we graph the volume expansion factor and show that most exact solutions seen here

are unstable. Solutions are said to be unstable here if the difference between the

exact and numerical solutions grow by at least two orders of magnitude over the

graphed time interval.

5



C H A P T E R 2

THE GENERAL CORRESPONDENCES

2.1 Scale factor and generalized EMP equations

In this thesis, the Einstein equations (1.1) for a number of cosmological models

are reduced to a scale factor equation of the form

Ḣ(t) + δH(t)2 + εφ̇(t)2 =

N
∑

i=0

Gi(t)

a(t)Ai
(2.1)

for H(t)
def.
= ȧ(t)/a(t) and δ, ε, Ai ∈ R. In this section we show a mapping be-

tween solution sets (a(t), φ(t), G0(t), . . . , GN(t)) of (2.1) and solution sets (Y (τ),

Q(τ), λ0(τ), . . . , λN(τ)) of the generalized EMP equation

Y ′′(τ) +Q(τ)Y (τ) =

N
∑

i=0

λi(τ)

Y (τ)Bi
(2.2)

for Bi ∈ R. The dictionary between solutions of (2.1) and (2.2) is as follows:

a(t) = Y (τ(t))1/q (2.3)

qεϕ′(τ)2 = Q(τ) (2.4)

Gi(t) =
θ2

q
λi(τ(t)) (2.5)

for 0 ≤ i ≤ N ∈ N,

φ(t) = ϕ(τ(t)) (2.6)
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and where τ(t) is a solution to the differential equation

τ̇ (t) = θa(t)q−δ (2.7)

for some constants θ > 0 and q ∈ R\{0}. Here dot denotes differentiation with

respect to t and prime denotes differentiation with respect to τ . Also the powers

Ai and Bi in (2.1) and (2.2) respectively, are related by the equation

Bi =
Ai + q − 2δ

q
. (2.8)

Theorem 2.1.1 Suppose you are given a twice differentiable function a(t) > 0, a

once differentiable function φ(t), and also functions G0(t), . . . , GN(t) which satisfy

the scale factor equation (2.1) for some δ, ε, A0, . . . , AN ∈ R and N ∈ N. If f(τ) is

the inverse of a function τ(t) which satisfies (2.7) for some θ > 0 and q ∈ R\{0},

then by (2.3)-(2.5) the functions

Y (τ) = a(f(τ))q (2.9)

Q(τ) = qεϕ′(τ)2 (2.10)

λi(τ) =
q

θ2
Gi(f(τ)) (2.11)

solve the generalized EMP equation (2.2) for Bi as in (2.8) and for

ϕ(τ) = φ(f(τ)) (2.12)

(by (2.6)). Note that since the function a(t) and the constant θ are both positive,

τ̇(t) > 0 so that τ(t) is an increasing function mapping t ∈ R to τ ∈ R and

therefore the inverse function f(τ) exists.

Conversely, suppose you are given a twice differentiable function Y (τ) > 0,

a continuous function Q(τ), and also functions λ0(τ), . . . , λN(τ) which satisfy the
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generalized EMP equation (2.2) for some Bi ∈ R and N ∈ N. In order to construct

functions which solve (2.1), first find τ(t) and ϕ(τ) which solve

τ̇(t) = θY (τ(t))(q−δ)/q (2.13)

and (2.4) respectively, for some θ > 0, q ∈ R\{0} and δ ∈ R (note that (2.13)

was obtained by combining (2.3) and (2.7)). Then the set of functions (a(t), φ(t),

G0, . . . , GN ) given by (2.3), (2.6) and (2.5) solves the scale factor equation (2.1)

for Ai as in (2.8). That is, the powers Ai are given in terms of Bi by the equation

Ai = q(Bi − 1) + 2δ. (2.14)

Proof. To prove the forward implication, we begin by computing f ′(τ), a quantity

that will be required to simplify the derivatives of Y (τ). Since f(τ(t)) = t we

differentiate this relation with respect to t to obtain f ′(τ(t))τ̇ (t) = 1 so that f ′(τ) =

1/τ̇(f(τ)), and by (2.7) we have

f ′(τ) =
1

θ
a(f(τ))δ−q. (2.15)

Differentiating the definition (2.9) of Y (τ) and using (2.15) we obtain

Y ′(τ) = qa(f(τ))q−1ȧ(f(τ))f ′(τ)

=
q

θ
H(f(τ))a(f(τ))δ. (2.16)

Differentiating again and using (2.15) we obtain

Y ′′(τ) =
q

θ
f ′(τ)

[

Ḣ(f(τ))a(f(τ))δ + δH(f(τ))2a(f(τ))δ
]

=
q

θ2
a(f(τ))2δ−q

[

Ḣ(f(τ)) + δH(f(τ))2
]

. (2.17)

Since a(t) is assumed to satisfy the scale factor equation (2.1), (2.16) can be written

Y ′′(τ) =
q

θ2
a(f(τ))2δ−q

[

−εφ̇(f(τ))2 +

N
∑

i=0

Gi(f(τ))

a(f(τ)))Ai

]

= −qε
θ2
φ̇(f(τ))2a(f(τ))2δ−2qa(f(τ))q +

N
∑

i=0

q
θ2Gi(f(τ))

a(f(τ))Ai+q−2δ
. (2.18)
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Differentiating the definition (2.12) of ϕ(τ) and again using (2.15) we have

ϕ′(τ) = φ̇(f(τ))f ′(τ) =
1

θ
φ̇(f(τ))a(f(τ))δ−q, (2.19)

so that the definition (2.10) of Q(τ) can be written as

Q(τ) =
qε

θ2
φ̇(f(τ))2a(f(τ))2δ−2q . (2.20)

By (2.20) and the definitions (2.9), (2.11) and (2.8) of Y (τ), λi(τ) and Bi ∈ R

respectively, (2.18) becomes

Y ′′(τ) +Q(τ)Y (τ) =
N
∑

i=0

λi(τ)

Y (τ)Bi
. (2.21)

To prove the converse statement, differentiate the definition (2.3) of a(t) and

use the definition (2.13) of τ(t) to obtain

ȧ(t) =
1

q
Y (τ(t))(1−q)/qY ′(τ(t))τ̇ (t)

=
θ

q
Y (τ(t))(1−δ)/qY ′(τ(t)). (2.22)

Dividing by a(t), we have that

H(t)
def.
=

ȧ(t)

a(t)
=
θ

q
Y ′(τ(t))Y (τ(t))−δ/q . (2.23)

Differentiating (2.23) and again using the definition (2.13) of τ(t), we obtain

Ḣ(t) =
θ

q
τ̇(t)

[

Y ′′(τ(t))Y (τ(t))−δ/q − δ

q
Y ′(τ(t))2Y (τ(t))−(δ+q)/q

]

=
θ2

q
Y (τ(t))(q−δ)/q

[

Y ′′(τ(t))Y (τ(t))−δ/q − δ

q
Y ′(τ(t))2Y (τ(t))−(δ+q)/q

]

=
θ2

q
Y (τ(t))(q−2δ)/qY ′′(τ) − δθ2

q2
Y ′(τ(t))2Y (τ(t))−2δ/q. (2.24)
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Since Y (τ) is assumed to satisfy the generalized EMP equation (2.2), equation

(2.24) can be written as

Ḣ(t) =
θ2

q
Y (τ(t))(q−2δ)/q

[

−Q(τ(t))Y (τ(t)) +
N
∑

i=0

λi(τ(t))

Y (τ(t))Bi

]

−δθ
2

q2
Y ′(τ(t))2Y (τ(t))−2δ/q

= −θ
2

q
Q(τ(t))Y (τ(t))2(q−δ)/q +

N
∑

i=0

θ2

q
λi(τ(t))

Y (τ(t))(q(Bi−1)+2δ)/q

−δθ
2

q2
Y ′(τ(t))2Y (τ(t))−2δ/q . (2.25)

By definitions (2.6) and (2.13) of φ(t) and τ(t) respectively, we have that

φ̇(t) = ϕ′(τ(t))τ̇ (t) = θϕ′(τ(t))Y (τ(t))(q−δ)/q . (2.26)

Using definition (2.4) of ϕ(τ) in terms of Q(τ) and squaring (2.26), we have

φ̇(t)2 =
θ2

qε
Q(τ(t))Y (τ(t))2(q−δ)/q . (2.27)

This shows that the first term in (2.25) is equal to −εφ̇(t)2. Noting that by (2.23)

the last term of (2.25) is equal to −δH(t)2, and using definitions (2.3), (2.5) and

(2.14) of a(t), Gi(t) and Ai respectively, (2.25) becomes

Ḣ(t) = −εφ̇(t)2 +

N
∑

i=0

Gi(t)

a(t)Ai
− δH(t)2. (2.28)

This proves the theorem.

⋄

2.2 Generalized EMP and Schrödinger-type equations

We now record a mapping between any solution set (Y (τ), Q(τ), λ(τ), λ1(τ),

. . . , λN(τ)) of the generalized EMP equation

Y ′′(τ) +Q(τ)Y (τ) =
λ(τ)

Y (τ)B
+

N
∑

i=1

λi(τ)

Y (τ)Bi
(2.29)
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for B ∈ R\{−1, 1}, Bi ∈ R\{−1}, N ∈ N, and a corresponding solution set

(u(σ), E(σ), P (σ), F1(σ), . . . , FN(σ)) of what we will call a non-linear Schrödinger-

type equation

u′′(σ) + [E(σ) − P (σ)]u(σ) =

N
∑

i=1

Fi(σ)

u(σ)Ci
(2.30)

for Ci ∈ R.

In general, the Schrödinger-type equation (2.30) contains one less non-linear

term than the generalized EMP equation (2.29). Therefore although the correspon-

dence does hold when λ = λi = E = 0, the point is that a nonzero nonlinear term

λ(τ)/Y (τ)B in (2.29) transforms to the linear term E(σ)u(σ) in (2.30). Therefore

the “Schrödinger” nature of this latter equation is most apparent when λi(τ) = 0

for 1 ≤ i ≤ N and when the function λ(τ) = λ is constant in (2.29). In this case

(as we will see in this section), solutions to the generalized EMP

Y ′′(τ) +Q(τ)Y (τ) =
λ

Y (τ)B
(2.31)

correspond to solutions of a one-dimensional linear Schrödinger equation

u′′(σ) + [E − P (σ)]u(σ) = 0 (2.32)

for E constant. This slightly generalizes a result of F. Williams in which solutions

of a classical EMP (that is, for B = 3 in (2.31)) are shown to be in correspondence

with solutions of a linear Schrödinger equation (2.32). One can also refer to the

paper of W. Milne [25].

The dictionary between solutions to (2.29) and (2.30) is as follows:

Y (τ(t))B−1 = u(σ(t))−2 (2.33)

ϑ2(B − 1)Q(τ(t))(B−1)/(B+1) = 2P (σ(t))u(σ(t))2 (2.34)

ϑ2(B − 1)λ(τ(t)) = 2E(σ(t)) (2.35)

ϑ2(B − 1)λi(τ(t)) = 2Fi(σ(t)) (2.36)

11



where τσ(t) and σ(t) are solutions to the differential equations

τ̇σ(t) =
√
ϑY (τσ(t))

1
4
(B+1) (2.37)

and

σ̇(t) =
1√
ϑ
u(σ(t))

1
2
(B+1)/(B−1) (2.38)

respectively, for some ϑ > 0. Also the powers Bi and Ci in (2.29) and (2.30)

respectively, are related by the equation

Ci = 1 − 2
(Bi − 1)

(B − 1)
. (2.39)

Note that by (2.33), (2.37) and (2.38), we have

τ̇σ(t) =
1

σ̇(t)
. (2.40)

We notate the function τσ(t) with the subscript σ in order to distinguish it from

the separate quantity τ(t) which appears in section 2.1.

Theorem 2.2.1 Suppose you are given a twice differentiable function Y (τ) > 0

and also functions Q(τ), λ(τ), λ1(τ), . . . , λN(τ) which satisfy the generalized EMP

equation (2.29) for some B ∈ R\{−1, 1}, Bi ∈ R\{−1} and N ∈ N. In order to

construct a set of functions which solve the Schrödinger-type equation (2.30), begin

by solving for the function τσ(t) in (2.37) (for any ϑ > 0) and then solve (2.40) for

σ(t) . Let g(σ) denote the inverse of σ(t) (which exists since σ̇(t) > 0 for all t).

Then by (2.33)-(2.36) the following functions solve the Schrödinger-type equation

(2.30):

u(σ) = Y (τσ(g(σ)))
1
2
(1−B) (2.41)

P (σ) =
ϑ2

2
(B − 1)Q(τσ(g(σ)))Y (τσ(g(σ)))B+1 (2.42)

E(σ) =
ϑ2

2
(B − 1)λ(τσ(g(σ))) (2.43)

Fi(σ) =
ϑ2

2
(1 −B)λi(τσ(g(σ))) (2.44)
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for Ci as in (2.39).

Conversely, suppose you are given a twice differentiable function u(σ) > 0 and

also functions E(σ), P (σ), Fi(σ) which satisfy the Schrödinger-type equation (2.30)

for some Ci ∈ R and N ∈ N. In order to construct functions which solve (2.29),

first solve (2.38) for σ(t) and for any constants ϑ > 0 and B ∈ R\{−1, 1}. Then

solve for τσ(t) in (2.40) and let fσ(τ) denote its inverse (which exists since τ̇σ(t) > 0

for all t). By (2.33)-(2.36), the functions

Y (τ) = u(σ(fσ(τ)))
2/(1−B) (2.45)

Q(τ) =
2

ϑ2(B − 1)
P (σ(fσ(τ)))u(σ(fσ(τ)))2(B+1)/(B−1) (2.46)

λ(τ) =
2

ϑ2(B − 1)
E(σ(fσ(τ))) (2.47)

λi(τ) =
2

ϑ2(1 − B)
Fi(σ(fσ(τ))) (2.48)

satisfy the generalized EMP (2.29) for

Bi =
1

2
((1 − B)Ci + (B + 1))) (2.49)

(by (2.39)).

Proof. To prove the forward statement, we begin by computing g′(σ), a quantity

that will be required to simplify the derivatives of u(σ). Since g(σ(t)) = t, we

differentiate this relation with respect to t and obtain g′(σ(t))σ̇(t) = 1 so that

g′(σ) = 1/σ̇(g(σ)) = τ̇σ(g(σ)). Therefore by (2.37) we have

τ̇σ(g(σ))g′(σ) = ϑ Y (τσ(g(σ)))(B+1)/2. (2.50)

Differentiating the definition (2.41) of u(σ) and using (2.50), we obtain

u′(σ) =
1

2
(1 −B)Y (τσ(g(σ)))−(B+1)/2Y ′(τσ(g(σ)))τ̇σ(g(σ))g′(σ)

=
ϑ

2
(1 − B)Y (τσ(g(σ)))−(B+1)/2+(B+1)/2Y ′(τσ(g(σ)))

=
ϑ

2
(1 − B)Y ′(τσ(g(σ))). (2.51)
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Differentiating again and using (2.50), we see that

u′′(σ) =
ϑ

2
(1 −B)Y ′′(τσ(g(σ)))τ̇σ(g(σ))g′(σ)

=
ϑ2

2
(1 − B)Y ′′(τσ(g(σ)))Y (τσ(g(σ)))(B+1)/2. (2.52)

Since Y (τ) is assumed to satisfy the generalized EMP equation (2.29), (2.52) be-

comes

u′′(σ) =
ϑ2

2
(1 − B)Y (τσ(g(σ)))(B+1)/2 [−Q(τσ(g(σ)))Y (τσ(g(σ)))

+
λ(τσ(g(σ)))

Y (τσ(g(σ)))B
+

N
∑

i=1

λi(τσ(g(σ)))

Y (τσ(g(σ)))Bi

]

=
ϑ2

2
(B − 1)Q(τσ(g(σ)))Y (τσ(g(σ)))B+1Y (τσ(g(σ)))(1−B)/2

−ϑ
2(B − 1)λ(τσ(g(σ)))

2Y (τσ(g(σ)))(B−1)/2
+

N
∑

i=1

ϑ2(1 −B)λi(τσ(g(σ)))

2Y (τσ(g(σ)))Bi− 1
2
(B+1)

.

(2.53)

By the definitions (2.41),(2.42), (2.43) and (2.44) of u(σ), P (σ), E(σ) and Fi(σ)

respectively, we have that

u′′(σ) = P (σ)u(σ)− E(σ)

u(σ)−1
+

N
∑

i=1

Fi(σ)

u(σ)
2Bi−(B+1)

1−B

.

= P (σ)u(σ)− E(σ)u(σ) +

N
∑

i=1

Fi(σ)

u(σ)Ci
(2.54)

for Ci as in (2.39). This proves the forward implication.

To prove the converse statement, we will need f ′
σ(τ) in order to simplify the

derivatives of Y (τ). Differentiating the relation fσ(τσ(t)) = t with respect to t

implies f ′
σ(τσ(t))τ̇σ(t) = 1 therefore f ′

σ(τ) = 1/τ̇σ(fσ(τ)) = σ̇(fσ(τ)). By (2.38) we

can form the useful quantity

σ̇(fσ(τ))f ′
σ(τ) =

1

ϑ
u(σ(fσ(τ)))

(B+1)
(B−1) . (2.55)
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Now differentiating the definition of Y (τ) and using (2.55), we see that

Y ′(τ) =
2

(1 −B)
u(σ(fσ(τ)))

(B+1)
(1−B)u′(σ(fσ(τ)))σ̇(fσ(τ))f ′

σ(τ)

=
2

ϑ(1 − B)
u(σ(fσ(τ)))

(B+1)
(1−B)

+ (B+1)
(B−1)u′(σ(fσ(τ)))

=
2

ϑ(1 − B)
u′(σ(fσ(τ))). (2.56)

Differentiating Y ′(τ) and again using (2.55), we obtain

Y ′′(τ) =
2

ϑ(1 −B)
u′′(σ(fσ(τ)))σ̇(fσ(τ))f

′
σ(τ)

=
2

ϑ2(1 − B)
u′′(σ(fσ(τ)))u(σ(fσ(τ)))

(B+1)
(B−1) . (2.57)

Since u(σ) is assumed to satisfy the Schrödinger-type equation (2.30), the equation

(2.57) can be written as

Y ′′(τ) =
2

ϑ2(1 − B)
u(σ(fσ(τ)))

(B+1)/(B−1) [−E(σ(fσ(τ)))u(σ(fσ(τ)))

+P (σ(fσ(τ)))u(σ(fσ(τ))) +

N
∑

i=1

Fi(σ(fσ(τ)))

u(σ(fσ(τ)))Ci

]

=
2E(σ(fσ(τ)))

ϑ2(B − 1)u(σ(fσ(τ)))−2B/(B−1)

− 2

ϑ2(B − 1)
P (σ(fσ(τ)))u(σ(fσ(τ)))2(B+1)/(B−1)u(σ(fσ(τ)))

2/(1−B)

+
N
∑

i=1

2Fi(σ(fσ(τ)))/(1 − B)

ϑ2u(σ(fσ(τ)))((B−1)Ci−(B+1))/(B−1)
. (2.58)

By the definitions (2.45), (2.46), (2.47) and (2.48) of Y (τ), Q(τ), λ(τ) and λi(τ)

respectively, we obtain

Y ′′(τ) =
λ(τ)

Y (τ)B
−Q(τ)Y (τ) +

N
∑

i=1

λi(τ)

Y (τ)Bi
(2.59)

for Ci as in (2.39). This proves the theorem.

⋄
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2.3 Scale factor and Schrödinger-type equations

By composing the maps in Theorems 2.1.1 and 2.2.1, one can see that a direct

reformulation of the scale factor equation

Ḣ(t) + δH(t)2 + εφ̇(t)2 =
G(t)

a(t)A
+

N
∑

i=1

Gi(t)

a(t)Ai
(2.60)

(again H(t) = ȧ(t)/a(t)) in terms of the nonlinear Schrodinger-type equation

u′′(σ) + [E(σ) − P (σ)]u(σ) =
N
∑

i=1

Fi(σ)

u(σ)Ci
(2.61)

is possible by identifying B0 in Theorem 2.1.1 with B in Theorem 2.2.1. The

theorem below is exactly the resulting statement. As we noted in Section 2.2,

this reformulation of the scale factor equation (2.60) in terms of the non-linear

Schrödinger-type equation (2.61) will have one less non-linear term than the alter-

nate generalized EMP reformulation seen in Section 2.1.

For the forward implication of the theorem in this section, composing the re-

spective notations of Theorems 2.1.1 and 2.2.1 is convenient. However this is not

true for the converse implication, in which we now use new notation which is equiv-

alent to identifying (A0 − 2δ)/q and A0/(q− δ) of Theorem 2.1.1 with n/3 and m,

respectively, used here. Here we also rename A0 of Theorem 2.1.1 to just A.

In summary, the dictionary between functions which solve (2.60) and functions

which solve (2.61) is as follows:

a(f(τσ(t)))(A−2δ) = u(σ(t))−2 (2.62)

ε(A− 2δ)ψ′(σ)2 = 2P (σ) (2.63)

(A− 2δ)θA/(q−δ)G(f(τσ(t))) = 2E(σ(t)) (2.64)

(2δ −A)θA/(q−δ)Gi(f(τσ(t))) = 2Fi(σ(t)) (2.65)
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where f(τ) is the inverse function of τ(t) and each of τ(t) and σ(t) are solutions to

the differential equations

τ̇ (t) = θa(t)q−δ, (2.66)

σ̇(t) =
1√
ϑ
u(σ(t))(n+6)/2n (2.67)

respectively for some constants θ, ϑ > 0, q ∈ R\{δ} and n ∈ R\{0}. Also φ and ψ

are related by the composition

φ(f(τσ(t))) = ψ(σ(t)), (2.68)

and the powers Ai and Ci in (2.60) and (2.61) respectively, are related by the

equation

Ci = 1 − 2
(Ai − 2δ)

(A− 2δ)
. (2.69)

In addition, depending on which direction one is mapping solutions, it may be

convenient to define τσ(t) as the solution to either

τ̇σ(t) =
1

σ̇(t)
(2.70)

or equivalently by (2.67), (2.62) and (2.66),

τ̇σ(t) = τ̇(f(τσ(t)))(A+2q−2δ)/4(q−δ). (2.71)

Theorem 2.3.1 Suppose you are given a twice differentiable function a(t) > 0, a

once differentiable function φ(t), and also functions G(t), G1(t), . . . , GN(t) which

satisfy the scale factor equation (2.60) for some N ∈ N and δ, ε, A,A1, . . . , AN

∈ R where A 6= 2δ. In order to construct a set of functions which solve the non-

linear Schrödinger-type equation (2.61), begin by solving for τ(t) in the differential

equation (2.66) for any constants θ > 0 and q ∈ R\{δ}. Let f(τ) denote the inverse

of τ(t) (which exists since τ̇(t) > 0 for all t), find the solution τσ(t) to (2.71) and
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then find σ(t) which solves (2.70). Let g(σ) to denote the inverse function of σ(t)

(which exists since τ̇(t) > 0 for all t). Then by (2.62)-(2.65) the following functions

solve the Schrödinger-type equation (2.61):

u(σ) = a(f(τσ(g(σ)))(2δ−A)/2 (2.72)

P (σ) =
1

2
ε(A− 2δ)ψ′(σ)2 (2.73)

E(σ) =
1

2
(A− 2δ)θA/(q−δ)G(f(τσ(g(σ)))) (2.74)

Fi(σ) =
1

2
(2δ −A)θA/(q−δ)Gi(f(τσ(g(σ)))) (2.75)

for Ci as in (2.69) and for

ψ(σ) = φ(f(τσ(g(σ)))) (2.76)

(by (2.68)).

Conversely, suppose you are given a twice differentiable function u(σ) > 0, a

continuous function P (σ) and also functions E(σ), F1(σ), . . . , FN(σ) which satisfy

the Schrödinger-type equation (2.61) for some Ci ∈ R, and N ∈ N. In order to

construct functions which solve the scale factor equation (2.60), begin by solving for

σ(t) in the differential equation (2.67) for some ϑ > 0 and n ∈ R\{0}. Then find a

solution τσ(t) to (2.70) and let fσ(τ) denote the inverse of τσ(t) (which exists since

σ̇(t) > 0 for all t). Next find functions τ(t) and ψ(σ) which solve the differential

equations

τ̇ (t) = τ̇σ(fσ(τ(t)))4/(m+2) (2.77)

and

ψ′(σ)2 =
6

εqn
P (σ) (2.78)

respectively, for any m ∈ R\{−2} and ε, q ∈ R\{0} (these equations are obtained

by writing (2.71) and (2.63) in the converse notation). Then by (2.62)-(2.65), the
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following functions solve the scale factor equation (2.60):

a(t) = u(σ(fσ(τ(t))))
−6/qn (2.79)

φ(t) = ψ(σ(fσ(τ(t))))) (2.80)

G(t) =
6

qn
ϑ−2m/(m+2)E(σ(fσ(τ(t)))) (2.81)

Gi(t) = − 6

qn
ϑ−2m/(m+2)Fi(σ(fσ(τ(t)))) (2.82)

for coefficient

δ =
q(3m− n)

3(m+ 2)
(2.83)

and for powers

A =
qm(n+ 6)

3(2 +m)
, Ai =

q

6

(

(nm− 2n+ 12m)

(m+ 2)
− nCi

)

(2.84)

(by (2.69) in the converse notation).

Proof. To prove the forward implication, we first compute f ′(τ) and g′(σ). Dif-

ferentiating the relation f(τ(t)) = t with respect to t gives f ′(τ(t))τ̇ (t) = 1 so that

f ′(τ) = 1/τ̇(f(τ)). Therefore by (2.66), we have

f ′(τ) =
1

θ
a(f(τ))δ−q. (2.85)

Similarly g(σ(t)) = t implies g′(σ(t))σ̇(t) = 1 so that g′(σ) = 1/σ̇(g(σ)) = τ̇σ(g(σ)),

and then by (2.71) and (2.66) we obtain

g′(σ) = τ̇ (f(τσ(g(σ))))(A+2q−2δ)/4(q−δ)

= θ(A+2q−2δ)/4(q−δ)a(f(τσ(g(σ))))(A+2q−2δ)/4. (2.86)

By (2.85), (2.86) and (2.71), we find that

f ′(τσ(g(σ)))τ̇σ(g(σ))g′(σ) = θ(A+2q−2δ)/2(q−δ)−1a(f(τσ(g(σ))))(A+2q−2δ)/2+δ−q

= θA/2(q−δ)a(f(τσ(g(σ))))A/2. (2.87)
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Differentiating the definition (2.72) of u(σ) and using (2.87), we have that

u′(σ) =
1

2
(2δ −A)a(f(τσ(g(σ))))(2δ−A−2)/2ȧ(f(τσ(g(σ))))

·f ′(τσ(g(σ)))τ̇σ(g(σ))g′(σ)

=
1

2
(2δ −A)θA/2(q−δ)ȧ(f(τσ(g(σ))))a(f(τσ(g(σ))))δ−1

=
1

2
(2δ −A)θA/2(q−δ)H(f(τσ(g(σ))))a(f(τσ(g(σ))))δ (2.88)

for H(t)
def.
= ȧ(t)/a(t). Differentiating u′(σ) and using (2.87) and the assumed scale

factor equation (2.60), the second derivative of u is

u′′(σ) =
1

2
(2δ −A)θA/2(q−δ)f ′(τσ(g(σ)))τ̇σ(g(σ))g′(σ)

·
[

Ḣ(f(τσ(g(σ))))a(f(τσ(g(σ))))δ + δH(f(τσ(g(σ))))2a(f(τσ(g(σ))))δ
]

=
1

2
(2δ −A)θA/(q−δ)a(f(τσ(g(σ))))A/2+δ

·
[

−εφ̇(f(τσ(g(σ))))2 +
G(f(τσ(g(σ))))

a(f(τσ(g(σ))))A
+

N
∑

i=1

Gi(t)

a(f(τσ(g(σ))))Ai

]

=
1

2
(A− 2δ)εθA/(q−δ)a(f(τσ(g(σ))))A/2+δφ̇(f(τσ(g(σ))))2

+
1

2
(2δ − A)θA/(q−δ)G(f(τσ(g(σ))))a(f(τσ(g(σ))))δ−A/2

+
1

2
(2δ −A)θA/(q−δ)

N
∑

i=1

Gi(f(τσ(g(σ))))

a(f(τσ(g(σ))))(2Ai−A−2δ)/2
. (2.89)

Differentiating the definition (2.76) of ψ(σ) and using (2.87) we see that

ψ′(σ) = θA/2(q−δ)φ̇(f(τσ(g(σ))))a(f(τσ(g(σ))))A/2 (2.90)

so that by (2.73), we can write P (σ) as

P (σ) =
1

2
ε(A− 2δ)θA/(q−δ)φ̇(f(τσ(g(σ))))2a(f(τσ(g(σ))))A. (2.91)

By (2.91) and the definitions (2.72), (2.74) and (2.75) of u(σ), E(σ) and Fi(σ)
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respectively, (2.89) becomes

u′′(σ) = P (σ)u(σ) −E(σ)u(σ) +

N
∑

i=1

Fi(σ)

u(σ)(2Ai−A−2δ)/(2δ−A)

= P (σ)u(σ) −E(σ)u(σ) +
N
∑

i=1

Fi(σ)

u(σ)Ci
(2.92)

for Ci as in (2.69). This proves the forward implication.

To prove the converse statement, we will need the function f ′
σ(τ). Differentiating

the relation fσ(τσ(t)) = t with respect to t implies that f ′
σ(τσ(t))τ̇σ(t) = 1 and so

we have f ′
σ(τ) = 1/τ̇σ(fσ(τ)) = σ̇(fσ(τ)). Therefore by (2.77) and (2.70), we obtain

the useful quantity

σ̇(fσ(τ(t)))f ′
σ(τ(t))τ̇ (t) = σ̇(fσ(τ(t)))2τ̇σ(fσ(τ(t)))4/(m+2)

= σ̇(fσ(τ(t)))2σ̇(fσ(τ(t)))−4/(m+2)

= σ̇(fσ(τ(t)))2m/(m+2). (2.93)

Using (2.67) to write this in terms of u(σ), we have

σ̇(fσ(τ(t)))f
′
σ(τ(t))τ̇ (t) = ϑ−m/(m+2)u(σ(fσ(τ(t))))

m(n+6)
n(m+2) . (2.94)

Differentiating definition (2.79) of a(t) gives

ȧ(t) = − 6

qn
u(σ(fσ(τ(t))))−(6+qn)/qnu′(σ(fσ(τ(t))))σ̇(fσ(τ(t)))f ′

σ(τ(t))τ̇ (t).

(2.95)

Dividing by a(t) = u(σ(fσ(τ(t))))
−6/qn and using (2.94), we obtain

H(t) = − 6

qn
ϑ−m/(m+2)u′(σ(fσ(τ(t))))u(σ(fσ(τ(t))))

m(n+6)
n(m+2)

−1

= − 6

qn
ϑ−m/(m+2)u′(σ(fσ(τ(t))))u(σ(fσ(τ(t))))

2(3m−n)
n(m+2) (2.96)

for H(t)
def.
= ȧ(t)/a(t) as usual. Differentiating H(t) and again using (2.94), we get
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that

Ḣ(t) = − 6

qn
ϑ−m/(m+2)σ̇(fσ(τ(t)))f

′
σ(τ(t))τ̇ (t) ·

[

u′′(σ(fσ(τ(t))))u(σ(fσ(τ(t))))
2(3m−n)
n(m+2)

+
2(3m− n)

n(m+ 2)
u′(σ(fσ(τ(t))))2u(σ(fσ(τ(t))))

2(3m−n)
n(m+2)

−1

]

= − 6

qn
ϑ−2m/(m+2)u′′(σ(fσ(τ(t))))u(σ(fσ(τ(t))))

(12m−2n+mn)/n(m+2)

−12(3m− n)

qn2(m+ 2)
ϑ−2m/(m+2)u′(σ(fσ(τ(t))))2u(σ(fσ(τ(t))))

4(3m−n)
n(m+2) ,

(2.97)

where we have simplified the powers of u(σ(fσ(τ(t)))) for the first and second terms

by adding

m(n+ 6)

n(m+ 2)
+

2(3m− n)

n(m+ 2)
=

12m− 2n+mn

n(m+ 2)
(2.98)

and

m(n + 6)

n(m+ 2)
+

2(3m− n)

n(m+ 2)
− 1 =

4(3m− n)

n(m+ 2)
, (2.99)

respectively. Since u(σ) is assumed to satisfy the Schrödinger-type equation (2.61),

Ḣ in (2.97) now becomes

Ḣ(t) = − 6

qn
ϑ−2m/(m+2)u(σ(fσ(τ(t))))

(12m−2n+mn)/n(m+2) ·

[P (σ(fσ(τ(t))))u(σ(fσ(τ(t)))) − E(σ(fσ(τ(t))))u(σ(fσ(τ(t))))

+
N
∑

n=1

Fi(σ(fσ(τ(t))))

u(σ(fσ(τ(t))))Ci

]

−12(3m− n)

qn2(m+ 2)
ϑ−2m/(m+2)u′(σ(fσ(τ(t))))2u(σ(fσ(τ(t))))

4(3m−n)
n(m+2) .

(2.100)

Multiplying out the terms, we obtain

Ḣ(t) = − 6

qn
ϑ−2m/(m+2)u(σ(fσ(τ(t))))

2m(n+6)
n(m+2) P (σ(fσ(τ(t))))

+
6

qn
ϑ−2m/(m+2)u(σ(fσ(τ(t))))

2m(n+6)
n(m+2) E(σ(fσ(τ(t))))
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− 6

qn
ϑ−2m/(m+2)

N
∑

n=1

Fi(σ(fσ(τ(t))))

u(σ(fσ(τ(t))))Ci+(2n−12m−mn)/n(m+2)

−12(3m− n)

qn2(m+ 2)
ϑ−2m/(m+2)u′(σ(fσ(τσ(t))))2u(σ(fσ(τ(t))))

4(3m−n)
n(m+2)

(2.101)

where for the first two terms, we have simplified the powers of u by adding

12m− 2n +mn

n(m+ 2)
+ 1 =

2m(n + 6)

n(m+ 2)
. (2.102)

By the definition (2.83) of the constant δ, and by the computation (2.96) of H in

terms of u, we have that

δH(t)2 =
12(3m− n)

qn2(m+ 2)
ϑ−2m/(m+2)u′(σ(fσ(τ(t))))2u(σ(fσ(τ(t))))

4(3m−n)
n(m+2) . (2.103)

This shows that the last term in (2.101) is equal to −δH(t)2 so that we have

Ḣ(t) + δH(t)2 = − 6

qn
ϑ−2m/(m+2)u(σ(fσ(τ(t))))

2m(n+6)
n(m+2) P (σ(fσ(τ(t))))

+
6

qn
ϑ−2m/(m+2)u(σ(fσ(τ(t))))

2m(n+6)
n(m+2) E(σ(fσ(τ(t))))

− 6

qn
ϑ−2m/(m+2)

N
∑

n=1

Fi(σ(fσ(τ(t))))

u(σ(fσ(τ(t))))Ci+(2n−12m−mn)/n(m+2)
.

(2.104)

Differentiating the definition (2.80) of φ(t) and using (2.94), we have that

φ̇(t) = ψ′(σ(fσ(τ(t))))σ̇(fσ(τ(t)))f ′
σ(τ(t))τ̇ (t)

= ϑ−m/(m+2)u(σ(fσ(τ(t))))
m(n+6)
n(m+2)ψ′(σ(fσ(τ(t)))). (2.105)

Using the definition (2.78) of ψ(σ) in terms of P (σ) and squaring (2.105), we obtain

φ̇(t)2 =
6

εqn
ϑ−2m/(m+2)P (σ(fσ(τ(t))))u(σ(fσ(τ(t))))

2m(n+6)
n(m+2) . (2.106)
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This shows that the first term in (2.104) is equal to −εφ̇(t)2 so that

Ḣ(t) + δH(t)2 = −εφ̇(t)2 +
6

qn
ϑ−2m/(m+2)u(σ(fσ(τ(t))))

2m(n+6)
n(m+2) E(σ(fσ(τ(t))))

− 6

qn
ϑ−2m/(m+2)

N
∑

n=1

Fi(σ(fσ(τ(t))))

u(σ(fσ(τ(t))))Ci+(2n−12m−mn)/n(m+2)
.

(2.107)

Now utilizing the definitions (2.79), (2.81) and (2.82) of a(t), G(t) and Gi(t) re-

spectively, (2.107) becomes

Ḣ(t) + δH(t)2 = −εφ̇2 +
G(t)

a(t)
qm(n+6)
3(m+2)

+

N
∑

i=1

Gi(t)

a(t)−
qn
6

Ci−q(2n−12m−mn)/6(m+2)

= −εφ̇2 +
G(t)

a(t)A
+

N
∑

i=1

Gi(t)

a(t)Ai
, (2.108)

which proves the theorem for A and Ai as in (2.124). ⋄

The statement of this theorem would have been much simpler if we were able

to choose τ(t) = τσ(t), since then many compositions of functions would cancel. In

fact, such cancellations would make the use of τ(t) obsolete, leaving only σ(t) and

its inverse g(σ) to be required for the reparameterization which takes place in the

translation between the functions a(t) and u(σ). By (2.71) in the forward direction

or equivalently (2.77) in the converse, τ̇ (t) = τ̇σ(t) for (A + 2q − 2δ)/4(q − δ) = 1

and 4/(m + 2) = 1 respectively. This corresponds to the choice of parameter

q = A/2 + δ, or equivalently m = 2 and n = 6 in the converse notation. Also for

this choice δ = 0 by (2.83). As stated above, the theorem only holds for q 6= δ = 0,

so the choice q = A/2 + δ = A/2 is only possible for A 6= 0. In summary, when

A 6= 0 and δ = 0, we apply the theorem with q = A/2 or equivalently m = 2, n = 6

in the converse notation. This will allow us to take the integration constant zero

when integrating the relation τ̇ (t) = τ̇σ(t) so that τ(t) = τσ(t) and the statement

of the theorem will become simpler.
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Therefore in application, the following two versions of the theorem will be useful.

If A 6= 0 and δ = 0 then the theorem will be implemented with q = A/2, m = 2, n =

6 and τ(t) = τσ(t). If A = 0 and δ 6= 0 then in the converse notation m = 0 and

by the comments on notation at the beginning of this section, q = −6δ/n and the

theorem also takes a simpler form in this case. In particular by integrating (2.87)

and (2.93) with A = m = 0, we have that f(τσ(g(σ))) = σ + t0 and σ(fσ(τ(t))) =

t − t0 for some constant t0 ∈ R (If A, δ are both nonzero then the theorem would

be implemented as-is).

Also in the statement of the above theorem, one can show that the constants

θ and ϑ are related by ϑ = θ(A+2q−2δ)/2(q−δ) or equivalently θ = ϑ2/(m+2) in the

converse notation. This was, in fact, why we chose to state the theorem more simply

by using two separate constants θ and ϑ for the forward and converse implications

respectively - but this is not necessary in the case of the first δ = 0 corollary since

q = A/2 implies ϑ = θ2.

Corollary 2.3.1 (A 6= 0, δ = 0
choose→ q = A/2, τσ(t) = τ(t) ⇒ m = 2, n =

6, ϑ = θ2) Suppose you are given a twice differentiable function a(t) > 0, a once

differentiable function φ(t), and also functions G(t), G1(t), . . . , GN(t) which satisfy

the scale factor equation

Ḣ(t) + εφ̇(t)2 =
G(t)

a(t)A
+

N
∑

i=1

Gi(t)

a(t)Ai
(2.109)

for some N ∈ N and A 6= 0, ε, A1, . . . , AN ∈ R (Ḣ(t)
def.
= ȧ(t)/a(t)). In order to

construct a set of functions which solve the Schrödinger-type equation

u′′(σ) + [E(σ) − P (σ)]u(σ) =

N
∑

i=1

Fi(σ)

u(σ)Ci
, (2.110)

begin by solving for σ(t) in the differential equation

σ̇(t) =
1

θ
a(t)−A/2 (2.111)
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for some θ > 0. Now allow g(σ) to denote the inverse function of σ(t) (which exists

since σ̇(t) > 0 for all t). Then the following functions solve the Schrödinger-type

equation (2.110):

u(σ) = a(g(σ))−A/2 (2.112)

P (σ) =
εA

2
ψ′(σ)2 (2.113)

E(σ) =
θ2A

2
G(g(σ)) (2.114)

Fi(σ) = −θ
2A

2
Gi(g(σ)) (2.115)

for

Ci = 1 − 2
Ai

A
, 1 ≤ i ≤ N (2.116)

and

ψ(σ) = φ(g(σ)). (2.117)

Conversely, suppose you are given a twice differentiable function u(σ) > 0

and also functions E(σ), P (σ), F1(σ), . . . , FN(σ) which satisfy the Schrödinger-type

equation (2.110) for some Ci ∈ R, and N ∈ N. In order to construct functions

which solve the scale factor equation (2.109), begin by solving for σ(t) in the dif-

ferential equation

σ̇(t) =
1

θ
u(σ(t)) (2.118)

for some θ > 0. Next find a function ψ(σ) which solves the differential equation

ψ′(σ)2 =
2

εA
P (σ) (2.119)

for any ε, A ∈ R\{0}. Then the following functions solve the scale factor equation
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(2.109):

a(t) = u(σ(t))−2/A (2.120)

φ(t) = ψ(σ(t))) (2.121)

G(t) =
2

Aθ2
E(σ(t)) (2.122)

Gi(t) = − 2

Aθ2
Fi(σ(t)) (2.123)

for

Ai =
A

2
(1 − Ci) , 1 ≤ i ≤ N. (2.124)

Corollary 2.3.2 (A = 0, δ 6= 0 ⇒ − qn
6

= δ,m = 0 ⇒ f(τσ(g(σ))) = σ +

t0, σ(fσ(τ(t))) = t− t0) Suppose you are given a twice differentiable function a(t) >

0, a once differentiable function φ(t), and also functions G(t), G1(t), . . . , GN(t)

which satisfy the scale factor equation

Ḣ(t) + δH(t)2 + εφ̇(t)2 = G(t) +

N
∑

i=1

Gi(t)

a(t)Ai
(2.125)

for some N ∈ N and δ 6= 0, ε, A1, . . . , AN ∈ R (where as usual, H(t)
def.
= ȧ(t)/a(t)).

Then the functions

u(σ) = a(σ + t0)
δ (2.126)

P (σ) = −εδψ′(σ)2 (2.127)

E(σ) = −δG(σ + t0) (2.128)

Fi(σ) = δGi(σ + t0) (2.129)

solve the Schrödinger-type equation

u′′(σ) + [E(σ) − P (σ)]u(σ) =
N
∑

i=1

Fi(σ)

u(σ)Ci
(2.130)

for

Ci =
Ai

δ
− 1, 1 ≤ i ≤ N (2.131)
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and

ψ(σ) = φ(σ + t0). (2.132)

Conversely, suppose you are given a twice differentiable function u(σ) > 0

and also functions E(σ), P (σ), F1(σ), . . . , FN(σ) which satisfy the Schrödinger-type

equation (2.130) for some Ci ∈ R and N ∈ N. For ψ(σ) such that

ψ′(σ)2 = − 1

εδ
P (σ) (2.133)

for any ε, δ ∈ R\{0}, the following functions solve the scale factor equation (2.125):

a(t) = u(t− t0)
1/δ (2.134)

φ(t) = ψ(t− t0) (2.135)

G(t) = −1

δ
E(t− t0) (2.136)

Gi(t) =
1

δ
Fi(t− t0) (2.137)

for

Ai = δ (1 + Ci) , 1 ≤ i ≤ N. (2.138)
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C H A P T E R 3

REFORMULATIONS OF THE FRIEDMANN -

ROBERTSON - LEMAÎTRE - WALKER MODEL

This cosmological model assumes that the d+ 1-dimensional spacetime is both

homogeneous and isotropic, resulting in a metric of the form

ds2 = −dt2 + a(t)2

(

dr2

1 − kr2
+ r2dΩ2

d−1

)

(3.1)

where a(t) is the scale factor, k ∈ {−1, 0, 1} is the curvature parameter and

dΩ2
d−1 = dθ2

1 + sin2 θ1dθ
2
2 + · · ·+ sin2 θ1 · · · sin2 θd−2dθ

2
d−1. (3.2)

In this section, we take the energy density and pressure in equation (1.7) to be

ρ(t) =
M
∑

i=1

Di(t)

a(t)ni
+ ρ′(t) (3.3)

and

p(t) =
M
∑

i=1

(ni − d)Di(t)

da(t)ni
+ p′(t) (3.4)

respectively, for some ni ∈ R and 1 ≤ i ≤M . The nontrivial and distinct Einstein’s

equations gijGij = −κgijTij + Λ are the (i, j) = (0, 0) and (i, j) = (1, 1) equations.
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Dividing by (d− 1), these equations are

d

2
H2(t) +

dk

2a(t)2

(i)
=

κ

(d− 1)

[

1

2
φ̇(t)2 + V (φ(t)) +

M
∑

i=1

Di(t)

a(t)ni
+ ρ′(t)

]

+
Λ

(d− 1)

(3.5)

Ḣ(t) +
d

2
H(t)2 +

(d− 2)k

2a(t)2

(ii)
= − κ

(d− 1)

[

1

2
φ̇(t)2 − V (φ(t)) +

M
∑

i=1

(ni − d)Di(t)

da(t)ni

+p′(t)] +
Λ

(d− 1)

where H(t)
def.
= ȧ(t)

a(t)
.

3.1 In terms of a Generalized EMP

Theorem 3.1.1 Suppose you are given a twice differentiable function a(t) > 0, a

once differentiable function φ(t), and also functions Di(t), ρ
′(t), p′(t), V (x) which

satisfy the Einstein equations (i), (ii) in (3.5) for some k, n1, . . . , nM ,Λ ∈ R, d ∈

R\{0, 1}, κ ∈ R\{0} and M,M2 ∈ N. If f(τ) is the inverse of a function τ(t)

which satisfies

τ̇ (t) = θa(t)q (3.6)

for some θ > 0 and q ∈ R\{0}, then

Y (τ) = a(f(τ))q and Q(τ) =
qκ

(d− 1)
ϕ′(τ)2 (3.7)

solve the generalized EMP equation

Y ′′(τ) +Q(τ)Y (τ) = (3.8)

qk

θ2Y (τ)(2+q)/q
−

M
∑

i=1

qniκTi(τ)

θ2d(d− 1)Y (τ)(ni+q)/q
− qκ(̺(τ) + <(τ))

θ2(d− 1)Y (τ)

for

ϕ(τ) = φ(f(τ)) (3.9)
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Ti(τ) = Di(f(τ)), 1 ≤ i ≤M (3.10)

and

̺(τ) = ρ′(f(τ)), <(τ) = p′(f(τ)). (3.11)

Conversely, suppose you are given a twice differentiable function Y (τ) > 0, a

continuous function Q(τ), and also functions Ti(τ) for 1 ≤ i ≤ M,M ∈ N and

̺(τ),<(τ) which solve (3.8) for some constants θ > 0, q, κ ∈ R\{0}, k ∈ R, d ∈

R\{0, 1} and ni ∈ R for 1 ≤ i ≤ M . In order to construct functions which solve

(i), (ii), first find τ(t), ϕ(τ) which solve the differential equations

τ̇(t) = θY (τ(t)) and ϕ′(τ)2 =
(d− 1)

qκ
Q(τ). (3.12)

Then the functions

a(t) = Y (τ(t))1/q (3.13)

φ(t) = ϕ(τ(t)) (3.14)

Di(t) = Ti(τ(t)), 1 ≤ i ≤ M (3.15)

ρ′(t) = ̺(τ(t)), p′(t) = <(τ(t)), (3.16)

and

V (φ(t))

=

[

d(d− 1)

2κ

(

θ2(Y ′)2

q2
+

k

Y 2/q

)

− θ2

2
Y 2(ϕ′)2 −

M
∑

i=1

Ti

Y ni/q
− ̺− Λ

κ

]

◦ τ(t) (3.17)

satisfy equations (i), (ii).
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Proof. This proof will implement Theorem 2.1.1 with constants and functions as

indicated in the following table.

Table 1. Theorem 2.1.1 applied to FRLW

In Theorem substitute In Theorem substitute

δ 0 ε κ/(d− 1)

G0(t) constant k A0 2

Gi(t), 1 ≤ i ≤M −niκ
d(d−1)

Di(t) Ai ni

GM+1(t)
−κ

(d−1)
(ρ′(t) + p′(t)) AM+1 0

λ0(τ) constant qk/θ2 B0 (2 + q)/q

λi(τ), 1 ≤ i ≤M −qniκ
θ2d(d−1)

Ti(τ) Bi (ni + q)/q

λM+1(τ)
−qκ

θ2(d−1)
(̺(τ) + <(τ)) BM+1 1

To prove the forward implication, we assume to be given functions which solve

the Einstein field equations (i) and (ii). Subtracting equations (ii)− (i) we obtain

Ḣ(t) − k

a(t)2
= − κ

(d− 1)

[

φ̇(t)2 +
M
∑

i=1

niDi(t)

da(t)ni
+ (ρ′(t) + p′(t))

]

. (3.18)

This shows that a(t), φ(t), Di(t), ρ
′(t) and p′(t) satisfy the hypothesis of Theorem

2.3.1, applied with constants ǫ, ε, N,A0, . . . , AN and functions G0(t), . . . , GN(t) ac-

cording to Table 1. Since τ(t), Y (τ), Q(τ) and ϕ(τ) defined in (3.6), (3.7) and (3.9)

are equivalent to that in the forward implication of Theorem 2.3.1, by this theorem

and by definitions (3.10) and (3.11) of T(τ) and ̺(τ),<(τ), the generalized EMP

equation (2.2) holds for constants B0, . . . , BN and functions λ0(τ), . . . , λN(τ) as

indicated in Table 1. This proves the forward implication.

To prove the converse implication, we assume to be given functions which solve

the generalized EMP equation (3.8) and we begin by showing that (i) is satisfied.

Differentiating definition (3.13) of a(t) and by the definition of τ(t) in (3.12), we
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have that

ȧ(t) =
1

q
Y (τ(t))

1
q
−1Y ′(τ(t))τ̇ (t)

=
θ

q
Y (τ(t))1/qY ′(τ(t)). (3.19)

Dividing by a(t) we obtain

H(t)
def.
=

ȧ(t)

a(t)
=
θ

q
Y ′(τ(t)). (3.20)

Differentiating the definition (3.14) of φ(t) and using definition of τ(t) in (3.12),

we find that

φ̇(t) = ϕ′(τ(t))τ̇ (t) = θϕ′(τ(t))Y (τ(t)). (3.21)

Using (3.20), (3.21), and the definitions (3.13), (3.15) and (3.16) of a(t), Di(t) and

ρ′(t) respectively, the definition (3.17) of V ◦ φ can be written as

V (φ(t)) =
d(d− 1)

2κ

(

H(t)2 +
k

a(t)2

)

− 1

2
φ̇(t)2 −

M
∑

i=1

Di(t)

a(t)ni
− ρ′(t) − Λ

κ
. (3.22)

This shows that (i) holds (that is, the definition of V (φ(t)) was designed to be such

that (i) holds).

To conclude the proof we must also show that (ii) holds. In the converse

direction the hypothesis of the converse of Theorem 2.1.1 holds, applied with con-

stants N,B0, . . . , BN and functions λ0(τ), . . . , λN(τ) as indicated in Table 1. Since

τ(t), ϕ(τ), a(t) and φ(t) defined in (3.12), (3.13) and (3.14) are consistent with the

converse implication of Theorem A.1, applied with δ and ε as in Table 1, by this the-

orem and by the definitions (3.15) and (3.16) of Di(t) and ρ′(t), p′(t) the scale factor

equation (2.1) holds for constants δ, ε, A0, . . . , AN and functions G0(t), . . . , GN(t)

according to Table 1. That is, we have regained (3.18) which shows that the sub-

traction of equations (ii)-(i) holds in the converse direction. Now solving (3.22) for

ρ′(t) and substituting this into (3.18), we obtain (ii). This proves the theorem. ⋄
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3.1.1 First reduction to classical EMP: pure scalar field

As a special case we take ρ′ = p′ = Di = 0 and we choose the parameter q = 1.

Then Theorem 3.1.1 shows that solving the Einstein equations

d

2
H2(t) +

dk

2a(t)2

(i)′
=

κ

(d− 1)

[

1

2
φ̇(t)2 + V (φ(t))

]

+
Λ

(d− 1)
(3.23)

Ḣ(t) +
d

2
H(t)2 +

(d− 2)k

2a(t)2

(ii)′

= − κ

(d− 1)

[

1

2
φ̇(t)2 − V (φ(t))

]

+
Λ

(d− 1)

is equivalent to solving the classical EMP equation

Y ′′(τ) +Q(τ)Y (τ) =
k

θ2Y (τ)3
(3.24)

for any constant θ > 0. The solutions of (i)′, (ii)′ and (3.24) are related by

a(t) = Y (τ(t)) and ϕ′(τ)2 =
(d− 1)

κ
Q(τ) (3.25)

for φ(t) = ϕ(τ(t)) and

τ̇(t) = θa(t) = θY (τ(t)). (3.26)

Also in the converse direction, V is taken to be

V (φ(t)) =

[

d(d− 1)

2κ

(

θ2(Y ′)2 +
k

Y 2

)

− θ2

2
Y 2(ϕ′)2 − Λ

κ

]

◦ τ(t). (3.27)

Referring to Appendix D for solutions of the classical and corresponding ho-

mogeneous EMP equation (3.24), we will use the theorem to compute some exact

solutions of Einstein’s equations. By comparing (3.26) and (D.5), we note to only

consider solutions of (D.5) in Appendix D corresponding to r0 = 1. Also note that

σ(t) in (D.6) is not relevant in the FRLW model.
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Example 1 For zero curvature k = 0 and for θ = 1, we take solution 1 in

Table 14 of the homogeneous equation Y ′′(τ) + Q(τ)Y (τ) = 0 with Q(τ) =

Q0 > 0. That is, Y (τ) = cos(
√
Q0τ) and by (D.8) - (D.10) we obtain τ(t) =

2√
Q0
Arctan

(

tanh
(√

Q0

2
(t− t0)

))

and

a(t) = Y (τ(t)) = sech
(

√

Q0(t− t0)
)

(3.28)

for t0 ∈ R. Then by (D.17) with α0 = (d− 1)/κ, we obtain the scalar field

φ(t)
def.
= ϕ(τ(t)) = 2

√

(d− 1)

κ
Arctan

(

tanh

(√
Q0

2
(t− t0)

))

+ β0 (3.29)

for β0 ∈ R. Finally, by (3.27), (D.11) and (D.10) we get

V (φ(t)) =

[

d(d− 1)

2κ
(Y ′)2 − 1

2
Y 2(ϕ′)2 − Λ

κ

]

◦ τ(t) (3.30)

=
(d− 1)Q0

2κ

[

d tanh2
(

√

Q0(t− t0)
)

− sech2
(

√

Q0(t− t0)
)]

− Λ

κ
.

so that

V (w) =
(d− 1)Q0

2κ

[

d tanh2

(

2Arctanh

(

tan

(

1

2

√

κ

(d− 1)
(w − β0)

)))

−sech2

(

2Arctanh

(

tan

(

1

2

√

κ

(d− 1)
(w − β0)

)))]

− Λ

κ
(3.31)

since

φ−1(w) =
2√
Q0

Arctanh

(

tan

(

1

2

√

κ

(d− 1)
(w − β0)

))

+ t0. (3.32)

For Q0 = 1 and t0 = 0, the solver was run with Y and Y ′ both perturbed by .05.

The graphs of a(t) below show that this solution is stable.
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Figure 1. Stability of FRLW Example 1
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Example 2 For zero curvature k = 0 and for θ = 1, we take solution 2 in

Table 14 of the homogeneous equation Y ′′(τ) + Q(τ)Y (τ) = 0 with Q(τ) =

Q0 > 0. That is, Y (τ) = sin(
√
Q0τ) and by (D.12) - (D.14) we obtain

τ(t) = 2√
Q0
Arctan

(

e
√

Q0(t−t0)
)

and

a(t) = Y (τ(t)) = sech
(

√

Q0(t− t0)
)

(3.33)

for t0 ∈ R. Then by (D.18) with α0 = (d− 1)/κ, the scalar field is

φ(t)
def.
= ϕ(τ(t)) = 2

√

(d− 1)

κ
Arctan

(

e
√

Q0(t−t0)
)

+ β0 (3.34)

for β0 ∈ R. Finally, by (3.27), (D.15) and (D.14) we have

V (φ(t)) =

[

d(d− 1)

2κ
(Y ′)2 − 1

2
Y 2(ϕ′)2 − Λ

κ

]

◦ τ(t) (3.35)

=
(d− 1)Q0

2κ

[

d tanh2
(

√

Q0(t− t0)
)

− sech2
(

√

Q0(t− t0)
)]

− Λ

κ
.

so that

V (w) =
(d− 1)Q0

2κ

[

d tanh2

(

ln

(

tan

(

1

2

√

κ

(d− 1)
(w − β0)

)))

−sech2

(

ln

(

tan

(

1

2

√

κ

(d− 1)
(w − β0)

)))]

− Λ

κ
(3.36)
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since

φ−1(w) =
1√
Q0

ln

(

tan

(

1

2

√

κ

(d− 1)
(w − β0)

))

+ t0. (3.37)

This differs from Example 1 only in the form of the potential V .

For Q0 = 1 and t0 = 0, the solver was run with Y and Y ′ both perturbed by .05.

The graphs of a(t) below show that this solution is stable.

Figure 2. Stability of FRLW Example 2
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Example 3 For zero curvature k = 0 and for θ = 1, we take solution 4 in Table

14 of the homogeneous equation Y ′′(τ) +Q(τ)Y (τ) = 0 with Q(τ) = d0(1 − d0)/τ
2

for an arbitrary constant 0 ≤ d0 < 1. That is, Y (τ) = a0τ
d0 and by setting r0 = 1

in (D.19) - (D.21) we obtain τ(t) = ((1 − d0)a0(t− t0))
1

1−d0 and

a(t) = Y (τ(t)) = A0(t− t0)
d0

1−d0 (3.38)

for t > t0 ∈ R and A0
def.
=
(

a0(1 − d0)
d0
)1/(1−d0)

. Then by (D.43) with α0 =

(d− 1)/κ, the scalar field is

φ(t)
def.
= ϕ(τ(t)) = B ln(t− t0) + β0 (3.39)
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for β0 ∈ R and B
def.
=
√

d0(d−1)
κ(1−d0)

. Finally, by (3.27), (D.22) and (D.21), we get

V (φ(t)) =

[

d(d− 1)

2κ
(Y ′)2 − 1

2
Y 2(ϕ′)2 − Λ

κ

]

◦ τ(t)

=
B2

2

(

d0(d+ 1) − 1

(1 − d0)

)

1

(t− t0)2
− Λ

κ
. (3.40)

and

V (w) =
B2

2

(

d0(d+ 1) − 1

(1 − d0)

)

e−
2
B

(w−β0) − Λ

κ
(3.41)

since

φ−1(w) = e
1
B

(w−β0) + t0. (3.42)

By setting d = 3, Λ = t0 = 0 and identifying d0/(1 − d0) here with n in [13], we

obtain the zero curvature solution in example 4.4 of Ellis and Madsen [13]. Also,

by setting d = 2, Λ = 0, a0 = (
√
κ/d0)

d0 and identifying (1−d0)/d0 and κ here with

γ2 and κ2 in [15], we obtain the Cruz-Martinez solution with ǫa = 1, where one

must note that our integration constant β0 corresponds to ln(γ2
√
κ2)/

√
κ2γ2 + φ0

in [15]. Similarly with d = 3, Λ = 0, a0 = (
√

κ/3/d0)
d0 and identifying (1− d0)/d0

and κ here with 3γ3/2 and κ3 in [15], we obtain the (3+1) counterpart of the Cruz-

Martinez solution with ǫa = 1, where again our integration constant β0 corresponds

to 2ln
(

γ3

√
3κ3/2

)

/
√

3κ3γ3 + φ0 in [15]. One can also compare this example with

solutions in [5, 16]

For a0 = 1 and t0 = 0, the solver was run with Y, Y ′ and τ perturbed by .01. The

graphs of a(t) below show that the solution is unstable. In both cases, the absolute

error grows by two orders of magnitude over the graphed time intervals.
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Figure 3. Instability of FRLW Example 3, d0 = 1/2
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Figure 4. Instability of FRLW Example 3, d0 = 1/3
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Example 4 For zero curvature k = 0 and θ = 1, we take solution Y (τ) =

τ, Q(τ) = 0 from line 4 in Table 14 with d0 = 1 for the homogeneous equation

Y ′′(τ) +Q(τ)Y (τ) = 0. By following (D.23) - (D.25) we obtain τ(t) = a0e
t−t0 and

a(t) = Y (τ(t)) = a0e
t−t0 (3.43)

for a0, t0 ∈ R and t > t0. Since Q(τ) = 0 = ϕ′(τ) we have constant scalar field

φ(t)
def.
= ϕ(τ(t)) = φ0 ∈ R. Finally, by equation (3.27) for V (φ(t)) and using that

Y ′(τ) = 1, we obtain constant potential V = 1
κ

(

d(d−1)
2

− Λ
)

.

For a0 = 1 and t0 = 0, the solver was run with Y, Y ′ and τ perturbed by .1. The

graphs of a(t) below show that the solution is unstable. The absolute error grows by

up to four orders of magnitude over the graphed time interval.

Figure 5. Instability of FRLW Example 4
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Example 5 For negative curvature k = −1 and for θ = 1, we consider the classical

EMP equation Y ′′(τ) + Q(τ)Y (τ) = −1/Y (τ)3. For solution 5 in Table 14 with

b0 = d0 = 0 and c0 = 1, we have that Q(τ) = 0 and Y (τ) = (a0 + 2τ)1/2 for some
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a0 ∈ R. Following (D.27) - (D.29) we obtain τ(t) = 1
2
((t− t0)

2 − a0) and

a(t) = Y (τ(t)) = t− t0 (3.44)

for t0 ∈ R. Since Q(τ) = 0 = ϕ′(τ) we obtain constant scalar field φ(t)
def.
=

ϕ(τ(t)) = φ0 ∈ R. Finally, by (3.27), (D.30) and (D.29) we obtain constant

potential V (φ(t)) = −Λ/κ.

For a0 = t0 = 0, the solver was run with Y, Y ′ and τ perturbed by .1. The graphs

of a(t) below show that the solution is unstable. The absolute error grows by two

orders of magnitude over the graphed time interval.

Figure 6. Instability of FRLW Example 5
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Example 6 For θ = 1 and arbitrary curvature k = a0b0 − c20 for some b0 > 0 and

a0, c0 ∈ R, we consider the classical EMP equation Y ′′(τ) + Q(τ)Y (τ) = (a0b0 −

c20)/Y (τ)3. For solution 5 in Table 14 with d0 = 0, we have that Q(τ) = 0 and

Y (τ) = (a0 + b0τ
2 + 2c0τ)

1/2. Following (D.33) - (D.35) with k = λ we obtain

τ(t) = 1

4b
3/2
0

(

b0e
√

b0(t−t0) − 4ke−
√

b0(t−t0) − 4
√
b0c0

)

and

a(t) = Y (τ(t)) =
1

4
e
√

b0(t−t0) +
k

b0
e−

√
b0(t−t0) (3.45)

for t0 ∈ R. Since Q(τ) = 0 = ϕ′(τ) we obtain constant scalar field

φ(t)
def.
= ϕ(τ(t)) = φ0 (3.46)
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for constant φ0 ∈ R. Finally, by (3.27), (D.36) and (D.35) we obtain

V (φ(t)) =
d(d− 1)

2κ







b0

(

b0e
√

b0(t−t0) − 4ke−
√

b0(t−t0)
)2

+ 16b20k
(

b0e
√

b0(t−t0) + 4ke−
√

b0(t−t0)
)2






− Λ

κ

=
1

κ

(

d(d− 1)b0
2

− Λ

)

. (3.47)

For a0 = b0 = 1 and t0 = c0 = 0, the solver was run with Y, Y ′ and τ perturbed by

.1. The graphs of a(t) show that the solution is unstable. In both cases the absolute

error grows by up to two orders of magnitude over the graphed time intervals.

Figure 7. Instability of FRLW Example 6, k = 1
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Figure 8. Instability of FRLW Example 6, k = −1
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Example 7 For curvature k and θ > 0, we consider the EMP equation Y ′′(τ) +

Q(τ)Y (τ) = k/θ2Y (τ)3. For solution 5 in Table 14 with a0 = b0 = 0 and c0 = 1/2,

we have that Q(τ) = d0(1 − d0)/τ
2 for the choice d0 = (1/2) − (

√
−k/θ), and

Y (τ) =
√
τ . Following (D.38)-(D.39) we obtain τ(t) = θ2

4
(t− t0)

2 and

a(t) = Y (τ(t)) =
θ

2
(t− t0) (3.48)

for t > t0 ∈ R. Then by (D.44) with α0 = (d− 1)/κ we obtain scalar field

φ(t) = ϕ(τ(t)) =

√

(d− 1)(θ2 + 4k)

κθ2
ln(t− t0) + β0. (3.49)

Also by (3.27) we obtain

V (φ(t)) =

[

d(d− 1)

2κ

(

θ2(Y ′)2 +
k

Y 2

)

− θ2

2
Y 2(ϕ′)2 − Λ

κ

]

◦ τ(t)

=
(d− 1)2

2κθ2

(θ2 + 4k)

(t− t0)2
− Λ

κ
(3.50)

so that

V (w) =
(d− 1)2

2κθ2

(

θ2 + 4k
)

e
−2

r

κθ2

(d−1)(θ2+4k)
(w−β0) − Λ

κ
(3.51)
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since

φ−1(w) = e

r

κθ2

(d−1)(θ2+4k)
(w−β0)

+ t0. (3.52)

Note that although the number d0 may be complex, the above solution is real for

each k ∈ {−1, 0, 1} by a proper choice of θ > 0. By taking d = 3,Λ = t0 = 0 and

also identifying θ/2 here with A in [13], we obtain the solutions in example 4.5 of

Ellis and Madsen [13]. One can also compare with solutions in [5].

For t0 = 0, the solver was run with Y, Y ′ and τ perturbed by .01. The graphs of

a(t) below show that the solution is unstable. In all three cases below the absolute

error grows by up to two orders of magnitude over the graphed time interval.

Figure 9. Instability of FRLW Example 7, k = 0, θ = 1
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Figure 10. Instability of FRLW Example 7, k = 1, θ = 1
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Figure 11. Instability of FRLW Example 7, k = −1, θ = 4

0

2

4

6

8

10

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

sc
a
le

 f
a
c
to

r 
a
(t

)

time t

45



Example 8 For k ∈ {0, 1} and θ > 0, we consider the EMP equation Y ′′(τ) +

Q(τ)Y (τ) = k/θ2Y (τ)3. For solution 6 in Table 14 with λ1 = k/θ2 and B1 = 3,

we have that Q(τ) = k/θ2τ 4 and Y (τ) = τ . Following (D.45) - (D.46) we obtain

τ(t) = a0e
θ(t−t0) and

a(t) = Y (τ(t)) = a0e
θ(t−t0) (3.53)

for a0 > 0 and t > t0. Then by (D.48) with α0 = (d− 1)/κ, the scalar field is

φ(t)
def.
= ϕ(τ(t)) = − 1

a0

√

(d− 1)k

θ2κ
e−θ(t−t0) + β0. (3.54)

Finally, by (3.27) we obtain

V (φ(t)) =

[

d(d− 1)

2κ

(

θ2(Y ′)2 +
k

Y 2

)

− θ2

2
Y 2(ϕ′)2 − Λ

κ

]

◦ τ(t)

=
d(d− 1)

2κ
θ2 +

(d− 1)2k

2κa2
0

e−2θ(t−t0) − Λ

κ

so that

V (w) =
(d− 1)θ2

2

(

d

κ
+ (w − β0)

2

)

− Λ

κ
(3.55)

by composition with φ−1. By taking d = 3, Λ = t0 = 0 and identifying θ with ω,

a0 with A and β0 with φ0 in [13], this is example 4.1 of Ellis and Madsen [13].

One can also compare this example with the (non-phantom) exponential expansion

solution in [17], and also other solutions in [5].

For a0 = θ = k = 1 and t0 = 0, the solver was run with Y, Y ′ and τ perturbed

by .1. The graphs of a(t) below show that the solution is unstable. The absolute

error grows by two orders of magnitude over the graphed time interval.
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Figure 12. Instability of FRLW Example 8
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Example 9 For θ = 1 and positive curvature k = 1, we consider the classical EMP

equation Y ′′(τ)+Q(τ)Y (τ) = 1/Y (τ)3. For solution 7 in Table 14 we have Y (τ) =

(a2
0τ

2 + b20)
1/2 with λ1 = 1 and we take Q(τ) = (1−a2

0b
2
0)/ (a2

0τ
2 + b20)

2
for a0, b0 > 0

and (1 − a2
0b

2
0) > 0. Following (D.49)-(D.51) we obtain τ(t) = b0

a0
sinh(a0(t − t0))

and

a(t) = Y (τ(t)) = b0 cosh(a0(t− t0)) (3.56)

for t0 ∈ R. Then by (D.54) with α0 = (d− 1)/κ, we have scalar field

φ(t) =
Bd

a0

√

2

(d− 1)
Arctan (sinh(a0(t− t0))) + β0 (3.57)

for Bd
def.
=
√

(d−1)2(1−a2
0b20)

2κb20
. By (3.17) we obtain

V (φ(t)) =

[

d(d− 1)

2κ

(

(Y ′)2 +
1

Y 2

)

− 1

2
Y 2(ϕ′)2 − Λ

κ

]

◦ τ(t)

=
d(d− 1)a2

0

2κ
+B2

dsech
2(a0(t− t0)) −

Λ

κ
(3.58)

so that

V (w) =
d(d− 1)a2

0

2κ
+B2

d cos2

(

a0

Bd

√

(d− 1)

2
(w − β0)

)

− Λ

κ
(3.59)
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by composition with φ−1. By taking d = 3,Λ = t0 = 0 and identifying a0 with ω, b0

with A and Bd = B3 with B in [13], this is comparable to example 4.3 of Ellis and

Madsen [13]. One can verify via differentiation that φ(t) in (3.57) agrees up to a

constant with φ(t) in example 4.3 of [13].

For a0 = θ = 1 and t0 = 0, the solver was run with Y, Y ′ and τ perturbed by

.01. The graphs of a(t) below show that the solution is unstable. The absolute error

grows by up to two orders of magnitude over the graphed time interval.

Figure 13. Instability of FRLW Example 9
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Example 10 For θ = 1 and arbitrary curvature k, we consider the classical EMP

equation Y ′′(τ)+Q(τ)Y (τ) = k/Y (τ)3. For solution 7 in Table 14, we have Y (τ) =

(a2
0τ

2−b20)1/2 with λ1 = k and we take Q(τ) = (k+a2
0b

2
0)/ (a2

0τ
2 − b20)

2
for a0, b0 > 0

such that (k + a2
0b

2
0) > 0. Following (D.55)-(D.57) we obtain τ(t) = b0

a0
cosh(a0(t−

t0)) and

a(t) = Y (τ(t)) = b0 sinh(a0(t− t0)) (3.60)

for t0 ∈ R. Then by (D.60) with α0 = (d− 1)/κ, the scalar field is

φ(t) = −Bd

a0

√

2

(d− 1)
Arctanh (cosh(a0(t− t0))) + β0 (3.61)
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for Bd
def.
=
√

(d−1)2(k+a2
0b20)

2κb20
. By (3.17) we obtain

V (φ(t)) =

[

d(d− 1)

2κ

(

(Y ′)2 +
k

Y 2

)

− 1

2
Y 2(ϕ′)2 − Λ

κ

]

◦ τ(t)

=
d(d− 1)a2

0

2κ
+B2

dcsch
2(a0(t− t0)) −

Λ

κ
(3.62)

so that

V (w) =
d(d− 1)a2

0

2κ
+B2

d sinh2

(

a0

Bd

√

(d− 1)

2
(w − β0)

)

− Λ

κ
(3.63)

by composition with φ−1. By taking d = 3,Λ = t0 = 0 and identifying a0 with ω, b0

with A and Bd = B3 with B in [13], this is comparable to example 4.2 of Ellis and

Madsen [13]. One can verify via differentiation that φ(t) in (3.57) agrees up to a

constant with φ(t) in example 4.2 of [13].

3.1.2 Second reduction to classical EMP: zero curvature

For a second set of examples, we take special case with curvature k = 0 and

ρ′ = p′ = Di = 0 for all i 6= 1. For non-zero matter density D1/a(t)
n1 ≡ D/a(t)n

with D, n 6= 0 constants, and we choose parameter q = n/2. Then Theorem 3.1.1

shows that solving Einstein’s equations

d

2
H2(t)

(i)′′
=

κ

(d− 1)

[

1

2
φ̇(t)2 + V (φ(t)) +

D

a(t)n

]

+
Λ

(d− 1)
(3.64)

Ḣ(t) +
d

2
H(t)2 (ii)′′

= − κ

(d− 1)

[

1

2
φ̇(t)2 − V (φ(t)) +

(n− d)D

da(t)n

]

+
Λ

(d− 1)

is equivalent to solving the classical EMP equation

Y ′′(τ) +Q(τ)Y (τ) =
−n2κD

2θ2d(d− 1)Y (τ)3
(3.65)

for any constant θ > 0. The solutions of (i)′′, (ii)′′ and (3.65) are related by

a(t) = Y (τ(t))2/n and ϕ′(τ)2 =
2(d− 1)

nκ
Q(τ) (3.66)

49



for φ(t) = ϕ(τ(t)) and

τ̇ (t) = θa(t)n/2 = θY (τ(t)). (3.67)

Also in the converse direction, V is taken to be

V (φ(t)) =

[

2θ2d(d− 1)

κn2
(Y ′)2 − θ2

2
Y 2(ϕ′)2 − D

Y 2
− Λ

κ

]

◦ τ(t). (3.68)

We now refer to Appendix D for solutions of the classical and corresponding

homogeneous EMP equation (3.65) that we will map over to solutions of Einstein’s

equations. By comparing (3.67) and (D.5), we note to only consider solutions of

(D.5) in Appendix D corresponding to r0 = 1. Also note that σ(t) in (D.6) is not

relevant in the FRLW model.

Example 11 For zero matter density (D = 0) and for θ = 1, we take solution

1 in Table 14 of the homogeneous equation Y ′′(τ) + Q(τ)Y (τ) = 0 with Q(τ) =

Q0 > 0. That is, Y (τ) = cos(
√
Q0τ) and by (D.8) - (D.10) we obtain τ(t) =

2√
Q0
Arctan

(

tanh
(√

Q0

2
(t− t0)

))

and

a(t) = Y (τ(t))2/n = sech2/n
(

√

Q0(t− t0)
)

(3.69)

for t0 ∈ R. Then by (D.17) with α0 = 2(d− 1)/nκ, we have scalar field

φ(t)
def.
= ϕ(τ(t)) = 23/2

√

(d− 1)

nκ
Arctan

(

tanh

(√
Q0

2
(t− t0)

))

+ β0 (3.70)

for β0 ∈ R. Finally, by (3.68), (D.11) and (D.10) we obtain

V (φ(t)) =

[

2d(d− 1)

n2κ
(Y ′)2 − 1

2
Y 2(ϕ′)2 − Λ

κ

]

◦ τ(t) (3.71)

=
(d− 1)Q0

nκ

(

2d

n
tanh2

(

√

Q0(t− t0)
)

− sech2
(

√

Q0(t− t0)
)

)

− Λ

κ
.

so that

V (w) =
(d− 1)Q0

nκ

(

2d

n
tanh2

(

2Arctanh

(

tan

(

1

23/2

√

nκ

(d− 1)
(w − β0)

)))

−sech2

(

2Arctanh

(

tan

(

1

23/2

√

nκ

(d− 1)
(w − β0)

))))

− Λ

κ
.(3.72)
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since

φ−1(w) =
2√
Q0

Arctanh

(

tan

(

1

23/2

√

nκ

(d− 1)
(w − β0)

))

+ t0. (3.73)

This solution is the same as Example 1 when n = 2. One reasonably expects the

convergence properties to be the same as Example 1, since Y (τ) and the EMP

equation do not depend on n.

Example 12 For zero matter density (D = 0) and for θ = 1, we take solution

2 in Table 14 of the homogeneous equation Y ′′(τ) + Q(τ)Y (τ) = 0 with Q(τ) =

Q0 > 0. That is, Y (τ) = sin(
√
Q0τ) and by (D.12) - (D.14) we obtain τ(t) =

2√
Q0
Arctan

(

e
√

Q0(t−t0)
)

and

a(t) = Y (τ(t))2/n = sech2/n
(

√

Q0(t− t0)
)

(3.74)

for t0 ∈ R. Then by (D.18) with α0 = 2(d− 1)/nκ, the scalar field is

φ(t)
def.
= ϕ(τ(t)) = 23/2

√

(d− 1)

nκ
Arctan

(

e
√

Q0(t−t0)
)

+ β0 (3.75)

for β0 ∈ R. Finally, by (3.68), (D.15) and (D.14) we have

V (φ(t)) =

[

2d(d− 1)

n2κ
(Y ′)2 − 1

2
Y 2(ϕ′)2 − Λ

κ

]

◦ τ(t) (3.76)

=
(d− 1)Q0

nκ

(

2d

n
tanh2

(

√

Q0(t− t0)
)

− sech2
(

√

Q0(t− t0)
)

)

− Λ

κ
.

so that

V (w) =
(d− 1)Q0

nκ

[

2d

n
tanh2

(

ln

(

tan

(

1

22/3

√

nκ

(d− 1)
(w − β0)

)))

−sech2

(

ln

(

tan

(

1

22/3

√

nκ

(d− 1)
(w − β0)

)))]

− Λ

κ
(3.77)

since

φ−1(w) =
1√
Q0

ln

(

tan

(

1

22/3

√

nκ

(d− 1)
(w − β0)

))

+ t0. (3.78)
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This differs from Example 7 only in the form of the potential V . This solution

is the same as Example 2 when n = 2. One reasonably expects the convergence

properties to be the same as Example 2, since Y (τ) and the EMP equation do not

depend on n.

Example 13 For D = 2d(d − 1)/n2κ and θ = 1, we consider the classical EMP

equation Y ′′(τ)+Q(τ)Y (τ) = −1/Y (τ)3. For solution 5 in Table 14 with b0 = d0 =

0 and c0 = 1, we have that Q(τ) = 0 and Y (τ) = (a0 + 2τ)1/2 for some a0 ∈ R.

Following (D.27) - (D.29) we obtain τ(t) = 1
2
((t− t0)

2 − a0) and

a(t) = Y (τ(t))2/n = (t− t0)
2/n (3.79)

for t0 ∈ R and t > t0. Since Q(τ) = 0 = ϕ′(τ), the scalar field is constant

φ(t)
def.
= ϕ(τ(t)) = φ0 (3.80)

for φ0 ∈ R. Finally, by (3.68), (D.30) and (D.29) we obtain constant potential

V (φ(t)) = −Λ

κ
. (3.81)

This solution is the same as Example 5 when n = 2. One reasonably expects the

convergence properties to be the same as Example 5, since Y (τ) and the EMP

equation do not depend on n.

Example 14 For θ = 1 and D = 2d(d − 1)/n2κ we consider the classical EMP

equation Y ′′(τ) + Q(τ)Y (τ) = −1/Y (τ)3. For solution 5 in Table 14 with d0 = 0

and a0 = (c20 − 1)/b0 for some b0 > 0 and c0 ∈ R, we have that Q(τ) = 0 and

Y (τ) = (a0 + b0τ
2 + 2c0τ)

1/2. Following (D.33) - (D.35) with λ = −1 we obtain

τ(t) = 1

4b
3/2
0

(

b0e
√

b0(t−t0) + 4e−
√

b0(t−t0) − 4
√
b0c0

)

and

a(t) = Y (τ(t))2/n =

(

1

4
e
√

b0(t−t0) − 1

b0
e−

√
b0(t−t0)

)2/n

(3.82)
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for t0 ∈ R. Since Q(τ) = 0 = ϕ′(τ), the scalar field is any constant

φ(t)
def.
= ϕ(τ(t)) = φ0 ∈ R. (3.83)

Finally, by (3.68), (D.36) and (D.35) we obtain constant potential

V (φ(t)) =
2d(d− 1)

κn2







b0

(

b0e
√

b0(t−t0) + 4e−
√

b0(t−t0)
)2

− 16b20
(

b0e
√

b0(t−t0) − 4e−
√

b0(t−t0)
)2






− Λ

κ

=
1

κ

(

2d(d− 1)b0
n2

− Λ

)

. (3.84)

This solution is the same as Example 6 when n = 2. One reasonably expects the

convergence properties to be the same as Example 6, since Y (τ) and the EMP

equation do not depend on n.

Example 15 For constant C
def.
= n2κD

2θ2d(d−1)
> 0, we consider the EMP equation

Y ′′(τ)+Q(τ)Y (τ) = −C/θ2Y (τ)3. For solution 5 in Table 14 with a0 = b0 = 0 and

c0 = 1/2, we have that Q(τ) = d0(1 − d0)/τ
2 for the choice d0 = (1/2) − (

√
C/θ),

and Y (τ) =
√
τ . Following (D.38)-(D.39) we obtain τ(t) = θ2

4
(t− t0)

2 and

a(t) = Y (τ(t))2/n =

(

θ

2
(t− t0)

)2/n

(3.85)

for t > t0 ∈ R. Then by (D.44) with α0 = 2(d− 1)/nκ, we get scalar field

φ(t) = ϕ(τ(t)) =

√

2(d− 1)(θ2 − 4C)

nκθ2
ln(t− t0) + β0. (3.86)

Also by (3.27) we obtain

V (φ(t)) =
(d− 1)(θ2 − 4C)(2d− n)

κn2θ2(t− t0)2
− Λ

κ
(3.87)

so that

V (w) =
(d− 1)(θ2 − 4C)(2d− n)

κn2θ2
e
−2

r

nκθ2

2(d−1)(θ2−4C)
(w−β0) − Λ

κ
(3.88)
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since

φ−1(w) = e

r

nκθ2

2(d−1)(θ2−4C)
(w−β0)

+ t0. (3.89)

For C = 1, θ = 4, n = 2 and t0 = 0, the solver was run with Y, Y ′ and τ

perturbed by .001. The graphs of a(t) below show that the solution is unstable. The

absolute error grows three orders of magnitude over the graphed time interval. Since

Y (τ) does not depend on n, other choices of n will also be unstable.
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Example 16 For θ = 1 and constant C
def.
= n2κD

2d(d−1)
> 0, we consider the EMP

equation Y ′′(τ) + Q(τ)Y (τ) = −C/Y (τ)3. For solution 7 in Table 14 we have

Y (τ) = (a2
0τ

2 − b20)
1/2 with λ1 = −C and we let Q(τ) = (a2

0b
2
0 − C)/ (a2

0τ
2 − b20)

2

for a0, b0 > 0 chosen such that (a2
0b

2
0 − C) > 0. Following (D.55)-(D.57) we obtain

τ(t) = b0
a0

cosh(a0(t− t0)) and

a(t) = Y (τ(t))2/n = (b0 sinh(a0(t− t0)))
2/n (3.90)

for t0 ∈ R. Then by (D.60) with α0 = 2(d− 1)/nκ, the scalar field is

φ(t) = −Bd

a0

√

2

(d− 1)
Arctanh (cosh(a0(t− t0))) + β0 (3.91)
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for Bd
def.
=
√

(d−1)2(a2
0b20−C)

nκb20
. By (3.17) we obtain

V (φ(t)) =

[

2d(d− 1)

κn2
(Y ′)2 − 1

2
Y 2(ϕ′)2 − D

Y 2
− Λ

κ

]

◦ τ(t)

=
2d(d− 1)a2

0

n2κ
+
B2

d(2d− n)

n(d− 1)
csch2(a0(t− t0)) −

Λ

κ

(3.92)

so that

V (w) =
2d(d− 1)a2

0

n2κ
+
B2

d(2d− n)

n(d− 1)
cosh2

(

a0

Bd

√

(d− 1)

2
(w − β0)

)

− Λ

κ
(3.93)

by composition with φ−1.

For C = b0 = 1, a0 = 2, n = 3 and t0 = 0, the solver was run with Y, Y ′ and τ

perturbed by .01. The graphs of a(t) below show that the solution is unstable. The

absolute error grows 16 orders of magnitude over the graphed time interval. Since

Y (τ) does not depend on n, other choices of n will also be unstable.

Figure 15. Instability of FRLW Example 16
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3.2 In terms of a Schrödinger-Type Equation

To reformulate the Einstein field equations (i),(ii) in (3.5) in terms of a

Schrödinger-type equation (with one less non-linear term than that which is pro-

vided by the generalized EMP formulation), one can apply Corollary 2.3.1 to the

difference (ii)-(i). In doing so, Corollary 2.3.1 may be applied in a few different

ways: either by taking G(t)
a(t)A = k

a(t)2
in which case this term transforms into the

linear term Eu(σ) = θ2ku(σ) in the corresponding Schrödiner-type equation, or by

taking G(t)
a(t)A = − κnjDj(t)

d(d−1)a(t)nj where j is some index with nj 6= 0 in which case this

nonlinear term transforms into the linear term E(σ)u(σ) = − θ2κn2
j

2d(d−1)
Dj(σ)u(σ) in

the corresponding Schrödinger-type equation. We will state both applications.

Theorem 3.2.1
(

Apply Corollary 2.3.1 with G(t)
a(t)A = k

a(t)2

)

Suppose you are given a twice differentiable function a(t) > 0, a once differentiable

function φ(t), and also functions Di(t), ρ
′(t), p′(t), V (x) which satisfy the Einstein

equations (i), (ii) in (3.5) for some k, n1, . . . , nM ,Λ ∈ R, d ∈ R\{0, 1}, κ ∈ R\{0}

and M ∈ N. Let g(σ) denote the inverse of a function σ(t) which satisfies

σ̇(t) =
1

θa(t)
(3.94)

for some θ > 0. Then the following functions

u(σ) =
1

a(g(σ))
(3.95)

P (σ) =
κ

(d− 1)
ψ′(σ)2 (3.96)

solve the Schrödinger-type equation

u′′(σ) + [θ2k − P (σ)]u(σ) =

M
∑

i=1

θ2κniDi(σ)

d(d− 1)u(σ)1−ni
+
θ2κ(ρ(σ) + p(σ))

(d− 1)u(σ)
(3.97)

for

ψ(σ) = φ(g(σ)) (3.98)
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Di(σ) = Di(g(σ)), 1 ≤ i ≤M (3.99)

and

ρ(σ) = ρ′(g(σ)), p(σ) = p′(g(σ)). (3.100)

Conversely, suppose you are given a twice differentiable function u(σ) > 0, and

also functions P (σ),Di(σ) for 1 ≤ i ≤ M,M ∈ N and ρ(σ), p(σ) which solve

(3.97) for some constants θ > 0, k ∈ R, κ ∈ R\{0}, d ∈ R\{0, 1} and ni ∈ R for

1 ≤ i ≤ M . In order to construct functions which solve (i), (ii), first find σ(t), ψ(σ)

which solve the differential equations

σ̇(t) =
1

θ
u(σ(t)) and ψ′(σ)2 =

(d− 1)

κ
P (σ). (3.101)

Then the functions

a(t) =
1

u(σ(t))
(3.102)

φ(t) = ψ(σ(t)) (3.103)

Di(t) = Di(σ(t)), 1 ≤ i ≤M (3.104)

ρ′(t) = ρ(σ(t)), p′(t) = p(σ(t)), (3.105)

and

V (φ(t)) =

[

d(d− 1)

2κ

(

1

θ2
(u′)2 + ku2

)

− u2(ψ′)2

2θ2
−

M
∑

i=1

Diu
ni − ρ − Λ

κ

]

◦ σ(t)

(3.106)

satisfy the equations (i), (ii).

Proof. This proof will implement Corollary 2.3.1 with con-

stants and functions as indicated in the following table.
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Table 2. Corollary 2.3.1 applied to FRLW

In Corollary substitute In Corollary substitute

ε κ/(d− 1) E(σ) constant θ2k

G(t) constant k A 2

Gi(t), 1 ≤ i ≤M − κni

d(d−1)
Di(t) Ai ni

GM+1(t)
−κ

(d−1)
(ρ′(t) + p′(t)) AM+1 0

Fi(σ), 1 ≤ i ≤M θ2κni

d(d−1)
Di(σ) Ci 1 − ni

FM+1(σ) θ2κ
(d−1)

(ρ(σ) + p(σ)) CM+1 1

To prove the forward implication, we assume to be given functions which solve

the Einstein field equations (i) and (ii). Subtracting equations (ii) − (i),

Ḣ(t) − k

a(t)2
= − κ

(d− 1)

[

φ̇(t)2 +

M
∑

i=1

niDi(t)

da(t)ni
+ (ρ′(t) + p′(t))

]

. (3.107)

This shows that a(t), φ(t), Di(t), ρ
′(t) and p′(t) satisfy the hypothesis of

Corollary 2.3.1, applied with constants ε,N,A,A1 . . . , AN and functions

G(t), G1(t) . . . , GN(t) according to Table 2. Since σ(t), u(σ), P (σ) and ψ(σ) defined

in (3.94), (3.95), (3.96) and (3.98) are equivalent to that in the forward implica-

tion of Corollary 2.3.1, by this corollary and by definitions (3.99) and (3.100) of

Di(σ) and ρ(σ), p(σ), the Schrödinger-type equation (2.110) holds for constants

C1, . . . , CN and functions F1(σ), . . . , FN(σ) as indicated in Table 2. This proves

the forward implication.

To prove the converse implication, assume we are given functions which solve

the Schrödinger-type equation (3.97) and we begin by showing that (i) is satisfied.

Differentiating the definition (3.102) of a(t) and by the definition in (3.101) of σ(t),

we see that

ȧ(t) = − u′(σ(t))

u(σ(t))2
σ̇(t)
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= − u′(σ(t))

θu(σ(t))
. (3.108)

Dividing by a(t), we obtain

H(t)
def.
=

ȧ(t)

a(t)
= −1

θ
u′(σ(t)). (3.109)

Differentiating the definition (3.103) of φ(t) and using definition in (3.101) of σ(t),

we get that

φ̇(t) = ψ′(σ(t))σ̇(t) =
1

θ
ψ′(σ(t))u(σ(t)). (3.110)

Using (3.109) and (3.110), and also the definitions (3.102), (3.104) and (3.105) of

a(t), Di(t) and ρ′(t), p′(t) respectively, the definition (3.106) of V ◦φ can be written

V (φ(t)) =
d(d− 1)

2κ

(

H(t)2 +
k

a(t)2

)

− 1

2
φ̇(t)2 −

M
∑

i=1

Di(t)

a(t)ni
− ρ′(t) − Λ

κ
. (3.111)

This shows that (i) holds (That is, the definition of V (φ(t)) was designed to be

such that (i) holds).

To conclude the proof we must also show that (ii) holds. In the converse direc-

tion the hypothesis of the converse of Corollary 2.3.1 holds, applied with constants

N,C1, . . . , CN and functions E(σ), F1(σ), . . . , FN (σ) as indicated in Table 2. Since

σ(t), ψ(σ), a(t) and φ(t) defined in (3.101), (3.102) and (3.103) are consistent with

the converse implication of Corollary 2.3.1, applied with ε and A as in Table 2,

by this corollary and by definitions (3.104) and (3.105) of Di(t) and ρ′(t), p′(t)

the scale factor equation (2.109) holds for constants ε, A,A1, . . . , AN and functions

G(t), G1(t), . . . , GN(t) according to Table 2. That is, we have regained (3.107)

which shows that the subtraction of equations (ii)-(i) holds in the converse direc-

tion. Now solving (3.111) for ρ′(t) and substituting this into (3.107), we obtain (ii).

This proves the theorem. ⋄
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3.2.1 Reduction to linear Schrödinger: pure scalar field

To compute some exact solutions, we take special case ρ′ = p′ = Di = 0 so that

Theorem 3.2.1 shows that solving the Einstein equations

d

2
H2(t) +

dk

2a(t)2

(i)′′′
=

κ

(d− 1)

[

1

2
φ̇(t)2 + V (φ(t))

]

+
Λ

(d− 1)
(3.112)

(3.113)

Ḣ(t) +
d

2
H(t)2 +

(d− 2)k

2a(t)2

(ii)′′′
= − κ

(d− 1)

[

1

2
φ̇(t)2 − V (φ(t))

]

+
Λ

(d− 1)

is equivalent to solving the linear Schrödinger equation

u′′(σ) + [θ2k − P (σ)]u(σ) = 0 (3.114)

for any constant θ > 0. The solutions of (i)′′′, (ii)′′′ and (3.114) are related by

a(t) =
1

u(σ(t))
and ψ′(σ)2 =

(d− 1)

κ
P (σ) (3.115)

for φ(t) = ψ(σ(t)) and

σ̇(t) =
1

θa(t)
=

1

θ
u(σ(t)). (3.116)

Also in the converse direction, V is taken to be

V (φ(t)) =

[

d(d− 1)

2κ

(

1

θ2
(u′)2 + ku2

)

− u2(ψ′)2

2θ2
− Λ

κ

]

◦ σ(t). (3.117)

We now refer to Appendix E for solutions of the linear Schrödinger equation

(3.114), which we will map to solutions of Einstein’s equations using the theorem.

Example 17 For zero curvature k = 0 and θ = 1, we take solution 1 in Table 15

with a0 = d0 = 0 so that we have u(σ) = b0σ + c0 and P (σ) = 0 for b0 > 0 and

c0 ∈ R. By (E.4) - (E.6) we obtain σ(t) = eb0(t−t0) − c0
b0

and

a(t) =
1

u(σ(t))
=

1

b0
e−b0(t−t0) (3.118)
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for t0 ∈ R. Since P = 0 = ψ′(σ), the scalar field is constant

ψ(σ) = ψ0 ∈ R. (3.119)

Finally, by (3.117) and (E.7) we obtain constant potential

V (φ(t)) =

[

d(d− 1)

2κ
(u′)2 − Λ

κ

]

◦ σ(t)

=
d(d− 1)

2κ
b20 −

Λ

κ
. (3.120)

Example 18 For zero curvature k = 0 and θ = 1, we take solution 1 in Ta-

ble 15 with a0 > 0 and d0 = 0 so that we have u(σ) = a0σ
2 + b0σ + c0

and P (σ) = 2a0/(a0σ
2 + b0σ + c0). By (E.8) - (E.10) we obtain σ(t) =

1
2a0

(√
−∆ tan

[√
−∆
2

(t− t0)
]

− b0

)

and

a(t) =
1

u(σ(t))
=

4a0

−∆
cos2

[
√
−∆

2
(t− t0)

]

(3.121)

for negative discriminant ∆ = b20 − 4a0c0 < 0 and t0 ∈ R. Then by (E.13) with

α0 = (d− 1)/κ, the scalar field is

φ(t)
def.
= ψ(σ(t)) =

√

2(d− 1)

κ
ln

[
√
−∆

a0

(

tan

[
√
−∆

2
(t− t0)

]

+sec

[
√
−∆

2
(t− t0)

])]

+ β0 (3.122)

for β0 ∈ R. Finally, by (3.117), (E.11) and (E.10) we obtain

V (φ(t)) =

[

d(d− 1)

2κ
(u′)2 − 1

2
u2(ψ′)2 − Λ

κ

]

◦ σ(t)

=
−∆(d− 1)

2κ

(

d tan2

[
√
−∆

2
(t− t0)

]

− 1

2
sec2

[
√
−∆

2
(t− t0)

])

− Λ

κ
.

(3.123)

Example 19 For positive curvature k = 1 and θ = 1, we take solution 2 in

Table 15 with b0 = 1/
√

2 and a0 > 0 so that we have u(σ) = a0 cos2(σ/
√

2),
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P (σ) = tan2(σ/
√

2) and E = 1. By (E.14) - (E.16) we obtain σ(t) =
√

2Arctan
(

a0√
2
(t− t0)

)

and

a(t) =
1

u(σ(t))
=

1

a0

(

1 +
a2

0

2
(t− t0)

2

)

(3.124)

for t0 ∈ R. Then by (E.19) with α0 = (d− 1)/κ, the scalar field becomes

φ(t) =

√

(d− 1)

2κ
ln

[

a2
0

2
(t− t0)

2 + 1

]

+ β0 (3.125)

for β0 ∈ R. Finally, by (3.117), (E.17) and (E.16), we obtain

V (φ(t)) =
(d− 1)

κ

(

(2d− 1)a4
0(t− t0)

2 + 2da2
0

(2 + a2
0(t− t0)2)

2

)

− Λ

κ
. (3.126)

That is, we have

V (w) = C1e
−

q

2κ
(d−1)

w − C2e
−2

q

2κ
(d−1)

w − Λ

κ
(3.127)

for constants

C1 =
(d− 1)(2d− 1)a2

0

2κ
e

q

2κ
(d−1)

β0 , C2 =
(d− 1)2a2

0

2κ
e
2

q

2κ
(d−1)

β0 (3.128)

and w ≥
√

(d−1)
2κ

ln(a2
0/2) + β0, since

φ−1(w) =

√
2

a0

√

e

q

2κ
(d−1)

(w−β0) − 1 + t0. (3.129)

By taking d = 3 and t0 = 0, replacing a0 with 1/a0, and identifying κ and β0 here

with K2 and φ0 in [26] respectively, we obtain the string-inspired solution II of [26].

One can check that the conditions on the constants C1, C2 in [26] (with d = 3) agree

with the example here since

a2
0 =

2κC2
1

(2d− 1)2C2
and β0 =

√

(d− 1)

2κ
ln

(

(2d− 1)C2

(d− 1)C1

)

. (3.130)

For a0 = 1 and t0 = 0, the solver was run with u, u′ and σ perturbed by .001.

The graphs of a(t) below show that the solution is unstable. The absolute error

grows by up to five orders of magnitude over the graphed time interval.
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Figure 16. Instability of FRLW Example 19

0

10

20

30

40

50

0 2 4 6 8 10

sc
a
le

 f
a
c
to

r 
a
(t

)

time t

Example 20 For negative curvature k = −1 and θ = 1, we take solution 4 in

Table 15 with c0 = −1 and b0 = 0 so that we have u(σ) = a0e
−σ, P (σ) = 0 and

E = −1. By (E.28) - (E.30) with r0 = 1 we obtain σ(t) = ln (a0(t− t0)) and

a(t) =
1

u(σ(t))
= (t− t0) (3.131)

for t0 ∈ R. Since P = 0 = ψ′(σ), we get ψ(σ) = ψ0 for constant ψ0 ∈ R. Finally,

by (3.117), (E.31) and (E.30), we obtain constant potential V (φ(t)) = −Λ/κ.

For a0 = 1 and t0 = 0, the solver was run with u, u′ and σ perturbed by .001.

The graphs of a(t) below show that the solution is unstable. The absolute error

grows four orders of magnitude over the graphed time interval.
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Figure 17. Instability of FRLW Example 20
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Example 21 For negative curvature k = −1 and θ = 1, we take solution 4 in Table

15 with c0 = −1 and a0, b0 > 0 so that we have u(σ) = a0e
−σ − b0e

σ, P (σ) = 0 and

E = −1. By (E.32) - (E.34) we obtain σ(t) = ln
(
√

a0

b0
tanh(

√
a0b0(t− t0))

)

and

a(t) =
1

u(σ(t))
=

1

2
√
a0b0

sinh(2
√

a0b0(t− t0)) (3.132)

for t0 ∈ R. Since P = 0 = ψ′(σ), we have that ψ(σ) = ψ0 for constant ψ0 ∈ R.

Finally, by (3.117), (E.35) and (E.34), we obtain constant potential

V (φ(t)) =

[

d(d− 1)

2κ

(

(u′)2 − u2
)

− Λ

κ

]

◦ σ(t)

=
2d(d− 1)

κ
a0b0 −

Λ

κ
(3.133)

since coth2(x) − csch2(x) = 1.

Example 22 For arbitrary curvature k and θ = 1, we take solution 5 in Table

15 with c0 = −1 and b0 = k + 1 so that we have u(σ) = (a0/σ)e−σ2/2, P (σ) =

σ2 + 2/σ2 + (k + 1) and E = k for a0 > 0. By (E.36) - (E.38) we obtain σ(t) =
√

2 ln(a0(t− t0)) and

a(t) =
1

u(σ(t))
=

√
2(t− t0)

√

ln(a0(t− t0)) (3.134)
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for t > 1/a0 + t0 ∈ R. Then by (E.41) with α0 = (d− 1)/κ, the scalar field is

φ(t) = ψ(σ(t))

=

√

(d− 1)

2κ

(

√

2 ln2(a0(t− t0)) + (k + 1) ln(a0(t− t0)) + 1

+ ln [2 ln(a0(t− t0))] − ln [2(1 + k) ln(a0(t− t0)) + 4

+ 4

√

2 ln2(a0(t− t0)) + (1 + k) ln(a0(t− t0)) + 1

]

−(1 + k)√
2

ln

[

2
√

2

√

2 ln2(a0(t− t0)) + (1 + k) ln(a0(t− t0)) + 1

−(1 + k) − 4 ln(a0(t− t0))]) + β0 (3.135)

for β0 ∈ R. Finally, by (3.117), (E.39) and (E.38), we obtain

V (φ(t)) =

[

d(d− 1)

2κ

(

(u′)2 + ku2
)

− u2(ψ′)2

2
− Λ

κ

]

◦ σ(t) (3.136)

=
(d− 1)

2κ(t− t0)2

(

d

(

1 +
1

2 ln(a0(t− t0))

)2

+
dk

2 ln(a0(t− t0))

−
[

2 ln2(a0(t− t0)) + 1 + (k + 1) ln(a0(t− t0))
]

2 ln2(a0(t− t0))

)

− Λ

κ

For a0 = k = 1 and t0 = 0, the solver was run with u, u′ and σ perturbed by

.001. The graphs of a(t) below show that the solution is unstable. The absolute

error grows up to four orders of magnitude over the graphed time interval. Since

E − P (σ) is independent of k, the below graph is also applicable to k = 0,−1.
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Figure 18. Instability of FRLW Example 22
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Example 23 For positive curvature k = 1 and θ = 1, we take solution 5 in Table

15 with c0 = 0 and a0 = b0 = 1 so that we have u(σ) = 1/σ, P (σ) = 2/σ2 + 1 and

E = 1. By (E.42) - (E.44) with r0 = 1 we obtain σ(t) =
√

2(t− t0) and

a(t) =
1

u(σ(t))
=
√

2(t− t0) (3.137)

for t > t0 ∈ R. Then by (E.47) with α0 = (d− 1)/κ, we have

φ(t) =

√

(d− 1)

κ

(

√

g(t) +
1√
2

ln [2(t− t0)] −
√

2 ln
[√

2 +
√

g(t))
]

)

+ β0

for g(t) = 2(t− t0) + 2 and β0 ∈ R. Finally, by (3.117), (E.45) and (E.44), we get

V (φ(t)) =
(d− 1)

4κ

(

(d− 2)

2(t− t0)2
+

(d− 1)

(t− t0)

)

− Λ

κ
. (3.138)

For t0 = 0, the solver was run with u, u′ and σ perturbed by .01. The graphs of

a(t) below show that the solution is unstable. The absolute error grows two orders

of magnitude over the graphed time interval.
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Figure 19. Instability of FRLW Example 23
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Example 24 For zero curvature k = 0 and θ = 1, we take solution 5 in Table 15

with b0 = c0 = 0 and a0 = 0 so that we have u(σ) = 1/σ, P (σ) = 2/σ2 and E = 0.

By (E.42) - (E.44) with r0 = 1 we obtain σ(t) =
√

2(t− t0) and

a(t) =
1

u(σ(t))
=
√

2(t− t0) (3.139)

for t > t0 ∈ R. Then by (E.47) with α0 = (d− 1)/κ and b0 = 0, we have

φ(t) =

√

(d− 1)

2κ
ln [2(t− t0)] + β0

for β0 ∈ R. Finally, by (3.117), (E.45) and (E.44), we obtain

V (φ(t)) =
(d− 1)(d− 2)

8κ(t− t0)2
− Λ

κ
. (3.140)

For t0 = 0, the solver was run with u, u′ and σ perturbed by .001. The graphs of

a(t) below show that the solution is unstable. The absolute error grows up to three

orders of magnitude over the graphed time interval.

67



Figure 20. Instability of FRLW Example 24
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Example 25 We take solution 7 in Table 15 with c0 = kθ2 and b0 > 0 and a0 > 0

so that we have u(σ) = a0/σ
b0, P (σ) = b0(b0 +1)/σ2 +kθ2 and E = kθ2. By (E.54)

- (E.56) we obtain

σ(t) =
A1/b0

a0
(t− t0)

1/(1+b0) (3.141)

and

a(t) =
1

u(σ(t))
= A(t− t0)

b0/(b0+1) (3.142)

for t > t0 ∈ R and A
def.
= 1

a0

(

(1+b0)a0

θ

)b0/(1+b0)

. Then by (E.59) with α0 = (d−1)/κ,

the scalar field is

φ(t) = β0 +

√

(d− 1)

κ

(

√

b0(b0 + 1) + kθ2σ(t)2 (3.143)

−
√

b0(b0 + 1) log

(

√

b0(b0 + 1) +
√

b0(b0 + 1) + kθ2σ(t)2

σ(t)

))

for σ(t) in (3.141). Also by (3.117), (E.56) and (E.57), we obtain potential

V (φ(t)) = −Λ

κ
+

B2

2(t− t0)2

(

((d− 1)b0 − 1)

(1 + b0)
+

k(d− 1)(1 + b0)

b0A2(t− t0)−2/(1+b0)

)

(3.144)

for B2 def.
= (d−1)b0

(1+b0)κ
.
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By taking d = 3, Λ = t0 = 0, θ = a0(1 + b0) and identifying b0/(b0 + 1) here with

n in [13], we obtain example 4.4 of Ellis and Madsen for 0 < n < 1. Note that the

above form of φ(t) is the integrated version of φ(t) in [13]. Since φ(t) in (3.143)

and has the property that

φ̇(t)2 =
B2

(t− t0)2

(

1 +
kθ2(a0A)2/b0

b0(b0 + 1)
(t− t0)

2/(1+b0)

)

, (3.145)

we are in agreement with [13] for the above choice of θ. Also note that there is

a typo in equation (45) of [13], where one should multiply V by 1/4 to obtain the

correct V with a two appearing in the denominator instead of the numerator. In

contrast to example 3 in this thesis, this example generalizes the Ellis and Madsen

example for nonzero curvature.

For a0 = b0 = 1 and t0 = 0, the solver was run with u, u′ and σ perturbed by

.001. The graphs of a(t) below show that the solution is unstable. The absolute error

grows three orders of magnitude over the graphed time interval. Since E − P (σ)

is independent of k, the below graph is applicable to all values of the curvature

k = 1, 0,−1.

Figure 21. Instability of FRLW Example 25
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3.2.2 A nonlinear Schrödinger example

Example 26 We consider equation (3.97) with ρ = p = 0, M = k = θ = 1, n = 4

and D1(σ) = D > 0 a constant. For solution 3 in Table 15 with a0 =
√

d(d−1)
2κD

b0,

c0 = 1 − 2b20 and b0 > 0 chosen such that c0 > 0, we have u(σ) = a0tanh(b0σ) and

P (σ) = c0. By (E.22) - (E.24) we obtain σ(t) = 1
b0
Arcsinh

(

ea0b0(t−t0)
)

and

a(t) =
1

u(σ(t))
=

√
1 + e2a0b0(t−t0)

a0ea0b0(t−t0)
(3.146)

for t0 ∈ R. Then by (E.27) with α0 = (d− 1)/κ, we get

φ(t) = ψ(σ(t)) =

√

(d− 1)(1 − 2b20)

b0
√
κ

Arcsinh
(

ea0b0(t−t0)
)

+ β0 (3.147)

for β0 ∈ R. Finally, by (3.106) and (E.25) we obtain

V (φ(t)) =

[

d(d− 1)

2κ

(

(u′)2 + u2
)

− 1

2
u2(ψ′)2 −Du4 − Λ

κ

]

◦ σ(t).

=
a2

0(d− 1)

2κ(1 + e2a0b0(t−t0))2

[(

(d− 1)(1 − b20) + b20
)

e4a0b0(t−t0)

+
(

d− 1 + 2b20
)

e2a0b0(t−t0) + db20
]

− Λ

κ

(3.148)

For a0 = 1, b0 = 1/2 and t0 = 0, the solver was run with u, u′ and σ perturbed

by .001. The graphs of a(t) below show that the solution is unstable. The absolute

error grows two orders of magnitude over the graphed time interval.
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Figure 22. Instability of FRLW Example 26
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3.3 In terms of an Alternate Schrödinger-Type Equation

Theorem 3.3.1
(

Apply Corollary 2.3.1 with G(t)
a(t)A = − κnjDj(t)

d(d−1)a(t)nj

)

Suppose you are given a twice differentiable function a(t) > 0, a once differentiable

function φ(t), and also functions Di(t), ρ
′(t), p′(t), V (x) which satisfy the Einstein

equations (i), (ii) in (3.5) for some k, n1, . . . , nM ,Λ ∈ R, d ∈ R\{0, 1}, κ ∈ R\{0}

and M ∈ N. Let g(σ) denote the inverse of a function σ(t) which satisfies

σ̇(t) =
1

θ
a(t)−nj/2 (3.149)

for some θ > 0 and where j is some index for which nj 6= 0. Then the functions

u(σ) = a(g(σ))−nj/2 (3.150)

P (σ) =
njκ

2(d− 1)
ψ′(σ)2 (3.151)

solve the Schrödinger-type equation

u′′(σ) +

[ −θ2n2
jκ

2d(d− 1)
Dj(σ) − P (σ)

]

u(σ) =
−θ2njk

2u(σ)
1− 4

nj

+
∑

1≤i≤M

i6=j

θ2njniκDi(σ)

2d(d− 1)u(σ)
1−2

ni
nj
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+
θ2njκ(ρ(σ) + p(σ))

2(d− 1)u(σ)
(3.152)

for

ψ(σ) = φ(g(σ)) (3.153)

Di(σ) = Di(g(σ)), 1 ≤ i ≤M (3.154)

and

ρ(σ) = ρ′(g(σ)), p(σ) = p′(g(σ)). (3.155)

Conversely, suppose you are given a twice differentiable function u(σ) > 0, and

also functions P (σ),Di(σ) for 1 ≤ i ≤ M,M ∈ N and ρ(σ), p(σ) which solve

(3.152) for some constants θ > 0, k ∈ R, κ ∈ R\{0}, d ∈ R\{0, 1} and ni ∈ R for

1 ≤ i ≤ M . In order to construct functions which solve (i), (ii), first find σ(t), ψ(σ)

which solve the differential equations

σ̇(t) =
1

θ
u(σ(t)) and ψ′(σ)2 =

2(d− 1)

njκ
P (σ). (3.156)

Then the functions

a(t) = u(σ(t))−2/nj (3.157)

φ(t) = ψ(σ(t)) (3.158)

Di(t) = Di(σ(t)), 1 ≤ i ≤M, (3.159)

ρ′(t) = ρ(σ(t)), p′(t) = p(σ(t)) (3.160)

and

V (φ(t))

=

[

d(d− 1)

2κ

(

4

n2
jθ

2
(u′)2 +

k

u−4/nj

)

− 1

2θ2
u2(ψ′)2 −

M
∑

i=1

Di

u−2ni/nj
− ρ − Λ

κ

]

◦ σ(t)

(3.161)

satisfy the equations (i), (ii).
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Proof. This proof will implement Corollary 2.3.1 with constants and functions as

indicated in the following table.

Table 3. Corollary 2.3.1 applied to FRLW, alternate

In Corollary substitute In Corollary substitute

ε κ/(d− 1) E(σ) − θ2n2
jκ

2d(d−1)
Dj(σ)

G(t)
−njκ

d(d−1)
Dj(t) A some nj 6= 0

Gi(t), 1 ≤ i ≤M, i 6= j −niκ
d(d−1)

Di(t) Ai6=j ni

Gj(t) k Aj 2

GM+1(t)
−κ

(d−1)
(ρ′(t) + p′(t)) AM+1 0

Fi(σ), 1 ≤ i ≤M, i 6= j
θ2njniκ

2d(d−1)
Di(σ) Ci6=j 1 − 2 ni

nj

Fj(σ) −θ2njk/2 Cj 1 − 4
nj

FM+1(σ)
θ2njκ

2(d−1)
(ρ(σ) + p(σ)) CM+1 1

To prove the forward implication, we assume to be given functions which solve

the Einstein field equations (i) and (ii) from (3.5). Subtracting equations (ii)− (i),

we see that

Ḣ(t) − k

a(t)2
= − κ

(d− 1)

[

φ̇(t)2 +

M
∑

i=1

niDi(t)

da(t)ni
+ (ρ′(t) + p′(t))

]

. (3.162)

This shows that a(t), φ(t), Di(t), ρ
′(t) and p′(t) satisfy the hypothesis of

Corollary 2.3.1, applied with constants ε,N,A,A1 . . . , AN and functions

G(t), G1(t) . . . , GN(t) according to Table 3. Since σ(t), u(σ), P (σ) and ψ(σ) defined

in (3.149), (3.150), (3.151) and (3.153) are equivalent to that in the forward im-

plication of Corollary 2.3.1, by this theorem and by definitions (3.154) and (3.155)

of Di(σ) and ρ(σ), p(σ), the Schrödinger-type equation (2.110) holds for constants

C1, . . . , CN and functions F1(σ), . . . , FN(σ) as indicated in Table 3. This proves the

forward implication.
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To prove the converse implication, we assume to be given functions which solve

the Schrödinger-type equation (3.152) and we begin by showing that (i) is satisfied.

By differentiating the definition (3.157) of a(t) and using the definition of σ(t) in

(3.156), we obtain

ȧ(t) = − 2

nj

u(σ(t))−2/nj−1u′(σ(t))σ̇(t)

= − 2

njθ
u(σ(t))−2/nju′(σ(t)). (3.163)

Dividing by a(t), we have that

H(t)
def.
=

ȧ(t)

a(t)
= − 2

njθ
u′(σ(t)). (3.164)

Differentiating the definition (3.158) of φ(t) and using definition in (3.156) of σ(t),

we have

φ̇(t) = ψ′(σ(t))σ̇(t) =
1

θ
ψ′(σ(t))u(σ(t)). (3.165)

Using (3.164) and (3.165), and also the definitions (3.157), (3.159) and (3.160) of

a(t), Di(t) and ρ′(t), p′(t), the definition (3.161) of V ◦ φ can be written as

V (φ(t)) =
d(d− 1)

2κ

(

H(t)2 +
k

a(t)2

)

− 1

2
φ̇(t)2 −

M
∑

i=1

Di(t)

a(t)ni
− ρ′(t) − Λ

κ
. (3.166)

This shows that (i) holds (that is, the definition of V (φ(t)) was designed to be such

that (i) holds).

To conclude the proof we must also show that (ii) holds. In the converse direc-

tion the hypothesis of the converse of Corollary 2.3.1 holds, applied with constants

N,C1, . . . , CN and functions E(σ), F1(σ), . . . , FN (σ) as indicated in Table 3. Since

σ(t), ψ(σ), a(t) and φ(t) defined in (3.156), (3.157) and (3.158) are consistent with

the converse implication of Corollary 2.3.1, applied with ε and A as in Table 3,

by this corollary and by definitions (3.159) and (3.160) of Di(t) and ρ′(t), p′(t)

the scale factor equation (2.109) holds for constants ε, A,A1, . . . , AN and functions
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G(t), G1(t), . . . , GN(t) according to Table 3. That is, we have regained (3.162)

which shows that the subtraction of equations (ii)-(i) holds in the converse direc-

tion. Now solving (3.166) for ρ′(t) and substituting this into (3.162), we obtain (ii).

This proves the theorem. ⋄

3.3.1 Reduction to linear Schrödinger: zero curvature

To compute some examples, we take k = 0 and ρ′ = p′ = Di = 0 for all i 6= j

and also nj = n, Dj = D > 0 so that Theorem 3.3.1 shows that solving the Einstein

equations

d

2
H2(t)

(i)′′′′
=

κ

(d− 1)

[

1

2
φ̇(t)2 + V (φ(t)) +

D

a(t)n

]

+
Λ

(d− 1)
(3.167)

Ḣ(t) +
d

2
H(t)2 (ii)′′′′

= − κ

(d− 1)

[

1

2
φ̇(t)2 − V (φ(t)) +

(n− d)D

da(t)n

]

+
Λ

(d− 1)

is equivalent to solving the linear Schrödinger equation

u′′(σ) +

[−θ2n2κD

2d(d− 1)
− P (σ)

]

u(σ) = 0

for any constant θ > 0. The solutions of (i)′′′′, (ii)′′′′ and (3.168) are related by

a(t) =
1

u(σ(t))2/n
and ψ′(σ)2 =

2(d− 1)

nκ
P (σ) (3.168)

for φ(t) = ψ(σ(t)) and

σ̇(t) =
1

θa(t)n/2
=

1

θ
u(σ(t)). (3.169)

Also in the converse direction, V is taken to be

V (φ(t)) =

[

2d(d− 1)(u′)2

κn2θ2
− 1

2θ2
u2(ψ′)2 −Du2 − Λ

κ

]

◦ σ(t). (3.170)

We now refer to Appendix E for solutions of the linear Schrödinger equation

(3.168). We will map these solutions to exact solutions of Einstein’s equations.

Since E = −θ2n2κD
2d(d−1)

< 0, we only consider entries in Table 15 for which E < 0.
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Example 27 For θ = 1 and choice of constant D = 2d(d−1)
n2κ

, we take solution 4 in

Table 15 with c0 = −1 and b0 = 0 so that we have u(σ) = a0e
−σ, P (σ) = 0 and

E = −1. By (E.28) - (E.30) with r0 = 1 we obtain σ(t) = ln (a0(t− t0)) and

a(t) =
1

u(σ(t))2/n
= (t− t0)

2/n (3.171)

for t0 ∈ R. Since P = 0 = ψ′(σ), the scalar field is constant ψ(σ) = ψ0 ∈ R.

Finally, by (3.170), (E.31) and (E.30), we obtain constant potential

V (φ(t)) =

[

2d(d− 1)(u′)2

n2κ
− 2d(d− 1)

n2κ
u2 − Λ

κ

]

◦ σ(t)

= −Λ

κ
. (3.172)

For a0 = 1, n = 3 and t0 = 0, the solver was run with u, u′ and σ perturbed

by .001. The graphs of a(t) below show that the solution is unstable. The absolute

error grows at least two orders of magnitude over the graphed time interval. Since

u is independent of n, a(t) is unstable for all values of n.

Figure 23. Instability of FRLW Example 27
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Example 28 For θ = 1 and choice of constant D = 2d(d−1)
n2κ

, we take solution 4 in

Table 15 with c0 = −1 and a0, b0 > 0 so that we have u(σ) = a0e
−σ−b0eσ, P (σ) = 0

and E = −1. By (E.32) - (E.34) we obtain σ(t) = ln
(
√

a0

b0
tanh(

√
a0b0(t− t0))

)

and

a(t) =
1

u(σ(t))2/n
=

1

(2
√
a0b0)2/n

sinh2/n(2
√

a0b0(t− t0)) (3.173)

for t0 ∈ R. Since P = 0 = ψ′(σ), the scalar field is constant

ψ(σ) = ψ0 ∈ R (3.174)

Finally, by (3.170), (E.35) and (E.34), we obtain constant potential

V (φ(t)) =

[

2d(d− 1)(u′)2

n2κ
− 2d(d− 1)

n2κ
u2 − Λ

κ

]

◦ σ(t)

=
8d(d− 1)a0b0

n2κ
− Λ

κ
(3.175)

since coth2(x) − csch2(x) = 1.

Example 29 For θ = 1 and choice of constant D = 2d(d−1)/n2κ, we take solution

5 in Table 15 with c0 = −1 and b0 = 0 so that we have u(σ) = (a0/σ)e−σ2/2,

P (σ) = σ2 + 2/σ2 and E = −1 for a0 > 0. By (E.36) - (E.38) we obtain σ(t) =
√

2 ln(a0(t− t0)) and

a(t) =
1

u(σ(t))2/n

=
(√

2(t− t0)
√

ln(a0(t− t0))
)2/n

=
(

2(t− t0)
2 ln(a0(t− t0))

)1/n
(3.176)

for t > t0. Then by (E.41) with α0 = 2(d− 1)/nκ, we obtain scalar field

φ(t) = ψ(σ(t))

=

√

(d− 1)

nκ

(

√

2 ln2(a0(t− t0)) + 1 + ln [2 ln(a0(t− t0))]

− ln

[

4 + 4

√

2 ln2(a0(t− t0)) + 1

])

+ β0 (3.177)
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for β0 ∈ R. Finally, by (3.117), (E.39) and (E.38), we have that

V (φ(t)) =

[

2d(d− 1)

n2κ
(u′)2 − 1

2
u2(ψ′)2 −Du2 − Λ

κ

]

◦ σ(t)

=
(d− 1)

2nκ(t− t0)2 ln2(a0(t− t0))
·

(

−2 ln2(a0(t− t0)) − 1

+
d

n

(

(2 ln(a0(t− t0)) + 1)2 − 2 ln(a0(t− t0))
)

)

− Λ

κ

(3.178)

For a0 = 1, n = 3 and t0 = 0, the solver was run with u, u′ and σ perturbed

by .001. The graphs of a(t) below show that the solution is unstable. The absolute

error grows three orders of magnitude over the graphed time interval. Since u is

independent of n, a(t) is unstable for all values of n.

Figure 24. Instability of FRLW Example 29
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Example 30 For C
def.
= n2κD

2d(d−1)
and θ = 1, we take solution 6 in Table 15 with

c0 = 2b20 −C so that we have u(σ) = −a0 cosh2(b0σ), P (σ) = 2b20 tanh2(b0σ) + c0 =

2b20 tanh2(b0σ) + 2b20 − C and E = −C. By (E.48) - (E.50) we obtain σ(t) =
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−1
b0
Arctanh (a0b0(t− t0)) and

a(t) =
1

u(σ(t))2/n
=

(

1

a0

(

a2
0b

2
0(t− t0)

2 − 1
)

)2/n

(3.179)

for t0 ∈ R. Then by (E.53) with α0 = 2(d− 1)/nκ, the scalar field is

φ(t) = ψ(σ(t))

= ±
(
√

4(d− 1)

nκ
ln

[

2

(

√

2b40a
2
0(t− t0)2 + 2b20 − C −

√
2b20a0(t− t0)

)]

+
1

b0

√

2(d− 1)

nκ

√

4b20 − CArctanh

[

√

4b20 − Ca0b0(t− t0)
√

2b40a
2
0(t− t0)2 + 2b20 − C

])

+ β0

for β0 ∈ R. Finally, by (3.117), (E.50) and (E.51), we have that

V (φ(t)) =

[

2d(d− 1)(u′)2

κn2
− 1

2
u2(ψ′)2 −Du2 − Λ

κ

]

◦ σ(t).

=
a2

0(d− 1) [(4d− n)2a2
0b

4
0(t− t0)

2 − 2nb20 + C(n− 2d)]

κn2(a2
0b

2
0(t− t0)2 − 1)2

− Λ

κ
.

(3.180)

One can compare this to the solutions in [23] and in section 5 of [15].

3.3.2 A nonlinear Schrödinger example

Example 31 For Dj = ρ = p = 0 and Di = 0 for all i, we take nj = 4, θ = 1 and

positive curvature k = 1. We use solution 2 in Table 15 with a0 = 1/b20 and b0 > 0

so that we have u(σ) = 1
b20

cos2(b0σ). Using the second potential for solution 2 in

the table, we have P (σ) = 4b20 tan2(b0σ) and F1 = −2. By (E.14)-(E.16) we have

σ(t) = 1
b0
Arctan

(

θ
b0

(t− t0)
)

and

a(t) =
1

u(σ(t))1/2
=
√

b20 + (t− t0)2 (3.181)

for t > t0 ∈ R. Then by (E.21) with α0 = (d− 1)/2κ, we obtain scalar field

φ(t) =

√

(d− 1)

2κ
ln

(

1 +
1

b20
(t− t0)

2

)

+ β0 (3.182)
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for β0 ∈ R. Finally, by (3.161), (E.16) and (E.17) we obtain

V (φ(t)) =

[

d(d− 1)

2κ

(

1

4
(u′)2 + u

)

− 1

2
u2(ψ′)2 − Λ

κ

]

◦ σ(t)

=
(d− 1)

2κ

(

db20 + 2(d− 1)(t− t0)
2

(b20 + (t− t0)2)2

)

− Λ

κ
.

(3.183)

Composing V (φ(t)) with the inverse

φ−1(w) = b0

√

e
√

2κ/(d−1)(w−β0) − 1 + t0 (3.184)

for w ≥ β0, we obtain the potential

V (w) = C1e
−
√

2κ/(d−1)w − C2e
−2
√

2κ/(d−1)w − Λ

κ
(3.185)

for constants

C1 =
(d− 1)2

κb20
e
√

2κ/(d−1)β0 and C2 =
(d− 1)(d− 2)

2κb20
e2
√

2κ/(d−1)β0. (3.186)

By taking d = 3, t0 = 0, and identifying a0, κ and β0 here with b0, K
2 and φ0

respectively in the Ozer and Taha paper, we obtain the string-inspired solution I of

[26]. One can check that the conditions on the constants C1, C2 in [26] (with d = 3)

agree with the example here since we have

b20 =
2(d− 1)3C2

(d− 2)κC2
1

and β0 =

√

(d− 1)

2κ
ln

(

2(d− 1)C2

(d− 2)C1

)

. (3.187)

For b0 = 1 and t0 = 0, the solver was run with u, u′ and σ perturbed by .001.

The graphs of a(t) below show that the solution is unstable. The absolute error

grows by three orders of magnitude over the graphed time interval.
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Figure 25. Instability of FRLW Example 31
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C H A P T E R 4

REFORMULATIONS OF A BIANCHI I MODEL

For the homogeneous, anisotropic Bianchi I metric

ds2 = −dt2 +X2
1 (t)dx2

1 + · · ·+X2
d (t)dx2

d (4.1)

in a d + 1-dimensional spacetime for d 6= 0, 1, the nonzero Einstein equations

gijGij = −κgijTij + Λ are

∑

l<k

HlHk
(I0)
= κ

[

1

2
φ̇2 + V ◦ φ+ ρ

]

+ Λ (4.2)

∑

l 6=1

(Ḣl +H2
l ) +

∑

l<k
l,k 6=1

HlHk
(I1)
= −κ

[

1

2
φ̇2 − V ◦ φ+ p

]

+ Λ

...

∑

l 6=i

(Ḣl +H2
l ) +

∑

l<k
l,k 6=i

HlHk
(Ii)
= −κ

[

1

2
φ̇2 − V ◦ φ+ p

]

+ Λ

...

∑

l 6=d

(Ḣl +H2
l ) +

∑

l<k
l,k 6=d

HlHk
(Id)
= −κ

[

1

2
φ̇2 − V ◦ φ+ p

]

+ Λ

where Hl(t)
def.
= ȧl/al and i, l, k ∈ {1, . . . , d}.
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4.1 In terms of a Generalized EMP

Theorem 4.1.1 Suppose you are given twice differentiable functions

X1(t), . . . , Xd(t) > 0, a once differentiable function φ(t), and also functions

ρ(t), p(t), V (x) which satisfy the Einstein equations (I0), . . . , (Id) in (4.2) for some

Λ ∈ R, d ∈ N\{0, 1}, κ ∈ R\{0}. Denote

R(t)
def.
= (X1(t) · · ·Xd(t))

ν (4.3)

for some ν 6= 0. If f(τ) is the inverse of a function τ(t) which satisfies

τ̇ (t) = θR(t)q (4.4)

for some constants θ > 0 and q 6= 0, then

Y (τ) = R(f(τ))q and Q(τ) =
qνdκ

(d− 1)
ϕ′(τ)2 (4.5)

solve the generalized EMP equation

Y ′′(τ) +Q(τ)Y (τ) =
−2qνdκD

θ2(d− 1)Y (τ)(2+qν)/qν
− qνdκ (̺(τ) + <(τ))

θ2(d− 1)Y (τ)
(4.6)

for

ϕ(τ) = φ(f(τ)) (4.7)

̺(τ) = ρ(f(τ)), <(τ) = p(f(τ)) (4.8)

and where

D
def.
=

1

2dκ
X2

1X
2
2 · · ·X2

d

(

∑

l<k

η2
lk

)

(4.9)

is a constant for

ηlk
def.
= Hl −Hk, l 6= k, l, k ∈ {1, . . . , d}. (4.10)

Conversely, suppose you are given a twice differentiable function Y (τ) > 0, a

continuous function Q(τ), and also functions ̺(τ),<(τ) which solve (4.6) for some
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constants θ > 0 and q, ν, κ ∈ R\{0}, k,D ∈ R, d ∈ N\{0, 1}. In order to construct

functions which solve (I0), . . . , (Id), first find τ(t), ϕ(τ) which solve the differential

equations

τ̇(t) = θY (τ(t)) and ϕ′(τ)2 =
(d− 1)

qνdκ
Q(τ). (4.11)

Next find a function σ(t) such that

σ̇(t) =
1

τ̇ (t)1/qν
(4.12)

and let

R(t) = Y (τ(t))1/q αl(t)
def.
= clσ(t), l ∈ {1, . . . , d} (4.13)

where cl are any constants for which both

d
∑

l=1

cl = 0 and
∑

l<k

clck = −θ2/qνDκ. (4.14)

Then the functions

Xl(t) = R(t)1/νdeαl(t) (4.15)

φ(t) = ϕ(τ(t)) (4.16)

ρ(t) = ̺(τ(t)), p(t) = <(τ(t)) (4.17)

and

V (φ(t)) =

[

(d− 1)θ2

2ν2dκq2
(Y ′)2 − D

Y 2/qν
− θ2

2
Y 2(ϕ′)2 − ̺− Λ

κ

]

◦ τ(t) (4.18)

satisfy the Einstein equations (I0), . . . , (Id).

Proof. This proof will implement Theorem 2.1.1 with constants and functions as

indicated in the following table.
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Table 4. Theorem 2.1.1 applied to Bianchi I

In Theorem substitute In Theorem substitute

a(t) R(t) N 1

δ 0 ε νdκ/(d− 1)

G0(t) constant − 2νdκD/(d− 1) A0 2/ν

G1(t)
−νdκ
(d−1)

(ρ(t) + p(t)) A1 0

λ0(τ) constant −2qνdκD/θ2(d− 1) B0 (2 + qν)/qν

λ1(τ)
−qνdκ

θ2(d−1)
(̺(τ) + <(τ)) B1 1

To prove the forward implication, we assume to be given functions which solve

the Einstein field equations (I0), . . . , (Id). Forming the linear combination d(I0) −
d
∑

i=1

(Ii) of Einstein’s equations, we obtain

d
∑

l<k

HlHk −
d
∑

i=1

∑

l 6=i

(Ḣl +H2
l ) −

d
∑

i=1

∑

l<k
l,k 6=i

HlHk = dκ
[

φ̇2 + (ρ+ p)
]

(4.19)

where l, k ∈ {1, . . . , d}. The second double sum on the left-hand side of (4.19)

contains the quantity (Ḣl +H2
l ) (d−1)-times for any fixed l, and the third double

sum contains the quantity HlHk (d − 2)-times for any fixed l, k pair with l < k

so that we have

d
∑

l<k

HlHk − (d− 1)

d
∑

l=1

(Ḣl +H2
l )− (d− 2)

∑

l<k

HlHk = dκ
[

φ̇2 + (ρ+ p)
]

. (4.20)

Collecting the first and third sums gives the equation

2
∑

l<k

HlHk − (d− 1)
d
∑

l=1

(Ḣl +H2
l ) = dκ

[

φ̇2 + (ρ+ p)
]

. (4.21)

Using the definition (4.3) of R(t), we define

HR
def.
=

Ṙ

R
=
ν (X1 · · ·Xd)

ν−1
(

Ẋ1X2 · · ·Xd + · · · +X1X2 · · · Ẋd

)

(X1 · · ·Xd)
ν = ν

d
∑

l=1

Hl.

(4.22)
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Differentiating HR shows that

ḢR = ν

d
∑

l=1

Ḣl, (4.23)

therefore (4.21) can be written as

2
∑

l<k

HlHk − (d− 1)

(

1

ν
ḢR +

d
∑

l=1

H2
l

)

= dκ
[

φ̇2 + (ρ+ p)
]

. (4.24)

Multiplying this by −ν
(d−1)

and rearranging, we find that

ḢR +
ν

(d− 1)

(

(d− 1)

d
∑

l=1

H2
l − 2

∑

l<k

HlHk

)

=
−νdκ
(d− 1)

[

φ̇2 + (ρ+ p)
]

. (4.25)

Using the definition (4.10) of the quantities ηlk, we have that

∑

l<k

η2
lk =

∑

l<k

(

H2
l − 2HlHk +H2

k

)

. (4.26)

The first and last terms on the right-hand side of (4.26) sum to

∑

l<k

(

H2
l +H2

k

)

=

d−1
∑

l=1

d
∑

k=l+1

H2
l +

d
∑

k=2

k−1
∑

l=1

H2
k

=

d−1
∑

l=1

(d− l)H2
l +

d
∑

k=2

(k − 1)H2
k

= (d− 1)H2
1 +

d−1
∑

j=2

(d− j)H2
j +

d−1
∑

j=2

(j − 1)H2
j + (d− 1)H2

d

= (d− 1)
d
∑

j=1

H2
j , (4.27)

therefore (4.26) becomes

∑

l<k

η2
lk = (d− 1)

d
∑

l=1

H2
l − 2

∑

l<k

HlHk. (4.28)

Using this to rewrite (4.25), we obtain

ḢR +
ν

(d− 1)

∑

l<k

η2
lk =

−νdκ
(d− 1)

[

φ̇2 + (ρ+ p)
]

. (4.29)
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Next we will confirm that D is a constant. Since the right-hand sides of Einstein

equations (Ii) are the same for all i ∈ {1, . . . , d}, by equating the left-hand sides of

any two equations (Ii) and (Ij) for i 6= j, we get that

∑

l 6=i

(Ḣl +H2
l ) +

∑

l<k
l,k 6=i

HlHk =
∑

l 6=j

(Ḣl +H2
l ) +

∑

l<k
l,k 6=j

HlHk (4.30)

where we recall that the sum indices l, k ∈ {1, . . . , d}. For the first sum on each

side of (4.30), the left and the right-hand sides of (4.30) contain all the same terms,

except for the jth indexed term which appears on the left, and the ith indexed term

which appears on the right. Therefore many terms cancel and we are left with

Ḣj +H2
j +

∑

l<k
l,k 6=i

HlHk = Ḣi +H2
i +

∑

l<k
l,k 6=j

HlHk. (4.31)

For the second (double) sum on each side of (4.30), the left and right-hand sides of

(4.31) contain all the same terms, except for the terms where either l, k = j which

appear on the left, and the terms where either l, k = i which appear on the right.

Therefore many terms cancel and by adding HjHi to both sides we obtain

Ḣj +H2
j +Hj

∑

l 6=j

Hl = Ḣi +H2
i +Hi

∑

l 6=i

Hl, (4.32)

or equivalently

η̇ij +
1

ν
ηijHR = 0 (4.33)

where we have used the expression (4.22) for HR, the definition (4.10) of ηij , and

as usual dot denotes differentiation with respect to t. By Lemma A.1 with µ =

1/ν 6= 0 (which applies since R(t) is positive and differentiable), (4.33) shows that

the function f = ηijR
1/ν = ηijX1X2 · · ·Xd is constant for any pair i, j (for the pair

i = j, f is clearly a constant function, namely zero). Therefore the definition (4.9)

of D is also constant, being proportional to a sum of squares of these constant
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functions. By the definitions (4.9) and (4.3) of the constant D and the function

R(t), we now rewrite (4.29) as

ḢR =
−νdκ
(d− 1)

[

φ̇2 +
2D

R2/ν
+ (ρ+ p)

]

. (4.34)

This shows that R(t), φ(t), ρ(t) and p(t) satisfy the hypothesis of Theorem 2.1.1,

applied with constants ǫ, ε, N,A0, . . . , AN and functions a(t), G0(t), . . . , GN(t) ac-

cording to Table 4. Since τ(t), Y (τ), Q(τ) and ϕ(τ) defined in (4.4), (4.5) and (4.7)

are equivalent to that in the forward implication of Theorem 2.1.1, by this theorem

and by definition (4.8) of ̺(τ),<(τ), the generalized EMP equation (2.2) holds for

constants B0, . . . , BN and functions λ0(τ), . . . , λN(τ) as indicated in Table 4. This

proves the forward implication.

Note that equation (4.34) with ν = 1/d is the same as the FRLW analogue

equation (3.18) with M = 1, n1 = 2d, k = 0 and by identifying R(t) here with a(t)

in the FRLW model. One can compare this observation with J. Lidsey’s results on

the 3 + 1-dimensional Bianchi I model in [22].

To prove the converse implication, we assume to be given functions which solve

the generalized EMP equation (4.6) and we begin by showing that (I0) is satisfied.

Differentiating the definition of R(t) in (4.13) and using the definition in (4.11) of

τ(t), we have

Ṙ(t) =
1

q
Y (τ(t))

1
q
−1Y ′(τ(t))τ̇ (t)

=
θ

q
Y (τ(t))1/qY ′(τ(t)). (4.35)

so that

HR(t)
def.
=

Ṙ(t)

R(t)
=
θ

q
Y ′(τ(t)). (4.36)
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Differentiating the definition (4.16) of φ(t) and using the definition (4.11) of τ(t)

gives

φ̇(t) = ϕ′(τ(t))τ̇ (t) = θϕ′(τ(t))Y (τ(t)). (4.37)

Using (4.36) and (4.37), and also the definitions (4.13) and (4.17) of R(t) and ρ(t)

respectively, the definition (4.18) of V ◦ φ can be written as

V ◦ φ =
1

κ

(

(d− 1)

2ν2d
H2

R − Dκ

R2/ν

)

− 1

2
φ̇2 − ρ− Λ

κ
. (4.38)

The quantity in parenthesis here is in fact equal to the left-hand-side of equation

(I0). To see this, we differentiate the definition (4.15) of Xl(t), divide the result by

Xl and use the definition (4.36) of HR to obtain

Hl
def.
=

Ẋl

Xl

=
1
νd
R1/νd−1Ṙeαl + α̇lR

1/νdeαl

R1/νdeαl
=

1

νd
HR + α̇l (4.39)

so that
∑

l<k

HlHk =
∑

l<k

(

1

ν2d2
H2

R +
1

νd
(α̇l + α̇k)HR + α̇lα̇k

)

. (4.40)

The first term on the right-hand side of (4.40) does not depend on the indices l, k,

and is therefore equal to 1
ν2d2H

2
R times the quantity

∑

l<k

1 =
d
∑

k=2

k−1
∑

l=1

1 =
d
∑

k=2

(k − 1) =
d−1
∑

j=1

j =
d(d− 1)

2
. (4.41)

The second term on the right-hand side of (4.40) sums to zero since

∑

l<k

(α̇l + α̇k) =

d−1
∑

l=1

d
∑

k=l+1

α̇l +

d
∑

k=2

k−1
∑

l=1

α̇k

=

d−1
∑

l=1

(d− l)α̇l +

d
∑

k=2

(k − 1)α̇k

= (d− 1)α̇1 +
d−1
∑

j=2

(d− j + j − 1)α̇j + (d− 1)α̇d

= (d− 1)
d
∑

l=1

α̇l
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= (d− 1)σ(t)

d
∑

l=1

cl

= 0 (4.42)

where on the last lines, we have used the definition (4.13) of αl(t) and the condition

(4.14) on the constants cl. For the third term on the right-hand side of (4.40), we

use the definitions of αl(t), σ(t), τ(t) and R(t) in (4.13), (4.12) and (4.11) to write

α̇lα̇k = clckσ̇
2 =

clck
τ̇ 2/qν

=
clck

θ2/qν(Y ◦ τ)2/qν
=

clck
θ2/qνR2/ν

. (4.43)

Therefore (4.40) becomes

∑

l<k

HlHk =
(d− 1)

2ν2d
H2

R +
∑

l<k

clck
θ2/qνR2/ν

. (4.44)

Then by the condition (4.14) on the constants cl, (4.44) becomes

∑

l<k

HlHk =
(d− 1)

2ν2d
H2

R − Dκ

R2/ν
. (4.45)

That is, the expression (4.38) for V can now be written as

V ◦ φ =
1

κ

∑

l<k

HlHk −
1

2
φ̇2 − ρ− Λ

κ
, (4.46)

showing that (I0) holds under the assumptions of the converse implication.

To conclude the proof we must also show that the equations (I1), . . . , (Id) hold.

In the converse direction the hypothesis of the converse of Theorem 2.1.1 holds,

applied with constants N,B0, . . . , BN and functions λ0(τ), . . . , λN(τ) as indicated

in Table 4. Since τ(t), ϕ(τ), R(t) and φ(t) defined in (4.11), (4.13) and (4.16)

are consistent with the converse implication of Theorem 2.1.1, applied with a(t), δ

and ε as in Table 4, by this theorem and by the definition (4.17) of ρ(t), p(t)

the scale factor equation (2.1) holds for constants δ, ε, A0, . . . , AN and functions

G0(t), . . . , GN(t) according to Table 4. That is, we have regained (4.34). Now
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solving (4.38) for ρ(t) and substituting this into (4.34), we obtain

ḢR =
−νdκ
(d− 1)

[

1

2
φ̇2 − V ◦ φ+

D

R2/ν
+ p+

(d− 1)

2ν2dκ
H2

R − Λ

κ

]

. (4.47)

Multiplying by (d−1)
νd

and rearranging, we get that

(d− 1)

νd
ḢR +

(d− 1)

2ν2d
H2

R +
κD

R2/ν
= −κ

[

1

2
φ̇2 − V ◦ φ+ p

]

+ Λ (4.48)

The left-hand side of this equation is in fact equal to the left-hand-side of (Ii) for

any i ∈ {1, . . . , d}. To see this, first recall (4.39) and write

Ḣl +H2
l =

1

νd
ḢR +

1

ν2d2
H2

R + α̈l +
2

νd
α̇lHR + α̇2

l , (4.49)

therefore for any fixed i

∑

l 6=i

(Ḣl +H2
l ) =

∑

l 6=i

(

1

νd
ḢR +

1

ν2d2
H2

R + α̈l +
2

νd
α̇lHR + α̇2

l

)

. (4.50)

Since the first two terms on the right-hand side of (4.50) do not depend on the

indices l, k, and also using the definitions (4.13) and (4.14) of αl and the constants

cl to write
∑

l α̇l = 0 ⇒
∑

l 6=i α̇l = −α̇i, (4.50) becomes

∑

l 6=i

(Ḣl +H2
l ) =

(d− 1)

νd
ḢR +

(d− 1)

ν2d2
H2

R − 2

νd
HRα̇i +

∑

l 6=i

(

α̈l + α̇2
l

)

. (4.51)

By the definitions (4.13), (4.12) and (4.11) of αl(t), σ(t), τ(t) and R(t), we see that

α̇l(t)R(t)1/ν = clσ̇(t)R(t)1/ν

=
cl

τ̇(t)1/qν
R(t)1/ν

=
cl

θ1/qνY (τ(t))1/qν
R(t)1/ν

=
cl

θ1/qν
is a constant. (4.52)

By Lemma A.1 with µ = 1/ν 6= 0, equation (4.52) shows that

α̈l +
1

ν
α̇lHR = 0 (4.53)
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for all l ∈ {1, . . . , d}. Therefore in total, we have that (4.50) is

∑

l 6=i

(Ḣl +H2
l ) =

(d− 1)

νd
ḢR +

(d− 1)

ν2d2
H2

R +
(2 − d)

νd
HR

∑

l 6=i

α̇l +
∑

l 6=i

α̇2
l . (4.54)

To form the rest of the left-hand side of (Ii), again use (4.39) to obtain

HlHk =
1

ν2d2
H2

R +
1

νd
(α̇l + α̇k)HR + α̇lα̇k. (4.55)

Therefore for any fixed i, we have

∑

l<k
l,k 6=i

HlHk =
∑

l<k
l,k 6=i

(

1

ν2d2
H2

R +
1

νd
(α̇l + α̇k)HR + α̇lα̇k

)

. (4.56)

As we saw in (4.41),
∑

l<k 1 = d(d−1)
2

therefore the first term on the right-side of

(4.56), which does not depend on the indices l, k, is equal to 1
ν2d2H

2
R times

∑

l<k
l,k 6=i

1 =
∑

l<k

1 −
∑

l 6=i

1 =
d(d− 1)

2
− (d− 1) =

(d− 1)(d− 2)

2
. (4.57)

As we saw in (4.42),
∑

l<k(α̇l + α̇k) = 0 therefore the second term on the right-hand

side of (4.56) sums to 1
νd
HR times the quantity

∑

l<k
l,k 6=i

(α̇l + α̇k) =
∑

l<k

(α̇l + α̇k) −
∑

l 6=i

(α̇l + α̇i)

= −
∑

l 6=i

α̇l − (d− 1)α̇i

= α̇i − (d− 1)α̇i

= (2 − d)α̇i (4.58)

where we have used the definitions (4.13) and (4.14) of αl and the constants cl to

write
∑

l 6=i α̇l = −α̇i. Considering the third term on the right-hand side of (4.56),
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we have that

∑

l<k
l,k 6=i

α̇lα̇k =
∑

l<k

α̇lα̇k − ci
∑

l 6=i

cl

=
∑

l<k

α̇lα̇k +

(

∑

l 6=i

cl

)2

=
∑

l<k

α̇lα̇k + 2
∑

l<k
l,k 6=i

clck +
∑

l 6=i

c2l

= −
∑

l<k

α̇lα̇k −
∑

l 6=i

c2l

= −
∑

l<k

clck
θ2/qνR2/ν

−
∑

l 6=i

c2l (4.59)

where again we have used that
∑

l 6=i α̇l = −α̇i, and on the last line we recall (4.43).

So by (4.57), (4.58) and (4.59), in total (4.56) becomes

∑

l<k
l,k 6=i

HlHk =
(d− 1)(d− 2)

2ν2d2
H2

R +
(2 − d)

νd
α̇iHR −

∑

l<k

clck
θ2/qνR2/ν

−
∑

l 6=i

c2l . (4.60)

Summing (4.54) and (4.60), the left-hand side of any (Ii) Einstein equation is

∑

l 6=i

(Ḣl +H2
l ) +

∑

l<k
l,k 6=i

HlHk =
(d− 1)

νd
ḢR +

d(d− 1)

2ν2d2
H2

R −
∑

l<k

clck
θ2/qνR2/ν

. (4.61)

Then by the condition (4.14) on the constants cl, (4.62) becomes

∑

l 6=i

(Ḣl +H2
l ) +

∑

l<k
l,k 6=i

HlHk =
(d− 1)

νd
ḢR +

d(d− 1)

2ν2d2
H2

R +
Dκ

R2/ν
. (4.62)

Therefore by (4.48) and (4.62), we obtain (Ii) for all i ∈ {1, . . . , d}. This proves

the theorem. ⋄

4.1.1 Reduction to classical EMP: pure scalar field

To compute some exact solutions to Einstein’s equations for the Bianchi I met-

ric, we take ρ = p = 0 and choose parameter ν = 1/q in Theorem 4.1.1. Therefore
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solving the Bianchi I Einstein equations

∑

l<k

HlHk
(I0)′
= κ

[

1

2
φ̇2 + V ◦ φ

]

+ Λ (4.63)

∑

l 6=i

(Ḣl +H2
l ) +

∑

l<k
l,k 6=i

HlHk
(Ii)

′
= −κ

[

1

2
φ̇2 − V ◦ φ

]

+ Λ

for l, k, i ∈ {1, . . . , d} is equivalent to solving the classical EMP equation

Y ′′(τ) +Q(τ)Y (τ) =
−2dκD

θ2(d− 1)Y (τ)3
(4.64)

for constants θ,D > 0. The solutions of (I0)
′, (I1)

′, . . . , (Id)
′ and (4.64) are related

by

R(t) = Y (τ(t))1/q and ϕ′(τ)2 =
(d− 1)

dκ
Q(τ) (4.65)

for q 6= 0, φ(t) = ϕ(τ(t)), R(t)
def.
= (X1(t) · · ·Xd(t))

1/q and

τ̇ (t) = θR(t)q = θY (τ(t)) (4.66)

for any θ > 0. Also the quantity

D
def.
=

1

2dκ
X2

1X
2
2 · · ·X2

d

(

∑

l<k

η2
lk

)

(4.67)

is constant for

ηlk
def.
= Hl −Hk, l 6= k, l, k ∈ {1, . . . , d}. (4.68)

In the converse direction we have

Xl(t) = R(t)q/deαl(t) (4.69)

for αl(t)
def.
= clσ(t) where σ(t) satisfies

σ̇(t) = 1/τ̇(t) (4.70)

and cl are any constants for which both

d
∑

l=1

cl = 0 and
∑

l<k

clck = −θ2/qνDκ. (4.71)
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Also V is taken to be defined as

V (φ(t)) =

[

(d− 1)θ2

2dκ
(Y ′)2 − D

Y 2
− θ2

2
Y 2(ϕ′)2 − Λ

κ

]

◦ τ(t). (4.72)

We now refer to Appendix D for solutions of the classical EMP equation (3.24),

which we will map to a solution of the Bianchi I Einstein equations. By compar-

ing (4.66) and (D.5), we note to only consider solutions of (D.5) in Appendix D

corresponding to r0 = 1. Also by comparing (4.70) to (D.6), we see to take s0 = 1

in Appendix D. Of course when D = 0 in (4.67), ηlk = 0 for all pairs l, k so that

X1(t), X2(t), . . . , Xd(t) agree up to a constant multiple. In this case, if we take

R(t) = X1(t) = · · · = Xd(t)
def.
= a(t) and q = d we obtain the FRLW cosmology

with curvature k = 0 and n = 2d,D = 0 so that we may refer to sections 3.1.1

and 3.2.2 for exact solutions to the Bianchi I Einstein equations if D = 0. Here

we consider solutions to the classical EMP (4.64) by referring to Table 14 with

λ1 = −2dκD
θ2(d−1)

< 0.

Example 32 For θ = 1 and choice of constant D = (d − 1)/2dκ, we consider

solution 5 in Table 14 with d0 = b0 = 0 and c0 = 1. That is, we have solution

Y (τ) = (a0 + 2τ)1/2 to the classical EMP Y ′′(τ) + Q(τ)Y (τ) = −1/Y (τ)3 for

Q(τ) = 0 and a0 ∈ R. By (D.27) - (D.29) we have τ(t) = 1
2
((t− t0)

2 − a0) and

R(t) = Y (τ(t))1/q = (t− t0)
1/q (4.73)

for any q 6= 0 and t0 ∈ R. Also by (D.32) we have σ(t) = ln(t− t0) so that

Xi(t) = R(t)q/deciσ(t)

= (t− t0)
1/deci ln(t−t0)

= (t− t0)
1/d+ci (4.74)
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for 1 ≤ i ≤ d and for constants c1, . . . , cd that satisfy

d
∑

l=1

cl = 0 and
∑

l<k

clck = −(d− 1)

2d
(4.75)

by (4.14). Since Q(τ) = 0 = ϕ′(τ) the scalar field φ(t)
def.
= ϕ(τ(t)) = φ0 ∈ R

is constant. Finally, by (4.72), (D.30) and (D.29), we obtain constant potential

V (φ(t)) = −Λ/κ.

One can verify by hand that X1(t), . . . , Xd(t), φ(t) and V (φ(t)) in (4.74), (32)

and (6.79) satisfy the vacuum Bianchi I equations (I0)
′ and (Ii)

′ for 1 ≤ i ≤ d and

for ci as in (4.75), with use of the identity in equation (4.59). This example is the

well-known Kasner solution ds2 = −dt2 +
∑d

i=1 t
2pidx2

i , in which the constants pi

must satisfy the Kasner conditions
∑d

i=1 pi =
∑d

i=1 p
2
i = 1. By setting pi = 1/d+ci,

we see that our conditions (4.75) are equivalent to the Kasner conditions since

∑d
i=1 pi =

∑d
i=1(1/d+ci) = 1+

∑d
i=1 ci = 1+0 = 1 and

∑d
i=1 p

2
i =

∑d
i=1(1/d+ci)

2 =

(1/d) +
∑d

i=1 c
2
i = (1/d) − 2

∑

l<k clck = (1/d) + 2((d− 1)/2d) = 1.

Example 33 For θ = q = 1 and choice of constant D = (d− 1)/2dκ, we consider

solution 5 in Table 14 with d0 = a0 = 0, b0 = 4 and c0 = 1. That is, we have solution

Y (τ) = (4τ(t)2 +2τ(t))1/2 to the classical EMP Y ′′(τ)+Q(τ)Y (τ) = −1/Y (τ)3 for

Q(τ) = 0. By (D.33) - (D.35) we have τ(t) = 1
8

(

e2(t−t0) + e−2(t−t0) − 8
)

and

R(t) = Y (τ(t)) =
1

2
sinh(2(t− t0)) (4.76)

for any t0 ∈ R. Also by (D.37) we have that

σ(t) = −2Arccoth
(

e2(t−t0)
)

= ln (tanh(t− t0)) (4.77)

so that

Xi(t) = R(t)1/deciσ(t) =
1

21/d
sinh(2(t− t0))

1/deciσ(t)

=
1

21/d
sinh(2(t− t0))

1/dtanhci(t− t0) (4.78)
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for σ(t) as in (4.77) and constants that satisfy

d
∑

l=1

cl = 0 and
∑

l<k

clck = −(d − 1)

2d
. (4.79)

Since Q(τ) = 0 = ϕ′(τ), the scalar field is constant φ(t)
def.
= ϕ(τ(t)) = φ0 ∈ R.

Finally, by (4.72), (D.36) and (D.35), we obtain constant potential V (φ(t)) =

2(d−1)
dκ

− Λ
κ
. One can compare this solution with the higher-dimensional solution of

Lorenz-Petzold in [24].

As an example for d = 3, one can take c1 = − 1√
3
, c2 = 0 and c3 = 1√

3
so that

X1(t) =
1
3
√

2
sinh(2(t− t0))

1/3tanh−1/
√

3(t− t0)

X2(t) =
1
3
√

2
sinh(2(t− t0))

1/3

X3(t) =
1
3
√

2
sinh(2(t− t0))

1/3tanh1/
√

3(t− t0) (4.80)

and potential V (φ(t)) = 4
3κ

− Λ
κ

solve the Bianchi I equations in 3 + 1 spacetime

dimensions. One can compare this solution to the Bali and Jain solution in [1].

4.2 In terms of a Schrödinger-Type Equation

To reformulate the Einstein field equations (I0), . . . , (Id) in terms of a

Schrödinger-type equation with one less non-linear term than the generalized EMP,

one can apply Corollary 2.3.1 to the difference d(I0)−
d
∑

i=1

(Ii). Below is the resulting

statement.

Theorem 4.2.1 Suppose you are given twice differentiable functions

X1(t), . . . , Xd(t) > 0, a once differentiable function φ(t), and also functions

ρ(t), p(t), V (x) which satisfy the Einstein equations (I0), . . . , (Id) for some
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Λ ∈ R, d ∈ N\{0, 1}, κ ∈ R\{0}. Let g(σ) denote the inverse of a function σ(t)

which satisfies

σ̇(t) =
1

θ (X1(t) · · ·Xd(t))
(4.81)

for some θ > 0. Then the following functions

u(σ) =

[

1

X1 · · ·Xd

]

◦ g(σ) (4.82)

P (σ) =
dκ

(d− 1)
ψ′(σ)2 (4.83)

solve the Schrödinger-type equation

u′′(σ) + [E − P (σ)]u(σ) =
θ2dκ(ρ(σ) + p(σ))

(d− 1)u(σ)
(4.84)

for

ψ(σ) = φ(g(σ)) (4.85)

ρ(σ) = ρ(g(σ)), p(σ) = p(g(σ)) (4.86)

and where

E
def.
=

−θ2

(d− 1)
X2

1X
2
2 · · ·X2

d

∑

l<k

η2
lk (4.87)

is a constant for

ηlk
def.
= Hl −Hk, l 6= k, l, k ∈ {1, . . . , d}. (4.88)

Conversely, suppose you are given a twice differentiable function u(σ) > 0, and

also functions P (σ) and ρ(σ), p(σ) which solve (4.84) for some constants E <

0, θ > 0, κ ∈ R\{0} and d ∈ N\{0, 1}. In order to construct functions which solve

(I0), . . . , (Id), first find σ(t), ψ(σ) which solve the differential equations

σ̇(t) =
1

θ
u(σ(t)) and ψ′(σ)2 =

(d− 1)

dκ
P (σ). (4.89)

Let

R(t) = u(σ(t))−ν and αl(t)
def.
= clσ(t), l ∈ {1, . . . , d} (4.90)
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where cl are any constants for which both

d
∑

l=1

cl = 0 and
∑

l<k

clck =
(d− 1)E

2d
. (4.91)

Then the functions

Xl(t) = R(t)1/νdeαl(t) (4.92)

φ(t) = ψ(σ(t)) (4.93)

ρ(t) = ρ(σ(t)), p(t) = p(σ(t)) (4.94)

and

V (φ(t)) =

[

(d− 1)

2θ2dκ

(

(u′)2 + Eu2
)

− 1

2θ2
u2(ψ′)2 − ρ − Λ

κ

]

◦ σ(t) (4.95)

satisfy the equations (I0), . . . , (Id).

Proof. This proof will implement Corollary 2.3.1 with constants and functions as

indicated in the following table.

Table 5. Corollary 2.3.1 applied to Bianchi I

In Corollary substitute In Corollary substitute

a(t) R(t) ε νdκ/(d− 1)

G(t) constant νE/θ2 A 2/ν

G1(t)
−νdκ
(d−1)

(ρ(t) + p(t)) A1 0

F1(σ) θ2dκ
(d−1)

(ρ(σ) + p(σ)) C1 1

Much of this proof will rely on computations that are exactly the same as those

seen in the proof of Theorem 4.1.1 (the generalized EMP formulation of Bianchi

I). Therefore we will restate the relevant results here, but point the reader to the

details in the proof of Theorem 4.1.1.
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To prove the forward implication, we assume to be given functions which solve

the Einstein field equations (I0), . . . , (Id). Forming the linear combination d(I0) −
d
∑

i=1

(Ii) of Einstein’s equations and simplifying, as was done in (4.19) - (4.29),

ḢR +
ν

(d− 1)

∑

l<k

η2
lk =

−νdκ
(d− 1)

[

φ̇2 + (ρ+ p)
]

(4.96)

where

HR(t)
def.
=

Ṙ(t)

R(t)
(4.97)

and

R(t)
def.
= (X1(t) · · ·Xd(t))

ν (4.98)

for any ν 6= 0. Next we will confirm that E is constant. As was done in (4.30)-

(4.33), since the right-hand sides of Einstein’s equations (Ii) are the same for all

i ∈ {1, . . . , d}, by equating the left-hand sides of any two equations (Ii) and (Ij)

for i 6= j, and after some rearranging we obtain

η̇ij +
1

ν
ηijHR = 0 (4.99)

for ηij defined in (4.88). Therefore the definition (4.87) of E is constant, being

proportional to a sum of squares of these constant functions. By the definitions

(4.87) and (4.98) of the constant E and the function R(t), we now rewrite (4.96)

from above as

ḢR =
−νdκ
(d− 1)

[

φ̇2 + (ρ+ p)
]

+
νE

θ2R2/ν
. (4.100)

This shows that R(t), φ(t), ρ(t) and p(t) satisfy the hypothesis of Corollary 2.3.1,

applied with constants ε,N,A,A1 . . . , AN and functions a(t), G(t), G1(t), . . . , GN(t)

according to Table 9. Since σ(t), u(σ), P (σ) and ψ(σ) defined in (4.81), (4.82),

(4.83) and (4.85) are equivalent to that in the forward implication of Corollary

2.3.1, applied with constants and functions according to Table 9, by this corollary
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and by definition (4.86) of ρi(σ), p(σ), the Schrödinger-type equation (2.110) holds

for constants C1, . . . , CN and functions F1(σ), . . . , FN(σ) as indicated in Table 9.

This proves the forward implication.

To prove the converse implication, we assume to be given functions which solve

the Schrödinger-type equation (4.84) and we begin by showing that (I0) is satisfied.

Differentiating the definition of R(t) in (4.90) and using the definition in (4.89) of

σ(t), we obtain

Ṙ(t) = −νu(σ(t))−ν−1u′(σ(t))σ̇(t)

= −ν
θ
u(σ(t))−νu′(σ(t)). (4.101)

so that

HR
def.
=

Ṙ

R
= −ν

θ
u′(σ(t)). (4.102)

Differentiating the definition (4.93) of φ(t) and using the definition in (4.90) of σ(t),

we obtain

φ̇(t) = ψ′(σ(t))σ̇(t) =
1

θ
ψ′(σ(t))u(σ(t)). (4.103)

Using (4.102) and (4.103), and also the definitions (4.90) and (4.94) of R(t) and

ρ(t) respectively, the definition (4.95) of V ◦ φ can be written as

V ◦ φ =
1

κ

(

(d− 1)

2ν2d
H2

R +
(d− 1)E

2dθ2R2/ν

)

− 1

2
φ̇2 − ρ− Λ

κ
. (4.104)

The quantity in parenthesis here is in fact equal to the left-hand-side of equation

(I0). To see this, first note that the definitions Xl(t)
def.
= R(t)1/νdeαl(t) in (4.92)

and H(t)
def.
= Ṙ(t)

R(t)
in (4.102), and the condition

∑

l cl = 0, are the same as those in

Theorem 4.1.1. Also by the definitions (4.90), (4.89) and (4.90) of αl(t), σ(t) and

R(t), we obtain

α̇lα̇k = clckσ̇
2 =

clck
θ2

(u ◦ σ)2 =
clck

θ2R(t)2/ν
, (4.105)
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which is a slightly modified version of (4.43) from our computation in the proof of

Theorem 4.1.1. Therefore by the arguments in (4.40)-(4.44), and using (4.105) to

slightly modify the last term to apply here, we have that

∑

l<k

HlHk =
(d− 1)

2ν2d
H2

R +
∑

l<k

clck
θ2R2/ν

. (4.106)

Then by the condition (4.91) on the constants cl, (4.106) becomes

∑

l<k

HlHk =
(d− 1)

2ν2d
H2

R +
(d− 1)E

2dθ2R2/ν
. (4.107)

That is, the expression (4.104) for V can now be written as

V ◦ φ =
1

κ

∑

l<k

HlHk −
1

2
φ̇2 − ρ− Λ

κ
, (4.108)

showing that (I0) holds under the assumptions of the converse implication.

To conclude the proof we must also show that the equations (I1), . . . , (Id) hold.

In the converse direction the hypothesis of the converse of Corollary 2.3.1 holds,

applied with constants N,C1, . . . , CN and functions F1(σ), . . . , FN(σ) as indicated

in Table 9. Since σ(t), ψ(σ), R(t) and φ(t) defined in (4.89), (4.90) and (4.93)

are consistent with the converse implication of Corollary 2.3.1, applied with a(t)

and ε as in Table 9, by this corollary and by the definition (4.94) of ρ(t), p(t)

the scale factor equation (2.109) holds for constants ε, A,A1, . . . , AN and functions

G(t), G1(t), . . . , GN(t) according to Table 9. That is, we have regained (4.100).

Now solving (4.104) for ρ(t) and substituting this into (4.100), we obtain

ḢR =
−νdκ
(d− 1)

[

1

2
φ̇2 − V ◦ φ+

(d− 1)E

2dθ2κR2/ν
+ p +

(d− 1)

2ν2dκ
H2

R − Λ

κ

]

. (4.109)

Multiplying by (d−1)
νd

and rearranging, we see that

(d− 1)

νd
ḢR +

(d− 1)

2ν2d
H2

R +
(d− 1)E

2dθ2R2/ν
= −κ

[

1

2
φ̇2 − V ◦ φ+ p

]

+ Λ. (4.110)
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The left-hand side of this equation is in fact equal to the left-hand-side of (Ii)

for any i ∈ {1, . . . , d}. To see this, again we use that the definitions Xl(t)
def.
=

R(t)1/νdeαl(t) in (4.92) and HR(t)
def.
= Ṙ(t)

R(t)
in (4.102), and the condition

∑

l cl = 0,

are the same as those in Theorem 4.1.1. Also by the definitions (4.90) and (4.89)

of αl(t), σ(t) and R(t), we see that

α̇l(t)R(t)1/ν = clσ̇(t)R(t)1/ν

=
cl
θ
u(σ(t))R(t)1/ν

=
cl
θ

is a constant (4.111)

which shows that

α̈l +
1

ν
α̇lHR = 0 (4.112)

holds here as it does in Theorem 4.1.1. Therefore by the arguments in (4.49)-(4.61),

and as above using (4.105) to slightly modify the last term of (4.61) to apply here,

we have that

∑

l 6=i

(Ḣl +H2
l ) +

∑

l<k
l,k 6=i

HlHk =
(d− 1)

νd
ḢR +

d(d− 1)

2ν2d2
H2

R −
∑

l<k

clck
θ2R2/ν

. (4.113)

Then by the condition (4.91) on the constants cl, (4.113) becomes

∑

l 6=i

(Ḣl +H2
l ) +

∑

l<k
l,k 6=i

HlHk =
1

νd
(d− 1)ḢR +

d(d− 1)

2ν2d2
H2

R −
∑

l<k

(d− 1)E

2dθ2R2/ν
. (4.114)

Combining (4.110) and (4.114), we obtain (Ii) for all i ∈ {1, . . . , d}. This proves

the theorem.

⋄
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4.2.1 Reduction to linear Schrödinger: pure scalar field

To show some examples we take ρ = p = 0 so that Theorem shows that solving

the Bianchi I Einstein equations

∑

l<k

HlHk
(I0)′′
= κ

[

1

2
φ̇2 + V ◦ φ

]

+ Λ (4.115)

∑

l 6=i

(Ḣl +H2
l ) +

∑

l<k
l,k 6=i

HlHk
(Ii)′′
= −κ

[

1

2
φ̇2 − V ◦ φ

]

+ Λ

is equivalent to solving the linear Schrödinger equation

u′′(σ) + [E − P (σ)]u(σ) = 0. (4.116)

The solutions of (I0)
′′, (Ii)

′′ in (4.115) and the solutions of (4.116) are related by

R(t) = (X1(t) · · ·Xd(t))
ν = u(σ(t))−ν and ψ′(σ)2 =

(d− 1)

dκ
P (σ) (4.117)

for any ν 6= 0 and where φ(t) = ψ(σ(t)) and

σ̇(t) =
1

θX1(t) · · ·Xd(t)
=

1

θ
u(σ(t)), (4.118)

for θ > 0. Also the constant E is

E
def.
=

−θ2

(d− 1)
X2

1X
2
2 · · ·X2

d

(

∑

l<k

η2
lk

)

(4.119)

for ηlk
def.
= Hl −Hk, l, k ∈ {1, . . . , d}. In the converse direction

Xl(t) = R(t)1/νdeαl(t) (4.120)

for αl(t)
def.
= clσ(t) and where the constants cl satisfy

d
∑

l=1

cl = 0 and
∑

l<k

clck =
(d− 1)E

2d
. (4.121)
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Also V is taken to be such that

V (φ(t)) =

[

(d− 1)

2θ2dκ

(

(u′)2 + Eu2
)

− 1

2θ2
u2(ψ′)2 − Λ

κ

]

◦ σ(t). (4.122)

We now refer to Appendix E for solutions of the linear Schrödinger equation

(4.116). We will map them using the theorem to exact solutions of Einstein’s

equations. Of course when E = 0 in (4.119), ηlk = 0 for all pairs l, k so that

X1(t), X2(t), . . . , Xd(t) agree up to a constant multiple. In this case, if we take

R(t) = X1(t) = · · · = Xd(t)
def.
= a(t) and ν = 1/d we obtain the FRLW cosmology

with curvature k = 0, n = 2d and D = 0 so that we may refer to section 3.3.1

for exact solutions to the Bianchi I Einstein equations if E = 0. Here we consider

solutions to the linear Schrödinger equation (4.116) by referring to Table 15 with

E < 0.

Example 34 For θ = 1 and choice of constant E = −1, we take solution 4 in

Table 15 with c0 = −1, a0 = 1 and b0 = 0 so that we have u(σ) = e−σ, P (σ) = 0.

By (E.28) - (E.30) with r0 = 1 we obtain σ(t) = ln ((t− t0)) and

R(t) =
1

u(σ(t))ν
= (t− t0)

ν (4.123)

for any ν 6= 0 t0 ∈ R so that

Xi(t) = R(t)1/νdeciσ(t) = (t− t0)
1/d+ci (4.124)

for constants that satisfy

d
∑

l=0

cl = 0 and
∑

l<k

clck = −(d− 1)

2d
. (4.125)

Since P = 0 = ψ′(σ), ψ(σ) = ψ0 for constant ψ0 ∈ R. Finally, by (4.122),

(E.31) and (E.30), we obtain constant potential V (φ(t)) = −Λ/κ. This is alternate

derivation of the Kasner vacuum solution seen above in Example 32.
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For ν = 1/2 and t0 = 0, the solver was run with u and u′ both perturbed by

.01. The graphs of R(t) below show that this solution is unstable, since the absolute

error grows up to two orders of magnitude over the graphed time interval.

Figure 26. Instability of Bianchi I Example 34
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Example 35 For θ = 1 and choice of constant E = −1, we take solution 4 in

Table 15 with c0 = −1 and a0, b0 > 0 so that we have u(σ) = a0e
−σ − b0e

σ and

P (σ) = 0. By (E.32) - (E.34) we obtain σ(t) = ln
(
√

a0

b0
tanh(

√
a0b0(t− t0))

)

and

R(t) =
1

u(σ(t))ν
=

1

(2
√
a0b0)ν

sinhν(2
√

a0b0(t− t0)) (4.126)

for ν 6= 0 and t0 ∈ R so that

Xi(t) = R(t)1/νdeciσ(t) (4.127)

=

√
a0

ci−1/d

√
b0

ci+1/d
sinh1/d+ci(

√

a0b0(t− t0))cosh
1/d−ci(

√

a0b0(t− t0)).

Since P = 0 = ψ′(σ), the scalar field is constant

ψ(σ) = ψ0 ∈ R. (4.128)
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Finally, by (4.122), (E.35) and (E.34), we obtain constant potential

V (φ(t)) =
2(d− 1)a0b0

dκ
− Λ

κ
(4.129)

since coth2(x) − csch2(x) = 1.

As an example for d = 3, one can take c1 = − 1√
3
, c2 = 0, c3 = 1√

3
and a0 =

b0 = 1 so that

X1(t) = sinh(1−
√

3)/3((t− t0))cosh
(1+

√
3)/3((t− t0))

X2(t) = sinh1/3((t− t0))cosh
1/3((t− t0))

X3(t) = sinh(1+
√

3)/3((t− t0))cosh
(1−

√
3)/3((t− t0)) (4.130)

and the potential V (φ(t)) = 4
3κ

− Λ
κ

solve the Bianchi I equations in 3+1 spacetime

dimensions. One can also compare this solution with the Bali and Jain solution in

section 2 of [1].

Example 36 For θ = 1 and choice of constant E = −1, we take solution 5 in

Table 15 with c0 = −1 and b0 = 0 so that we have u(σ) = (a0/σ)e−σ2/2 and

P (σ) = σ2+2/σ2 for a0 > 0. By (E.36) - (E.38) we obtain σ(t) =
√

2 ln(a0(t− t0))

and

R(t) =
1

u(σ(t))ν
=
(√

2(t− t0)
√

ln(a0(t− t0))
)ν

(4.131)

for t > t0 so that

Xi(t) = R(t)1/νdeciσ(t)

=
(√

2(t− t0)
√

ln(a0(t− t0))
)1/d

eci

√
2 ln(a0(t−t0)). (4.132)

for constants ci that satisfy

d
∑

l=1

cl = 0 and
∑

l<k

clck = −(d− 1)

2d
. (4.133)
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By (E.41) with α0 = (d− 1)/dκ, we have scalar field

φ(t) = ψ(σ(t))

=

√

(d− 1)

2dκ

(

√

2 ln2(a0(t− t0)) + 1 + ln [2 ln(a0(t− t0))]

− ln

[

4 + 4

√

2 ln2(a0(t− t0)) + 1

])

+ β0 (4.134)

for β0 ∈ R. Finally, by (4.122), (E.39) and (E.38), we obtain

V (φ(t)) =

[

(d− 1)

2dκ

(

(u′)2 − u2
)

− 1

2θ2
u2(ψ′)2 − Λ

κ

]

◦ σ(t)

=
(d− 1)(2 ln(a0(t− t0)) − 1)

8dκ(t− t0)2 ln2(a0(t− t0))
− Λ

κ
. (4.135)

For example when d = 3, we can take c1 = − 1√
3
, c2 = 0 and c3 = 1√

3
to obtain

X1(t) =
(√

2(t− t0)
√

ln(a0(t− t0))
)1/3

e
− 1√

3

√
2 ln(a0(t−t0))

X2(t) =
(√

2(t− t0)
√

ln(a0(t− t0))
)1/3

X3(t) =
(√

2(t− t0)
√

ln(a0(t− t0))
)1/3

e
1√
3

√
2 ln(a0(t−t0))

, (4.136)

φ(t) =

√

1

3κ

(

√

2 ln2(a0(t− t0)) + 1 + ln [2 ln(a0(t− t0))]

− ln

[

4 + 4

√

2 ln2(a0(t− t0)) + 1

])

+ β0 (4.137)

and

V (φ(t)) =
(2 ln(a0(t− t0)) − 1)

12κ(t− t0)2 ln2(a0(t− t0))
− Λ

κ
(4.138)

for β0, t0 ∈ R and a0 > 0. Note that this is similar to the FRLW solution found

in Example 21 by setting n = 2d and by identifying a(t) in Example 21 with R(t)

here.

For ν = a0 = 1 and t0 = 0, the solver was run with u and u′ both perturbed by

.01. The graphs of R(t) below show that this solution is unstable, since the absolute

error grows three orders of magnitude over the graphed time interval.
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Figure 27. Instability of Bianchi I Example 36
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C H A P T E R 5

REFORMULATIONS OF A CONFORMAL BIANCHI I

MODEL

For a change of coordinates in comparison to chapter 4, we consider a Bianchi

I metric of the form

ds2 = − (a1(t)a2(t) · · ·ad(t))
2 dt2 + a1(t)

2dx2
1 + a2

2(t)dx
2
2 + · · ·+ a2

d(t)dx
2
d (5.1)

in a d + 1−dimensional spacetime. The nonzero Einstein equations gijGij =

−κgijTij + Λ, multiplied by |g00| = (a1a2 · · ·ad)
2 are

∑

l<k

HlHk
(I0)
= κ

[

φ̇2

2
+ (a1a2 · · ·ad)

2

(

V ◦ φ+ ρ+
Λ

κ

)

]

(5.2)

∑

l 6=1

Ḣl −
∑

l<k

HlHk
(I1)
= κ

[

− φ̇
2

2
+ (a1a2 · · ·ad)

2

(

V ◦ φ− p+
Λ

κ

)

]

...

∑

l 6=i

Ḣl −
∑

l<k

HlHk
(Ii)
= κ

[

− φ̇
2

2
+ (a1a2 · · ·ad)

2

(

V ◦ φ− p+
Λ

κ

)

]

...

∑

l 6=d

Ḣl −
∑

l<k

HlHk
(Id)
= κ

[

− φ̇
2

2
+ (a1a2 · · ·ad)

2

(

V ◦ φ− p+
Λ

κ

)

]

where Hl(t)
def.
= ȧl

al
.
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5.1 In terms of a Generalized EMP

Theorem 5.1.1 Suppose you are given twice differentiable functions

a1(t), . . . , ad(t) > 0, a once differentiable function φ(t) and also functions

ρ(t), p(t), V (x) which satisfy the Einstein equations (I0), . . . , (Id) for some

Λ ∈ R, d ∈ N\{0, 1}, κ ∈ R\{0}. Denote

R(t)
def.
= (a1(t)a2(t) · · ·ad(t))

ν (5.3)

for some ν 6= 0. If f(τ) is the inverse of a function τ(t) which satisfies

τ̇ (t) = θR(t)q+ 1
ν , (5.4)

for some constants θ > 0 and q 6= 0, then

Y (τ) = R(f(τ))q and Q(τ) =
qνdκ

(d− 1)
ϕ′(τ)2 (5.5)

solve the generalized EMP equation

Y ′′(τ) +Q(τ)Y (τ) =
qνL

θ2Y (τ)(qν+2)/qν
− qνdκ (̺(τ) + <(τ))

θ2(d− 1)Y (τ)
(5.6)

for

ϕ(τ) = φ(f(τ)) (5.7)

̺(τ) = ρ(f(τ)), <(τ) = p(f(τ)). (5.8)

L
def.
=

2

(d− 1)

∑

1<l<k≤d

µlµk −
d
∑

j=2

µ2
j , (5.9)

where µi ∈ R are such that ai(t) = ωie
µita1(t) for some ωi ∈ R, i ∈ {2, . . . , d}.

Conversely, suppose you given a twice differentiable function Y (τ) > 0, a con-

tinuous function Q(τ) and also functions ̺(τ),<(τ) which solve (5.6) for some

constants θ > 0 and q, ν, κ ∈ R\{0}, L ∈ R, d ∈ N\{0, 1}. In order to construct
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functions which solve (I0), . . . , (Id), first find τ(t), ϕ(τ) which solve the differential

equations

τ̇ (t) = θY (τ(t))(qν+1)/qν and ϕ′(τ)2 =
(d− 1)

qνdκ
Q(τ). (5.10)

Next find constants µi, i ∈ {2, . . . , d} which satisfy

L =
2

(d− 1)

∑

2≤l<k≤d

µlµk −
d
∑

j=2

µ2
j , (5.11)

and let

R(t) = Y (τ(t))1/q. (5.12)

Then the functions

a1(t) = R(t)1/νd(ω2 · · ·ωde
(µ2+···+µd)t)−1/d (5.13)

ai(t) = ωie
µita1(t) (5.14)

φ(t) = ϕ(τ(t)) (5.15)

ρ(t) = ̺(τ(t)), p(t) = <(τ(t)) (5.16)

and

V (φ(t)) =

[

(d− 1)

2dκ

(

θ2

ν2q2
(Y ′)2 +

L

Y 2/qν

)

− θ2

2
(ϕ′)2Y 2 − Λ

κ
− ̺

]

◦ τ(t) (5.17)

satisfy the Einstein equations (I0), . . . , (Id) for any ωi > 0, 2 ≤ i ≤ d.

Proof. This proof will implement Theorem 2.1.1 with constants and functions as

indicated in the following table.
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Table 6. Theorem 2.1.1 applied to conformal Bianchi I

In Theorem substitute In Theorem substitute

a(t) R(t) N 1

δ −1/ν ε νdκ/(d− 1)

G0(t) constant νL A0 0

G1(t)
−νdκ
(d−1)

(ρ(t) + p(t)) A1 −2/ν

λ0(τ) constant qνL/θ2 B0 (2 + qν)/qν

λ1(τ)
−qνdκ

θ2(d−1)
(̺(τ) + <(τ)) B1 1

To prove the forward implication, we assume to be given functions which solve

the Einstein field equations (I0), . . . , (Id). Since the right-hand sides of Einstein

equations (Ii) are the same for all i ∈ {1, . . . , d}, we begin by equating the left-

hand side of (I1) with the left-hand side of any (Ij) for j ∈ {2, . . . , d} since it will

give us a simplifying relation among the scale factors a1(t), . . . , ad(t). Doing this,

we obtain
∑

l 6=1

Ḣl −
∑

l<k

HlHk =
∑

l 6=j

Ḣl −
∑

l<k

HlHk. (5.18)

All terms cancel except for the jth term from the first sum on the left-hand side,

and also the 1st term from the first sum on the right-hand side. This leaves

Ḣj = Ḣ1, (5.19)

which holds for all j ∈ {1, . . . , d}. Integrating, we obtain

Hj = H1 + µj (5.20)

for µj ∈ R, j ∈ {1, . . . , d} (µ1 = 0). Since in general d
dt

ln(ai) = ȧi

ai
= Hi, (5.20) can

be written

d

dt
ln(aj) =

d

dt
ln(a1) + µj. (5.21)
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Integrating again we get

ln(aj) = ln(a1) + µjt+ c′j (5.22)

for some cj ∈ R, j ∈ {1, . . . , d} (c1 = 0). Exponentiating and letting ωj
def.
= ecj > 0,

we have that

aj(t) = ωje
µjta1(t), (5.23)

where of course this holds trivially for j = 1 where ω1 = 1 and µ1 = 0. By (5.20),

the left-hand side of (I0) can be written as

∑

l<k

HlHk =
∑

l<k

(H1 + µl)(H1 + µk) =
∑

l<k

(H2
1 + (µl + µk)H1 + µlµk). (5.24)

The first term on the right-hand side of (5.24) does not depend on the indices l, k.

By using our computation in (4.41), this term is equal to H2
1 times

∑

l<k 1 = d(d−1)
2

.

The second term on the right-hand side of (5.24) sums to H1 times the quantity

∑

l<k

(µl + µk) =
d−1
∑

l=1

d
∑

k=l+1

µl +
d
∑

k=2

k−1
∑

l=1

µk

=

d−1
∑

l=1

(d− l)µl +

d
∑

k=2

(k − 1)µk

= (d− 1)µ1 +

d−1
∑

j=2

(d− j + j − 1)µj + (d− 1)µd

= (d− 1)

d
∑

j=1

µj. (5.25)

Therefore (5.24) becomes

∑

l<k

HlHk =
d(d− 1)

2
H2

1 + (d− 1)H1

d
∑

j=1

µj +
∑

l<k

µlµk. (5.26)
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Next using the definition (5.3) of R(t), we further define

HR
def.
=

Ṙ

R

=
ν(a1 · · ·ad(t))

ν−1(ȧ1 · · ·ad + · · ·+ a1 · · · ȧd)

(a1 · · ·ad)ν

= ν

d
∑

j=1

Hj

= ν

d
∑

j=1

(H1 + µj)

= ν

(

dH1 +

d
∑

j=1

µj

)

(5.27)

by (5.20). Therefore

H1 =
1

νd
HR − 1

d

d
∑

j=1

µj (5.28)

and

Ḣ1 =
1

νd
ḢR (5.29)

so that (5.26) becomes

∑

l<k

HlHk = (5.30)

d(d− 1)

2

(

1

νd
HR − 1

d

d
∑

j=1

µj

)2

+(d−1)

(

1

νd
HR − 1

d

d
∑

j=1

µj

)

d
∑

j=1

µj +
∑

l<k

µlµk.

Collecting terms (the HR terms sums to zero), we obtain

∑

l<k

HlHk =
(d− 1)

2ν2d
H2

R − (d− 1)

2d

(

d
∑

j=1

µj

)2

+
∑

l<k

µlµk. (5.31)

Also using that
(

d
∑

j=1

µj

)2

= 2
∑

l<k

µlµk +

d
∑

j=1

µ2
j (5.32)

the equation (5.31) becomes

∑

l<k

HlHk =
(d− 1)

2ν2d
H2

R +
1

d

∑

l<k

µlµk −
(d− 1)

2d

d
∑

j=1

µ2
j . (5.33)
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Defining the quantity

L
def.
=

2

(d− 1)

∑

l<k

µlµk −
d
∑

j=1

µ2
j

=
2

(d− 1)

∑

2≤l<k≤d

µlµk −
d
∑

j=2

µ2
j (since µ1 = 0), (5.34)

we see that (5.33) becomes

∑

l<k

HlHk =
(d− 1)

2ν2d
H2

R +
(d− 1)

2d
L. (5.35)

Similarly by (5.19), (5.29) and (5.35), the left-hand side of (Ii) for 1 ≤ i ≤ d can

be written as

∑

l 6=i

Ḣl −
∑

l<k

HlHk =
(d− 1)

νd
ḢR − (d− 1)

2ν2d
H2

R − (d− 1)

2d
L. (5.36)

That is, by (5.33), (5.36) and the definition (5.3) of R(t), equations (I0) and (Ii)

for 1 ≤ i ≤ d can be written as

(d− 1)

2ν2d
H2

R +
(d− 1)

2d
L

(I0)′
= κ

[

φ̇2

2
+R2/ν

(

V ◦ φ+ ρ+
Λ

κ

)

]

(d− 1)

νd
ḢR − (d− 1)

2ν2d
H2

R − (d− 1)

2d
L

(Ii)′
= κ

[

− φ̇
2

2
+R2/ν

(

V ◦ φ− p+
Λ

κ

)

]

.

Forming the linear combination (I0)
′ − (Ii)

′, and multiplying by −νd
(d−1)

,

ḢR − 1

ν
H2

R − νL =
−νdκ
(d− 1)

[

φ̇2 +R2/ν(ρ+ p)
]

. (5.37)

This shows that R(t), φ(t), ρ(t) and p(t) satisfy the hypothesis of Theorem 2.1.1,

applied with constants ǫ, ε, N,A0, . . . , AN and functions a(t), G0(t), . . . , GN(t) ac-

cording to Table 6. Since τ(t), Y (τ), Q(τ) and ϕ(τ) defined in (5.4), (5.5) and (5.7)

are equivalent to that in the forward implication of Theorem 2.1.1, by this theorem

and by definition (5.8) of ̺(τ),<(τ), the generalized EMP equation (2.2) holds for
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constants B0, . . . , BN and functions λ0(τ), . . . , λN(τ) as indicated in Table 6. This

proves the forward implication.

To prove the converse implication, we assume to be given functions which solve

the generalized EMP equation (5.6) and we begin by showing that (I0) is satisfied.

Differentiating the definition of R(t) in (5.12) and using the definition in (5.10) of

τ(t), we see that

Ṙ(t) =
1

q
Y (τ(t))

1
q
−1Y ′(τ(t))τ̇ (t) (5.38)

=
θ

q
Y (τ(t))

1
q
(1+ 1

ν
)Y ′(τ(t)) (5.39)

Dividing by R(t), we obtain

HR(t)
def.
=

Ṙ(t)

R(t)
=
θ

q
Y (τ(t))1/qνY ′(τ(t)). (5.40)

Differentiating the definition (5.15) of φ(t) and using definition (5.10) of τ(t) gives

φ̇(t) = ϕ′(τ(t))τ̇ (t) = θϕ′(τ(t))Y (τ(t))(qν+1)/qν . (5.41)

Using (5.40) and (5.41), and also the definitions (5.12) and (5.16) of R(t) and ρi(t)

respectively, the definition (5.17) of V ◦ φ can be written as

V ◦ φ =
1

R2/ν

[

1

κ

(

(d− 1)

2ν2d
H2

R +
(d− 1)

2d
L

)

− φ̇2

2

]

− Λ

κ
− ρ. (5.42)

The quantity in the inner parenthesis here is in fact equal to the left-hand-side of

equation (I0). To see this, we differentiate the definitions in (5.13) and (5.14) of

ai(t), divide the results by ai(t), and use the definition (5.40) of HR to obtain

H1
def.
=

ȧ1

a1
=

1

νd
HR − 1

d
(µ2 + · · ·+ µd) (5.43)

and

Hi
def.
=

ȧi

ai

=
ȧ1

a1

+ µi = H1 + µi (5.44)
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for i ∈ {1, . . . , d} by taking µ1
def.
= 0. This confirms that the identities (5.19),

(5.20), (5.28) and (5.29) hold in the converse direction, so that the computations

(5.26)-(5.35) are also valid in the converse direction for L in (5.11). That is,

∑

l<k

HlHk =
(d− 1)

2ν2d
H2

R +
(d− 1)

2d
L (5.45)

which shows that (5.42) can be written

V ◦ φ =
1

R2/ν

[

1

κ

(

∑

l<k

HlHk

)

− φ̇2

2

]

− Λ

κ
− ρ (5.46)

so that (I0) holds.

To conclude the proof we must also show that the equations (I1), . . . , (Id) hold.

In the converse direction the hypothesis of the converse of Theorem 2.1.1 holds,

applied with constants N,B0, . . . , BN and functions λ0(τ), . . . , λN(τ) as indicated

in Table 6. Since τ(t), ϕ(τ), R(t) and φ(t) defined in (5.10), (5.12) and (5.15)

are consistent with the converse implication of Theorem 2.1.1, applied with a(t), δ

and ε as in Table 6, by this theorem and by the definition (5.16) of ρ(t), p(t)

the scale factor equation (2.1) holds for constants δ, ε, A0, . . . , AN and functions

G0(t), . . . , GN(t) according to Table 6. That is, we have regained equation (5.37).

Now solving (5.42) for R2/νρ(t) and substituting this into (5.37), we obtain

ḢR − 1

2ν
H2

R − ν

2
L =

−νdκ
(d− 1)

[

φ̇2

2
+R2/ν

(

−V ◦ φ+ p− Λ

κ

)

]

. (5.47)

Multiplying by (d−1)
νd

and rearranging, we get that

(d− 1)

νd
ḢR − (d− 1)

2ν2d
H2

R − (d− 1)

2d
L = −κ

[

φ̇2

2
+R2/ν

(

−V ◦ φ+ p− Λ

κ

)

]

.

(5.48)

As noted above, the computations (5.26)-(5.35) still hold in the converse direction

so that by (5.36), we see that the left-hand side of (5.48) is in fact equal to the

left-hand side of (Ii) for any i ∈ {1, . . . , d}. Since R = (a1 · · ·ad)
ν , the right-hand
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side of (5.48) agrees with the right-hand side of (Ii) for all i ∈ {1, . . . , d}. This

proves the theorem. ⋄

5.1.1 Reduction to classical EMP: pure scalar field

To show some examples we take ρ = p = 0 and choose parameter ν = 1/q in

Theorem 5.1.1 to find that solving the Bianchi I Einstein equations

∑

l<k

HlHk
(I0)′
= κ

[

φ̇2

2
+ (a1a2 · · ·ad)

2

(

V ◦ φ+
Λ

κ

)

]

(5.49)

∑

l 6=i

Ḣl −
∑

l<k

HlHk
(Ii)′
= κ

[

− φ̇
2

2
+ (a1a2 · · ·ad)

2

(

V ◦ φ+
Λ

κ

)

]

for l, k, i ∈ {1, . . . , d} is equivalent to solving the classical EMP equation

Y ′′(τ) +Q(τ)Y (τ) =
L

θ2Y (τ)3
(5.50)

for constants θ, L > 0. The solutions of (I0)
′, (I1)

′, . . . , (Id)
′ and (5.50) are related

by

R(t) = Y (τ(t))1/q and ϕ′(τ)2 =
(d− 1)

dκ
Q(τ) (5.51)

for q 6= 0, φ(t) = ϕ(τ(t)), R(t)
def.
= (a1(t) · · ·ad(t))

1/q and

τ̇ (t) = θR(t)2q = θY (τ(t))2, (5.52)

for any θ > 0. Also we define the constant

L
def.
=

2

(d− 1)

∑

2<l<k≤d

µlµk −
d
∑

j=2

µ2
j , (5.53)

where µi ∈ R are such that ai(t) = cie
µita1(t) for some ci ∈ R, i ∈ {2, . . . , d}. In

the converse direction we also define

a1(t) = R(t)q/d(ω2 · · ·ωde
(µ2+···+µd)t)−1/d (5.54)

and take V to be

V (φ(t)) =

[

(d− 1)

2dκ

(

θ2(Y ′)2 +
L

Y 2

)

− θ2

2
(ϕ′)2Y 2 − Λ

κ

]

◦ τ(t). (5.55)
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5.2 In terms of Schrödinger-Type Formulation

To reformulate the Bianchi I Einstein equations (I0), . . . , (Id) in (5.2) in terms

of an equation with one less non-linear term than that which is provided by the

generalized EMP formulation, one can apply Corollary 2.3.1 to the difference d(I0)−
d
∑

i=1

(Ii) (and similar to above, define V ◦φ in u−notation to be such that (I0) holds).

Below is the resulting statement.

Theorem 5.2.1 Suppose you are given twice differentiable functions

a1(t), . . . , ad(t) > 0, a once differentiable function φ(t), and also functions

ρ(t), p(t), V (x) which satisfy the Einstein equations (I0), . . . , (Id) for some

Λ ∈ R, d ∈ N\{0, 1}, κ ∈ R\{0}. Denote

R(t)
def.
= (a1(t) · · ·ad(t))

ν (5.56)

for some ν 6= 0, then the functions

u(σ) = R(σ + t0)
−1/ν (5.57)

P (σ) =
dκ

(d− 1)
ψ′(σ)2 (5.58)

solve the Schrödinger-type equation

u′′(σ) + [E − P (σ)] u(σ) =
dκ(ρ(σ) + p(σ))

(d− 1)u(σ)
(5.59)

for

ψ(σ) = φ(σ + t0) (5.60)

ρ(σ) = ρ(σ + t0), p(σ) = p(σ + t0). (5.61)

and where

E
def.
=

2

(d− 1)

∑

l<k

µlµk −
d
∑

j=1

µ2
j (5.62)

120



for constants µj such that aj(t) = ωje
µjta1(t) for some ωj > 0, j ∈ {1, . . . , d}.

Conversely, suppose you are given a twice differentiable function u(σ) > 0, and

also functions P (σ) and ρ(σ), p(σ) which solve (5.59) for some constants E <

0, κ ∈ R\{0} and d ∈ N\{0, 1}. Then we define ψ(σ) such that

ψ′(σ)2 =
(d− 1)

dκ
P (σ), (5.63)

and constants µi, i ∈ {2, . . . , d} which satisfy

E=
2

(d− 1)

∑

l<k

µlµk −
d
∑

j=1

µ2
j , (5.64)

and let

R(t) = u(t− t0)
−ν . (5.65)

Then the functions

a1(t) = R(t)1/νd(ω2 · · ·ωde
(µ2+···+µd)t)−1/d (5.66)

ai(t) = ωie
µita1(t) (5.67)

φ(t) = ψ(t− t0) (5.68)

ρ(t) = ρ(t− t0), p(t) = p(t− t0) (5.69)

and

V (φ(t)) =

[

(d− 1)

2dκ

(

(u′)2 + Eu2
)

− 1

2
(ψ′)2u2 − Λ

κ
− ρ

]

◦ (t− t0) (5.70)

satisfy the equations (I0), . . . , (Id) for any ωi > 0, 2 ≤ i ≤ d.

Proof. This proof will implement Corollary 2.3.2 with constants and functions as

indicated in the following table.
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Table 7. Corollary 2.3.2 applied to conformal Bianchi I

In Corollary substitute In Corollary substitute

a(t) R(t) N 1

δ −1/ν ε νdκ/(d− 1)

G(t) constant νE A 0

G1(t)
−νdκ
(d−1)

(ρ(t) + p(t)) A1 −2/ν

F1(σ) dκ
(d−1)

(ρ(σ) + p(σ)) C1 1

Much of this proof will rely on computations that are exactly the same as those

seen in the proof of Theorem 5.1.1 (the generalized EMP formulation of conformally

Bianchi I). Therefore we will restate the relevant results here, but point the reader

to the details in the proof of Theorem 5.1.1.

To prove the forward implication, we assume to be given functions which solve

the Einstein field equations (I0), . . . , (Id). Since the right-hand sides of Einstein

equation (Ii) are all the same for i ∈ {1, . . . , d}, we begin by equating the left-hand

side of (I1) with the left-hand side of any (Ij) for j ∈ {2, . . . , d} since it will give

us a simplifying relation among the scale factors a1(t), . . . , ad(t). Exactly this was

done in (5.18)-(5.23) so that again we obtain

Hj = H1 + µj (5.71)

and

aj(t) = ωje
µj ta1(t) (5.72)

for ωj > 0, µj ∈ R, j ∈ {1, . . . , d}, and µ1 = 0, ω1 = 1. This allows us to follow the

arguments given in (5.24)-(5.36), so that the Einstein equations (I0) and (Ii) for

1 ≤ i ≤ d can be written as

(d− 1)

2ν2d
H2

R +
(d− 1)

2d
E

(I0)′
= κ

[

φ̇2

2
+R2/ν

(

V ◦ φ+ ρ+
Λ

κ

)

]
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(d− 1)

νd
ḢR − (d− 1)

2ν2d
H2

R − (d− 1)

2d
E

(Ii)′
= κ

[

− φ̇
2

2
+R2/ν

(

V ◦ φ− p +
Λ

κ

)

]

.

where again R(t)
def.
= (a1(t) · · ·ad(t))

ν for ν 6= 0 by (5.56),

L
def.
=

2

(d− 1)

∑

l<k

µlµk −
d
∑

j=1

µ2
j = E (by (5.62)) (5.73)

and

HR
def.
=

Ṙ

R
, (5.74)

so that

H1 =
1

νd
HR − 1

d

d
∑

j=1

µj (5.75)

Ḣ1 =
1

νd
ḢR. (5.76)

Again we form the linear combination (I0)
′ − (Ii)

′, multiply by −νd
(d−1)

, and obtain

ḢR − 1

ν
H2

R − νE =
−νdκ
(d− 1)

[

φ̇2 +R2/ν(ρ+ p)
]

. (5.77)

This shows that R(t), φ(t), ρ(t) and p(t) satisfy the hypothesis of Corollary 2.3.2, ap-

plied with constants ǫ, ε, N,A,A1 . . . , AN and functions a(t), G(t), G1(t), . . . , GN(t)

according to Table 7. Since u(σ), P (σ) and ψ(σ) defined in (5.57)-(5.58) and (5.60)

are equivalent to that in the forward implication of Corollary 2.3.1, by this corollary

and by definition (5.61) of ρ(σ), p(σ), the Schrödinger-type equation (2.130) holds

for constants C1, . . . , CN and functions F1(σ), . . . , FN(σ) as indicated in Table 7.

This proves the forward implication.

To prove the converse implication, we assume to be given functions which solve

the Schrödinger-type equation (5.59) and we will show that equations (I0), . . . , (Id)

are satisfied. To show that (I0) is satisfied, we differentiate the definition of R(t)

in (5.65) to obtain

Ṙ(t) = −νu(t− t0)
−ν−1u′(t− t0). (5.78)

123



Dividing by R(t), we have

HR
def.
=

Ṙ

R
= −ν u

′(t− t0)

u(t− t0)
. (5.79)

Differentiating the definition (5.68) of φ(t), we get that

φ̇(t) = ψ′(t− t0). (5.80)

Using (5.79) and (5.80), and also the definitions (5.65) and (5.69) of R(t) and ρ(t)

respectively, the definition (5.70) of V ◦ φ can be written as

V ◦ φ =
1

R2/ν

[

1

κ

(

(d− 1)

2ν2d
H2

R +
(d− 1)E

2d

)

− 1

2
φ̇2

]

− Λ

κ
− ρ. (5.81)

The quantity in parenthesis here is in fact equal to the left-hand-side of equation

(I0). To see this, note that the definitions of a1(t), ai(t) in (5.66), (5.67) and also

HR
def.
= Ṙ/R are the same as those in Theorem 5.1.1. Therefore we may follow the

arguments given in (5.26)-(5.35) and (5.43)-(5.45) to see that the identity

∑

l<k

HlHk =
(d− 1)

2ν2d
H2

R +
(d− 1)

2d
E (5.82)

still holds in the converse direction (since (7.85) in Theorem 5.1.1 and (5.11) here

show that L = E). This shows that (5.81) can be written

V ◦ φ =
1

R2/ν

[

1

κ

(

∑

l<k

HlHk

)

− 1

2
φ̇2

]

− Λ

κ
− ρ (5.83)

so that (I0) holds under the assumptions of the converse implication.

To conclude the proof we must also show that the equations (I1), . . . , (Id) hold.

In the converse direction the hypothesis of the converse of Corollary 2.3.2 holds, ap-

plied with constants N,C1, . . . , CN and functions F1(σ), . . . , FN(σ) as indicated in

Table 7. Since ψ(σ), R(t) and φ(t) defined in (5.63), (5.65) and (5.68) are con-

sistent with the converse implication of Corollary 2.3.2, applied with a(t) and
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δ, ε as in Table 7, by this corollary and by the definition (5.69) of ρ(t), p(t) the

scale factor equation (2.125) holds for constants δ, ε, A,A1, . . . , AN and functions

G(t), G1(t), . . . , GN(t) according to Table 7. That is, we have regained (5.77). Now

solving (5.81) for R2/νρ(t) and substituting this into (5.77), we obtain

ḢR − 1

2ν
H2

R − ν

2
E =

−νdκ
(d− 1)

[

1

2
φ̇2 +R2/ν

(

−V ◦ φ+ p− Λ

κ

)]

. (5.84)

Multiplying by (d−1)
νd

and rearranging, we get that

(d− 1)

νd
ḢR−

(d− 1)

2ν2d
H2

R−
(d − 1)

2d
E = κ

[

−1

2
φ̇2 +R2/ν

(

V ◦ φ− p+
Λ

κ

)]

. (5.85)

As noted above, the computations (5.26)-(5.35) from Theorem 5.1.1 still hold in

this theorem, in the converse direction. Therefore the left-hand side of (5.85) is in

fact equal to the left-hand side of (Ii) for any i ∈ {1, . . . , d}. Since R = (a1 · · ·ad)
ν ,

the right-hand side of (5.85) agrees with the right-hand side of (Ii) for any i ∈

{1, . . . , d}. This proves the theorem. ⋄

5.2.1 Reduction to linear Schrödinger: pure scalar field

By applying Theorem 5.2.1 with ρ = p = 0, we obtain a linear Schrödinger

equation. We now refer to Appendix E for solutions of the linear Schrödinger

equation.

Example 37 For ϑ = ν = 1 and choice of constant E = −1, we take solution 4

in Table 15 with c0 = −1, a0 = 1 and b0 = 0 so that we have u(σ) = e−σ and

P (σ) = 0. By (5.65),

R(t) =
1

u(t− t0)
= et−t0 (5.86)

so that

a1(t) = R(t)1/de−(µ2+···+µd)t/d

= e(1−µ2−···−µd)(t−t1)/d, (5.87)
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ai(t) = eµita1(t)

= e((1−µ2−···−µd)/d+µi)(t−t1) (5.88)

for constants µi that satisfy

E = −1 =
2

(d− 1)

∑

l<k

µlµk −
d
∑

j=1

µ2
j . (5.89)

Since P = 0 = ψ′(σ), we get

ψ(σ) = ψ0 (5.90)

for constant ψ0 ∈ R. Finally, by (5.70), we obtain constant potential

V (φ(t)) = =

[

(d− 1)

2dκ

(

(u′)2 − u2
)

− Λ

κ

]

◦ (t− t0)

= −Λ

κ
. (5.91)

For example when d = 3, we can take µ2 = 1√
3

and µ3 = 2√
3

to obtain the

vacuum solution

a1(t) = e(1−
√

3)(t−t1)/3

a2(t) = e(t−t1)/3

a3(t) = e(1+
√

3)(t−t1)/3

φ(t) = φ0

V = −Λ/κ. (5.92)

For t0 = 0, the solver was run with u, u′ and σ perturbed by .001. The graphs of

R(t) below show that the solution is unstable. The absolute error grows three orders

of magnitude over the graphed time interval.
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Figure 28. Instability of conformal Bianchi I Example 37
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Example 38 For ϑ = 1, n = 6, ν = 1 and choice of constant E = −1, we take

the negative of solution 4 in Table 15 with c0 = −1 and a0, b0 > 0 so that we have

u(σ) = b0e
σ − a0e

−σ and P (σ) = 0. By (5.65)

R(t) =
1

u(t− t0)
=

1

b0e(t−t0) − a0e−(t−t0)
(5.93)

so that

a1(t) = R(t)1/de−(µ2+···+µd)t/d

=
e−(µ2+···+µd)t/d

(b0e(t−t0) − a0e−(t−t0))
1/d
, (5.94)

ai(t) = eµita1(t)

=
e−(µ2+···+µd)t/d+µit

(b0e(t−t0) − a0e−(t−t0))
1/d

(5.95)

for constants µi that satisfy

E = −1 =
2

(d− 1)

∑

l<k

µlµk −
d
∑

j=1

µ2
j . (5.96)

Since P = 0 = ψ′(σ), we have

ψ(σ) = ψ0 (5.97)
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for constant ψ0 ∈ R. Finally, by (5.70), we obtain constant potential

V (φ(t)) = =

[

(d− 1)

2dκ

(

(u′)2 − u2
)

− Λ

κ

]

◦ (t− t0)

=
2(d− 1)a0b0

dκ
− Λ

κ
(5.98)

since cosh2(x) − sinh2(x) = 1.

For example when d = 3, we can take a0 = b0 = 1, µ2 = 1√
3

and µ3 = 2√
3

to

obtain the solution

a1(t) =

(

1

2
csch(t− t0)

)1/3

e−t/
√

3

a2(t) =

(

1

2
csch(t− t0)

)1/3

a3(t) =

(

1

2
csch(t− t0)

)1/3

et/
√

3

φ(t) = φ0

V =
4

3κ
− Λ/κ. (5.99)

For a0 = b0 = 1 and t0 = 0, the solver was run with u, u′ and σ perturbed by

.01. The graphs of R(t) below show that the solution is stable.

128



Figure 29. Instability of conformal Bianchi I Example 38
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Example 39 For ϑ = ν = 1 and choice of constant E = −1, we take solution 5

in table 15 with c0 = −1, a0 = 1 and b0 = 0 so that we have u(σ) = (1/σ)e−σ2/2

and P (σ) = σ2 + 2/σ2. By (5.65)

R(t) =
1

u(t− t0)
= (t− t0)e

(t−t0)2/2 (5.100)

so that

a1(t) = R(t)1/de−(µ2+···+µd)t/d

= (t− t0)
1/de(t−t0)2/2de−(µ2+···+µd)t/d, (5.101)

ai(t) = eµita1(t)

= (t− t0)
1/de(t−t0)2/2de(−(µ2+···+µd)/d+µi)t (5.102)

for constants µi that satisfy

E = −1 =
2

(d− 1)

∑

l<k

µlµk −
d
∑

j=1

µ2
j . (5.103)

129



By (E.40) with α0 = (d− 1)/dκ, we have scalar field

φ(t) = ψ(t− t0)

=

√

(d− 1)

2
√
dκ

(

√

(t− t0)4 + 2 +
√

2 ln

[

(t− t0)
2

2
√

2
√

(t− t0)4 + 2 + 4

])

+ β0

(5.104)

and finally by (5.70),

V (φ(t)) =

[

(d− 1)

2dκ

(

(u′)2 − u2
)

− 1

2
(ψ′)2u2 − Λ

κ

]

◦ (t− t0)

=
(d− 1)

2dκ
e−(t−t0)2

(

1

(t− t0)2
− 1

(t− t0)4

)

− Λ

κ
. (5.105)

For example when d = 3, we can take t0 = 0, µ2 = 1√
3

and µ3 = 2√
3

to obtain

the solution

a1(t) = t1/3et2/6−t/
√

3

a2(t) = t1/3et2/6

a3(t) = t1/3et2/6+t/
√

3

φ(t) =
1√
6κ

(

t
√
t2 + 2 +

√
2 ln

[

t2

2
√

2
√
t4 + 2 + 4

])

V (φ(t)) =
1

3κ
e−t2

(

1

t2
− 1

t4

)

− Λ

κ
. (5.106)

For t0 = 0, the solver was run with u, u′ and σ perturbed by .001. The graphs of

R(t) below show that the solution is unstable. The absolute error grows up to three

orders of magnitude in the small graphed time interval.
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Figure 30. Instability of conformal Bianchi I Example 39
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C H A P T E R 6

REFORMULATIONS OF A BIANCHI V MODEL

For the inhomogeneous, anisotropic Bianchi V metric

ds2 = −dt2 +X2
1 (t)dx2

1 +
d
∑

i=2

e2βx1Xi(t)
2dx2

i (6.1)

in a d + 1−dimensional spacetime for d 6= 0, 1 and β 6= 0, the nonzero Einstein’s

equations gijGij = −κgijTij + Λ are

∑

l<k

HlHk −
d(d− 1)β2

2X2
1

(I0)
= κ

[

1

2
φ̇2 + V ◦ φ+ ρ

]

+ Λ (6.2)

∑

l 6=1

(Ḣl +H2
l ) +

∑

l<k
l,k 6=1

HlHk −
(d− 1)(d− 2)β2

2X2
1

(I1)
= −κ

[

1

2
φ̇2 − V ◦ φ+ p

]

+ Λ

...

∑

l 6=i

(Ḣl +H2
l ) +

∑

l<k
l,k 6=i

HlHk −
(d− 1)(d− 2)β2

2X2
1

(Ii)
= −κ

[

1

2
φ̇2 − V ◦ φ+ p

]

+ Λ

...

∑

l 6=d

(Ḣl +H2
l ) +

∑

l<k
l,k 6=d

HlHk −
(d− 1)(d− 2)β2

2X2
1

(Id)
= −κ

[

1

2
φ̇2 − V ◦ φ+ p

]

+ Λ

where Hl(t)
def.
= ȧl/al and i, l, k ∈ {1, . . . , d}. There is one more equation, the

off-diagonal entry G01 = −κT01 + Λg01 which states

β

d
∑

l=2

Hl − (d− 1)βH1
(I01)
= 0. (6.3)
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6.1 In terms of a Generalized EMP

Theorem 6.1.1 Suppose you are given twice differentiable functions

X1(t), . . . , Xd(t) > 0, a once differentiable function φ(t), and also functions

ρ(t), p(t), V (x) which satisfy the Einstein equations (I0), . . . , (Id) in (6.2) and (I01)

in (6.3) for some Λ ∈ R, d ∈ N\{0, 1}, κ ∈ R\{0} and M ∈ N. Denote

R(t)
def.
= (X1(t) · · ·Xd(t))

ν (6.4)

for some ν 6= 0. If f(τ) is the inverse of a function τ(t) which satisfies

τ̇ (t) = θR(t)q (6.5)

for some constants θ > 0 and q 6= 0, then

Y (τ) = R(f(τ))q and Q(τ) =
qνdκ

(d− 1)
ϕ′(τ)2 (6.6)

solve the generalized EMP equation

Y ′′(τ) +Q(τ)Y (τ) =
−2qνdκD

θ2(d− 1)Y (τ)(2+qν)/qν
− qνdβ2

θ2e2α1Y (τ)(2+qνd)/qνd

−
M
∑

i=1

qνdκ (̺i(τ) + <i(τ))

θ2(d− 1)Y (τ)
(6.7)

for some α1 ∈ R,

ϕ(τ) = φ(f(τ)) (6.8)

̺(τ) = ρ(f(τ)), <(τ) = p(f(τ)) (6.9)

and where

D
def.
=

1

2dκ
X2

1X
2
2 · · ·X2

d

(

∑

l<k

η2
lk

)

(6.10)

is a constant for

ηlk
def.
= Hl −Hk, l 6= k, l, k ∈ {1, . . . , d}. (6.11)
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Conversely, suppose you are given a twice differentiable function Y (τ) > 0, a

continuous function Q(τ), and also functions ̺(τ),<(τ) which solve (6.7) for some

constants θ > 0 and q, ν, κ ∈ R\{0}, k,D, α1, β ∈ R, d ∈ N\{0, 1}. In order to

construct functions which solve (I0), . . . , (Id), (I01), first find τ(t), ϕ(τ) which solve

the differential equations

τ̇(t) = θY (τ(t)) and ϕ′(τ)2 =
(d− 1)

qνdκ
Q(τ). (6.12)

Next find a function σ(t) such that

σ̇(t) =
1

τ̇ (t)1/qν
(6.13)

and let

R(t) = Y (τ(t))1/q and αl(t)
def.
= clσ(t), l ∈ {2, . . . , d} (6.14)

where cl are any constants for which both

d
∑

l=2

cl = 0 and
∑

2≤l<k≤d

clck = −θ2/qνDκ. (6.15)

Then the functions

X1(t) = R(t)1/νdeα1 , α1 ∈ R (6.16)

Xl(t) = R(t)1/νdeαl(t), 2 ≤ l ≤ d (6.17)

φ(t) = ϕ(τ(t)) (6.18)

ρ(t) = ̺(τ(t)), p(t) = <(τ(t)) (6.19)

and

V (φ(t)) =

[

(d− 1)θ2

2ν2dκq2
(Y ′)2 − D

Y 2/qν
− d(d− 1)β2

2κe2α1Y 2/qνd
− θ2

2
Y 2(ϕ′)2 − ̺− Λ

κ

]

◦ τ(t)

(6.20)

satisfy the Einstein equations (I0), . . . , (Id).

Proof. This proof will implement Theorem 2.1.1 with constants and functions as

indicated in the following table.
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Table 8. Theorem 2.1.1 applied to Bianchi V

In Theorem substitute In Theorem substitute

a(t) R(t) N 1

δ 0 ε νdκ/(d− 1)

G0(t) constant − 2νdκD/(d− 1) A0 2/ν

G1(t)
−νdκ
(d−1)

(ρ(t) + p(t)) A1 0

G2(t) constant −νdβ2e−2α1 A2 2/νd

λ0(τ) constant −2qνdκD/θ2(d− 1) B0 (2 + qν)/qν

λ1(τ)
−qνdκ

θ2(d−1)
(̺(τ) + <(τ)) B1 1

λ2(τ) constant −qνdβ2/θ2e2α1 B2 (2 + qνd)/qνd

To prove the forward implication, we assume to be given functions which solve

the Einstein field equations (I0), . . . , (Id). Forming the linear combination d(I0) −
d
∑

i=1

(Ii) of Einstein’s equations, we have that

d
∑

l<k

HlHk −
d
∑

i=1

∑

l 6=i

(Ḣl +H2
l ) −

d
∑

i=1

∑

l<k
l,k 6=i

HlHk −
d(d− 1)β2

X2
1

= dκ
[

φ̇2 + (ρ+ p)
]

(6.21)

since −d2(d− 1) + d(d− 1)(d− 2) = d(d− 1)(−d+ d− 2) = −2d(d− 1) and where

the summing indices l, k ∈ {1, . . . , d}. The first double sum in (6.21) contains the

quantity Ẍl

Xl
(d − 1)-times for any fixed l, and the second double sum contains the

quantity ẊlẊk

XlXk
(d − 2)-times for any fixed l, k pair with l < k. Therefore (6.21)

simplifies to

d
∑

l<k

HlHk − (d− 1)
d
∑

l=1

(Ḣl +H2
l ) − (d− 2)

∑

l<k

HlHk −
d(d− 1)β2

X2
1

= dκ
[

φ̇2 + (ρ+ p)
]

. (6.22)
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Collecting the first and third sums, we have

2
∑

l<k

HlHk − (d− 1)

d
∑

l=1

(Ḣl +H2
l ) − d(d− 1)β2

X2
1

= dκ
[

φ̇2 + (ρ+ p)
]

. (6.23)

Using the definition (6.4) of R(t), we define

HR
def.
=

Ṙ

R
=
ν (X1 · · ·Xd)

ν−1
(

Ẋ1X2 · · ·Xd + · · · +X1X2 · · · Ẋd

)

(X1 · · ·Xd)
ν = ν

d
∑

l=1

Hl.

(6.24)

Differentiating HR gives

ḢR = ν
d
∑

l=1

Ḣl. (6.25)

Therefore (6.23) can be written as

2
∑

l<k

HlHk − (d− 1)

(

1

ν
ḢR +

d
∑

l=1

H2
l

)

− d(d− 1)β2

X2
1

= dκ
[

φ̇2 + (ρ+ p)
]

. (6.26)

Multiplying by −ν
(d−1)

and rearranging, we get

ḢR +
ν

(d− 1)

(

(d− 1)

d
∑

l=1

H2
l − 2

∑

l<k

HlHk

)

+
νdβ2

X2
1

=
−νdκ
(d− 1)

[

φ̇2 + (ρ+ p)
]

.

(6.27)

By definition (6.11) of the quantities ηlk, we have

∑

l<k

η2
lk =

∑

l<k

(

H2
l − 2HlHk +H2

k

)

. (6.28)

The first and last terms on the right-hand side of (6.28) sum to

∑

l<k

(

H2
l +H2

k

)

=

d−1
∑

l=1

d
∑

k=l+1

H2
l +

d
∑

k=2

k−1
∑

l=1

H2
k

=
d−1
∑

l=1

(d− l)H2
l +

d
∑

k=2

(k − 1)H2
k

= (d− 1)H2
1 +

d−1
∑

j=2

H2
j +

d−1
∑

j=2

(j − 1)H2
j + (d− 1)H2

d

= (d− 1)
d
∑

j=1

H2
j (6.29)
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therefore (6.28) becomes

∑

l<k

η2
lk = (d− 1)

d
∑

l=1

H2
l − 2

∑

l<k

HlHk. (6.30)

Using this to rewrite (6.27) shows that

ḢR +
ν

(d− 1)

∑

l<k

η2
lk +

νdβ2

X2
1

=
−νdκ
(d− 1)

[

φ̇2 + (ρ+ p)
]

. (6.31)

Next we will confirm that D is a constant. Since the right-hand sides of Einstein

equations (Ii) are the same for all i ∈ {1, . . . , d}, by equating the left-hand sides of

any two equations (Ii) and (Ij) for i 6= j,

∑

l 6=i

(Ḣl +H2
l ) +

∑

l<k
l,k 6=i

HlHk =
∑

l 6=j

(Ḣl +H2
l ) +

∑

l<k
l,k 6=j

HlHk (6.32)

where we recall that the sum indices l, k ∈ {1, . . . , d}. For the first sum on each

side, the left and the right-hand sides of (6.32) contain all the same terms, except

for the jth indexed term which appears on the left, and the ith indexed term which

appears on the right. Therefore many terms cancel and we are left with

Ḣj +H2
j +

∑

l<k
l,k 6=i

HlHk = Ḣi +H2
i +

∑

l<k
l,k 6=j

HlHk. (6.33)

For the second (double) sum on each side, the left and right-hand sides of (6.33)

contain all the same terms, except for the terms where either l, k = j which appear

on the left, and the terms where either l, k = i which appear on the right. Therefore

many terms cancel and we are left with

Ḣj +H2
j +

∑

l 6=j

HjHl = Ḣi +H2
i +

∑

l 6=i

HiHl. (6.34)

Adding −H2
j +H2

j = 0 to the left and −H2
i +H2

i = 0 to the right, we obtain

η̇ij +
1

ν
ηijHR = 0 (6.35)
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where we have used the expression (6.24) for HR, the definition (6.11) of ηij , and

as usual dot denotes differentiation with respect to t. By Lemma A.1 with µ =

1/ν 6= 0, which applies since R(t) is positive and differentiable, (6.35) shows that

the function f = ηijR
1/ν = ηijX1X2 · · ·Xd is constant for any pair i, j (for the

pair i = j, f is clearly a constant function, namely zero). Therefore the definition

(6.10) ofD is also constant, being proportional to a sum of squares of these constant

functions. By the definitions (6.10) and (6.4) of the constant D and the function

R(t), we now rewrite (6.31) as

ḢR +
νdβ2

X2
1

=
−νdκ
(d− 1)

[

φ̇2 +
2D

R2/ν
+ (ρ+ p)

]

. (6.36)

Finally, we use the remaining Einstein equation (I01) and the relationHR = ν

d
∑

l=1

Hl

in (6.24) to obtain

HR = νdH1. (6.37)

That is, d
dt

ln(R) = νd d
dt

ln(X1) which implies ln(R) + c0 = νd ln(X1) for some

integration constant c0 ∈ R so that

X1 = eα1R1/νd (6.38)

for arbitrary constant α1 = −c0/νd ∈ R. Therefore (6.36) becomes

ḢR =
−νdκ
(d− 1)

[

φ̇2 +
2D

R2/ν
+

(d− 1)β2

κe2α1R2/νd
+ (ρ+ p)

]

. (6.39)

This shows that R(t), φ(t), ρ(t) and p(t) satisfy the hypothesis of Theorem 2.1.1,

applied with constants ǫ, ε, N,A0, . . . , AN and functions a(t), G0(t), . . . , GN(t) ac-

cording to Table 4. Since τ(t), Y (τ), Q(τ) and ϕ(τ) defined in (6.5), (6.6) and (6.8)

are equivalent to that in the forward implication of Theorem 2.1.1, by this theorem

and by definition (6.9) of ̺(τ),<(τ), the generalized EMP equation (2.2) holds for
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constants B0, . . . , BN and functions λ0(τ), . . . , λN(τ) as indicated in Table 4. This

proves the forward implication.

To prove the converse implication, we assume to be given functions which solve

the generalized EMP equation (6.7) and we begin by showing that (I0) is satisfied.

Differentiating the definition of R(t) in (6.14) and using the definition in (6.12) of

τ(t) shows that

Ṙ(t) =
1

q
Y (τ(t))

1
q
−1Y ′(τ(t))τ̇ (t)

=
θ

q
Y (τ(t))1/qY ′(τ(t)). (6.40)

Dividing by R(t) gives

HR(t)
def.
=

Ṙ(t)

R(t)
=
θ

q
Y ′(τ(t)). (6.41)

Differentiating the definition (6.18) of φ(t) and using definition (6.12) of τ(t), we

get

φ̇(t) = ϕ′(τ(t))τ̇ (t) = θϕ′(τ(t))Y (τ(t)). (6.42)

Using (6.41) and (6.42), and also the definitions (6.14) and (6.19) of R(t) and ρ(t)

respectively, the definition (6.20) of V ◦ φ can be written as

V ◦ φ =
1

κ

(

(d− 1)

2ν2d
H2

R − Dκ

R2/ν
− d(d− 1)β2

2e2α1R2/νd

)

− 1

2
φ̇2 − ρ− Λ

κ
. (6.43)

The quantity in parenthesis here is in fact equal to the left-hand-side of equation

(I0). To see this, we differentiate the definition (6.17) of Xl(t), divide the result by

Xl and use the definition (6.41) of HR to obtain

Hl
def.
=

Ẋl

Xl
=

1
νd
R1/νd−1Ṙeαl + α̇lR

1/νdeαl

R1/νdeαl
=

1

νd
HR + α̇l. (6.44)

Therefore we have

∑

l<k

HlHk =
∑

l<k

(

1

ν2d2
H2

R +
1

νd
(α̇l + α̇k)HR + α̇lα̇k

)

. (6.45)
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The first term on the right-hand side of (6.45) does not depend on the indices l, k,

and is therefore equal to 1
ν2d2H

2
R times the quantity

∑

l<k

1 =

d
∑

k=2

k−1
∑

l=1

1 =

d
∑

k=2

(k − 1) =

d−1
∑

j=1

j =
d(d− 1)

2
. (6.46)

The second term on the right-hand side of (6.45) sums to zero since

∑

l<k

(α̇l + α̇k) =

d−1
∑

l=1

d
∑

k=l+1

α̇l +

d
∑

k=2

k−1
∑

l=1

α̇k

=
d−1
∑

l=1

(d− l)α̇l +
d
∑

k=2

(k − 1)α̇k

= (d− 1)α̇1 +
d−1
∑

j=2

(d− j + j − 1)α̇j + (d− 1)α̇d

= (d− 1)
d
∑

l=1

α̇l

= (d− 1)

d
∑

l=2

α̇l since α1 constant

= (d− 1)σ(t)

d
∑

l=2

cl

= 0 (6.47)

where on the last lines, we have used the definition (6.14) of αl(t) for l ∈ {2, . . . , d}

and the condition (6.15) on the constants cl. For the third term on the right-hand

side of (6.45), we use the definitions of αl(t), σ(t), τ(t) and R(t) in (6.14), (6.13)

and (6.12) to write

α̇lα̇k = clckσ̇
2 =

clck
τ̇ 2/qν

=
clck

θ2/qν(Y ◦ τ)2/qν
=

clck
θ2/qνR2/ν

(6.48)

for l ∈ {2, . . . , d}. Therefore (6.45) becomes

∑

l<k

HlHk =
(d− 1)

2ν2d
H2

R +
∑

2≤l<k≤

clck
θ2/qνR2/ν

(6.49)
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since α̇1 = 0. Then by the condition (6.15) on the constants cl, (6.49) becomes

∑

l<k

HlHk =
(d− 1)

2ν2d
H2

R − Dκ

R2/ν
. (6.50)

Using this and the definition (6.16) of X1(t) = eα1R(t)1/νd, the expression (6.43)

for V can now be written as

V ◦ φ =
1

κ

(

∑

l<k

HlHk −
d(d− 1)β2

2X2
1

)

− 1

2
φ̇2 − ρ− Λ

κ
, (6.51)

showing that (I0) holds under the assumptions of the converse implication.

To conclude the proof we must also show that the equations (I1), . . . , (Id) hold.

In the converse direction the hypothesis of the converse of Theorem 2.1.1 holds,

applied with constants N,B0, . . . , BN and functions λ0(τ), . . . , λN(τ) as indicated

in Table 4. Since τ(t), ϕ(τ), R(t) and φ(t) defined in (6.12), (6.14) and (6.18)

are consistent with the converse implication of Theorem 2.1.1, applied with a(t), δ

and ε as in Table 4, by this theorem and by the definition (6.19) of ρ(t), p(t)

the scale factor equation (2.1) holds for constants δ, ε, A0, . . . , AN and functions

G0(t), . . . , GN(t) according to Table 4. That is, we have regained (6.36). Now

solving (6.43) for ρ(t) and substituting this into (6.36), we obtain

ḢR =
−νdκ
(d− 1)

[

1

2
φ̇2 − V ◦ φ+

D

R2/ν
− d(d− 1)β2

2κe2α1R2/νd
+ p+

(d− 1)

2ν2dκ
H2

R − Λ

κ

]

.

(6.52)

Multiplying by (d−1)
νd

and rearranging we get

(d− 1)

νd
ḢR +

(d− 1)

2ν2d
H2

R +
κD

R2/ν
− d(d− 1)β2

2e2α1R2/νd
= −κ

[

1

2
φ̇2 − V ◦ φ+ p

]

+Λ (6.53)

The left-hand side of this equation is in fact equal to the left-hand-side of (Ii) for

any i ∈ {1, . . . , d}. To see this, first recall (6.44) and write

Ḣl +H2
l =

1

νd
ḢR +

1

ν2d2
H2

R + α̈l +
2

νd
α̇lHR + α̇2

l , (6.54)
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therefore for any fixed i

∑

l 6=i

(Ḣl +H2
l ) =

∑

l 6=i

(

1

νd
ḢR +

1

ν2d2
H2

R + α̈l +
2

νd
α̇lHR + α̇2

l

)

. (6.55)

The last term on the right-hand side sums to zero since

∑

l 6=i

α̇2
l =

∑

l 6=i

α̇l(−α̇i −
∑

k 6=i,k 6=l

α̇k)

= −α̇i

∑

l 6=i

α̇l − 2
∑

l<k
l,k 6=i

α̇lα̇k

= (
∑

k 6=i

α̇k)(
∑

l 6=i

α̇l) − 2
∑

l<k
l,k 6=i

α̇lα̇k

= 0. (6.56)

Since the first two terms on the right-hand side of (6.55) do not depend on the

indices l, k, and also using the definitions (6.14) and (6.15) of αl and the constants

cl to write
∑

l α̇l = 0 ⇒
∑

l 6=i α̇l = −α̇i, (6.55) becomes

∑

l 6=i

(Ḣl +H2
l ) =

(d− 1)

νd
ḢR +

(d− 1)

ν2d2
H2

R − 2

νd
HRα̇i +

∑

l 6=i

α̈l. (6.57)

By the definitions (6.14), (6.13) and (6.12) of αl(t), σ(t), τ(t) and R(t),

α̇l(t)R(t)1/ν = clσ̇(t)R(t)1/ν

=
cl

τ̇(t)1/qν
R(t)1/ν

=
cl

θ1/qνY (τ(t))1/qν
R(t)1/ν

=
cl

θ1/qν
is a constant (6.58)

for l ∈ {2, . . . , d}. By Lemma A.1 with µ = 1/ν 6= 0, which applies since R(t) is a

positive differentiable function, (6.58) shows that

α̈l +
1

ν
α̇lHR = 0 (6.59)
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for all l ∈ {2, . . . , d}. Therefore in total, we have that (6.55) is

∑

l 6=i

(Ḣl +H2
l ) =

(d− 1)

νd
ḢR +

(d− 1)

ν2d2
H2

R +
(2 − d)

νd
HR

∑

l 6=i

α̇l. (6.60)

To form the rest of the left-hand side of (Ii), again use (6.44) to obtain

HlHk =
1

ν2d2
H2

R +
1

νd
(α̇l + α̇k)HR + α̇lα̇k, (6.61)

therefore for any fixed i

∑

l<k
l,k 6=i

HlHk =
∑

l<k
l,k 6=i

(

1

ν2d2
H2

R +
1

νd
(α̇l + α̇k)HR + α̇lα̇k

)

. (6.62)

As we saw in (6.46),
∑

l<k 1 = d(d−1)
2

therefore the first term on the right-side of

(6.62), which does not depend on the indices l, k, is equal to 1
ν2d2H

2
R times

∑

l<k
l,k 6=i

1 =
∑

l<k

1 −
∑

l 6=i

1 =
d(d− 1)

2
− (d− 1) =

(d− 1)(d− 2)

2
. (6.63)

As we saw in (6.47),
∑

l<k(α̇l + α̇k) = 0 therefore the second term on the right-hand

side of (6.62) sums to 1
νd
HR times

∑

l<k
l,k 6=i

(α̇l + α̇k) =
∑

l<k

(α̇l + α̇k) −
∑

l 6=i

(α̇l + α̇i)

= −
∑

l 6=i

α̇l − (d− 1)α̇i

= α̇i − (d− 1)α̇i

= (2 − d)α̇i (6.64)

where again we have used the definitions (6.14) and (6.15) of αl and the constants

cl to write
∑

l 6=i α̇l = −α̇i. Considering the third term on the right-hand side of
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(6.62), we have that

∑

l<k
l,k 6=i

α̇lα̇k = −
∑

l<k
l,k 6=i

α̇lα̇k + (
∑

k 6=i

α̇k)(
∑

l 6=i

α̇l)

= −
∑

l<k
l,k 6=i

α̇lα̇k − α̇i

∑

l 6=i

α̇l

= −
∑

l<k

α̇lα̇k

= −
∑

2≤l<k≤d

clck
θ2/qνR2/ν

(6.65)

where again we have used that
∑

l 6=i α̇l = −α̇i, and on the last line we recall (6.48)

and also that α1 is constant. So by (6.63), (6.64) and (6.65), in total (6.62) becomes

∑

l<k
l,k 6=i

HlHk =
(d− 1)(d− 2)

2ν2d2
H2

R +
(2 − d)

νd
α̇iHR −

∑

2≤l<k≤d

clck
θ2/qνR2/ν

. (6.66)

By (6.60), (6.66) and the definition (6.38) of X1(t) , the left-hand side of any (Ii)

Einstein equation is

∑

l 6=i

(Ḣl +H2
l ) +

∑

l<k
l,k 6=i

HlHk −
(d− 1)(d− 2)β2

2X2
1

=
(d− 1)

νd
ḢR +

d(d− 1)

2ν2d2
H2

R −
∑

2≤l<k≤d

clck
θ2/qνR2/ν

− (d− 1)(d− 2)β2

2e2α1R2/νd
.

(6.67)

Then by the condition (6.15) on the constants cl, (6.67) becomes

∑

l 6=i

(Ḣl +H2
l ) +

∑

l<k
l,k 6=i

HlHk −
(d− 1)(d− 2)β2

2X2
1

=
(d− 1)

νd
ḢR +

d(d− 1)

2ν2d2
H2

R +
Dκ

R2/ν
− (d− 1)(d− 2)β2

2e2α1R2/νd
. (6.68)

Therefore by (6.53) and (6.68), we obtain (Ii) for all i ∈ {1, . . . , d}. This proves

the theorem. ⋄
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6.1.1 Reduction to classical EMP: pure scalar field

We take ρ = p = D = 0 and choose parameter q = 1/dν in Theorem 6.1.1.

Then ci = 0 for all 2 ≤ i ≤ d and we take α1 = 0 so that X1(t) = · · · = Xd(t) and

by the theorem solving the Bianchi V Einstein equations

∑

l<k

HlHk −
d(d− 1)β2

2X2
1

(I0)′
= κ

[

1

2
φ̇2 + V ◦ φ

]

+ Λ (6.69)

∑

l 6=i

(Ḣl +H2
l ) +

∑

l<k
l,k 6=i

HlHk −
(d− 1)(d− 2)β2

2X2
1

(Ii)
′

= −κ
[

1

2
φ̇2 − V ◦ φ

]

+ Λ

for l, k, i ∈ {1, . . . , d} and

β
d
∑

l=2

Hl − (d− 1)βH1
(I01)′
= 0. (6.70)

is equivalent to solving the classical EMP equation

Y ′′(τ) +Q(τ)Y (τ) =
−β2

θ2Y (τ)3
(6.71)

for constant θ > 0. The solutions of (I0)
′, (I1)

′, . . . , (Id)
′ and (I01)

′ in (6.69) and

the solutions of (6.71) are related by

R(t) = Y (τ(t))dν and ϕ′(τ)2 =
(d− 1)

κ
Q(τ) (6.72)

for ν 6= 0, φ(t) = ϕ(τ(t)), R(t)
def.
= (X1(t) · · ·Xd(t))

ν and

τ̇ (t) = θR(t)1/dν = θY (τ(t)) (6.73)

for any θ > 0. In the converse direction

Xl(t) = R(t)1/νd (6.74)

for 1 ≤ l ≤ d and where V is taken to be

V (φ(t)) =

[

d(d− 1)θ2

2κ
(Y ′)2 − d(d− 1)β2

2κY 2
− θ2

2
Y 2(ϕ′)2 − Λ

κ

]

◦ τ(t) (6.75)

145



We now refer to Appendix D with λ1 = −β2/θ2 < 0 for solutions of the classical

EMP equation (6.71). Since by reducing to classical EMP we have taken D = 0 in

(6.10), c2 = · · · = cd = 0 and in this case we do not require σ(t) from Appendix

D. By comparing (6.73) and (D.5), we note to only consider solutions of (D.5) in

Appendix D corresponding to r0 = 1.

Example 40 For θ = 1 and choice of constants β = ν = 1, we consider solution

5 in Table 14 with d0 = b0 = 0 and c0 = a0 = 1. That is, we have solution Y (τ) =

(1 + 2τ)1/2 to the classical EMP Y ′′(τ) +Q(τ)Y (τ) = −1/Y (τ)3 for Q(τ) = 0. By

(D.27) - (D.29) we have τ(t) = 1
2
((t− t0)

2 − 1) and

R(t) = Y (τ(t))d = (t− t0)
d (6.76)

for t0 ∈ R so that

Xi(t) = R(t)1/d = (t− t0) (6.77)

for 1 ≤ i ≤ d. Since Q(τ) = 0 = ϕ′(τ),

φ(t)
def.
= ϕ(τ(t)) = φ0 (6.78)

for constant φ0 ∈ R, and by (6.75), (D.30) and (D.29), we obtain constant potential

V (φ(t)) =

[

d(d− 1)

2κ

(

(Y ′)2 − 1

Y 2

)

− Λ

κ

]

◦ τ(t)

= −Λ

κ
. (6.79)

Since Hl(t) = Ẋl(t)/Xl(t) = 1/(t− t0) for all 1 ≤ l ≤ d,
∑

l<k HlHk =
∑

l<k 1/(t−

t0)
2 = d(d − 1)/2(t− t0)

2 so that Einstein equation (I0)
′ is satisfied. Also for any

fixed i,
∑

l 6=i(Ḣl +H2
l )+

∑

l<k
l,k 6=i

HlHk =
∑

l 6=i 0+ [d(d− 1)/2 − (d− 1)] /(t− t0)
2 =

(d−1)(d−2)/2(t− t0)
2 therefore the Einstein equations (Ii)

′ for 1 ≤ i ≤ d are also

satisfied. Of course, this is a vacuum solution.
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Example 41 For θ = 1 and choice of constants β = ν = 1, we consider solution

5 in Table 14 with d0 = a0 = 0, b0 = 4 and c0 = 1. That is, we have solution

Y (τ) = (4τ(t)2 +2τ(t))1/2 to the classical EMP Y ′′(τ)+Q(τ)Y (τ) = −1/Y (τ)3 for

Q(τ) = 0. By (D.33) - (D.35) we have τ(t) = 1
8

(

e2(t−t0) + e−2(t−t0) − 8
)

and

R(t) = Y (τ(t))d

=
1

4d

(

e2(t−t0) − e−2(t−t0)
)d

=
1

2d
sinh(2(t− t0))

d (6.80)

for any t0 ∈ R so that

Xi(t) = R(t)1/d =
1

2
sinh(2(t− t0)). (6.81)

Since Q(τ) = 0 = ϕ′(τ),

φ(t)
def.
= ϕ(τ(t)) = φ0 (6.82)

for constant φ0 ∈ R and by (6.75), (D.36) and (D.35), we obtain constant potential

V (φ(t)) =

[

d(d− 1)

2κ

(

(Y ′)2 − 1

Y 2

)

− Λ

κ

]

◦ τ(t)

=
d(d− 1)

2κ

(

16cosh2(2(t− t0)) − 16

4sinh2(2(t− t0))

)

− Λ

κ

=
2d(d− 1)

κ
− Λ

κ
(6.83)

Since Hl(t) = Ẋl(t)/Xl(t) = 2coth(t − t0) for all 1 ≤ l ≤ d,
∑

l<k HlHk =

∑

l<k 4coth2(t − t0) = 2d(d − 1)coth2(t − t0) so that the left side of the Einstein

equation (I0)
′ is

2d(d− 1)coth2(t− t0) − 2d(d− 1)csch2(t− t0) = 2d(d− 1) (6.84)

by the identity coth2(x) − csch2(x) = 1, and therefore (I0)
′ is satisfied by

the solution. Also for any fixed i,
∑

l 6=i(Ḣl + H2
l ) +

∑

l<k
l,k 6=i

HlHk = (d −
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1) (−4csch2(t− t0) + 4coth2(t− t0))+ [d(d− 1)/2 − (d− 1)] 4coth2(t− t0) = 4(d−

1) + 2(d − 1)(d − 2)coth2(t − t0) therefore the left side of Einstein equations (Ii)
′

for 1 ≤ i ≤ d equal

4(d− 1) + 2(d− 1)(d− 2)coth2(t− t0) − 2(d− 1)(d− 2)csch2(t− t0)

= 4(d− 1) + 2(d− 1)(d− 2) = 2d(d− 1) (6.85)

so that (Ii)
′ are also satisfied for 1 ≤ i ≤ d.

6.2 In terms of a Schrödinger-Type Equation

If one would like to reformulate the Einstein field equations (I0), . . . , (Id) in (6.2)

in terms of an equation with one less non-linear term than that which is provided

by the generalized EMP formulation, one can apply Corollary 2.3.1 to the difference

d(I0) −
d
∑

i=1

(Ii) (and similar to above, define V ◦ φ in u−notation to be such that

(I0) holds). Below is the resulting statement.

Theorem 6.2.1 Suppose you are given twice differentiable functions

X1(t), . . . , Xd(t) > 0, a once differentiable function φ(t), and also functions

ρ(t), p(t), V (x) which satisfy the Einstein equations (I0), . . . , (Id) for some

Λ, β ∈ R, d ∈ N\{0, 1}, κ ∈ R\{0}. Let g(σ) denote the inverse of a function σ(t)

which satisfies

σ̇(t) =
1

θ (X1(t) · · ·Xd(t))
(6.86)

for some θ > 0. Then the following functions

u(σ) =

[

1

X1 · · ·Xd

]

◦ g(σ) (6.87)

P (σ) =
dκ

(d− 1)
ψ′(σ)2 (6.88)
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solve the Schrödinger-type equation

u′′(σ) + [E − P (σ)]u(σ) =
θ2dκ(ρ(σ) + p(σ))

(d− 1)u(σ)
+

θ2dβ2

e2α1u(σ)1−2/d
(6.89)

for some α1 ∈ R,

ψ(σ) = φ(g(σ)) (6.90)

ρ(σ) = ρ(g(σ)), p(σ) = p(g(σ)). (6.91)

and where

E
def.
=

−θ2

(d− 1)
X2

1X
2
2 · · ·X2

d

∑

l<k

η2
lk (6.92)

is a constant for

ηlk
def.
= Hl −Hk, l 6= k, l, k ∈ {1, . . . , d}. (6.93)

Conversely, suppose you are given a twice differentiable function u(σ) > 0, and

also functions P (σ) and ρi(σ), p(σ) which solve (6.89) for some constants E <

0, θ > 0, κ ∈ R\{0}, β, α ∈ R and d ∈ N\{0, 1}. In order to construct functions

which solve (I0), . . . , (Id), first find σ(t), ψ(σ) which solve the differential equations

σ̇(t) =
1

θ
u(σ(t)) and ψ′(σ)2 =

(d− 1)

dκ
P (σ). (6.94)

Let

R(t) = u(σ(t))−ν αl(t)
def.
= clσ(t), l ∈ {1, . . . , d} (6.95)

where cl are any constants for which both

d
∑

l=1

cl = 0 and
∑

l<k

clck =
(d− 1)E

2d
. (6.96)

Then the functions

X1(t) = R(t)1/νdeα1 , α1 ∈ R (6.97)

Xl(t) = R(t)1/νdeαl(t), 2 ≤ l ≤ d (6.98)
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φ(t) = ψ(σ(t)) (6.99)

ρ(t) = ρ(σ(t)), p(t) = p(σ(t)) (6.100)

and

V (φ(t))

=

[

(d− 1)

2θ2dκ
(u′)2 +

(d− 1)E

2dθ2κ
u2 − d(d− 1)β2

2κe2α1
u2/d − 1

2θ2
u2(ψ′)2 − ρ − Λ

κ

]

◦ σ(t)

(6.101)

satisfy the equations (I0), . . . , (Id) in (6.2).

Proof. This proof will implement Corollary 2.3.1 with constants and functions as

indicated in the following table.

Table 9. Corollary 2.3.1 applied to Bianchi V

In Corollary substitute In Corollary substitute

a(t) R(t) ε νdκ/(d− 1)

G(t) constant νE/θ2 A 2/ν

G1(t)
−νdκ
(d−1)

(ρ(t) + p(t)) A1 0

G2(t) constant −νdβ2e−2α1 A2 2/νd

F1(σ) θ2dκ
(d−1)

(ρ(σ) + p(σ)) C1 1

F2(σ) constant θ2dβ2e−2α1 C2 1 − 2/d

Much of this proof will rely on computations that are exactly the same as those

seen in the proof of Theorem 6.1.1 (the generalized EMP formulation of Bianchi

V). Therefore we will restate the relevant results here, but point the reader to the

details in the proof of Theorem 6.1.1.

To prove the forward implication, we assume to be given functions which solve

the Einstein field equations (I0), . . . , (Id) in (6.2). Forming the linear combination
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d(I0)−
d
∑

i=1

(Ii) of Einstein’s equations and simplifying, as was done in (6.21) - (6.31),

ḢR +
ν

(d− 1)

∑

l<k

η2
lk +

νdβ2

X2
1

=
−νdκ
(d− 1)

[

φ̇2 + (ρ+ p)
]

. (6.102)

where

HR(t)
def.
=

Ṙ(t)

R(t)
= ν

d
∑

l=1

Hl (6.103)

and

R(t)
def.
= (X1(t) · · ·Xd(t))

ν (6.104)

for any ν 6= 0. Next we will confirm that E is constant. As was done in (6.32)-

(6.35), since the right-hand sides of Einstein’s equations (Ii) are the same for all

i ∈ {1, . . . , d}, by equating the left-hand sides of any two equations (Ii) and (Ij)

for i 6= j, and after some rearranging we obtain

η̇ij +
1

ν
ηijHR = 0 (6.105)

for ηij defined in (6.93). Therefore the definition (6.92) of E is constant, being

proportional to a sum of squares of these constant functions. By the definitions

(6.92) and (6.104) of the constant E and the function R(t), we now rewrite (6.102)

from above as

ḢR +
νdβ2

X2
1

=
−νdκ
(d− 1)

[

φ̇2 + (ρ+ p)
]

+
νE

θ2R2/ν
. (6.106)

Finally, we use the remaining Einstein equation (I01) and the relationHR = ν

d
∑

l=1

Hl

in (6.103) to obtain

HR = νdH1 (6.107)

so that again we have

X1 = eα1R1/νd (6.108)
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for α1 ∈ R and (6.106) becomes

ḢR =
−νdκ
(d− 1)

[

φ̇2 + (ρ+ p)
]

+
νE

θ2R2/ν
− νdβ2

e2α1R2/νd
. (6.109)

This shows that R(t), φ(t), ρ(t) and p(t) satisfy the hypothesis of Corollary 2.3.1,

applied with constants ε,N,A,A1 . . . , AN and functions a(t), G(t), G1(t), . . . , GN(t)

according to Table 9. Since σ(t), u(σ), P (σ) and ψ(σ) defined in (6.86), (6.87),

(6.88) and (6.90) are equivalent to that in the forward implication of Corollary

2.3.1, applied with constants and functions according to Table 9, by this corollary

and by definition (6.91) of ρ(σ), p(σ), the Schrödinger-type equation (2.110) holds

for constants C1, . . . , CN and functions F1(σ), . . . , FN(σ) as indicated in Table 9.

This proves the forward implication.

To prove the converse implication, we assume to be given functions which solve

the Schrödinger-type equation (6.89) and we begin by showing that (I0) is satisfied.

Differentiating the definition of R(t) in (6.95) and using the definition in (6.94) of

σ(t),

Ṙ(t) = −νu(σ(t))−ν−1u′(σ(t))σ̇(t)

= −ν
θ
u(σ(t))−νu′(σ(t)). (6.110)

Dividing by R(t),

HR
def.
=

Ṙ

R
= −ν

θ
u′(σ(t)). (6.111)

Differentiating the definition (6.99) of φ(t) and using the definition in (6.95) of σ(t),

φ̇(t) = ψ′(σ(t))σ̇(t) =
1

θ
ψ′(σ(t))u(σ(t)). (6.112)

Using (6.111) and (6.112), and also the definitions (6.95) and (6.100) of R(t) and

ρ(t) respectively, the definition (6.101) of V ◦ φ can be written as

V ◦ φ =
1

κ

(

(d− 1)

2ν2d
H2

R +
(d− 1)E

2dθ2R2/ν
− d(d− 1)β2

2e2α1R2/νd

)

− 1

2
φ̇2 − ρ− Λ

κ
. (6.113)
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The quantity in parenthesis here is in fact equal to the left-hand-side of equation

(I0). To see this, first note that the definitions Xl(t)
def.
= R(t)1/νdeαl(t) in (6.98)

and H(t)
def.
= Ṙ(t)

R(t)
in (6.111), and the condition

∑

l cl = 0, are the same as those in

Theorem 4.1.1. Also by the definitions (6.95), (6.94) and (6.95) of αl(t), σ(t) and

R(t), we obtain

α̇lα̇k = clckσ̇
2 =

clck
θ2

(u ◦ σ)2 =
clck

θ2R(t)2/ν
, (6.114)

which is a slightly modified version of (6.48) from our computation in the proof of

Theorem 4.1.1. Therefore by the arguments in (6.45)-(6.49), and using (6.114) to

slightly modify the last term to apply here,

∑

l<k

HlHk =
(d− 1)

2ν2d
H2

R +
∑

l<k

clck
θ2R2/ν

. (6.115)

Then by the condition (6.96) on the constants cl, (6.115) becomes

∑

l<k

HlHk =
(d− 1)

2ν2d
H2

R +
(d− 1)E

2dθ2R2/ν
. (6.116)

Using this and the definition (6.97) of X1(t) = eα1R(t)1/νd, the expression (6.113)

for V can now be written as

V ◦ φ =
1

κ

(

∑

l<k

HlHk −
d(d− 1)β2

2X2
1

)

− 1

2
φ̇2 − ρ− Λ

κ
, (6.117)

showing that (I0) holds under the assumptions of the converse implication.

To conclude the proof we must also show that the equations (I1), . . . , (Id) hold.

In the converse direction the hypothesis of the converse of Corollary 2.3.1 holds,

applied with constants N,C1, . . . , CN and functions F1(σ), . . . , FN(σ) as indicated

in Table 9. Since σ(t), ψ(σ), R(t) and φ(t) defined in (6.94), (6.95) and (6.99)

are consistent with the converse implication of Corollary 2.3.1, applied with a(t)

and ε as in Table 9, by this corollary and by the definition (6.100) of ρ(t), p(t)

the scale factor equation (2.109) holds for constants ε, A,A1, . . . , AN and functions
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G(t), G1(t), . . . , GN(t) according to Table 9. That is, we have regained (6.109).

Now solving (6.113) for ρ(t) and substituting this into (6.109), we obtain

ḢR =
−νdκ
(d− 1)

[

1

2
φ̇2 − V ◦ φ+

(d− 1)E

2dθ2κR2/ν
− d(d− 1)β2

2κe2α1R2/νd
+ p

+
(d− 1)

2ν2dκ
H2

R − Λ

κ

]

+
νE

θ2R2/ν
− νdβ2

e2α1R2/νd
. (6.118)

Multiplying by (d−1)
νd

and rearranging,

(d− 1)

νd
ḢR +

(d− 1)

2ν2d
H2

R − (d− 1)E

2dθ2R2/ν
− (d− 1)(d− 2)β2

2e2α1R2/νd

= −κ
[

1

2
φ̇2 − V ◦ φ+ p

]

+ Λ. (6.119)

The left-hand side of this equation is in fact equal to the left-hand-side of (Ii) for any

i ∈ {1, . . . , d}. To see this, again we use that the definitions Xl(t)
def.
= R(t)1/νdeαl(t)

in (6.98) and HR(t)
def.
= Ṙ(t)

R(t)
in (6.111), and the condition

∑

l cl = 0, are the same

as those in Theorem 4.1.1. Also by the definitions (6.95) and (6.94) of αl(t), σ(t)

and R(t), we obtain

α̇l(t)R(t)1/ν = clσ̇(t)R(t)1/ν

=
cl
θ
u(σ(t))R(t)1/ν

=
cl
θ

is a constant, (6.120)

which shows that

α̈l +
1

ν
α̇lHR = 0 (6.121)

holds here, as it does in Theorem 4.1.1. Therefore by the arguments in (6.54)-

(6.67), and as above using (6.114) to slightly modify the last term of (6.67) to

apply here,

∑

l 6=i

(Ḣl +H2
l ) +

∑

l<k
l,k 6=i

HlHk =
(d− 1)

νd
ḢR +

(d− 1)

2ν2d
H2

R −
∑

l<k

clck
θ2R2/ν

. (6.122)
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Then by the condition (6.96) on the constants cl and the definition (6.97) of X1(t),

the left-hand side of any Einstein equation (Ii), i > 0 is

∑

l 6=i

(Ḣl +H2
l ) +

∑

l<k
l,k 6=i

HlHk −
(d− 1)(d− 2)β2

2X2
1

=
(d− 1)

νd
ḢR +

(d− 1)

2ν2d
H2

R − (d− 1)E

2dθ2R2/ν
− (d− 1)(d− 2)β2

2e2α1R2/νd
. (6.123)

Combining (6.119) and (6.123), we obtain (Ii) for all i ∈ {1, . . . , d}. This proves

the theorem. ⋄

6.3 In terms of an Alternate Schrödinger-Type Equation

Theorem 6.3.1 Suppose you are given twice differentiable functions

X1(t), . . . , Xd(t) > 0, a once differentiable function φ(t), and also functions

ρ(t), p(t), V (x) which satisfy the Einstein equations (I0), . . . , (Id) in (6.2) for some

Λ, β ∈ R, d ∈ N\{0, 1}, κ ∈ R\{0}. Let g(σ) denote the inverse of a function σ(t)

which satisfies

σ̇(t) =
1

θ (X1(t) · · ·Xd(t))
(6.124)

for some θ > 0. Then the following functions

u(σ) =

[

1

X1 · · ·Xd

]

◦ g(σ) (6.125)

P (σ) =
dκ

(d− 1)
ψ′(σ)2 (6.126)

solve the Schrödinger-type equation

u′′(σ) + [E − P (σ)]u(σ) =
θ2dκ(ρ(σ) + p(σ))

(d− 1)u(σ)
− θ2D

νu(σ)1−d
(6.127)

for some α1 ∈ R,

ψ(σ) = φ(g(σ)) (6.128)
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ρ(σ) = ρ(g(σ)), p(σ) = p(g(σ)). (6.129)

and where

E
def.
= −θ2dβ2e−2α1 , α1 ∈ R (6.130)

and

D
def.
=

−ν
(d− 1)

X2
1X

2
2 · · ·X2

d

∑

l<k

η2
lk (6.131)

is a constant for

ηlk
def.
= Hl −Hk, l 6= k, l, k ∈ {1, . . . , d}. (6.132)

Conversely, suppose you are given a twice differentiable function u(σ) > 0,

and also functions P (σ) and ρ(σ), p(σ) fwhich solve (6.127) for some constants

E < 0, θ > 0, κ ∈ R\{0}, β, α ∈ R and d ∈ N\{0, 1}. In order to construct

functions which solve (I0), . . . , (Id), first find σ(t), ψ(σ) which solve the differential

equations

σ̇(t) =
1

θ
u(σ(t)) and ψ′(σ)2 =

(d− 1)

dκ
P (σ). (6.133)

Let

R(t) = u(σ(t))−ν αl(t)
def.
= clσ(t), l ∈ {1, . . . , d} (6.134)

where cl are any constants for which both

d
∑

l=1

cl = 0 and
∑

l<k

clck =
(d− 1)θ2D

2dν
. (6.135)

Then the functions

X1(t) = R(t)1/νdeα1 , α1 ∈ R (6.136)

Xl(t) = R(t)1/νdeαl(t), 2 ≤ l ≤ d (6.137)

φ(t) = ψ(σ(t)) (6.138)

ρ(t) = ρ(σ(t)), p(t) = p(σ(t)) (6.139)
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and

V (φ(t))

=

[

(d− 1)

2θ2dκ
(u′)2 +

(d− 1)D

2dνκ
u2 − d(d− 1)β2

2κe2α1
u2/d − 1

2θ2
u2(ψ′)2 − ρ − Λ

κ

]

◦ σ(t)

(6.140)

satisfy the equations (I0), . . . , (Id).

Proof. This proof will implement Corollary 2.3.1 with constants and functions as

indicated in the following table.

Table 10. Corollary 2.3.1 applied to Bianchi V, alternate

In Corollary substitute In Corollary substitute

a(t) R(t) ε νdκ/(d− 1)

G(t) constant − νdβ2e−2α1 A 2/νd

G1(t)
−νdκ
(d−1)

(ρ(t) + p(t)) A1 0

G2(t) constant D A2 2/ν

F1(σ) θ2dκ
(d−1)

(ρ(σ) + p(σ)) C1 1

F2(σ) constant −θ2D/ν C2 1 − d

Much of this proof will rely on computations that are exactly the same as those

seen in the proof of Theorem 6.1.1 (the generalized EMP formulation of Bianchi

V). Therefore we will restate the relevant results here, but point the reader to the

details in the proof of Theorem 6.1.1.

To prove the forward implication, we assume to be given functions which solve

the Einstein field equations (I0), . . . , (Id) in (6.2). Forming the linear combination

d(I0)−
d
∑

i=1

(Ii) of Einstein’s equations and simplifying, as was done in (6.21) - (6.31),

ḢR +
ν

(d− 1)

∑

l<k

η2
lk +

νdβ2

X2
1

=
−νdκ
(d− 1)

[

φ̇2 + (ρ+ p)
]

. (6.141)
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where

HR(t)
def.
=

Ṙ(t)

R(t)
= ν

d
∑

l=1

Hl (6.142)

and

R(t)
def.
= (X1(t) · · ·Xd(t))

ν (6.143)

for any ν 6= 0. Next we will confirm that D is constant. As was done in (6.32)-

(6.35), since the right-hand sides of Einstein’s equations (Ii) are the same for all

i ∈ {1, . . . , d}, by equating the left-hand sides of any two equations (Ii) and (Ij)

for i 6= j, and after some rearranging we obtain

η̇ij +
1

ν
ηijHR = 0 (6.144)

for ηij defined in (6.132). Therefore the definition (6.131) of D is constant, being

proportional to a sum of squares of these constant functions. By the definitions

(6.131) and (6.143) of the constant D and the function R(t), we now rewrite (6.141)

from above as

ḢR +
νdβ2

X2
1

=
−νdκ
(d− 1)

[

φ̇2 + (ρ+ p)
]

+
D

R2/ν
. (6.145)

Finally, we use the remaining Einstein equation (I01) and the relationHR = ν
d
∑

l=1

Hl

in (6.142) to obtain

HR = νdH1 (6.146)

so that again we have

X1 = eα1R1/νd (6.147)

for α1 ∈ R and (6.145) becomes

ḢR =
−νdκ
(d− 1)

[

φ̇2 +
M
∑

i=1

(ρi + pi)

]

+
D

R2/ν
− νdβ2

e2α1R2/νd
. (6.148)

This shows that R(t), φ(t), ρ(t) and p(t) satisfy the hypothesis of Corollary 2.3.1,

applied with constants ε,N,A,A1 . . . , AN and functions a(t), G(t), G1(t), . . . , GN(t)
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according to Table 10. Since σ(t), u(σ), P (σ) and ψ(σ) defined in (6.124), (6.125),

(6.126) and (6.128) are equivalent to that in the forward implication of Corollary

2.3.1, applied with constants and functions according to Table 10, by this corollary

and by definition (6.129) of ρ(σ), p(σ), the Schrödinger-type equation (2.110) holds

for constants C1, . . . , CN and functions F1(σ), . . . , FN(σ) as indicated in Table 10.

This proves the forward implication.

To prove the converse implication, we assume to be given functions which solve

the Schrödinger-type equation (6.127) and we begin by showing that (I0) is satisfied.

Differentiating the definition of R(t) in (6.134) and using the definition in (6.133)

of σ(t),

Ṙ(t) = −νu(σ(t))−ν−1u′(σ(t))σ̇(t)

= −ν
θ
u(σ(t))−νu′(σ(t)). (6.149)

Dividing by R(t),

HR
def.
=

Ṙ

R
= −ν

θ
u′(σ(t)). (6.150)

Differentiating the definition (6.138) of φ(t) and using the definition in (6.134) of

σ(t),

φ̇(t) = ψ′(σ(t))σ̇(t) =
1

θ
ψ′(σ(t))u(σ(t)). (6.151)

Using (6.150) and (6.151), and also the definitions (6.134) and (6.139) of R(t) and

ρi(t) respectively, the definition (6.140) of V ◦ φ can be written as

V ◦ φ =
1

κ

(

(d− 1)

2ν2d
H2

R +
(d− 1)D

2dνR2/ν
− d(d− 1)β2

2e2α1R2/νd

)

− 1

2
φ̇2 − ρ− Λ

κ
. (6.152)

The quantity in parenthesis here is in fact equal to the left-hand-side of equation

(I0). To see this, first note that the definitions Xl(t)
def.
= R(t)1/νdeαl(t) in (6.137)

and H(t)
def.
= Ṙ(t)

R(t)
in (6.150), and the condition

∑

l cl = 0, are the same as those
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in Theorem 4.1.1. Also by the definitions (6.134), (6.133) and (6.134) of αl(t), σ(t)

and R(t), we obtain

α̇lα̇k = clckσ̇
2 =

clck
θ2

(u ◦ σ)2 =
clck

θ2R(t)2/ν
, (6.153)

which is a slightly modified version of (6.48) from our computation in the proof of

Theorem 4.1.1. Therefore by the arguments in (6.45)-(6.49), and using (6.153) to

slightly modify the last term to apply here,

∑

l<k

HlHk =
(d− 1)

2ν2d
H2

R +
∑

l<k

clck
θ2R2/ν

. (6.154)

Then by the condition (6.135) on the constants cl, (6.154) becomes

∑

l<k

HlHk =
(d− 1)

2ν2d
H2

R +
(d− 1)D

2dνR2/ν
. (6.155)

Using this and the definition (6.136) of X1(t) = eα1R(t)1/νd, the expression (6.152)

for V can now be written as

V ◦ φ =
1

κ

(

∑

l<k

HlHk −
d(d− 1)β2

2X2
1

)

− 1

2
φ̇2 − ρ− Λ

κ
, (6.156)

showing that (I0) holds under the assumptions of the converse implication.

To conclude the proof we must also show that the equations (I1), . . . , (Id) hold.

In the converse direction the hypothesis of the converse of Corollary 2.3.1 holds,

applied with constants N,C1, . . . , CN and functions F1(σ), . . . , FN(σ) as indicated

in Table 10. Since σ(t), ψ(σ), R(t) and φ(t) defined in (6.133), (6.134) and (6.138)

are consistent with the converse implication of Corollary 2.3.1, applied with a(t)

and ε as in Table 10, by this corollary and by the definition (6.139) of ρ(t), p(t)

the scale factor equation (2.109) holds for constants ε, A,A1, . . . , AN and functions

G(t), G1(t), . . . , GN(t) according to Table 10. That is, we have regained (6.148).

Now solving (6.152) for ρ(t) and substituting this into (6.148), we obtain

160



ḢR =
−νdκ
(d− 1)

[

1

2
φ̇2 − V ◦ φ+

(d− 1)D

2dνκR2/ν
− d(d− 1)β2

2κe2α1R2/νd
+ p

+
(d− 1)

2ν2dκ
H2

R − Λ

κ

]

+
D

R2/ν
− νdβ2

e2α1R2/νd
. (6.157)

Multiplying by (d−1)
νd

and rearranging,

(d− 1)

νd
ḢR +

(d− 1)

2ν2d
H2

R − (d− 1)D

2dνR2/ν
− (d− 1)(d− 2)β2

2e2α1R2/νd

= −κ
[

1

2
φ̇2 − V ◦ φ+ p

]

+ Λ. (6.158)

The left-hand side of this equation is in fact equal to the left-hand-side of (Ii) for any

i ∈ {1, . . . , d}. To see this, again we use that the definitions Xl(t)
def.
= R(t)1/νdeαl(t)

in (6.137) and HR(t)
def.
= Ṙ(t)

R(t)
in (6.150), and the condition

∑

l cl = 0, are the same

as those in Theorem 4.1.1. Also by the definitions (6.134) and (6.133) of αl(t), σ(t)

and R(t), we obtain

α̇l(t)R(t)1/ν = clσ̇(t)R(t)1/ν

=
cl
θ
u(σ(t))R(t)1/ν

=
cl
θ

is a constant, (6.159)

which shows that

α̈l +
1

ν
α̇lHR = 0 (6.160)

holds here, as it does in Theorem 4.1.1. Using the arguments in (6.54)-(6.67) and

also using (6.153) to slightly modify one term in (6.67) to apply here, we obtain

∑

l 6=i

(Ḣl +H2
l ) +

∑

l<k
l,k 6=i

HlHk =
(d− 1)

νd
ḢR +

(d− 1)

2ν2d
H2

R −
∑

l<k

clck
θ2R2/ν

. (6.161)
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Then by the condition (6.135) on the constants cl and the definition (6.136) of

X1(t), the left-hand side of any Einstein equation (Ii), i > 0 is

∑

l 6=i

(Ḣl +H2
l ) +

∑

l<k
l,k 6=i

HlHk −
(d− 1)(d− 2)β2

2X2
1

=
(d− 1)

νd
ḢR +

(d− 1)

2ν2d
H2

R − (d− 1)D

2dνR2/ν
− (d− 1)(d− 2)β2

2e2α1R2/νd
. (6.162)

Combining (6.158) and (6.162), we obtain (Ii) for all i ∈ {1, . . . , d}. This proves

the theorem.

⋄
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C H A P T E R 7

REFORMULATIONS OF A CONFORMAL BIANCHI V

MODEL

We now consider a Bianchi V metric of the form

ds2 = − (a2(t) · · ·ad(t))
d dt2 + (a2(t) · · ·ad(t))dx

2
1 + ad−1

2 (t)e2βx1dx2
2 +

· · ·+ ad−1
d (t)e2βx1dx2

d, (7.1)

which represents a change of coordinate systems in comparison with Chapter 4. In a

d+1−dimensional spacetime the nonzero Einstein equations gijGij = −κgijTij +Λ,

multiplied by |g00| = (a2 · · ·ad)
d and 4

(d−1)
, are

d
∑

l=2

H2
l + (d+ 1)

∑

l<k

HlHk − 2dβ2(a2 · · ·ad)
d−1

(I0)
=

4κ

(d− 1)

[

φ̇2

2
+ (a2 · · ·ad)

d

(

V ◦ φ+ ρ+
Λ

κ

)

]

(7.2)

d
∑

l=2

(

2Ḣl −H2
l

)

− (d+ 1)
∑

l<k

HlHk − 2(d− 2)β2(a2 · · ·ad)
d−1

(I1)
=

4κ

(d− 1)

[

− φ̇
2

2
+ (a2 · · ·ad)

d

(

V ◦ φ− p+
Λ

κ

)

]

−2Ḣi −
d
∑

l=2

H2
l +

2d

(d− 1)

d
∑

l=2

Ḣl − (d+ 1)
∑

l<k

HlHk − 2(d− 2)β2(a2 · · ·ad)
d−1
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(Ii)
=

4κ

(d− 1)

[

− φ̇
2

2
+ (a2 · · ·ad)

d

(

V ◦ φ− p+
Λ

κ

)

]

where Hl(t)
def.
= ȧl

al
and i, l, k ∈ {2, . . . , d}.

7.1 In terms of a Generalized EMP

Theorem 7.1.1 Suppose you are given twice differentiable functions

a2(t), . . . , ad(t) > 0, a once differentiable function φ(t) and also functions

ρ(t), p(t), V (x) which satisfy the Einstein equations (I0), . . . , (Id) in (7.2) for some

Λ ∈ R, d ∈ N\{0, 1}, and κ ∈ R\{0}. Denote

R(t)
def.
= (a2(t)a3(t) · · ·ad(t))

ν (7.3)

for some ν 6= 0. If f(τ) is the inverse of a function τ(t) which satisfies

τ̇ (t) = θR(t)q+ d
2ν , (7.4)

for some constants θ > 0 and q 6= 0, then

Y (τ) = R(f(τ))q and Q(τ) =
2qνκ

(d− 1)
ϕ′(τ)2 (7.5)

solve the generalized EMP equation

Y ′′(τ) +Q(τ)Y (τ) =
qν(d− 2)L

2θ2Y (τ)
qν+d

qν

− 2qνβ2

θ2Y (τ)(1+qν)/qν
− 2qνκ(̺(τ) + <(τ))

(d− 1)θ2Y (τ)
(7.6)

for

ϕ(τ) = φ(f(τ)) (7.7)

̺(τ) = ρ(f(τ)), <(τ) = p(f(τ)). (7.8)

L
def.
=

2

(d− 2)

∑

3≤l<k≤d

µlµk −
d
∑

j=3

µ2
j , (7.9)
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where µi ∈ R are such that ai(t) = ωie
µita2(t) for some ωi ∈ R, i ∈ {3, . . . , d}.

Conversely, suppose you given a twice differentiable function Y (τ) > 0, a con-

tinuous function Q(τ) and also functions ̺(τ),<(τ) which solve (7.6) for some

constants θ > 0 and q, ν, κ ∈ R\{0}, L ∈ R, d ∈ N\{0, 1}. In order to construct

functions which solve (I0), . . . , (Id), first find τ(t), ϕ(τ) which solve the differential

equations

τ̇ (t) = θY (τ(t))(2qν+d)/2qν and ϕ′(τ)2 =
(d− 1)

2qνκ
Q(τ). (7.10)

Next find constants µi, i ∈ {3, . . . , d} which satisfy

L =
2

(d− 2)

∑

3≤l<k≤d

µlµk −
d
∑

j=3

µ2
j , (7.11)

and let

R(t) = Y (τ(t))1/q. (7.12)

Then the functions

a2(t) = R(t)1/ν(d−1)(ω3 · · ·ωde
(µ3+···+µd)t)−1/(d−1) (7.13)

ai(t) = ωie
µita2(t) (7.14)

φ(t) = ϕ(τ(t)) (7.15)

ρ(t) = ̺(τ(t)), p(t) = <(τ(t)) (7.16)

and

V (φ(t)) =

[

(d− 1)

8κ

(

dθ2

q2ν2
(Y ′)2 +

(d− 2)L

Y d/qν
− 4dβ2

Y 1/qν

)

− θ2

2
(ϕ′)2Y 2 − ̺− Λ

κ

]

◦ τ(t)

(7.17)

satisfy the Einstein equations (I0), . . . , (Id) for any ωi > 0, 2 ≤ i ≤ d.

Proof. This proof will implement Theorem 2.1.1 with constants and functions as

indicated in the following table.
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Table 11. Theorem 2.1.1 applied to conformal Bianchi V

In Theorem substitute In Theorem substitute

a(t) R(t) N 2

δ −d/2ν ε 2νκ/(d− 1)

G0(t) constant ν(d− 2)L/2 A0 0

G1(t)
−2νκ
(d−1)

(ρ(t) + p(t)) A1 −d/ν

G2(t) constant −2νβ2 A2 −(d − 1)/ν

λ0(τ) constant qν(d− 2)L/2θ2 B0 (d+ qν)/qν

λ1(τ)
−2qνκ

θ2(d−1)
(̺(τ) + <(τ)) B1 1

λ2(τ) constant −2qνβ2/θ2 B2 (1 + qν)/qν

To prove the forward implication, we assume to be given functions which solve

the Einstein field equations (I0), . . . , (Id) in (7.2). Since the right-hand sides of

Einstein equations (Ii) are the same for all i ∈ {2, . . . , d}, we begin by equating the

left-hand side of (I2) with the left-hand side of any (Ij) for j ∈ {3, . . . , d}. After

dividing by 2, we obtain

Ḣj = Ḣ2. (7.18)

Integrating, we obtain

Hj = H2 + µj (7.19)

for µj ∈ R, j ∈ {2, . . . , d} and where µ2
def.
= 0. Since in general d

dt
ln(ai) = ȧi

ai
= Hi,

(7.19) can be written

d

dt
ln(aj) =

d

dt
ln(a2) + µj. (7.20)

Integrating,

ln(aj) = ln(a2) + µjt+ c′j (7.21)
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for some cj ∈ R, j ∈ {2, . . . , d} and where c′1
def.
= 0. Exponentiating and letting

ωi
def.
= eci > 0,

aj(t) = ωje
µjta2(t), (7.22)

where of course this holds trivially for j = 2 where ω2 = 1 and µ2 = 0.

Forming the linear combination d(I0) −
d
∑

i=1

(Ii) of Einstein’s equations,

2d
d
∑

l=2

(

H2
l − Ḣl

)

+ 2d(d+ 1)
∑

l<k

HlHk − 4dβ2(a2 · · ·ad)
d−1

=
4dκ

(d− 1)

[

φ̇2 + (a2 · · ·ad)
d(ρ+ p)

]

. (7.23)

Using the definition (7.3) of R(t), we define

HR
def.
=

Ṙ

R

=
ν(a2 · · ·ad(t))

ν−1(ȧ2 · · ·ad + · · ·+ a2 · · · ȧd)

(a2 · · ·ad)ν

= ν

d
∑

j=2

Hj

= ν

d
∑

j=2

(H1 + µj)

= ν

(

(d− 1)H2 +

d
∑

j=2

µj

)

, (7.24)

therefore we have that

H2 =
1

ν(d− 1)
HR − 1

(d− 1)

d
∑

j=2

µj (7.25)

and

Ḣ2 =
1

ν(d− 1)
ḢR. (7.26)

By equation (7.19) we obtain

∑

l<k

HlHk =
∑

l<k

(H2 + µl)(H2 + µk) =
∑

l<k

(H2
2 + (µl + µk)H2 + µlµk) (7.27)
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for l, k ∈ {2, . . . , d}. The first term on the right-hand side of (7.27) does not depend

on the indices l, k and therefore is equal to H2
2 times

∑

l<k

1 =

d
∑

k=3

k−1
∑

l=2

1 =

d
∑

k=3

(k − 2) =

d−2
∑

j=1

j =
(d− 1)(d− 2)

2
. (7.28)

The second term on the right-hand side of (7.27) sums to H2 times

∑

l<k

(µl + µk) =
d−1
∑

l=2

d
∑

k=l+1

µl +
d
∑

k=3

k−1
∑

l=2

µk

=
d−1
∑

l=2

(d− l)µl +
d
∑

k=3

(k − 2)µk

= (d− 2)µ2 +

d−1
∑

j=3

(d− j + j − 2)µj + (d− 2)µd

= (d− 2)

d
∑

j=2

µj. (7.29)

Therefore (7.27) becomes

∑

l<k

HlHk =
(d− 1)(d− 2)

2
H2

2 + (d− 2)H2

d
∑

j=2

µj +
∑

l<k

µlµk. (7.30)

By (7.25) and (7.26), we also have that

∑

l<k

HlHk =
(d− 1)(d− 2)

2

(

1

ν(d− 1)
HR − 1

(d− 1)

d
∑

j=2

µj

)2

(7.31)

+(d− 2)

(

1

ν(d− 1)
HR − 1

(d− 1)

d
∑

j=2

µj

)

d
∑

j=2

µj +
∑

l<k

µlµk.

Collecting terms (the HR terms sums to zero),

∑

l<k

HlHk =
(d− 2)

2ν2(d− 1)
H2

R − (d− 2)

2(d− 1)

(

d
∑

j=2

µj

)2

+
∑

l<k

µlµk. (7.32)

Also we have that
(

d
∑

j=2

µj

)2

= 2
∑

l<k

µlµk +

d
∑

j=2

µ2
j (7.33)
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for l, k ∈ {2, . . . , d} therefore (7.32) becomes

∑

l<k

HlHk =
(d− 2)

2ν2(d− 1)
H2

R +
1

(d− 1)

∑

l<k

µlµk −
(d− 2)

2(d− 1)

d
∑

j=2

µ2
j . (7.34)

Defining the quantity

L
def.
=

2

(d− 2)

∑

l<k

µlµk −
d
∑

j=2

µ2
j

=
2

(d− 2)

∑

3≤l<k≤d

µlµk −
d
∑

j=3

µ2
j (since µ2 = 0), (7.35)

we can now rewrite equation (7.34) to say that

∑

l<k

HlHk =
(d− 2)

2ν2(d− 1)
H2

R +
(d− 2)

2(d− 1)
L. (7.36)

Similarly by (7.18), (7.19), (7.25), (7.26), (7.33) and (7.35), we have that

d
∑

l=2

Ḣl =
d
∑

l=2

Ḣ2

= (d− 1)Ḣ2

=
1

ν
ḢR (7.37)

and also

d
∑

l=2

H2
l =

d
∑

l=2

(H2 + µl)
2

= (d− 1)H2
2 + 2H2

d
∑

l=2

µl +

d
∑

l=2

µ2
l

=
1

(d− 1)

(

1

ν
HR −

d
∑

j=2

µj

)2

+
2

(d− 1)

(

1

ν
HR −

d
∑

j=2

µj

)

d
∑

l=2

µl +

d
∑

l=2

µ2
l

=
1

ν2(d− 1)
H2

R − 1

(d− 1)

(

d
∑

j=2

µj

)2

+
d
∑

l=2

µ2
l

=
1

ν2(d− 1)
H2

R − 2

(d− 1)

∑

l<k

µlµk +
(d− 2)

(d− 1)

d
∑

l=2

µ2
l

=
1

ν2(d− 1)
H2

R − (d− 2)

(d− 1)
L.

(7.38)
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That is, the linear combination d(I0) −
d
∑

i=1

(Ii) of Einstein equations in (7.23) can

be written in terms of R and HR by using (5.35), (7.37) and (7.38) so that we

obtain

d2

ν2
H2

R + d(d− 2)L− 2d

ν
ḢR − 4dβ2R(d−1)/ν =

4dκ

(d− 1)

[

φ̇2 +Rd/ν(ρ+ p)
]

. (7.39)

Multiplying by − ν
2d

,

ḢR − d

2ν
H2

R − ν(d− 2)

2
L+ 2νβ2R(d−1)/ν =

−2νκ

(d− 1)

[

φ̇2 +Rd/ν(ρ+ p)
]

. (7.40)

This shows that R(t), φ(t), ρ(t) and p(t) satisfy the hypothesis of Theorem 2.1.1,

applied with constants ǫ, ε, N,A0, . . . , AN and functions a(t), G0(t), . . . , GN(t) ac-

cording to Table 11. Since τ(t), Y (τ), Q(τ) and ϕ(τ) defined in (7.4), (7.5) and

(7.7) are equivalent to that in the forward implication of Theorem 2.1.1, by this

theorem and by definition (7.8) of ̺(τ),<(τ), the generalized EMP equation (2.2)

holds for constants B0, . . . , BN and functions λ0(τ), . . . , λN(τ) as indicated in Table

11. This proves the forward implication.

To prove the converse implication, we assume to be given functions which solve

the generalized EMP equation (7.6) and we begin by showing that (I0) is satisfied.

Differentiating the definition of R(t) in (7.12) and using the definition in (7.10) of

τ(t),

Ṙ(t) =
1

q
Y (τ(t))

1
q
−1Y ′(τ(t))τ̇ (t) (7.41)

=
θ

q
Y (τ(t))

1
q
(1+d/2ν)Y ′(τ(t)) (7.42)

Dividing by R(t),

HR(t)
def.
=

Ṙ(t)

R(t)
=
θ

q
Y (τ(t))d/2qνY ′(τ(t)). (7.43)

Differentiating the definition (7.15) of φ(t) and using definition (7.10) of τ(t),

φ̇(t) = ϕ′(τ(t))τ̇ (t) = θϕ′(τ(t))Y (τ(t))1+d/2qν . (7.44)
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Using (7.43) and (7.44), and also the definitions (7.12) and (7.16) of R(t) and ρ(t)

respectively, the definition (7.17) of V ◦ φ can be written as

V ◦ φ =
1

Rd/ν

[

(d− 1)

4κ

(

d

2ν2
H2

R +
(d− 2)

2
L− 2dβ2R(d−1)/ν

)

− φ̇2

2

]

− ρ− Λ

κ
.

(7.45)

The quantity in the inner parenthesis here is in fact equal to the left-hand-side of

equation (I0). To see this, we differentiate the definitions in (7.13) and (7.14) of

ai(t), divide the results by ai(t), and use the definition (7.43) of HR to obtain

H2
def.
=

ȧ2

a2

=
1

ν(d− 1)
HR − 1

(d− 1)
(µ3 + · · ·+ µd) (7.46)

and

Hi
def.
=

ȧi

ai
=
ȧ2

a2
+ µi = H2 + µi (7.47)

for i ∈ {2, . . . , d} by taking µ2
def.
= 0. Therefore we obtain

Ḣi = Ḣ2 =
1

ν(d− 1)
ḢR. (7.48)

This confirms that the identities (7.18), (7.19), (7.25) and (7.26) hold in the converse

direction, so that the computations (7.27)-(7.38) are also valid in the converse

direction for L in (7.11). That is,

∑

l<k

HlHk =
(d− 2)

2ν2(d− 1)
H2

R +
(d− 2)

2(d− 1)
L (7.49)

and
d
∑

l=2

H2
l =

1

ν2(d− 1)
H2

R − (d− 2)

(d− 1)
L (7.50)

which shows that the left-hand side of (I0) is equal to

d
∑

l=2

H2
l + (d+ 1)

∑

l<k

HlHk − 2dβ2(a2 · · ·ad)
d−1

=
d

2ν2
H2

R +
(d− 2)

2
L− 2dβ2R(d−1)/ν (7.51)

(7.52)
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therefore (7.102) can be written V ◦ φ =

1

R2/ν

[

(d− 1)

4κ

(

d
∑

l=2

H2
l + (d+ 1)

∑

l<k

HlHk − 2dβ2(a2 · · ·ad)
d−1

)

− φ̇2

2

]

− ρ− Λ

κ

(7.53)

so that (I0) holds.

To conclude the proof we must also show that the equations (I1), . . . , (Id) hold.

In the converse direction the hypothesis of the converse of Theorem 2.1.1 holds,

applied with constants N,B0, . . . , BN and functions λ0(τ), . . . , λN(τ) as indicated

in Table 6. Since τ(t), ϕ(τ), R(t) and φ(t) defined in (7.10), (7.12) and (7.15)

are consistent with the converse implication of Theorem 2.1.1, applied with a(t), δ

and ε as in Table 11, by this theorem and by the definition (7.16) of ρ(t), p(t)

the scale factor equation (2.1) holds for constants δ, ε, A0, . . . , AN and functions

G0(t), . . . , GN(t) according to Table 11. That is, we have regained equation (7.40).

Now solving (7.45) for Rd/νρ(t) and substituting this into (7.40), we obtain

ḢR − d

2ν
H2

R − ν(d− 2)

2
L+ 2νβ2R(d−1)/ν =

−2νκ

(d− 1)

[

φ̇2

2
+

(d− 1)

4κ

(

d

2ν2
H2

R

+
(d− 2)

2
L− 2dβ2R(d−1)/ν

)

+Rd/ν

(

−V ◦ φ+ p− Λ

κ

)]

. (7.54)

Collecting terms, multiplying the equation times 2
ν
, and using that by definitions

(7.13) and (7.14) of a2, . . . , ad we have that R = (a2 · · ·ad)
ν ,

2

ν
ḢR − d

2ν2
H2

R − (d− 2)

2
L− 2(d− 2)β2R(d−1)/ν

=
−4κ

(d− 1)

[

φ̇2

2
+ (a2 · · ·ad)

d

(

−V ◦ φ+ p− Λ

κ

)

]

. (7.55)

The left-hand side of this equation is in fact equal to the left-hand side of each of the

Einstein equations (I1) and (Ii) for i ∈ {2, . . . , d}. To see this, we use (7.48)-(7.50)

to obtain

d
∑

l=2

(

2Ḣl −H2
l

)

− (d+ 1)
∑

l<k

HlHk − 2(d− 2)β2(a2 · · ·ad)
d−1
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=
2

ν
ḢR − d

2ν2
H2

R − (d− 2)

2
L− 2(d− 2)β2R(d−1)/ν (7.56)

and

−2Ḣi−
d
∑

l=2

H2
l +

2d

(d− 1)

d
∑

l=2

Ḣl−(d+1)
∑

l<k

HlHk−2(d−2)β2(a2 · · ·ad)
d−1

=
2

ν
ḢR − d

2ν2
H2

R − (d− 2)

2
L− 2(d− 2)β2R(d−1)/ν (7.57)

for i ∈ {2, . . . , d}. By (7.56) and (7.55) equation (I1) holds, and by (7.57) and

(7.55) equation (Ii) holds for i ∈ {2, . . . , d}. This proves the theorem. ⋄

7.1.1 Reduction to generalized EMP with classical term

We take ρ = p = 0 and choose parameter q = 1/2ν in Theorem 7.1.1 to find

that solving the Bianchi V Einstein equations

d
∑

l=2

H2
l + (d+ 1)

∑

l<k

HlHk − 2dβ2(a2 · · ·ad)
d−1

(I0)′
=

4κ

(d− 1)

[

φ̇2

2
+ (a2 · · ·ad)

d

(

V ◦ φ+
Λ

κ

)

]

(7.58)

d
∑

l=2

(

2Ḣl −H2
l

)

− (d+ 1)
∑

l<k

HlHk − 2(d− 2)β2(a2 · · ·ad)
d−1

(I1)′
=

4κ

(d− 1)

[

− φ̇
2

2
+ (a2 · · ·ad)

d

(

V ◦ φ+
Λ

κ

)

]

−2Ḣi −
d
∑

l=2

H2
l +

2d

(d− 1)

d
∑

l=2

Ḣl − (d+ 1)
∑

l<k

HlHk − 2(d− 2)β2(a2 · · ·ad)
d−1

(Ii)′
=

4κ

(d− 1)

[

− φ̇
2

2
+ (a2 · · ·ad)

d

(

V ◦ φ+
Λ

κ

)

]

is equivalent to solving the classical EMP equation

Y ′′(τ) +Q(τ)Y (τ) =
(d− 2)L

4θ2Y (τ)1+2d
− β2

θ2Y (τ)3
(7.59)

173



for constants θ, L > 0 and β ∈ R. The solutions of (I0)
′, (I1)

′, . . . , (Id)
′ in (7.58)

and of (7.59) are related by

R(t) = Y (τ(t))2ν and ϕ′(τ)2 =
(d− 1)

κ
Q(τ) (7.60)

for q 6= 0, φ(t) = ϕ(τ(t)), R(t)
def.
= (a2(t) · · ·ad(t))

2ν and

τ̇(t) = θR(t)(d+1)/2ν = θY (τ(t))d+1, (7.61)

for any θ > 0. Also the constant

L
def.
=

2

(d− 2)

∑

3≤l<k≤d

µlµk −
d
∑

j=3

µ2
j , (7.62)

where µi ∈ R are such that ai(t) = ωie
µita2(t) for some ci ∈ R, i ∈ {3, . . . , d}. In

the converse direction

a2(t) = R(t)1/ν(d−1)(ω3 · · ·ωde
(µ3+···+µd)t)−1/(d−1) (7.63)

and

V (φ(t)) =

[

(d− 1)

8κ

(

4dθ2(Y ′)2 +
(d− 2)L

Y 2d
− 4dβ2

Y 2

)

− θ2

2
(ϕ′)2Y 2 − Λ

κ

]

◦ τ(t)

(7.64)

Example 42 For d = 3, θ = β = ν = 1 and L = −12, (7.59) becomes Y ′′(τ) +

Q(τ)Y (τ) = −3/Y (τ)7 − 1/Y (τ)3. We take the solution Y (τ) = (4τ 2 − 1)1/4 in

equation (D.3) and refer to (D.61) - (D.63) to obtain solution τ(t) = −1
2
coth(2(t−

t0)) of the differential equation τ̇ (t) = Y (τ(t))4 = 4τ(t)2 − 1. Therefore by (D.63)

we have

R(t) = Y (τ(t))2

= csch(2(t− t0)) (7.65)
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for t > t0, and

a2(t) = R(t)1/2e−
√

3t =
√

csch(2(t− t0))e
−
√

3t

a3(t) = e2
√

3ta2(t) =
√

csch(2(t− t0))e
√

3t (7.66)

where we have taken µ3 = 2
√

3 so that L = −12 = −µ2
3. Since Q(τ) = 0 = ϕ′(τ),

φ(t)
def.
= ϕ(τ(t)) = φ0 (7.67)

for constant φ0 ∈ R and by (7.64), (D.63), (D.64)

V (φ(t)) =

[

3

κ

(

(Y ′)2 − 1

Y 6
− 1

Y 2

)

− Λ

κ

]

◦ τ(t)

=
3

κ
sinh(2(t− t0))

(

cosh2(2(t− t0)) − sinh2(2(t− t0)) − 1
)

− Λ

κ

= −Λ

κ
. (7.68)

That is, we obtain a vacuum solution.

7.1.2 Another Bianchi V metric

Although it is not included as a special case of the above metric (7.1), we will

additionally consider the metric ds2 = −X(t)Y (t)dt2+X(t)Y (t)dx2+X(t)2eβxdy2+

Y (t)2eβxdz2 for X(t), Y (t) > 0 with the energy-momentum tensor Tij = T
(1)
ij to be

that of a minimally coupled scalar field φ with a potential V as in (1.5). This will

show how the methodology developed in this thesis can be applied to this additional

form of the Bianchi V metric. The Einstein equations gijGij = −κgijTij + Λ,

multiplied by 2|g00| = 2XY , in this case are

H2
X +H2

Y + 4HXHY − 3

2
β2 (I0)′

= κ
[

φ̇2 + 2XY V ◦ φ
]

2ḢX +H2
X + 2ḢY +H2

Y − 1

2
β2 (I1)′

= κ
[

−φ̇2 + 2XY V ◦ φ
]

ḢX + 3ḢY + 2H2
Y − 1

2
β2 (I2)′

= κ
[

−φ̇2 + 2XY V ◦ φ
]

ḢY + 3ḢX + 2H2
X − 1

2
β2 (I3)′

= κ
[

−φ̇2 + 2XY V ◦ φ
]
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where as usual HX(t) = Ẋ(t)/X(t) and HY (t) = Ẏ (t)/Y (t). Forming the linear

combination 3(I0)
′ − (I1)

′ − (I2)
′ − (I3)

′ and dividing by 6, we obtain

2HXHY − 1

2
β2 − ḢX − ḢY = κφ̇2. (7.69)

Equating the left sides of (I1), (I2) we obtain η̇ + 1
ν
ηHR = 0 for η(t)

def.
= HX(t) −

HY (t), R(t)
def.
= (X(t)Y (t))ν for some ν 6= 0, and HR(t) = Ṙ(t)/R(t). By Lemma

A.1 with µ = 1/ν 6= 0 this shows that ηXY is a constant function. Setting

D = ν
2
η2X2Y 2 and writing (7.69) in terms of R, we obtain

ḢR − 1

2ν
H2

R + νκφ̇2 = − D

R2/ν
− β2ν

2
. (7.70)

Next we apply Theorem 2.1.1 with substitutions made according to the following

table.

Table 12. Theorem 2.1.1 applied to a third Bianchi V

In Theorem substitute In Theorem substitute

a(t) R(t) N 2

δ − 1
2ν

ε νκ

G0 −D A0 2/ν

G1 −β2ν/2 A1 0

λ0 −qD/θ2 B0 (3 + qν)/qν

λ1 −β2νq/2θ2 B1 (qν + 1)/qν
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By Theorem 2.1.1 we obtain the generalized EMP equation

Y ′′(τ) +Q(τ)Y (τ) =
−qD

θ2Y (τ)(3+qν)/qν
− β2νq

2θ2Y (τ)(qν+1)/qν
(7.71)

for Y (τ) = R(f(τ))q, q 6= 0 and Q(τ) = qνκϕ′(τ)2 where f(τ) is the inverse of τ(t)

satisfying τ̇ (t) = θR(t)(2qν+1)/2ν and ϕ(τ) = φ(f(τ)). Conversely, given a solution

Y (τ) > 0, Q(τ) to (7.71) one solves for τ(t) and σ(t) in the equations τ̇ (t) =

θY (τ(t))(2νq+1)/2νq and σ̇(t) = 1/τ̇(t)2/(2qν+1) for some θ > 0. Also in the converse

direction we define φ(t) = ϕ(τ(t)), R(t) = Y (τ(t))1/q, X(t) = R(t)1/2νecσ(t), Y (t) =

R(t)1/2νe−cσ(t) for a constant c such that c2 = Dθ2/(1+2qν)/2ν, and the potential

V (φ(t)) =

[

1

κ

(

3θ2

4ν2q2
(Y ′)2 − D

2νY 3/qν
− 3β2

4Y 1/qν

)

− θ2

2
Y 2(ϕ′)2

]

◦ τ(t). (7.72)

Taking ν = 1, q = 1/2, D = 6 and β = −2, (7.71) becomes Y ′′(τ) + Q(τ)Y (τ) =

−3/Y (τ)7−1/Y (τ)3. We take solution Y (τ) =
(

4
θ2 τ

2 − 1
)1/4

and use (D.66)-(D.67)

to obtain the solution τ(t) = θ
2
cosh(2(t − t0) of the differential equation τ̇(t) =

θY (τ(t))2. We also solve for σ̇(t) = 1/τ̇(t) to obtain σ(t) = 1
2θ

ln(tanh(t − t0)).

Therefore by (D.67) we have

R(t) = Y (τ(t))2 = sinh(2(t− t0)) (7.73)

for t > t0, and

X(t)2 = R(t)e2
√

3θσ(t) = sinh(2(t− t0))tanh
√

3/
√

θ(t− t0) (7.74)

Y (t)2 = R(t)e−2
√

3θσ(t) = sinh(2(t− t0))tanh
−
√

3/
√

θ(t− t0). (7.75)

Since Q(τ) = 0, φ(t) = φ0 is constant and by (7.72), (D.67) and (D.68),

V (φ(t)) = 0. (7.76)

By identifying X(t)2, Y (t)2 and X(t)Y (t) here with A1(t), A2(t) and A3(t) in [19],

we obtain the Joseph vacuum solution with the constants k1 = k2 = k3 = 1.

177



7.2 In terms of a Schrödinger-Type Equation

To reformulate Einstein’s field equations (I0), . . . , (Id) in (7.2) in terms of an

equation with one less non-linear term than that which is provided by the general-

ized EMP formulation, one can apply Corollary 2.3.2 to the difference d(I0)−
d
∑

i=1

(Ii)

(and similar to above, define V ◦φ in u−notation to be such that (I0) holds). Below

is the resulting statement.

Theorem 7.2.1 Suppose you are given twice differentiable functions

a2(t), . . . , ad(t) > 0, a once differentiable function φ(t), and also functions

ρ(t), p(t), V (x) which satisfy the Einstein equations (I0), . . . , (Id) for some

Λ ∈ R, d ∈ N\{0, 1}, κ ∈ R\{0}. Denote

R(t)
def.
= (a2(t) · · ·ad(t))

ν (7.77)

for some ν 6= 0, then the functions

u(σ) = R(σ + t0)
−d/2ν (7.78)

P (σ) =
dκ

(d− 1)
ψ′(σ)2 (7.79)

solve the Schrödinger-type equation

u′′(σ) + [E − P (σ)]u(σ) =
dβ2

u(d−2)/d
+
dκ(ρ(σ) + p(σ))

(d− 1)u(σ)
(7.80)

for

ψ(σ) = φ(σ + t0) (7.81)

ρ(σ) = ρ(σ + t0), p(σ) = p(σ + t0). (7.82)

and where

E
def.
=

d(d− 2)

4

(

2

(d− 2)

∑

l<k

µlµk −
d
∑

j=3

µ2
j

)

(7.83)
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for constants µj such that aj(t) = ωje
µjta2(t) for some ωj > 0, j ∈ {2, . . . , d}.

Conversely, suppose you are given a twice differentiable function u(σ) > 0, and

also functions P (σ) and ρ(σ), p(σ) which solve (7.80) for some constants E < 0, κ ∈

R\{0} and d ∈ N\{0, 1}. In order to construct functions which solve (I0), . . . , (Id),

If ψ(σ) is such that

ψ′(σ)2 =
(d− 1)

dκ
P (σ), (7.84)

constants µi, i ∈ {3, . . . , d} satisfy

E=
d(d− 2)

4

(

2

(d− 2)

∑

l<k

µlµk −
d
∑

j=3

µ2
j

)

, (7.85)

and

R(t) = u(t− t0)
−2ν/d. (7.86)

Then the functions

a2(t) = R(t)1/ν(d−1)(ω3 · · ·ωde
(µ2+···+µd)t)−1/(d−1) (7.87)

ai(t) = ωie
µita2(t) (7.88)

φ(t) = ψ(t− t0) (7.89)

ρ(t) = ρ(t− t0), p(t) = p(t− t0) (7.90)

and

V (φ(t))

=

[

(d− 1)

2κ

(

1

d
(u′)2 + u2E

d
− dβ2u2/d

)

− 1

2
(ψ′)2u2 − ρ − Λ

κ

]

◦ (t− t0) (7.91)

satisfy the equations (I0), . . . , (Id) for any ωi > 0, 2 ≤ i ≤ d.

Proof. This proof will implement Corollary 2.3.2 with constants and functions as

indicated in the following table.
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Table 13. Corollary 2.3.2 applied to conformal Bianchi V

In Corollary substitute In Corollary substitute

a(t) R(t) N 2

δ −d/2ν ε 2νκ/(d− 1)

G(t) constant 2νE/d A 0

G1(t)
−2νκ
(d−1)

(ρ(t) + p(t)) A1 −d/ν

G2(t) constant −2νβ2 A2 −(d− 1)/ν

F1(σ) dκ
(d−1)

(ρ(σ) + p(σ)) C1 1

F2(σ) constant dβ2 C2 (d− 2)/d

Much of this proof will rely on computations that are exactly the same as those

seen in the proof of Theorem 7.1.1 (the generalized EMP formulation of conformally

Bianchi V). Therefore we will restate the relevant results here, but point the reader

to the details in the proof of Theorem 7.1.1.

To prove the forward implication, we assume to be given functions which solve

the Einstein field equations (I0), . . . , (Id). Since the right-hand sides of Einstein

equation (Ii) are all the same for i ∈ {1, . . . , d}, we begin by equating the left-hand

side of (I2) with the left-hand side of any (Ij) for j ∈ {2, . . . , d} since it will give

us a simplifying relation among the scale factors a2(t), . . . , ad(t). Exactly this was

done in (7.18)-(7.22) so that again we obtain

Hj = H2 + µj (7.92)

and

aj(t) = ωje
µj ta2(t) (7.93)

for ωj > 0, µj ∈ R, j ∈ {2, . . . , d}, and µ2 = 0, ω2 = 1. Following the arguments

given in (7.23)-(7.40), we form the linear combination d(I0) −
d
∑

i=1

(Ii) and write
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everything in terms of R = (a2 · · ·ad)
ν as defined in (7.77) to obtain

ḢR − d

2ν
H2

R − 2ν

d
E + 2νβ2R(d−1)/ν =

−2νκ

(d− 1)

[

φ̇2 +Rd/ν(ρ+ p)
]

. (7.94)

Since

L
def.
=

2

(d− 2)

∑

l<k

µlµk −
d
∑

j=2

µ2
j ⇒ ν(d− 2)

2
L =

2ν

d
E (by (7.83)) (7.95)

and

HR
def.
=

Ṙ

R
, (7.96)

we again have that

H2 =
1

ν(d− 1)
HR − 1

(d− 1)

d
∑

j=2

µj (7.97)

Ḣ2 =
1

ν(d− 1)
ḢR. (7.98)

This shows that R(t), φ(t), ρ(t) and p(t) satisfy the hypothesis of Corollary 2.3.2, ap-

plied with constants ǫ, ε, N,A,A1 . . . , AN and functions a(t), G(t), G1(t), . . . , GN(t)

according to Table 13. Since u(σ), P (σ) and ψ(σ) defined in (7.78)-(7.79) and (7.81)

are equivalent to that in the forward implication of Corollary 2.3.1, by this corollary

and by definition (7.82) of ρ(σ), p(σ), the Schrödinger-type equation (2.130) holds

for constants C1, . . . , CN and functions F1(σ), . . . , FN(σ) as indicated in Table 13.

This proves the forward implication.

To prove the converse implication, we assume to be given functions which solve

the Schrödinger-type equation (7.80) and we will show that equations (I0), . . . , (Id)

are satisfied. To show that (I0) is satisfied, we differentiate the definition of R(t)

in (7.86) to obtain

Ṙ(t) = −2ν

d
u(t− t0)

−2ν/d−1u′(t− t0). (7.99)

Dividing by R(t),

HR
def.
=

Ṙ

R
= −2ν

d

u′(t− t0)

u(t− t0)
. (7.100)
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Differentiating the definition (7.89) of φ(t)

φ̇(t) = ψ′(t− t0). (7.101)

Using (7.100) and (7.101), and also the definitions (7.86) and (7.90) of R(t) and

ρ(t) respectively, the definition (5.70) of V ◦ φ can be written as

V ◦ φ =
1

Rd/ν

[

(d− 1)

4κ

(

d

2ν2
H2

R +
2

d
E − 2dβ2R(d−1)/ν

)

− φ̇2

2

]

− ρ− Λ

κ
. (7.102)

The quantity in parenthesis here is in fact equal to the left-hand-side of equation

(I0). To see this, note that the definitions of a2(t), ai(t) in (7.87), (7.88) and also

HR
def.
= Ṙ/R are the same as those in Theorem 7.1.1. Therefore we may follow the

arguments given in (7.24)-(7.38) to see that the identities

∑

l<k

HlHk =
(d− 2)

2ν2(d− 1)
H2

R +
2

d(d− 1)
E, (7.103)

d
∑

l=2

Ḣl =
1

ν
ḢR

and
d
∑

l=2

H2
l =

1

ν2(d− 1)
H2

R − 4

d(d− 1)
E (7.104)

hold in the converse direction (since (7.11) in Theorem 7.1.1 and (7.85) here show

that L = 4E/d(d− 2)). This shows that the left-hand side of (I0) is equal to

d
∑

l=2

H2
l + (d+ 1)

∑

l<k

HlHk − 2dβ2(a2 · · ·ad)
d−1

=
d

2ν2
H2

R +
2

d
E − 2dβ2R(d−1)/ν (7.105)

and therefore (7.102) can be written as V ◦ φ =

1

Rd/ν

[

(d− 1)

4κ

(

d
∑

l=2

H2
l + (d+ 1)

∑

l<k

HlHk − 2dβ2(a2 · · ·ad)
d−1

)

− φ̇2

2

]

− ρ− Λ

κ

(7.106)
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which shows that (I0) holds in the converse direction.

To conclude the proof we must also show that the equations (I1), . . . , (Id) hold.

In the converse direction the hypothesis of the converse of Corollary 2.3.2 holds,

applied with constants N,C1, . . . , CN and functions F1(σ), . . . , FN(σ) as indicated

in Table 13. Since ψ(σ), R(t) and φ(t) defined in (7.84), (7.86) and (7.89) are

consistent with the converse implication of Corollary 2.3.2, applied with a(t) and

δ, ε as in Table 13, by this corollary and by the definition (7.90) of ρ(t), p(t) the

scale factor equation (2.125) holds for constants δ, ε, A,A1, . . . , AN and functions

G(t), G1(t), . . . , GN(t) according to Table 13. That is, we have regained (7.94).

Now solving (7.102) for Rd/νρ(t) and substituting this into (7.94), we obtain

ḢR − d

2ν
H2

R − 2ν

d
E + 2νβ2R(d−1)/ν =

−2νκ

(d− 1)

[

φ̇2

2
+Rd/ν

(

−V ◦ φ+ p− Λ

κ

)

+
(d− 1)

4κ

(

d

2ν2
H2

R +
2

d
E − 2dβ2R(d−1)/ν

)]

. (7.107)

Simplifying and multiplying by 2/ν,

2

ν
ḢR − d

2ν2
H2

R − 2

d
E − 2(d− 2)β2R(d−1)/ν

=
−4κ

(d− 1)

[

φ̇2

2
+Rd/ν

(

−V ◦ φ+ p− Λ

κ

)

]

. (7.108)

As noted above, the computations (7.30)-(7.38) from Theorem 7.1.1 still hold in

this theorem, in the converse direction. Therefore by (7.103)-(7.104) the left-hand

side of (I1) is equal to

d
∑

l=2

(

2Ḣl −H2
l

)

− (d+ 1)
∑

l<k

HlHk − 2(d− 2)β2(a2 · · ·ad)
d−1

=
2

ν
ḢR − d

2ν2
H2

R − 2

d
E − 2(d− 2)β2R(d−1)/ν (7.109)
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and the left-hand side of (Ii) is equal to

−2Ḣi−
d
∑

l=2

H2
l +

2d

(d− 1)

d
∑

l=2

Ḣl−(d+1)
∑

l<k

HlHk−2(d−2)β2(a2 · · ·ad)
d−1

=
2

ν
ḢR − d

2ν2
H2

R − 2

d
E − 2(d− 2)β2R(d−1)/ν (7.110)

for i ∈ {2, . . . , d}. By (7.108), (7.109) and (7.110), (Ii) hold in the converse direction

for i ∈ {1, . . . , d}. This proves the theorem. ⋄
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A P P E N D I X A

A SHORT LEMMA

Lemma A.1 For any differentiable function f(t), any positive differentiable func-

tion R(t), and constant µ ∈ R,

f(t)R(t)µ is a constant (A.1)

if and only if

ḟ(t) + µf(t)H(t) = 0 (A.2)

where H(t)
def.
= Ṙ(t)

R(t)
.

Proof. f(t)R(t)µ is a constant function if and only if

d

dt
(f(t)R(t)µ) = 0. (A.3)

Or equivalently,

ḟ(t)R(t)µ + µf(t)R(t)µ−1Ṙ(t) = 0. (A.4)

Since R(t) is positive, (A.4) holds if and only if the same equation divided by R(t)µ

holds. That is,

ḟ(t) + µf(t)H(t) = 0. (A.5)

⋄
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A P P E N D I X B

THE EINSTEIN TENSOR IN d + 1 DIMENSIONS

In this thesis we consider a number of different metrics on pseudo-Riemannian

spacetime manifolds of arbitrary dimension. For a fixed dimension, one can use

a computer program, like Mathematica or Maple, to compute the Einstein tensor

Gij
def.
= Rij − 1

2
Rgij in terms of the Ricci tensor Rij and the scalar curvature R.

However on a space of arbitrary dimension, the use of computer programs involves

a bit of guesswork (to the best of the author’s knowledge) since one must choose a

few fixed dimensions in which to compute Gij , then deduce a more general form for

Gij for arbitrary dimension, and in all cases computing power will limit the ability

to check one’s formula for very high dimension.

We will show a by-hand method for computing Gij on a manifold of arbitrary

dimension, which is manageable to apply at least when the metric is diagonal with

coefficient functions that depend only on a few of the coordinate variables. As an

example, we will use the conformal Bianchi V metric

ds2 = −(a2 · · ·ad)
ddt2 + (a2 · · ·ad)dx

2
1 + ad−1

2 e2βx1dx2
2 + · · · + ad−1

d e2βx1dx2
d (B.1)

for ai = ai(t), β 6= 0, and i, j ∈ {0, 1, . . . , d}, as in Chapter 7.

We will compute the Ricci tensor in three pieces, each computed directly from
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Christoffel symbols of the second kind Γk
ij , by

Rij = R
(1)
ij +R

(2)
ij −R

(3)
ij (B.2)

for

R
(1)
ij

def.
=

d
∑

k=0

(

Γk
kj,i − Γk

ij,k

)

, (B.3)

R
(2)
ij

def.
=

d
∑

m=0

d
∑

n=0

Γn
imΓm

nj, (B.4)

and

R
(3)
ij

def.
=

d
∑

m=0

d
∑

n=0

Γm
ijΓ

n
nm (B.5)

where , i denotes differentiation ∂
∂xi

with respect to xi. Γk
ij are given in terms of the

metric components by

Γk
ij

def.
=

1

2

d
∑

s=0

gsk (gsi,j − gij,s + gjs,i) . (B.6)

We will first form matrices of Christoffel symbols and their derivatives. Since

the metric (B.1) is diagonal, the sum in (B.6) reduces to

Γk
ij

def.
=

1

2
gkk (gki,j − gij,k + gjk,i) , (B.7)

which is only nonzero if at least two of i, j, k are equal. Since the metric is sym-

metric, if k = i then

Γk
kj = Γk

jk =
1

2
gkkgkk,j (B.8)

and if i = j then

Γk
ii =

1

2
gkk(2gki,i − gii,k). (B.9)

We denote by
[

Γk
ij

]

the matrix with rows indexed by i, columns indexed by j, and

k fixed, and we use (B.9) to compute the diagonal entries and (B.8) to compute

the nonzero non-diagonal entries of this matrix to obtain
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[

Γ0
ij

]

=

































d
2

d
∑

l=2

Hl

1
2(a2···ad)d−1

d
∑

l=2

Hl

A2

. . .

Ad

































(B.10)

for Ai
def.
=

(d−1)ad−1
i Hie2βx1

2(a2···ad)d , 2 ≤ i ≤ d,

[

Γ1
ij

]

=

































0 1
2

d
∑

l=2

Hl

1
2

d
∑

l=2

Hl 0

B2

. . .

Bd

































(B.11)

for Bi
def.
= −β ad−1

i e2βx1

(a2···ad)
, 2 ≤ i ≤ d, and

[

Γk
ij

]

=

































0 0 · · · (d−1)
2
Hk in kth

column · · · 0

0 0 · · · β in kth
column · · · 0

...
...

(d−1)
2
Hk in kth

row β in kth
row

...
...

0 0

































(B.12)

for each k ∈ {2, . . . , d}.
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Taking derivatives of the Christoffel symbols in (B.10), (B.11) and (B.12) with

respect to x0 = t (denoted by dot), we get

[

Γ0
ij,0

]

=



































d
2

d
∑

l=2

Ḣl

1
2(a2···ad)d−1





d
∑

l=2

Ḣl − (d− 1)

(

d
∑

l=2

Hl

)2




C2

. . .

Cd



































(B.13)

for Ci
def.
= Ȧi =

(d−1)ad−1
i e2βx1

2(a2···ad)d

(

(d− 1)H2
i + Ḣi − dHi

d
∑

l=2

Hl

)

, 2 ≤ i ≤ d,

[

Γ1
ij,0

]

=

































0 1
2

d
∑

l=2

Ḣl

1
2

d
∑

l=2

Ḣl 0

D2

. . .

Dd

































(B.14)

for Di
def.
= Ḃi =

−βad−1
i e2βx1

(a2···ad)

(

(d− 1)Hi −
d
∑

l=2

Hl

)

, 2 ≤ i ≤ d and for 2 ≤ k ≤ d,

[

Γk
ij,0

]

=

































0 0 · · · (d−1)
2
Ḣk in kth

column · · · 0

0 0 · · · 0 · · · 0

...
...

(d−1)
2
Ḣk in kth

row 0

...
...

0 0

































. (B.15)
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Taking derivatives of the Christoffel symbols in (B.10), (B.11) and (B.12) with

respect to x1,

[

Γ0
ij,1

]

=



























0

0

E2

. . .

Ed



























(B.16)

for Ei
def.
= ∂

∂x1
Ai =

β(d−1)ad−1
i Hie2βx1

(a2···ad)d , 2 ≤ i ≤ d,

[

Γ1
ij,1

]

=



























0

0

F2

. . .

Fd



























(B.17)

for Fi
def.
= ∂

∂x1
Bi = −2β2 ad−1

i e2βx1

(a2···ad)
, 2 ≤ i ≤ d, and also

[

Γk
ij,1

]

= 0. (B.18)

for each k ∈ {2, . . . , d}.

To form the first sum in R
(1)
ij we note that the metric, and therefore the Christof-

fel symbols, depend only on x0, x1 and we use the matrices (B.13) and (B.17) to

obtain

[

d
∑

k=0

Γk
ij,k

]

=

[

d
∑

k=0

Γ0
ij,0 +

d
∑

k=0

Γ1
ij,1

]

=
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d
2

d
∑

l=2

Ḣl

1
2(a2···ad)d−1





d
∑

l=2

Ḣl − (d− 1)

(

d
∑

l=2

Hl

)2




J2

. . .

Jd



































(B.19)

for Ji
def.
= Ci+Fi =

ad−1
i e2βx1

(a2···ad)d

(

(d−1)2

2
H2

i + (d−1)
2
Ḣi − d(d−1)

2
Hi

d
∑

l=2

Hl − 2β2(a2 · · ·ad)
d−1

)

for 2 ≤ i ≤ d. To form the second sum in R
(1)
ij , again since the Christoffel symbols

depend only on the variables x0, x1, all nonzero entries of the resulting matrix are

contained in the rows indexed by i = 0, 1. Therefore

[

d
∑

k=0

Γk
kj,i

]

=







































−−−−−→
d
∑

k=0

Γk
kj,0

−−−−−→
d
∑

k=0

Γk
kj,1

−→
0

...

−→
0







































. (B.20)

For a fixed column j,
d
∑

k=0

Γk
kj,0 = Γ0

0j,0 + · · · + Γd
dj,0 is the sum of the i = 0 entry

of the jth column of (B.13), the i = 1 entry of the jth column of (B.14), the i = 2

entry of the jth column of (B.15) with k = 2, and so on until finally the i = d entry

of the jth column of (B.15) with k = d. A similar methodology of summing entries

of (B.16), (B.17) and (B.18) will give the column entries of the row vector

−−−−−→
d
∑

k=0

Γk
kj,1.

Therefore (B.20) becomes
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[

d
∑

k=0

Γk
kj,i

]

=























d

d
∑

l=2

Ḣl

0

. . .

0























. (B.21)

Subtracting (B.19) from (B.21), we obtain R(1) def.
=
[

R
(1)
ij

]

=



































d
2

d
∑

l=2

Ḣl

−1
2(a2···ad)d−1





d
∑

l=2

Ḣl − (d− 1)

(

d
∑

l=2

Hl

)2




−J2

. . .

−Jd



































. (B.22)

Next we define matrices

γ
(j) =

[

γ
(j)
mk

]

def.
= Γm

jk, (B.23)

indexed by j ∈ {0, 1, . . . , d}, which will help to compute the double sums R
(2)
ij and

R
(3)
ij in (B.4) and (B.5). For example, the matrix γ

(0) has rows that are equal to

the i = 0 rows of the matrices (B.10), (B.11) and (B.12) of Christoffel symbols, the

matrix γ
(1) has rows that are equal to the i = 1 rows of the matrices (B.10), (B.11)
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and (B.12), etc. Therefore we obtain

γ
(0) =

































d
2

d
∑

l=2

Hl

1
2

d
∑

l=2

Hl

(d−1)
2
H2

. . .

(d−1)
2
Hd

































, (B.24)

γ
(1) =

































0 1
2(a2···ad)d−1

d
∑

l=2

Hl

1
2

d
∑

l=2

Hl 0

β

. . .

β

































, (B.25)

and

γ
(j) =

































0 0 · · · Aj in the jth
column · · · 0

0 0 · · · Bj in the jth
column · · · 0

...
...

(d−1)
2
Hj in the jth

row β in the jth
row

...
...

0 0

































(B.26)

for each 2 ≤ j ≤ d.
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Since Γk
ij = Γk

ji, the double sum R
(2)
ij in (B.4) is

R
(2)
ij =

d
∑

m=0

d
∑

n=0

Γn
imΓm

nj =
d
∑

m=0

d
∑

n=0

Γn
imΓm

jn =
d
∑

m=0

d
∑

n=0

γ(i)
nmγ

(j)
mn = Tr

(

γ
(i)

γ
(j)
)

.

(B.27)

That is, R(2) def.
=
[

R
(2)
ij

]

=



































(d2+1)
4

(

d
∑

l=2

Hl

)2

+ (d−1)2

4

d
∑

l=2

H2
l

β(d−1)
2

d
∑

l=2

Hl

β(d−1)
2

d
∑

l=2

Hl
1

2(a2···ad)d−1

(

d
∑

l=2

Hl

)2

+ β2(d− 1)

K2

. . .

Kd



































(B.28)

for Ki = (d− 1)HiAi + 2βBi =
ad−1

i e2βx1

(a2···ad)d

(

(d−1)2

2
H2

i − 2β2(a2 · · ·ad)
d−1
)

, 2 ≤ i ≤ d.

Again since Γk
ij = Γk

ji, the double sum R
(3)
ij in (B.5) is

R
(3)
ij =

d
∑

m=0

d
∑

n=0

Γm
ijΓ

n
nm =

d
∑

m=0

d
∑

n=0

Γm
jiΓ

n
mn =

d
∑

m=0

d
∑

n=0

γ
(j)
miγ

(m)
nn =

d
∑

m=0

γ
(j)
mi Tr γ

(m).

(B.29)

That is, the jth column of the matrix R(3) def.
=
[

R
(3)
ij

]

is equal to
(

γ
(j)
)T · γ or

equivalently γ
T · γ(j) where γ is the column vector

γ
def.
=



























Tr γ
(0)

Tr γ
(1)

Tr γ
(2)

...

Tr γ
(d)



























=































d
d
∑

l=2

Hl

β(d− 1)

0

...

0































(B.30)
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and T denotes transposition. Therefore R(3) =



































d2

2

(

d
∑

l=2

Hl

)2

β(d−1)
2

d
∑

l=2

Hl

β(d−1)
2

d
∑

l=2

Hl
d

2(a2···ad)d−1

(

d
∑

l=2

Hl

)2

L2

. . .

Ld



































(B.31)

for

Li = dAi

d
∑

l=2

Hl + β(d− 1)Bi

=
ad−1

i e2βx1

(a2 · · ·ad)d

(

d(d− 1)

2
Hi

d
∑

l=2

Hl − β2(d− 1)(a2 · · ·ad)
d−1

)

.

(B.32)

By (B.22), (B.28) and (B.31), the coefficients of the Ricci tensor (B.2) are

[Rij ] = R(1) +R(2) − R(3) =



























M

N

P2

. . .

Pd



























(B.33)

for

M
def.
=

d

2

d
∑

l=2

Ḣl +
(1 − d2)

2

∑

2≤l<k≤d

HlHk −
(d− 1)

2

d
∑

l=2

H2
l , (B.34)

N
def.
=

−1

2(a2 · · ·ad)d−1

d
∑

l=2

Ḣl + β2(d− 1) (B.35)
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and

Pi
def.
= −Ji +Ki − Li =

ad−1
i e2βx1

(a2 · · ·ad)d

(

−(d− 1)

2
Ḣi + β2(d− 1)(a2 · · ·ad)

d−1

)

,

(B.36)

2 ≤ i ≤ d, and where we have used that

(

d
∑

l=2

Hl

)2

=
d
∑

l=2

H2
l + 2

∑

2≤l<k≤d

HlHk.

The scalar curvature is defined as R
def.
=

d
∑

k=0

Rk
k

def.
=

d
∑

k=0

d
∑

l=0

gklRlk therefore for

our example,

R =
−1

(a2 · · ·ad)d
M +

1

(a2 · · ·ad)
N +

d
∑

i=2

Pi

ad−1
i e2βx1

=
1

(a2 · · ·ad)d

(

(d− 1)

2

d
∑

l=2

H2
l − d

d
∑

l=2

Ḣl +
(d2 − 1)

2

∑

2≤l<k≤d

HlHk

+β2d(d− 1)(a2 · · ·ad)
d−1
)

(B.37)

Finally, the nonzero coefficients of the Einstein tensor Gij = Rij − 1
2
Rgij are

G00 = −(d− 1)

4

(

d
∑

l=2

H2
l + (d+ 1)

∑

l<k

HlHk − 2dβ2(a2 · · ·ad)
d−1

)

(B.38)

G11 = −(d−1)
4(a2···ad)d−1 ·
(

d
∑

l=2

(H2
l − 2Ḣl) + (d+ 1)

∑

l<k

HlHk + 2(d− 2)β2(a2 · · ·ad)
d−1

)

and Gii =
−(d−1)ad−1

i e2βx1

4(a2···ad)d ·
(

2Ḣi +
d
∑

l=2

(

H2
l − 2d

(d− 1)
Ḣl

)

+ (d+ 1)
∑

l<k

HlHk + 2(d− 2)β2(a2 · · ·ad)
d−1

)

for 2 ≤ i, l, k ≤ d.
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A P P E N D I X C

THE NON-POSITIVITY OF
∑

l<k clck

For the Bianchi I and Bianchi V models considered in Chapters 4 and 6, we

make use of the quantity

y
def.
=
∑

1≤l<k≤d

clck (C.1)

for arbitrary constants c1, . . . , cd ∈ R and d ∈ N such that

c1 + · · · + cd = 0. (C.2)

We will show that y is non-positive for all values of c1, . . . , cd, d.

By (C.2), we obtain

y =
∑

1≤l<k≤d−1

clck + cd

d−1
∑

l=1

cl

=
∑

1≤l<k≤d−1

clck −
(

d−1
∑

l=1

cl

)2

=
∑

1≤l<k≤d−1

clck −
d−1
∑

l=1

c2l − 2
∑

1≤l<k≤d−1

clck

= −
d−1
∑

l=1

c2l −
∑

1≤l<k≤d−1

clck (C.3)

so that by the following Lemma, y ≤ 0.
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Lemma C.1 The sum

zM,N
def.
=

M
∑

l=1

c2l +
2

N

∑

1≤l<k≤M

clck (C.4)

is non-negative for all M,N ∈ N and c1, . . . , cM ∈ R.

Proof. We will prove this Lemma by induction on M . We begin with M = 1, for

which z1,N = c21 ≥ 0 for all c1 ∈ R and for all N ∈ N. For M = 2, we complete the

square to obtain

z2,N = c21 + c22 +
2

N
c1c2

= c22 +

(

2

N
c1

)

c2 +
(

c21
)

=
(

c2 +
c1
N

)2

− c21
N2

+ c21

=
(

c2 +
c1
N

)2

+

(

N2 − 1

N2

)

c21. (C.5)

Therefore z2,N ≥ 0 for all N ≥ 1. By induction on M , we assume that

zM−1,N =
M−1
∑

l=1

c2l +
2

N

∑

1≤l<k≤M−1

clck ≥ 0 for all N, (C.6)

and we consider zM,N . If N = 1, then

zM,1 =
M
∑

l=1

c2l + 2
∑

1≤l<k≤M

clck

=

(

M
∑

l=1

cl

)2

≥ 0. (C.7)

If N = 2,

zM,2 =

M
∑

l=1

c2l +
∑

1≤l<k≤M

clck. (C.8)

Now, consider the quantity

(c1
2

+
c2
2

+ · · · + cM−1

2
+ cM

)2

=

M−1
∑

l=1

c2l
4

+c2M +2cM

M−1
∑

l=1

(cl
2

)

+2
∑

1≤l<k≤M−1

(cl
2

)(ck
2

)

.

(C.9)
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One can double check that (C.9) contains the correct number of terms by noting

that

(M − 1) + 1 + 2(M − 1) + 2
(M − 2)(M − 1)

2

= M + 2M − 2 +M2 − 3M + 2

= M2. (C.10)

The last term in (C.10) is due to the fact that the sum
∑

1≤l<k≤M−1

contains (M −

2)(M − 1)/2 terms. One can see this by

∑

1≤l<k≤M−1

1 =

M−1
∑

k=2

k−1
∑

l=1

1

=

M−1
∑

k=2

(k − 1)

=
M−2
∑

i=1

i

=
(M − 2)(M − 1)

2
. (C.11)

Simplifying (C.9) we obtain

(c1
2

+
c2
2

+ · · ·+ cM−1

2
+ cM

)2

=

M−1
∑

l=1

c2l
4

+ c2M + cM

M−1
∑

l=1

cl +
1

2

∑

1≤l<k≤M−1

clck (C.12)

so that we may write (C.8) as

zM,2 =
(c1

2
+
c2
2

+ · · ·+ cM−1

2
+ cM

)2

+
3

4

M−1
∑

l=1

c2l +
1

2

∑

1≤l<k≤M−1

clck

=
(c1

2
+
c2
2

+ · · ·+ cM−1

2
+ cM

)2

+
3

4

(

M−1
∑

l=1

c2l +
2

3

∑

1≤l<k≤M−1

clck

)

.

(C.13)

By the inductive assumption on M in (C.6), the second quantity in parenthesis

on the right-hand side of (C.13) is non-negative. Therefore zM,2 is non-negative.
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Finally, to rewrite

zM,N =

M
∑

l=1

c2l +
2

N

∑

1≤l<k≤M

clck (C.14)

for general N we consider the quantity

( c1
N

+
c2
N

+ · · · + cM−1

N
+ cM

)2

=

M−1
∑

l=1

c2l
N2

+c2M+2cM

M−1
∑

l=1

( cl
N

)

+2
∑

1≤l<k≤M−1

( cl
N

)(ck
N

)

.

(C.15)

As in (C.10), one can double check that the right-hand side of (C.15) contains M2

terms. Simplifying (C.15) we obtain

( c1
N

+
c2
N

+ · · · + cM−1

N
+ cM

)2

=
1

N2

M−1
∑

l=1

c2l + c2M +
2

N
cM

M−1
∑

l=1

cl +
2

N2

∑

1≤l<k≤M−1

clck

(C.16)

so that we may write (C.14) as zM,N =

( c1
N

+
c2
N

+ · · · + cM−1

N
+ cM

)2

+
(N2 − 1)

N2

M−1
∑

l=1

c2l + 2

(

1

N
− 1

N2

)

∑

1≤l<k≤M−1

clck

=
( c1
N

+
c2
N

+ · · · + cM−1

N
+ cM

)2

+
(N2 − 1)

N2

(

M−1
∑

l=1

c2l +
2

(N + 1)

∑

1≤l<k≤M−1

clck

)

.

(C.17)

By the inductive assumption on M in (C.6), the second quantity in parenthesis on

the right-hand side of (C.17) is non-negative. This proves the Lemma.

⋄
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A P P E N D I X D

EXACT SOLUTIONS TO EMP EQUATIONS

Below in Table 14, we list some exact solutions of the generalized EMP equation

with one non-linear term

Y ′′(τ) +Q(τ)Y (τ) =
λ1

Y (τ)B1
(D.1)

for constants λ1, B1. In Table 14, a0, b0, c0, d0, Q0 ∈ R are constants.

In special cases when the EMP reduces to a classical EMP equation

Y ′′(τ) +Q(τ)Y (τ) =
λ

Y 3
, (D.2)

for λ ∈ R, exact solutions to the classical EMP can be obtained by a superpo-

sition principle: if Y1(τ) and Y2(τ) are two linearly independent solutions of the

homogeneous equation Y ′′(τ) +Q(τ)Y (τ) = 0, then their Wronskian W (Y1, Y2)
def.
=

∣

∣

∣

∣

∣

∣

∣

Y1 Y ′
1

Y2 Y ′
2

∣

∣

∣

∣

∣

∣

∣

is constant and Y (τ) = (AY 2
1 (τ) +BY 2

2 (τ) + 2CY1(τ)Y2(τ))
1/2

is a solu-

tion to (D.2) where A,B,C ∈ R are constants that satisfy AB−C2 = λ/W (Y1, Y2)
2.

Some of the entries in Table 14 are obtained from this superposition principle.

We also record solution

Y (τ) =

(

4

θ2
τ 2 − 1

)1/4

(D.3)
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to the generalized EMP with two non-linear terms

Y ′′(τ) +Q(τ)Y (τ) =
λ1 = −1/θ2

Y (τ)B1=3
+
λ2 = −3/θ2

Y (τ)B2=7
(D.4)

for Q = 0 and constant θ > 0.

Table 14. Exact Solutions of EMP

Y (τ) Q(τ) λ1 B1

1 cos(
√
Q0τ) Q0 > 0 0 n/a

2 sin(
√
Q0τ) Q0 > 0 0 n/a

3
(

a0cos
2(
√
Q0τ) + b0sin

2(
√
Q0τ)

+2c0cos(
√
Q0τ)sin(

√
Q0τ)

)1/2
Q0 > 0 Q0(a0b0 − c20) 3

4 a0τ
d0 d0(1−d0)

τ2 0 n/a

5
(

a0τ
2d0 + b0τ

2(1−d0) + 2c0τ
)1/2 d0(1−d0)

τ2 (1 − 2d0)
2(a0b0 − c20) 3

6 τ λ1

τB1+1 λ1 B1

7 (a2
0τ

2 ± b20)
1/2 λ1∓a2

0b20

(a2
0τ2±b20)

2 λ1 3

In order to map an exact solution Y (τ) of a generalized or classical EMP equa-

tion to an exact solution of Einstein’s equations via the correspondences in this

thesis, one must first solve for τ(t) in the differential equation

τ̇(t) = Y (τ(t))r0 (D.5)

for some constant r0 6= 0 that is dependent on the cosmological model. For the

EMP reformulations of Bianchi I and Bianchi V one must then solve for σ(t) in

σ̇(t) =
1

τ̇ (t)s0
(D.6)

for some constant s0 6= 0. Also, in each cosmological model, in order to find the

scale factor φ(t), one must first integrate some constant multiple of the square root
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of the function Q(τ) (and then compose the result with τ(t)). That is, to find φ(t)

one must first compute

ϕ(τ) =

∫

√

α0Q(τ)dτ (D.7)

for some constant α0. Therefore for each solution in Table 14, we now record some

solutions to (D.5), (D.6) and (D.7).

For Y (τ) from line 1 in Table 14, equation (D.5) for r0 = 1 is

τ̇ (t) = cos
(

√

Q0τ(t)
)

(D.8)

which has solution

τ(t) =
2√
Q0

Arctan

(

tanh

(√
Q0

2
(t− t0)

))

(D.9)

for t0 ∈ R. One can check this by noting that

τ̇ (t) = Y (τ(t))1 =
sech2

(√
Q0

2
(t− t0)

)

1 + tanh2
(√

Q0

2
(t− t0)

) = sech
(

√

Q0(t− t0)
)

. (D.10)

Also, we record that

Y ′(τ(t)) = −
√

Q0 sin

(

2Arctan

(

tanh

(√
Q0

2
(t− t0)

)))

=
−2

√
Q0tanh

(√
Q0

2
(t− t0)

)

1 + tanh2
(√

Q0

2
(t− t0)

)

= −
√

Q0tanh
(

√

Q0(t− t0)
)

(D.11)

since sin(2Arctan(x)) = 2cos(Arctan(x))sin(Arctan(x)) = 2x
1+x2 .

For Y (τ) from line 2 in Table 14, equation (D.5) for r0 = 1 is

τ̇(t) = sin
(

√

Q0τ(t)
)

(D.12)

which has solution

τ(t) =
2√
Q0

Arctan
(

e
√

Q0(t−t0)
)

(D.13)
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for t0 ∈ R. One can check this by noting that

τ̇(t) = Y (τ(t))1 =
2e

√
Q0(t−t0)

1 + e2
√

Q0(t−t0)
= sech

(

√

Q0(t− t0)
)

. (D.14)

Also, we record that

Y ′(τ(t)) =
√

Q0 cos
(

2Arctan
(

e
√

Q0(t−t0)
))

=

√
Q0

(

1 − e2
√

Q0(t−t0)
)

(

1 + e2
√

Q0(t−t0)
)

=

√
Q0

(

e−
√

Q0(t−t0) − e
√

Q0(t−t0)
)

(

e−
√

Q0(t−t0) + e
√

Q0(t−t0)
)

= −
√

Q0tanh
(

√

Q0(t− t0)
)

(D.15)

since cos(2Arctan(x)) = cos2(Arctan(x)) − sin2(Arctan(x)) = 1−x2

1+x2 .

For Q(τ) = Q0 > 0 from lines 1-3, (D.7) becomes

ϕ(τ) =

∫

√

α0Q0dτ =
√

α0Q0τ + β0 (D.16)

for integration constant β0 ∈ R.

Composing (D.16) with τ(t) in (D.9),

φ(t)
def.
= ϕ(τ(t)) = 2

√
α0Arctan

(

tanh

(√
Q0

2
(t− t0)

))

+ β0. (D.17)

Composing (D.16) with τ(t) in (D.13),

φ(t)
def.
= ϕ(τ(t)) = 2

√
α0Arctan

(

e
√

Q0(t−t0)
)

+ β0. (D.18)

For Y (τ) from line 4 in Table 14, equation (D.5) is

τ̇(t) =
(

a0τ(t)
d0
)r0

(D.19)

which has solution

τ(t) = ((1 − r0d0)a
r0
0 (t− t0))

1
1−r0d0 (D.20)
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for t0 ∈ R and r0 6= 1/d0. One can check this by noting that

τ̇ (t) = Y (τ(t))r0 = ar0
0 ((1 − r0d0)a

r0
0 (t− t0))

r0d0
1−r0d0 . (D.21)

Also, we record that

Y ′(τ(t)) = d0a0τ(t)
d0−1

= d0a0 ((1 − r0d0)a
r0
0 (t− t0))

d0−1
1−r0d0 . (D.22)

For Y (τ) from line 4 in Table 14, equation (D.5) for r0 = 1/d0 is

τ̇ (t) = τ(t) (D.23)

which has solution

τ(t) = a0e
t−t0 (D.24)

for a0, t0 ∈ R. One can check this by noting that

τ̇ (t) = Y (τ(t))r0=1/d0 = a0e
t−t0 . (D.25)

Also, we record that

Y ′(τ(t)) = d0τ(t)
d0−1

= d0a
d0−1
0 e(d0−1)(t−t0). (D.26)

For Y (τ) from line 5 in Table 14 with b0 = d0 = 0, equation (D.5) for r0 = 1 is

τ̇(t) = (a0 + 2c0τ(t))
1/2 (D.27)

which has solution

τ(t) =
1

2

(

c0(t− t0)
2 − a0

c0

)

(D.28)

for c0 > 0 and t0 ∈ R. One can check this by noting that

τ̇(t) = Y (τ(t)) = c0(t− t0). (D.29)
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Also, we record that

Y ′(τ(t)) =
c0

(a0 + 2c0τ(t))1/2

=
1

t− t0
(D.30)

for t > t0 and c0 > 0. Equation (D.6) for s0 = 1 then becomes

σ̇(t) =
1

c0(t− t0)
. (D.31)

Integrating, we obtain

σ(t) =
1

c0
ln(c0(t− t0)). (D.32)

For Y (τ) from line 5 in Table 14 with b0 > 0 and d0 = 0, equation (D.5) for

r0 = 1 is

τ̇ (t) = (a0 + b0τ(t)
2 + 2c0τ(t))

1/2 (D.33)

which has solution

τ(t) =
1

4b
3/2
0

(

b0e
√

b0(t−t0) − 4λe−
√

b0(t−t0) − 4
√

b0c0

)

(D.34)

for t0 ∈ R and λ
def.
= a0b0 − c20. One can check this by noting that

τ̇(t) = Y (τ(t)) =
1

4
e
√

b0(t−t0) +
λ

b0
e−

√
b0(t−t0). (D.35)

Also, we record that

Y ′(τ(t)) =
b0τ(t) + c0
Y (τ(t))

=
√

b0

(

b0e
√

b0(t−t0) − 4λe−
√

b0(t−t0)
)

(

b0e
√

b0(t−t0) + 4λe−
√

b0(t−t0)
) . (D.36)
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For s0 = 1, (D.6) shows that

σ(t) =

(

b0
λ

)∫

e
√

b0(t−t0)

(

1 − b0
−4λ

e2
√

b0(t−t0)
)dt

=

(√
b0
λ

)
∫

1
(

1 − b0
−4λ

u2
)du

∣

∣

∣

∣

∣

u=e
√

b0(t−t0)

=

√

−4λ

b0

(√
b0
λ

)

Arccoth

(

√

b0
−4λ

u

)∣

∣

∣

∣

∣

u=e
√

b0(t−t0)

=
−2√
−λ

Arccoth

(

√

b0
−4λ

e
√

b0(t−t0)

)

(D.37)

for λ < 0.

For Y (τ) from line 5 in Table 14 with a0 = b0 = 0 and c0 = 1/2, the equation

τ̇(t) = θY (τ(t)) is

τ̇ (t) = θ
√

τ(t) (D.38)

which has solution

τ(t) =
θ2

4
(t− t0)

2 (D.39)

for t > t0 ∈ R and θ > 0. One can check this by calculating

τ̇(t) = θY (τ(t)) =
θ2

2
(t− t0). (D.40)

Also, we record that

Y ′(τ(t)) =
1

2
√

τ(t)
=

1

θ(t− t0)
. (D.41)

For Q(τ) from lines 4-5 in Table 14, (D.7) becomes

ϕ(τ) =

∫

√

α0d0(1 − d0)

τ
dτ =

√

α0d0(1 − d0) ln(τ) + β0 (D.42)

for τ > 0, 0 ≤ d0 ≤ 1 and integration constant β0 ∈ R.

Composing (D.42) with τ(t) in (D.20),

φ(t)
def.
= ϕ(τ(t)) =

√

α0d0(1 − d0)

(1 − r0d0)
ln [((1 − r0d0)(t− t0))] + β0 (D.43)
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for r0 < d0 and t > t0.

Composing (D.42) with τ(t) in (D.39),

φ(t)
def.
= ϕ(τ(t)) = 2

√

α0d0(1 − d0) ln(t− t0) + β0 (D.44)

for t > t0.

For Y (τ) from line 6 in Table 14, we solve for τ(t) in the equation

τ̇ (t) = θY (τ(t)) = θτ(t) (D.45)

which has solution

τ(t) = a0e
θ(t−t0) (D.46)

for a0, t0 ∈ R and θ > 0. For Q(τ) from line 6 in Table 14, (D.7) becomes

ϕ(τ) =

∫
√
α0λ1

τ (B1+1)/2
dτ =

2
√
α0λ1

(1 − B1)τ (B1−1)/2
+ β0 (D.47)

for β0 ∈ R. Composing (D.47) with τ(t) in (D.46),

φ(t)
def.
= ϕ(τ(t)) =

2
√
α0λ1

(1 − B1)
a

(1−B1)/2
0 eθ(1−B1)(t−t0)/2 + β0. (D.48)

For Y (τ) from line 7 in Table 14 with the plus sign and a0, b0 > 0, equation

(D.5) for r0 = 1 is

τ̇ (t) =
(

a2
0τ(t)

2 + b20
)1/2

(D.49)

which has solution

τ(t) =
b0
a0

sinh(a0(t− t0)) (D.50)

for t0 ∈ R. One can check this by computing

τ̇(t) = Y (τ(t)) = b0 cosh(a0(t− t0)). (D.51)

Also, we record that

Y ′(τ(t)) = a0 tanh(a0(t− t0)). (D.52)
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For Q(τ) from line 7 in Table 14 with the plus sign, (D.7) becomes

ϕ(τ) =
√

α0(λ1 − a2
0b

2
0)

∫

dτ

a2
0τ

2 + b20
=

√

α0(λ1 − a2
0b

2
0)

a0b0
Arctan

(

a0

b0
τ

)

+ β0

(D.53)

for τ > −b0/a0 and assuming a0, b0, (λ1−a2
0b

2
0) > 0 and β0 ∈ R. Composing (D.53)

with τ(t) in (D.50),

φ(t)
def.
= ϕ(τ(t)) =

√

α0(λ1 − a2
0b

2
0)

a0b0
Arctan (sinh(a0(t− t0))) + β0. (D.54)

For Y (τ) from line 7 in Table 14 with the minus sign and a0, b0 > 0, equation

(D.5) for r0 = 1 is

τ̇ (t) =
(

a2
0τ(t)

2 − b20
)1/2

(D.55)

which has solution

τ(t) =
b0
a0

cosh(a0(t− t0)) (D.56)

for t0 ∈ R. One can check this by computing

τ̇ (t) = Y (τ(t)) = b0 sinh(a0(t− t0)). (D.57)

Also, we record that

Y ′(τ(t)) = a0 coth(a0(t− t0)) (D.58)

for t > t0.

For Q(τ) from line 7 in Table 14 with the minus sign, (D.7) becomes

ϕ(τ) =
√

α0(λ1 + a2
0b

2
0)

∫

dτ

a2
0τ

2 − b20
= −

√

α0(λ1 + a2
0b

2
0)

a0b0
Arctanh

(

a0

b0
τ

)

+ β0

(D.59)

for τ > b0/a0 and assuming a0, b0, (λ1 + a2
0b

2
0) > 0 and β0 ∈ R. Composing (D.59)

with τ(t) in (D.56),

φ(t)
def.
= ϕ(τ(t)) = −

√

α0(λ1 + a2
0b

2
0)

a0b0
Arctanh (cosh(a0(t− t0))) + β0. (D.60)
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For Y (τ) in (D.3) with θ = 1, equation (D.5) for r0 = 4 is

τ̇(t) = 4τ(t)2 − 1 (D.61)

which has solution

τ(t) =
−1

2
coth(2(t− t0)) (D.62)

for t0 ∈ R. One can check this by noting that

τ̇ (t) = Y (τ(t))4 = csch2(2(t− t0)) (D.63)

by the identity coth2(x) − 1 = csch2(x). Also, we record that

Y ′(τ(t)) =
2τ(t)

(4τ(t)2 − 1)3/4

=
−coth(2(t− t0))

csch3/2(2(t− t0))

= −cosh(2(t− t0))
√

sinh(2(t− t0)) (D.64)

for t > t0.

For Y (τ) in (D.3), we solve for τ(t) in the equation

τ̇ (t) = θY (τ(t))2 = θ
(

4τ(t)2 − 1
)1/2

(D.65)

which has solution

τ(t) =
θ

2
cosh(2(t− t0)) (D.66)

for t0 ∈ R. One can check this by noting that

τ̇(t) = θY (τ(t))2 = θsinh(2(t− t0)) (D.67)

by the identity cosh2(x) − 1 = sinh2(x). Also, we record that

Y ′(τ(t)) =
2τ(t)

θ2
(

4
θ2 τ(t)2 − 1

)3/4

=
cosh(2(t− t0))

θsinh3/2(2(t− t0))

=
coth(2(t− t0))

θ
√

sinh(2(t− t0))
(D.68)

for t > t0.
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A P P E N D I X E

EXACT SOLUTIONS TO NLS EQUATIONS

In the table below, we list some exact solutions of the NLS

u′′(σ) + [E − P (σ)]u(σ) =
F1

u(σ)C1
(E.1)

for constants E,F1, C1. Note that in Table 15, a0, b0, c0, d0 ∈ R are constants, and

any one solution u(σ) may solve (E.1) for a few distinct sets of P (σ), E, F1, C1.

Table 15. Exact Solutions of NLS

u(σ) P (σ) E F1 C1

1 a0σ
2 + b0σ + c0 (2a0 + d0)/(a0σ

2 + b0σ + c0) 0 −d0 0

2 a0 cos2(b0σ) 2b20tan
2(b0σ) 2b20 0 n/a

4b20tan
2(b0σ) 0 −2b20a0 0

3 a0tanh(b0σ) c0 c0 + 2b20 2b20/a
2
0 −3

4 a0e
−
√
−c0σ − b0e

√
−c0σ 0 c0 < 0 0 n/a

5 (a0/σ)ec0σ2/2 c20σ
2 + 2/σ2 + b0 c0 + b0 0 n/a

6 −a0 cosh2(b0σ) 2b20 tanh(b0σ)2 + c0 c0 − 2b20 0 n/a

7 a0/σ
b0 b0(b0+1)

σ2 + c0 c0 0 n/a
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In order to map an exact solution u(σ) of a non-linear (or linear) Schrödinger-

type equation to an exact solution of Einstein’s equations via the correspondences

in this thesis, one may first need to solve for σ(t) in the differential equation

σ̇(t) =
1

θ
u(σ(t)) (E.2)

for θ > 0. Also the scalar field φ(t) is obtained by integrating a constant multiple

of the square root of P (σ) (and then composing the result with σ(t) or σ(fσ(τ(t)))

). That is, to find φ(t) one must first compute

ψ(σ) =

∫

√

α0P (σ)dσ (E.3)

for some constant α0. Therefore for each solution in Table 15, we now record some

solutions to (E.2) and (E.3).

For u(σ) from line 1 in Table 15 with a0 = 0, equation (E.2) with θ = 1 is

σ̇(t) = b0σ(t) + c0 (E.4)

which has solution

σ(t) = eb0(t−t0) − c0
b0

(E.5)

for b0 6= 0 and t0 ∈ R. One can check this by computing that

σ̇(t) = u(σ(t)) = b0e
b0(t−t0). (E.6)

Also, we note that

u′(σ(t)) = b0. (E.7)

For u(σ) from line 1 in Table 15, equation (E.2) with θ = 1 is

σ̇(t) = a0σ(t)2 + b0σ(t) + c0 (E.8)

which has solution

σ(t) =
1

2a0

(√
−∆ tan

[
√
−∆

2
(t− t0)

]

− b0

)

(E.9)
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for t0 ∈ R, a0 > 0 and discriminant ∆ = b20 − 4a0c0 < 0. One can check this by

computing that

σ̇(t) = u(σ(t)) =
−∆

4a0
sec2

[
√
−∆

2
(t− t0)

]

. (E.10)

Also, we record that

u′(σ(t)) =
√
−∆ tan

[
√
−∆

2
(t− t0)

]

. (E.11)

For P (σ) from line 1 in Table 15 with a0 > 0, (E.3) becomes

ψ(σ) =

∫

√

α0(2a0 + d0)

a0σ2 + b0σ + c0
dσ

=

√

α0

a0
(2a0 + d0) ln

[

2

(

σ +
b0
2a0

+

√

σ2 +
b0
a0
σ +

c0
a0

)]

+ β0(E.12)

for ∆ = b20 − 4a0c0 < 0 and integration constant β0 ∈ R.

Composing (E.12) with (E.9),

φ(t)
def.
= ψ(σ(t)) =

√

α0

a0

(2a0 + d0) ln

[

1

a0

(√
−∆ tan

[
√
−∆

2
(t− t0)

]

+
√
−∆sec

[
√
−∆

2
(t− t0)

])]

+ β0. (E.13)

For u(σ) from line 2 in Table 15, equation (E.2) is

σ̇(t) =
a0

θ
cos2(b0σ(t)) (E.14)

which has solution

σ(t) =
1

b0
Arctan

(

b0a0

θ
(t− t0)

)

(E.15)

for t0 ∈ R. One can check this by noting that

σ̇(t) =
1

θ
u(σ(t)) =

a0θ

θ2 + a2
0b

2
0(t− t0)2

. (E.16)
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For the record, we also compute

u′(σ(t)) = −a0b0 sin(2b0σ(t))

= −a0b0 sin

(

2Arctan

(

b0a0

θ
(t− t0)

))

=
−2b20a

2
0(t− t0)θ

θ2 + a2
0b

2
0(t− t0)2

(E.17)

since sin(2Arctan(x)) = 2cos(Arctan(x))sin(Arctan(x)) = 2x
1+x2 .

For P (σ) from line 2 in Table 15, (E.3) becomes

ψ(σ) =
√
α0

∫

√

2b20 tan2(b0σ)dσ

=
√
α0

∫ √
2b0 tan(b0σ)dσ

=
√

2α0 ln [sec(b0σ)] + β0 (E.18)

for b0, σ > 0 and integration constant β0 ∈ R.

Composing (E.18) with (E.15),

φ(t) = ψ(σ(t))

=
√

2α0 ln [sec (Arctan(b0a0(t− t0)))] + β0

=
√

2α0 ln

[

√

b20a
2
0(t− t0)2 + 1

]

+ β0

=

√

α0

2
ln

[

b20a
2
0

θ2
(t− t0)

2 + 1

]

+ β0. (E.19)

since sec(Arctan(x)) = 1/cos(Arctan(x)) =
√

1 + x2

For P (σ) = 4b20 tan2(b0σ) for solution 2 in the table, (E.3) becomes

ψ(σ) =
√
α02b0

∫

tan(b0σ)dσ = −2
√
α0 ln(cos(b0σ)) + β0 (E.20)

for 0 < b0σ < π/2 and β0 ∈ R.

Composing (E.20) with (E.15),

φ(t) = −2
√
α0 ln

(

cos

(

Arctan

(

b0a0

θ
(t− t0)

)))

=
√
α0 ln

(

1 +
b20a

2
0

θ2
(t− t0)

2

)

(E.21)
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For u(σ) from line 3 in Table 15, equation (E.2) with θ = 1 is

σ̇(t) = a0 tanh(b0σ(t)) (E.22)

which has solution

σ(t) =
1

b0
Arcsinh

(

ea0b0(t−t0)
)

(E.23)

for t0 ∈ R. One can check this by computing that

σ̇(t) = u(σ(t)) = a0tanh
(

Arcsinh
(

ea0b0(t−t0)
))

=
a0e

a0b0(t−t0)

√
1 + e2a0b0(t−t0)

. (E.24)

Also, we will use that

u′(σ(t)) = a0b0sech
2(b0σ(t))

=
a0b0

cosh2(Arcsinh (ea0b0(t−t0)))

=
a0b0

1 + e2a0b0(t−t0)

=
a0b0
2
e−a0b0(t−t0)sech(a0b0(t− t0)) (E.25)

since cosh2(Arcsinh(x)) = 1 + x2.

For P (σ) = c0 from line 3 in Table 15, (E.3) becomes

ψ(σ) =

∫ √
α0c0dσ =

√
α0c0σ + β0 (E.26)

for integration constant β0 ∈ R.

Composing (E.26) with (E.23),

φ(t) = ψ(σ(t)) =

√
α0c0
b0

Arcsinh
(

ea0b0(t−t0)
)

+ β0. (E.27)

For u(σ) from line 4 in Table 15 with b0 = 0, equation (E.2) with θ = 1 is

σ̇(t) = a0e
−
√
−c0σ(t) (E.28)
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which has solution

σ(t) =
1√−c0

ln
(√

−c0a0(t− t0)
)

(E.29)

for a0 > 0 and t0 ∈ R. One can check this by noting that

σ̇(t) = u(σ(t)) =
1√−c0(t− t0)

. (E.30)

Also, we record that

u′(σ(t)) = −a0

√
−c0e−

√
−c0σ(t)

=
−1

(t− t0)
. (E.31)

For u(σ) from line 4 in Table 15, equation (E.2) for θ = 1 is

σ̇(t) = a0e
−
√
−c0σ(t) − b0e

√
−c0σ(t) (E.32)

which has solution

σ(t) =
1√−c0

ln

(√

a0

b0
tanh(

√

−a0b0c0(t− t0))

)

(E.33)

for a0, b0 > 0 and t0 ∈ R. One can check this by computing that

σ̇(t) = u(σ(t)) = 2
√

a0b0 csch(2
√

−a0b0c0(t− t0)). (E.34)

We also record that

u′(σ(t)) = −
√
−c0

(

a0e
−
√
−c0σ(t) + b0e

√
−c0σ(t)

)

= −
√

−c0a0b0

(

coth(
√

−a0b0c0(t− t0)) + tanh(
√

−a0b0c0(t− t0))
)

= −2
√

−c0a0b0 coth(2
√

−a0b0c0(t− t0)) (E.35)

since coth(x) + tanh(x) = 2coth(2x).

For u(σ) from line 5 in Table 15, equation (E.2) with θ = 1 is

σ̇(t) =
a0

σ(t)
ec0σ(t)2/2 (E.36)
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which has solution

σ(t) =

√

−2

c0
ln(−c0a0(t− t0)) (E.37)

for c0 < 0 and t0 ∈ R. One can check this by computing that

σ̇(t) = u(σ(t)) =
1

√
−2c0(t− t0)

√

ln(−c0a0(t− t0))
. (E.38)

We also record that

u′(σ(t)) = a0e
c0σ(t)2/2

(

c0 −
1

σ(t)2

)

=
−1

(t− t0)

(

1 +
1

2 ln(−c0a0(t− t0))

)

. (E.39)

For P (σ) from line 5 in Table 15, (E.3) becomes

ψ(σ) =
√
α0

∫

√

c20σ
2 +

2

σ2
+ b0dσ

=

√
α0

2

(

√

c20σ
4 + 2 + b0σ2 +

√
2 ln[σ2] −

√
2 ln

[

2
√

2
√

c20σ
4 + b0σ2 + 2

+b0σ
2 + 4

]

+
b0
2c0

ln

[

2
√

c20σ
4 + b0σ2 + 2 +

b0
c0

+ 2c0σ
2

])

+ β0(E.40)

for σ > 0 and integration constant β0 ∈ R.

Composing (E.40) with (E.37),

φ(t) = ψ(σ(t)) =

=

√

α0

2

(

√

2 ln2(−c0a0(t− t0)) +
b0
−c0

ln(−c0a0(t− t0)) + 1

+ ln

[

2

−c0
ln(−c0a0(t− t0))

]

− ln

[

2b0
−c0

ln(−c0a0(t− t0)) + 4

+ 4

√

2 ln2(−c0a0(t− t0)) +
b0
−c0

ln(−c0a0(t− t0)) + 1

]

+
b0

c02
√

2
ln

[

2
√

2

√

2 ln2(−c0a0(t− t0)) +
b0
−c0

ln(−c0a0(t− t0)) + 1

+
b0
c0

− 4 ln(−c0a0(t− t0))

])

+ β0 (E.41)
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for c0 < 0 and t > −1/c0a0 + t0.

For u(σ) from line 5 in Table 15 with c0 = 0, equation (E.2) with θ = 1 is

σ̇(t) =
a0

σ(t)
(E.42)

which has solution

σ(t) =
√

2a0(t− t0) (E.43)

for a0 > 0 and t > t0 ∈ R. One can check this by computing that

σ̇(t) = u(σ(t)) =
a0

√

2a0(t− t0)
. (E.44)

We also record that

u′(σ(t)) =
−a0

σ(t)2

=
−1

2(t− t0)
(E.45)

For P (σ) from line 5 in Table 15 with c0 = 0, (E.3) becomes

ψ(σ) =
√
α0

∫

√

2

σ2
+ b0dσ

=
√
α0

(

√

b0σ2 + 2 +
√

2 ln

[

σ√
2 +

√
b0σ2 + 2

])

+ β0 (E.46)

for integration constant β0 ∈ R.

Composing (E.46) with (E.43) for c0 = 0,

ψ(t) = ψ(σ(t))

=
√
α0

(

√

g(t) +
1√
2

ln [2a0(t− t0)] −
√

2 ln
[√

2 +
√

g(t)
]

)

+ β0 (E.47)

for g(t) = 2a0b0(t− t0) + 2.

For u(σ) from line 6 in Table 15, equation (E.2) with θ = 1 is

σ̇(t) = −a0 cosh2(b0σ(t)) (E.48)
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which has solution

σ(t) =
−1

b0
Arctanh(b0a0(t− t0)) (E.49)

for t0 ∈ R. One can check this by noting that

σ̇(t) = u(σ(t)) =
a0

a2
0b

2
0(t− t0)2 − 1

. (E.50)

For the record, we also compute

u′(σ(t)) = −a0b0 sinh(2b0σ(t))

= −a0b0 sinh(2Arctanh(b0a0(t− t0)))

=
2b20a

2
0(t− t0)

a2
0b

2
0(t− t0)2 − 1

(E.51)

since sinh(2Arctanh(x)) = 2cosh(Arctanh(x))sinh(Arctanh(x)) = 2x
1−x2 .

For P (σ) from line 6 in Table 15, (E.3) becomes

ψ(σ) =
√
α0

∫
√

2b20 tanh2(b0σ) + c0dσ

= −
√

2α0 ln

[

2

(√
2b0 tanh(b0σ) +

√

c0 + 2b20 tanh2(b0σ)

)]

+

√
α0

b0

√

c0 + 2b20Arctanh

[

√

c0 + 2b20tanh(b0σ)
√

c0 + 2b20tanh
2(b0σ)

]

+ β0 (E.52)

for c0 ≥ −2b20 and integration constant β0 ∈ R.

Composing (E.52) with (E.49),

φ(t) = ψ(σ(t)) =

−
√

2α0 ln

[

2

(

√

c0 + 2b40a
2
0(t− t0)2 −

√
2b20a0(t− t0)

)]

−
√
α0

b0

√

c0 + 2b20Arctanh

[
√

(c0 + 2b20)b
2
0a

2
0(t− t0)2

c0 + 2b40a
2
0(t− t0)2

]

+ β0. (E.53)

For u(σ) from line 7 in Table 15, equation (E.2) is

σ̇(t) =
a0

θσ(t)b0
, (E.54)
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which has solution

σ(t) =

(

(1 + b0)a0

θ
(t− t0)

)1/(1+b0)

(E.55)

for θ > 0 and t0 ∈ R. One can check this by computing

σ̇(t) =
1

θ
u(σ(t)) =

a0

θ

(

(1 + b0)a0

θ
(t− t0)

)−b0/(1+b0)

. (E.56)

Also, we will use that

u′(σ(t)) =
−b0θ

(1 + b0)(t− t0)
. (E.57)

For P (σ) from line 7, (E.3) is

ψ(σ) =
√
α0

∫

√

b0(b0 + 1)

σ2
+ c0 dσ

= β0 +
√
α0

(

√

b0(b0 + 1) + c0σ2

−
√

b0(b0 + 1) log

(

√

b0(b0 + 1) +
√

b0(b0 + 1) + c0σ2

σ

))

(E.58)

for b0 > 0 and β0 ∈ R. Composing (E.58) with (E.55),

φ(t) = β0 +
√
α0

(

√

b0(b0 + 1) + c0σ(t)2

−
√

b0(b0 + 1) log

(

√

b0(b0 + 1) +
√

b0(b0 + 1) + c0σ(t)2

σ(t)

))

(E.59)

for σ(t) in (E.55).
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A P P E N D I X F

EXTRA CONSERVATION EQUATION

As noted in section 1.2, the correspondences in this thesis do not rely on T
(2)
ij

in (1.7) satisfying the conservation equation (1.12). For each theorem in Chapters

3-7, we now record the EMP or NLS analogue of (1.12) for l = 0. For an arbitrary

diagonal metric gij one can compute, using the definition of the Christoffel symbols

in (1.2), that the equation

div(T (2))l=0 = 0 (F.1)

for T
(2)
ij in (1.7) takes the form

ρ̇+

(

1

2

d
∑

i=1

giiġii

)

(ρ+ p) = 0 (F.2)

where dot denotes differentiation with respect to x0 = t.

For the FRLW metric (3.1), the conservation equation (F.2) is

ρ̇+ dH(ρ+ p) = 0 (F.3)

for H(t) = ȧ(t)/a(t).

Composing (F.3) with f(τ) from the EMP Theorem 3.1.1 and multiplying by

f ′(τ) , we obtain ρ̇(f(τ))f ′(τ) + dH(f(τ))f ′(τ)(ρ(f(τ)) + p(f(τ))) = 0. That is,

by the relation (3.20) and the definition (3.12) of τ(t), we obtain the analogue

conservation equation

̺′ +
d

q
HY (̺+ <) = 0 (F.4)
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in the EMP variables, for HY (τ)
def.
= Y ′(τ)/Y (τ), Y (τ) = a(f(τ))q (q 6= 0) and

̺(τ) = ρ(f(τ)), <(τ) = p(f(τ)).

Composing (F.3) with g(σ) from the NLS Theorem 3.2.1 and multiplying by

g′(σ), we obtain ρ̇(g(σ))g′(σ) + dH(g(σ))g′(σ)(ρ(g(σ)) + p(g(σ))) = 0. That is,

by the relation (3.109) and the definition (3.101) of σ(t), we obtain the analogue

conservation equation

ρ
′ − dHu(ρ + p) = 0 (F.5)

in the NLS variables, for Hu(σ)
def.
= u′(σ)/u(σ), u(σ) = 1/a(g(σ)) and ρ(σ) =

ρ(g(σ)), p(σ) = p(g(σ)).

Composing (F.3) with g(σ) from the alternate NLS Theorem 3.3.1 and mul-

tiplying by g′(σ) we obtain ρ̇(g(σ))g′(σ) + dH(g(σ))g′(σ)(ρ(g(σ)) + p(g(σ))) = 0.

That is, by the relation (3.164) and the definition (3.156) of σ(t), we obtain the

analogue equation

ρ
′ − 2d

nj
Hu(ρ + p) = 0 (F.6)

in the alternate NLS variables for Hu(σ)
def.
= u′(σ)/u(σ), u(σ) = 1/a(g(σ))nj/2

(nj 6= 0) and ρ(σ) = ρ(g(σ)), p(σ) = p(g(σ)).

For the Bianchi I metric (4.1), the conservation equation (F.2) is

ρ̇+
1

ν
HR(ρ+ p) = 0 (F.7)

for HR(t) = Ṙ(t)/R(t) and R(t) = (X1(t) · · ·Xd(t))
ν .

Composing (F.7) with f(τ) from the EMP Theorem 4.1.1 and multiplying by

f ′(τ) we obtain ρ̇(f(τ))f ′(τ)+ 1
ν
HR(f(τ))f ′(τ)(ρ(f(τ))+ p(f(τ))) = 0. That is, by

the relation (4.36) and the definition (4.11) of τ(t) we obtain

̺′ +
1

νq
HY (̺+ <) = 0 (F.8)
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in the EMP variables for HY (τ)
def.
= Y ′(τ)/Y (τ), Y (τ) = R(f(τ))q (q 6= 0) and

̺(τ) = ρ(f(τ)), <(τ) = p(f(τ)).

Composing (F.7) with g(σ) from the NLS Theorem 4.2.1, multiplying by g′(σ)

and using (4.102) and (4.89) we obtain

ρ
′ −Hu(ρ + p) = 0 (F.9)

for Hu(σ)
def.
= u′(σ)/u(σ), u(σ) = 1/R(g(σ))1/ν (ν 6= 0) and ρ(σ) = ρ(g(σ)), p(σ) =

p(g(σ)).

For the conformal version (5.1) of the Bianchi I metric, the conservation equa-

tion (F.2) is

ρ̇+
1

ν
HR(ρ+ p) = 0 (F.10)

for HR(t) = Ṙ(t)/R(t) and R(t) = (a1(t) · · ·ad(t))
ν .

Composing (F.10) with f(τ) from Theorem 5.1.1 and using (5.10), (5.40) we

get the analogue conservation equation

̺′ +
1

qν
HY (̺+ <) = 0 (F.11)

in the EMP variables for HY (τ)
def.
= Y ′(τ)/Y (τ), Y (τ) = R(f(τ))q (q 6= 0) and

̺(τ) = ρ(f(τ)), <(τ) = p(f(τ)).

Composing (F.10) with g(σ)
def.
= σ + t0 from Theorem 5.2.1 we obtain ρ̇(σ +

t0) + 1
ν
HR(σ + t0)(ρ(σ + t0) + p(σ + t0)) = 0. By (5.79), we obtain

ρ
′ −Hu(ρ + p) = 0 (F.12)

for the conservation equation in NLS variables for the Bianchi I metric (5.1), where

Hu(σ)
def.
= u′(σ)/u(σ), u(σ) = 1/R(σ+ t0)

1/ν and ρ(σ) = ρ(σ+ t0), p(σ) = p(σ+ t0).

For the Bianchi V metric (6.1), the conservation equation (F.2) is

ρ̇+
1

ν
HR(ρ+ p) = 0 (F.13)
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for HR(t) = Ṙ(t)/R(t) and R(t) = (X1(t) · · ·Xd(t))
ν .

Composing (F.13) with f(τ) from the EMP Theorem 6.1.1 and multiplying by

f ′(τ) we obtain ρ̇(f(τ))f ′(τ)+ 1
ν
HR(f(τ))f ′(τ)(ρ(f(τ))+ p(f(τ))) = 0. That is, by

the relation (6.41) and the definition (6.12) of τ(t) we obtain

̺′ +
1

νq
HY (̺+ <) = 0 (F.14)

in the EMP variables for HY (τ)
def.
= Y ′(τ)/Y (τ), Y (τ) = R(f(τ))q (q 6= 0) and

̺(τ) = ρ(f(τ)), <(τ) = p(f(τ)).

Composing (F.13) with g(σ) from the NLS Theorem 6.2.1, multiplying by g′(σ)

and using (6.111) and (6.94) we obtain

ρ
′ −Hu(ρ + p) = 0 (F.15)

for Hu(σ)
def.
= u′(σ)/u(σ), u(σ) = 1/R(g(σ))1/ν (ν 6= 0) and ρ(σ) = ρ(g(σ)), p(σ) =

p(g(σ)).

Composing (F.13) with g(σ) from the alternate Bianchi V NLS Theorem

6.3.1 and multiplying by g′(σ) we obtain ρ̇(g(σ))g′(σ) + 1
ν
HR(g(σ))g′(σ)(ρ(g(σ)) +

p(g(σ))) = 0. That is, by the relation (6.150) and the definition (6.133) of σ(t), we

obtain the analogue equation

ρ
′ −Hu(ρ + p) = 0 (F.16)

in for Hu(σ)
def.
= u′(σ)/u(σ), u(σ) = 1/R(g(σ))1/ν (ν 6= 0) and ρ(σ) =

ρ(g(σ)), p(σ) = p(g(σ)).

For the conformal version (7.1) of the Bianchi V metric, the conservation equa-

tion (F.2) is

ρ̇+
d

2ν
HR(ρ+ p) = 0 (F.17)

for HR(t) = Ṙ(t)/R(t) and R(t) = (a2(t) · · ·ad(t))
ν .
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Composing (F.17) with f(τ) from Theorem 7.1.1 and using (7.10), (7.43) we

get the analogue conservation equation

̺′ +
d

2qν
HY (̺+ <) = 0 (F.18)

in the EMP variables for HY (τ)
def.
= Y ′(τ)/Y (τ), Y (τ) = R(f(τ))q (q 6= 0) and

̺(τ) = ρ(f(τ)), <(τ) = p(f(τ)).

Composing (F.17) with g(σ)
def.
= σ + t0 from Theorem 7.2.1 we obtain ρ̇(σ +

t0) + d
2ν
HR(σ + t0)(ρ(σ + t0) + p(σ + t0)) = 0. By (7.100), we obtain

ρ
′ −Hu(ρ + p) = 0 (F.19)

for the conservation equation in NLS variables for the Bianchi V metric in (5.1) for

Hu(σ)
def.
= u′(σ)/u(σ), u(σ) = 1/R(σ+t0)

2ν/d and ρ(σ) = ρ(σ+t0), p(σ) = p(σ+t0).
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