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ABSTRACT

PREDICTION AND MANIPULATION OF DROP SIZE
DISTRIBUTION OF EMULSIONS USING POPULATION
BALANCE EQUATION MODELS FOR HIGH-PRESSURE

HOMOGENIZATION

MAY 2010

NEHA B. RAIKAR

B.Chem Engg, UNIVERSITY INSTITUTE OF CHEMICAL TECHNOLOGY, MUMBAI

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Michael Henson and Professor Surita Bhatia

Emulsions constitute a wide range of natural as well as processed products. Phar-

maceutical applications of emulsions include oral administration, parenteral delivery, oph-

thalmic medicine, topical and transdermal creams, and fluorocarbon-in-water emulsions

for blood oxygenation. In the foods area many of the products like mayonnaise, margarine,

ice-creams are emulsions by nature and some products can also be used for delivery of

active ingredients (e.g. nutraceuticals) with potential health benefits. Emulsions are also

encountered at many stages of petroleum recovery, transportation, and processing. Typi-

cally, emulsions are manufactured in a two-step process. First a coarse emulsion called

a premix is made which is passed through a high-pressure homogenizer. Intense energy

supplied in the high pressure homogenizer causes breakage of the coarse emulsion to a fine

one with a tighter distribution.
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Population balance equation (PBE) models are useful for emulsions since they allow

prediction of the evolution of the drop size distribution on specification of the two rate pro-

cesses i.e., breakage of drops due to the flow field and coalescence of colliding drops. In

our work, we developed a PBE model to describe emulsion breakage in a high pressure

homogenizer. The focus of the work was breakage and conditions to keep coalescence to

minimum were implemented. Two breakage rates representing two mechanisms i.e., tur-

bulent inertial and turbulent viscous breakage were necessary for reproducing the bimodal

nature of the distributions. We used mechanistic functions in the PBE model to develop a

predictive model which could be extended to changes in formulation variables as well as

process variables. Starting with the assumption of binary breakage, the model was refined

to include multiple drop breakage. The developed model was found to be extensible to rea-

sonable changes in oil concentration, surfactant concentration, continuous phase viscosity

and constant ratio of oil to surfactant. Anomalies in pressure prediction encountered earlier

were also corrected for by including some additional features like heating, maximum stable

diameter, and number of daughter drops. A preliminary attempt was also made to use the

developed model for designing experiments for making target emulsions with pre-specified

properties.
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CHAPTER 1

INTRODUCTION AND LITERATURE SURVEY

An emulsion is a dispersion of an immiscible or partly miscible liquid (dispersed phase)

into another (continuous phase). The stability against drop coalescence is provided by

adding small amounts of a surface-active agent i.e., a surfactant which adsorbs at the drop

interface. The surfactant has two main roles to play: it lowers the surface tension, thereby

facilitating drop breakup; and it minimizes re-coalescence. Common examples of emul-

sions are mayonnaise, margarine, and shampoos. Depending on the nature of the dispersed

and the continuous phase, different types of emulsions can be distinguished such as oil-in-

water (o/w), water-in-oil (w/o) emulsions and different types of multiple emulsions [67].

Emulsions can be used for a wide variety of applications like foods, petroleum recovery,

cosmetics, polishes, road surfacing and agricultural sprays. In the foods industry, emulsions

constitute numerous natural as well as processed products such as milk, butter, margarine,

sauces and desserts. Commonly used food emulsion ingredients include an edible oil, wa-

ter, a surfactant, vitamins, minerals and flavors [68]. Emulsions are also encountered in the

petroleum industry with applications at many stages of petroleum recovery, transportation,

and processing [12, 98]. In petroleum recovery applications, emulsion formation at the

well-head is undesirable while emulsions are critical for enhanced oil recovery as drilling

muds and fluids. Heavy crude oils typically have viscosities in the range of a few hundred

to several thousand centipoise, and therefore they cannot be transported economically in

conventional pipelines without reducing their viscosity [73]. Emulsifying heavy oils with

an aqueous solution significantly reduces the viscosity, allowing for lower pumping power
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requirements and more economical transportation [90, 94, 123].

Our focus is on emulsions used for pharmaceutical applications. These emulsions can

be intended for oral administration, parenteral (intravenous or intramuscular) delivery, oph-

thalmic medicine, and topical and transdermal creams [67] discussed in detail in the fol-

lowing section. An important criteria for formulation of parenteral emulsions is that they

should not be recognized as foreign by the body. Thus a good drug carrier should be bio-

compatible, biodegradable, often of fine and uniform particle size, be suitable for targeting

and be pharmaceutically acceptable. Also selective drug targeting is essential for improved

drug effectiveness, reduction in adverse reactions and for applying highly potent drugs. The

choice of particular emulsion system is therefore dependent on the route of administration,

the drug characteristics and the effect required.

The biodistribution of colloidal systems can be related to various physiological processes

as a function of the particle size. For instance particles with mean diameter less than 7

µm become entrapped in the capillary network of the lungs. The smaller particles tend to

accumulate in the bone marrow. Particles below 100 nm are capable of escaping the vas-

cular system as the cut-off diameter is believed to be 100 nm for the largest pores. Thus

by properly selecting particle size and its distribution the behavior of a drug in the body

can be partly controlled. Alteration of tissue distribution can also be made by modifying

the surface structure of the emulsifier shell of the oil-droplet. The particle surface charge

too has marked effects on the clearance and deposition of colloids [65, 75]. As we have

seen that the drop size is the key parameter for selective targeting, it becomes necessary to

develop techniques for its manipulation and control.

Population Balance Equation Modeling seems to be an effective tool in such a study

for tailoring optimum emulsions. Our research goal was to be able to predict important
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Figure 1.1. Biodistribution as function of emulsion drop size [75, redrawn from Chpt 5].

emulsion characteristics in high pressure homogenizers, especially drop size distribution.

Emulsions are typically formulated using a high pressure homogenizers. It is necessary to

understand the homogenizer mechanics and the phenomena responsible for drop disruption

to be able to characterize the emulsions. The research objective was to identify appropriate

functions based on theory as well as mechanics of the process rather than using some em-

pirical relations. It was also important that the model developed be extensible to various

systems and hence, should also consider system properties. Overall, we wanted the predic-

tion to be robust enough to deal with any model system and therefore although our focus

was on pharmaceutical emulsion, the model we developed was general and could be used

for any emulsion application.

To put our work in the perspective of the wider state of the art research, first the relevant

literature in pharmaceutical and biomedical applications of emulsions is presented. Also,

what properties of emulsions are important and how they are affected is reviewed in Section

1.2
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1.1 Pharmaceutical and Biomedical Applications of Emulsions

Different Emulsified Systems

There are different types of emulsions in addition to the normally encountered micron

scale emulsions which are used in pharmaceutical and biomedical applications. The com-

mon ones are described below

• Submicron Emulsions (SME) or Nanoemulsions - Submicron emulsions or nanoemul-

sions are emulsions with average drop-size less than a micron. They are usually of

the oil - in - water type with sizes about 20-300 nm. These emulsions offer greater

bioavailability than the coarse micron sized emulsions because of their higher sur-

face area to volume ratio. These emulsions are either transparent or translucent

because of their size and also possess stability against sedimentation and cream-

ing [13, 67, 74, 100].

• Multiple Emulsions - Multiple Emulsions are complex systems wherein droplets of

the dispersed phase contain additional but smaller droplets. These droplets can be dif-

ferent or identical to the continuous phase. For example, water-in-oil-in-water emul-

sions (w/o/w) are three phase emulsion systems in which the oil droplets dispersed in

the external aqueous phase contain additional internal aqueous phase [14,67,75,107].

• Microemulsions (ME) - Microemulsions are dispersions of immiscible liquids with

a combination of several components, namely, surfactant and co-surfactant. They

are thermodynamically stable, form spontaneously and are isotropically clear. Mi-

croemulsions are percolated or bicontinuous structures with no internal or external

phase and no possibility of dilution [51, 67, 75, 107].

• Self Emulsifying Drug Delivery Systems (SEDDS) - Self Emulsifying Drug Deliv-

ery Systems (SEDDS) are stable homogeneous mixtures of oils, surfactants or alter-

natively, one or more hydrophilic solvents and co-solvents. They have the ability to

form emulsions (SEDDS) or microemulsions (Self Microemulsifying Drug Delivery
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Systems SMEDDS) upon dilution by the aqueous media, such as Gastrointestinal

(GI) fluids. The digestive mobility of the stomach and the intestine provide agitation

necessary for emulsification [6, 33, 36, 67, 107, 120].

Pharmaceutical and Biomedical applications

Important and widely used pharmaceutical and biomedical applications are now dis-

cussed

• Oral Administration of Drugs

Oral administration of drugs is the oldest known route for drug delivery. Emulsions

have been used for oral formulations by incorporation of the drug in the internal

phase. Emulsions are also known to increase the bioavailability of poor soluble drugs

and to extend their pharmacological effects by protecting from degradation by the

gastric medium. For example, cefpodoxime proxetil is a lipophilic drug used to treat

a variety of bacterial infections, including those of the ear, nose, throat, skin and

soft tissues, genitourinary tract, respiratory tract, and other organs. It is an orally

absorbed, broad spectrum, third generation cephalosporin ester. It is hydrolyzed by a

cholinesterase prior to intestinal absorption resulting in incomplete absorption. Oil-

in-water submicron emulsions were found to be effective in protecting the drug from

enzymatic attack [74]. In this case the drug, cefpodoxime proxetil is first dissolved

in a co-solvent followed by dissolution of the mixture in a medium chain triglyceride.

Lecithin is used to emulsify the oil and the aqueous phase [74].

• Parenteral Nutrition or Therapeutic Feeding

Special oil-in-water emulsions are used to feed patients suffering from malnutrition

and/or whose medical condition makes oral nutrition infeasible. In such cases the

emulsion primarily comprises of a nourishing lipid (about 20%) to overcome the fatty

acid deficiency. It can be used alone or with admixtures of other essential compounds

(glucose, amino acids, vitamins, trace elements etc.) to constitute “Total Parenteral
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Nutrition Admixtures” (TPN). The parenteral emulsion must be bacteriologically

pure, and physiological compatible. They should be primarily nutritious and should

have drop sizes less than 5 µm to avoid the risk of pulmonary embolism [12, 22, 67].

Intralipidr is an example of commercially available lipid emulsion with soyabean oil

(10 or 20%) as the oily phase emulsified by egg lecithin (1.2%). Glycerol (2.5%), a

water-miscible solvent is added to improve stability and reduce the drop size to less

than 5 µm [12, 67].

• Parenteral Emulsions for Drug Delivery

Many drugs have insufficient aqueous solubility and/or problem of water hydrolysis.

If such drugs have sufficient lipid solubility they can be incorporated into the interior

oil phase of fat emulsions. The drug incorporation can either be extemporaneous,

addition of the drug in preformed fat emulsion or by a de novo process, drug incor-

porated into the oil during the manufacturing process. Such parenteral formulations

avoid use of conventional co-solvents and therefore problems of drug precipitation at

the site [67, 107]. For example, Paclitaxel is a drug with significant anti-tumor activ-

ity against various tumors such as breast cancer, advanced ovarian carcinoma, lung

cancer, head and neck carcinoma and acute leukemia. A microemulsion formulation

has been proposed with Cremaphor ELr as solubilizer. This formulation to be ad-

ministered intravenously was found to exhibit reduced hypersensitivity reactions as

against the current clinical paclitaxel injection Taxolr (solution of paclitaxel in 50%

Cremaphor ELr) [39, 44].

• Red Cell Substitutes or Oxygen Therapeutics

Blood loss is a common occurrence during surgery, and often blood must be rapidly

replaced. This is done either using the patient’s own blood (autologous) or a donor’s

blood (allogenic). Blood substitutes i.e., artificial oxygen carriers, are desired as al-

ternatives to allogenic blood transfusion. Such substances can also be required to
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improve tissue oxygenation or as adjuncts to balloon angioplasty and cancer therapy.

They are more appropriately called “red cell substitutes” or “oxygen therapeutics” as

these fluids on injection into the blood make significant contribution to the systemic

oxygen transport and flow characteristics. Increasing public negative perceptions

about blood safety coupled with the potential risk of transmitting diseases such as

hepatitis, and HIV. has necessitated development of these blood substitutes. Two

kinds of solutions are available in this area: 1) fluids based on natural respiratory pig-

ment, haemoglobin (Hb) and 2) use of synthetic, inert, fluorinated compounds called

perfluorochemicals (PFCs). Since the PFC-emulsion based blood substitutes are al-

most exclusively synthetic, concerns about the source and purity of the components

is eliminated. PFCs have the highest gas dissolving capacity of any liquids (≈ 40-50

vol % for oxygen). Oxygentr is a third generation improved PFC based injectable

emulsion. It contains perflubron (58 w/v %) and perfluorodecyl bromide C10F21Br

(2 w/v %) stabilized by egg yolk phospholipids (3.6 w/v %). Perflubron is highly

lipophilic because of its terminal bromine and is therefore excreted quickly by the

body. The Oxygentr emulsion is sterile, non-pyrogenic and stable. Oxygentr was

found to be effective during its evaluation in advanced clinical trials as oxygenation

fluid for patients with high blood loss [51, 60–62, 88, 104].

• Pulmonary Delivery

Emulsions have also been used for delivering drugs into the lungs i.e. pulmonary

administration. Inhalation of drugs, proteins, peptides etc. shows promise because it

allows their rapid deposit in the target organs. This causes lesser side effects than ad-

ministration by other routes and allows deposit of the larger concentrations at the sites

of disease. A reverse water-in-Fluorocarbon emulsion in a pressurized metereddose

has been used for in vivo delivery of caffeine in a homogeneous and reproducible

way [15]. A hydrofluoroalkane (Solkaner 227) was used as the propellant as it

showed no sealing or leakage problems. Such Fluorocarbon emulsions are a promis-
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ing delivery systems for drugs like enzymes, proteins, peptides (insulin , α-interferon,

calcitonin, immunoglobin, antibiotics) etc. to the lungs [15, 20].

• Ophthalmic Medicine

A number of lipophilic and poorly water soluble drugs are used for treatment of dif-

ferent extra and intra-ocular etiological conditions such as glaucoma, keratitis, dry

eye syndrome etc. Oil in water lipid emulsions have been investigated as a vehicle to

improve the ocular bioavailability of such drugs [54–56, 79, 106, 107, 124]. Natural

biodegradability, nanometer size range, sterilizability and substantial drug solubiliza-

tion at the dispersed oil phase or o/w interface coupled with improved bioavailability

has made lipid emulsions promising ocular delivery vehicle. Cyclosporin A (CsA) is

an immunosuppressive drug and is used for prevention of corneal graft rejection and

dry eye syndrome. CsA possesses lipophilic properties preventing aqueous formu-

lations and hence oil-in-water emulsions and microemulsions have been used for its

ophthalmic delivery. Restasisr is a Food and Drug Administration (FDA) approved

Cyclosporin A emulsion formulation (0.05 %) for treatment of patients with kera-

toconjuctivitis sicca whose lack of tear production is presumed to be due to ocular

inflammation [54]. Since epithelial corneal cells exhibit negative charges on their

surface, it is hypothesized that a positively charged emulsion would interact with

corneal cells and prolong residence time on the surface of the cornea. Cationic emul-

sions containing CsA when administered to rabbits produced higher drug levels at the

ocular surface (cornea and conjunctiva) [79, 106]. A new approach employing water

soluble prodrug of Cyclosporin A has been proposed for ocular delivery [54–56].

• Topical and Transdermal Delivery

The skin is the most accessible and largest organ of the body that receives about one

third of the blood supply. Topical and transdermal delivery is a non invasive way

of administering active drugs. When using topical routes, selection of an appropri-
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ate vehicle is important in order to increase the flux of the given drug. As topical

vehicles emulsions are gaining attention because of their characteristics, namely, en-

hanced drug solubility, good kinetic stability, reduced side effects, prolonged phar-

macological effects and ease of manufacture [26, 67]. Nano/Submicron emulsions

have been investigated for the topical delivery of Flurbiprofen, a chiral non steroidal

anti-inflammatory drug used to treat gout, osteoarthritis, rheumatoid arthritis, sun-

burn etc [26]. Lipid emulsions composed of isopropyl myristate, soyabean oil or

coconut oil with egg lecithin as the emulsifier containing Flurbiprofen in the oil

phase were formulated and successfully tested in vitro as well as in vivo. Submicron

emulsion vehicles have also been investigated for the delivery of non-steroidal anti-

inflammatory agents (diclofenac, indomethacin, naproxen, piroxicam) and steroidal

anti-inflammatory agents (betamethasone esters) [30]. A transdermal therapeutic de-

livery system for aceclofenac using microemulsion was also formulated with the goal

of maximizing flux through skin in the systemic circulation [59]. The microemulsion

system was composed of 1.5% aceclofenac in oil (Labrafilr M 1944 CS), surfactant

(Cremophorr EL), co-surfactant (ethanol) and water.

• Gene/ DNA Carriers

Gene transfection implies delivery to and subsequent expression of the functional

genetic material in special cells to manipulate their intrinsic genetic profiles. The ge-

netic materials can be carried either by viral vectors (retrovirus, adenovirus, herpes-

simplex virus) or non-viral vectors (liposomes, emulsions, nanoparticles etc.). The

nonviral vectors are preferred since they are easy to handle and have better safety

profiles. Because lipids are main components of cell membrane, nonviral vectors

are generally lipid based so that the vectors can be effectively incorporated in the cell

membrane and facilitate delivery of genetic material into specific cells [2,13,76,100].

DNA being negatively charged, cationic emulsions show promise as nonviral carri-

ers because of the tendency to form stable complexes via electrostatic interaction.
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A cationic emulsion loaded with VIJns plasmid encoding Antigen 85 of Mycobac-

terium tuberculosis was investigated for pulmonary immunization against the inhaled

pathogens [13]. A number of researchers have successfully demonstrated the use of

cationic lipid emulsions for delivery of plasmid DNA (pDNA) [8, 42, 47]. The suc-

cess of such systems for gene transfection is however hampered by the associated

cellular toxicity of cationic lipids. An artificial lipoprotein delivery system consist-

ing of nanoemulsion cores made of natural lipids and surface lipidized polyLlysine

has been developed. This artificial lipoprotein delivery system efficiently carried

plasmid DNA containing - galactosidase gene and successfully transfected human

SF-767 glioma tumor cells [76]. The same system was used to carry the gene encod-

ing rabies virus glycoprotein and thus used as rabies DNA vaccine. It demonstrated

highly effective transfection capability of rabies DNA vaccine in cell culture [2].

• Molecular Imaging and Therapy

Emulsions mainly perfluorocarbon based have been used for the purpose of molecu-

lar imaging i.e. detection of molecular markers like proteins and other cell surface

receptors. These emulsions also have potential for targeted drug delivery permitting

verification and quantification of treatment i.e. rational targeted therapy. Important

target pathologies include inflammation, atherosclerosis, tumor related angiogenesis

and thrombi. The agent used is a ligand targeted, lipid encapsulated, non gaseous

fluorocarbon emulsion which is stable to handling pressure, atmospheric exposure,

heat and shear. An enhanced acoustic reflectivity of the emulsion is derived from its

collective deposition along various tissue planes creating a layering effect. The emul-

sion cores exhibit low velocity and high density when compared with water and sur-

rounding tissues. The acoustic enhancement can be effectively measured by an acous-

tic transmission line model. Incorporation of a paramagnetic material, for example,

a gadolinium complex into the lipid layer of the emulsions provides contrast agents

for both ultrasound and magnetic resonance imaging modalities [51, 58, 87, 89].
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Having reviewed the relevant literature, we now take a close look at the important prop-

erties of pharmaceutical emulsion.

1.2 Important Properties of Pharmaceutical Emulsions

Some of the important properties of pharmaceutical emulsions are discussed [9–12, 17,

26, 67, 70, 75, 78, 93, 100, 107]. These are the properties that characterize the emulsion and

few of them can be determined experimentally.

• Conductivity and Type

Emulsion type is the most important property. Emulsions can be of o/w or w/o type

or even multiple emulsions. Our model experimental system is an oil-in-water type

emulsion. The type of emulsion could be characterized by electrolytic conductivity.

For such a measurement the electrolyte is incorporated in the aqueous phase and the

electrolytic conductivity κem can be approximated to be proportional to the conduc-

tivity of the external phase κext and its volumetric proportion φext.

κem = κext × φext

• Drop Size and Distribution

Emulsification is a random process with breakage and coalescence steps being in

equilibrium. The resulting emulsion is a polydispersed system consisting of a range

of drop sizes. Factors like lower surface tension or an increase in stirring energy

and duration increases breakage, while a higher fluid viscosity decrease it. On the

other hand increase in temperature would increase the coalescence rate. The drop

size distribution also determines the stability and viscosity of the system. The drop

size distribution is commonly measured using various light scattering techniques.

• Emulsion Viscosity

Emulsions generally show non-Newtonian behavior. For rheology only stable (non-

settling) emulsions subjected to mechanical stress are considered. A plot of emulsion
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viscosity versus dispersed phase fraction should be plotted for particular application

and emulsifying device. However, it is generally observed that at low dispersed phase

fractions (φint), the relative viscosity (ηr) is ηr = 1 + 2.5φint [75]. An increase in

dispersed phase fractions increases number of drops and therefore drop-drop inter-

actions. The resulting frictional effects cause a viscosity increase. Beyond 60-65%

dispersed phase pseudoplastic behavior is seen with power law dependence of viscos-

ity on the applied shear rate and above 85-90% dispersed phase fraction a viscoelastic

behavior is seen. As mentioned earlier the drop size and distribution affects emulsion

viscosity. The interdrop friction is related to surface area. Thus with higher surface

area i.e. smaller drops there is an increase in viscosity generally by the following

relation [75].

log
η

η0

= −B log
d

d0

Bimodal emulsions show a significant viscosity reduction compared to the base emul-

sions if the mode of separation is large enough [75]. This can be employed in practice

to reduce the viscosity by mixing a coarse emulsion with a fine one. The effect is

more pronounced when a narrowly dispersed coarse emulsion is mixed with a poly-

dispersed fine emulsion.

• Biodistribution

Emulsion systems are used as carriers of poorly soluble or lipophilic drugs primarily

due to their ability to solubilize such drugs. A good drug carrier should be biocom-

patible, stable, biodegradable, of fine and uniform size in addition to being pharma-

ceutically acceptable. By controlling the physicochemical properties of the carrier

such particle size, dosage, charges etc. the biodistribution can be tuned. This is a

passive control. In active control involves modifying the surface by incorporating a

ligand for specific targeting.
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• Surface Characteristics

Since colloidal particles are opsonized (i.e. susceptible to the action of phagocytes)

in the bloodstream, modifying the structure of the emulsifier shell by changing the

composition can alter the tissue distribution. It is commonly observed that hydropho-

bic particles are taken up by macrophages without opsonization. The droplet surface

can therefore be coated with hydrophilic polymers to reduce macrophage uptake.

This is due to combination of steric stabilization alongwith reduction in the uptake of

opsonising blood components at droplet surface. Carriers with hydrophilic surface

(e.g. PEG coated) are ignored by phagocytotic cells. Using nonionic coemulsifier

like poloxamine reduces uptake by liver and spleen. Presence of methyl groups on

the outer surface reduces adhesion of the droplet on the macrophage. For this rea-

son, the emulsions using Pluronics are not engulfed by macrophages. The surface

characteristics are thus determined by the constituents of the formulation.

• Surface Charge

The surface charge is an important property of emulsion carrier systems and can be

measured by Zeta Potential measurements. Emulsions in general can be classified

as anionic or cationic. Several common emulsions are anionic. Cationic emulsions

can be formulated by using cationic lipids like stearylamine or polysaccharides. In

the bloodstream neutral emulsions are taken up slowly as compared to charged ones.

Anionic emulsions have higher liver and spleen uptake, wheres cationic emulsions

show initial accumulation in the lungs and are then relocated to the liver and spleen.

For topical applications like ocular or transdermal delivery, cationic emulsion show

better uptake. This is assumed to be due to the negative charge on the surface (cornea

and skin respectively). However the toxicity of cationic emulsions is a major concern.

• Stability Concerns

Emulsion breaking or instability can be stimulated by temperature changes, gravity,
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and Brownian motion. The breaking process comprises of a) long-distance approach

between drop and flat interface, b) interdrop film drainage and c) coalescence. Set-

tling is a separation process driven by the density difference of the dispersed phase

and continuous phase. The drop size also affects settling rate which is higher for

bigger drops (macroemulsion range 1-100 µm) than smaller (miniemulsion range

100-500 Å). The approach of drops close to each other is followed by the drainage

process and is the second step of emulsion decay. There are several different mech-

anisms that drive the drainage process like Van der Waals attractive force, viscosity

or interfacial phenomena. If the emulsions are small i.e. in the nanometer range,

Ostwald ripening or molecular diffusion, arising from emulsion polydispersity is the

primarily mechanism for emulsion destabilization. This is because, the Brownian mo-

tion or diffusion rate is higher than gravity induced sedimentation rate. The Lifshitz-

Slezov and Wagner theory (LSW) predicts a linear relation between the cube of the

radius and time. Experimentally, the stability can be analyzed by visual observation

and measurement of drop size distribution versus time [100]. Incorporation of a drug

normally decreases the stability of emulsions. To stabilize the emulsion, the strength

of the interfacial film should be increase either by steric or electrostatic stabilization.

Use of charged surfactants or mixed emulsifying agents is found to improve stability.

• Structure of emulsion carriers

The excipients used in manufacturing emulsion carriers are also important. Primary

concern is solubility of the drug in the carrier followed by bioacceptance. Lecithins,

phospholipids are used as emulsifiers. Certain L-isomeric phospholipids produce

neurotoxic side effects if their gel transition temperature is close to body temperature.

Cationic emulsions have cationic lipids which can be toxic.

In the following section, the population balance equation model with its applications

and associated functions is discussed.
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1.3 Population Balance Equation Modeling of Emulsions

The drop-size distribution produced is the one of the most essential property for char-

acterizing an emulsion. Other emulsion properties like viscosity are also dependant on the

drop-size-distribution. Population Balance Models are used to simulate the process of gen-

eration of emulsions or dispersions. The extensive use of the population balance model is

because they allow a detailed description of the two rate processes that occur in the system:

drop breakage due to flow conditions and drop coalescence due to collisions between drops.

The population balance equation gives the evolution of the drop size distribution with time.

The population balance concept requires that for any volume element dv, the number of

particles moving in and out of that range and those accumulating within it are balanced. If

n(v, t)dv represent the number of droplets per unit volume of the dispersion at time t with

size between volumes v and v + dv, the population balance equation takes the following

form [18]:

∂n(v, t)

∂t
+

∂

∂v
[v̇n(v, t)] +

1

τ
[n(v, t)− nF (v, t)] = E(v, t)−D(v, t) (1.1)

where,

v volume of the particle

v̇ = dv/dt particle growth rate

∂[v̇n(v, t)]/∂v convective flux along the size axis

τ residence time

nF (v, t) feed size distribution

E(v, t), D(v, t) Birth rate and Death rate functions respectively

Since there is no growth rate as drops do not grow by itself, v̇ = 0, the equation for

the batch case can be written as [92]:
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dn(v, t)

dt
= −g(v)n(v, t)− n(v, t)

∫ ∞

0

η(v, v′)n(v′, t)dv′ +
∫ ∞

v

β(v, v′)ν(v′)g(v′)n(v′, t)dv′ +
1

2

∫ ∞

0

η(v − v′, v′)n(v′, t)dv′ (1.2)

Here,

g(v) breakage frequency (fraction of drops of size v breaking per unit time)

ν(v′) number of daughter drops formed by breakage of drop of size v′

β(v, v′) probability density function (probability of forming drops of size v

from breakage of drops of size v′)

η(v, v′) coalescence frequency between drops of size v and drops of size v′

The first two terms on the right hand side of equation 1.2 represent the rate of disappearance

of drops of size v by breakage and coalescence, respectively. The third and the fourth terms

represent the rate of appearance of drops of size v by breakage and coalescence. The model

requires specification of appropriate functions that describe breakage and coalescence pro-

cesses. If the volume fraction of the dispersed phase is sufficiently small and surfactant

concentration is high enough, coalescence can be neglected [109, 113, 114]. The balance

equation then reduces to:

dn(v, t)

dt
= −g(v)n(v, t) +

∫ ∞

v

β(v, v′)ν(v′)g(v′)n(v′, t)dv′ (1.3)

Coulaloglou and Tavlarides [19] used the drop population balance model (eqn 1.2) to de-

scribe the interaction processes in continuously agitated liquid -liquid dispersions. They

proposed phenomenological models for breakage and coalescence for turbulently agitated

dispersions. The breakage model was based on drop deformation and breakup under local

pressure fluctuations and time required for a critically deformed drop to break in a locally

isotropic field. The coalescence model proposed assumed the coalescence rate to be pro-

portional to collision rate times coalescence frequency of deformable drops in the kinetic

regime of locally isotropic turbulent fields. Ramkrishna et al. [52, 53, 64, 71, 72, 83, 84,
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86, 95, 96] have used the population balance model framework to a number of particulate

systems like lean liquid-liquid dispersions, microbial populations etc. They have modeled

pure breaking, pure aggregating and also combination of both breaking and aggregating

systems. They have also accomplished analysis on dispersed systems by a cumulative vol-

ume (or mass) distribution rather than the number density function. This evolution equation

in terms of the cumulative distribution for pure breakage processes is as follows.

∂F (v, t)

∂t
=

∫ ∞

0

g(v′)G(v, v′)∂vF (v′, t) (1.4)

where F (v, t) is the cumulative volume fraction of drops of size less than or equal to v at

time t and G(v, v′) is the cumulative volume fraction of drops of size less than or equal to

v formed by breakage of drops of size v′. The primary advantages of using the cumulative

distribution are:1) Many chemical process systems are more influenced by the amount of

the dispersed phase and not the number of particles, 2) The integrodifferential equations

satisfied by the cumulative volume fraction form are simpler and involve lesser number of

functions and 3) It become easy to characterize the distributions as “self-similar” as seen

by the invariance of the cumulative fraction along curves on which the similarity variable

remains fixed [84]. However the decision of the form of population balance equation used

is dictated by the particulate process being investigated and so both the forms are being

used as per the need. Majority of the work in this thesis uses the number distribution form

because of the high sensitivity of the inverse method to errors in measurements.

Chen et al. [18] used the steady state version of the population balance model for pre-

diction of drop distribution in a continuous flow screw-loop reactor. A simplified form of

the model was used neglecting coalescence. The breakage rate was derived from turbulence

theory considering the effect of both viscosity and interfacial tension. A functional expres-

sion was proposed for the daughter distribution function and the model parameters were

evaluated by fitting the experimental data. Alopaeus et al. [3–5] have used a multiblock
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mixed tank model along with the population balance equation for simulating drop popula-

tions in mixed tanks. Since the local turbulence and flow values of the mixed tank were

used in their model, it was possible to have a closer look at the breakage and coalescence

phenomena. They proposed that the flow model can be obtained from measurement or from

Computational Fluid Dynamic (CFD) simulations. It has been argued that this method is

advantageous over a vessel-averaged population balance approach since it is capable of

predicting inhomogeneities occuring in a mixed tank.

Ruiz and Padilla [91, 92] have applied the population balance model to simulate the drop

size distribution for liquid-liquid extraction. In their work, only breakage event was consid-

ered and coalescence was eliminated by using very low dispersed phase volume fractions.

They critically analyzed various breakage functions along with different distribution func-

tions. Some of these functions were used with the population balance model to predict

theoretical transient and steady state drop distributions. They compared the results with

experimentally obtained distributions to find functions that provided the best fit. They ob-

served that the breakage frequency function, g(v), has a little influence on the evolution of

the drop size distribution whereas, β(v, v′) influenced the shape of the distribution. The

equilibrium distribution was found to depend on the maximum stable drop size and daugh-

ter distribution function while being independent of the functional form of the breakage

frequency function. It was also observed that coalescence even at low dispersed phase vol-

ume fractions, becomes significant under equilibrium conditions and cannot be ignored.

Soon et al. [101] used an ultra-high velocity jet homogenizer for emulsification of a coarse

suspension. The theory of turbulent breakage of drops by eddy velocities developed by

Kolmogorov was stated to propose the dependence of drop breakage on local fluid energy

dissipation rate. They used computational fluid dynamics (CFD) to map velocity profile

of the jet and the associated local energy dissipation rate. Simulations carried out for evo-
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lution of drop distribution were based on the population balance equation proposed by

Coulaloglou and Tavlarides [19] which is similar to one represented by equation 1.2. Tur-

bulent flow in the jet was assumed to be homogeneous and isotropic and breakage was

considered to occur due to local turbulent energy dissipation in the high-energy region of

the orifice. Drop coalescence was considered to be negligible and justified by presence of

adequate amounts of surfactant. Crude dispersions were subjected to disruption in the ho-

mogenizer under different conditions like varying pressure and number of drops and drop

size measurements were obtained. The CFD predicted energy dissipation rate at the orifice

was used in the population balance model to obtain theoretical drop size distributions. The

values of unknown parameters were obtained by comparing with experimental data and

were found to be independent of the operating conditions. Integration of the CFD simu-

lations of the energy dissipation rates with the population balance model was found to be

successful in predicting drop size distributions that compared well with experimental data

for their case of non-coalescing oil-in-water emulsions.

Vankova et al. have applied a steady state version of the population balance equation

model to a custom built homogenizer. They have investigated the capability of the said

homogenizer for making food emulsions and explored various dispersed phase and surfac-

tants [109, 113, 114]. They have also a CFD study of the homogenization zone and have

identified appropriate breakage and distribution functions for the same. Hakansson et al.

have simulated the effect of pressure for milk-homogenizers using a full version of the PBE

model and added surfactant adsorption effects as well [37, 38]. Although binary breakage

is commonly assumed, several researchers have also considered multiple drop breakage

with the PBE modeling framework, including the development of alternative daughter drop

distribution functions [7, 24, 40, 49, 109, 115, 125]

Ramkrishna et.al [52, 53, 64, 71, 72, 83, 84, 86, 95, 96] have used the concept of similar-
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ity in population balances. The similarity property was used to characterize and also to

identify key model parameters associated with system behavior. The property of similarity

manifests in the form described as self-similar which involves invariant domains in space of

the independent variable along which the solution remains the same or contains a part that

is the same. Ramkrishna et al. extended the concept self-similar distribution to develop

a mathematical and computational procedure which can extract quantitative information

from transient drop size distributions. This technique works with the transient population

balance model in terms of the cumulative distribution. For instance when applied to pure

breakage process, the breakage frequency and the cumulative daughter drop distribution

can be extracted using experimental data. The main advantage of this model is that it is not

committed to any specific form of the model function. The argument is that when an avail-

able model form is inappropriate, parameter-fitting procedures will lead to compromise

choices of the parameters resulting in inadequate particle models. It was noticed that when

self-similarity is observed, solution of the inverse problem provides a satisfactory estimate

of the breakage function. An evidence of self-similarity was also shown to exist in drop

breakage under a wide variety of experimental conditions.

Associated Functions

Simulation of the population balance model requires specification of appropriate mod-

els for breakage and coalescence. A lot of work is being done on the effect of physical

properties or geometrical and operating conditions on the average drop size and drop size

distribution so obtained. However, only a limited number of studies focus on developing

breakage and coalescence models. For the process of emulsification many times it is rea-

sonable to assume that coalescence is absent which can be justified by using low dispersed

phase volume fractions and adequate amounts of the surfactant. This reduces the model

problem to a pure breakage one thereby simplifying it. However coalescence becomes
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crucial under certain conditions like high oil concentration and surfactant deficiencies and

needs to be considered.

A number of mechanisms for drop breakage have been proposed, the prominent ones

being drop elongation in shear flow field (Taylor [108]), turbulent pressure fluctuations

(Hinze [41]), relative velocity fluctuations (Narsimhan et al. [72]), and drop-eddy collision

(Coulaloglou and Tavlarides [19]). Cavitation and impact are also equally likely but turbu-

lence is considered to be the dominant mechanism. A number of breakage functions have

been used of which a few are listed below

• A linear dependence is shown by sub-Kolmogorov drops [21] g(v) ≈ kv.

• The power law was proposed by Valentas et al. [110–112] and is of the form g(v) =

kvn. The linear and the power law functions do not provide any insight into the

possible breakage mechanism. Also it is specific to one system and is not robust to

be extensible to a different process or formulation.

• Coulaloglou and Tavlarides [19] derived an equation based on hydrodynamics of the

dispersion. They assumed that breakup of a drop is the result of a collision with a

turbulent eddy. If the energy imparted to the drop by the eddy is greater than the drop

surface energy, it deforms and breaks. The function so developed has the form given

below.

g(v) = k1v
−2/9ε1/3 exp

[
−k2σ(1 + φ)2

ρdv5/9ε2/3

]
(1.5)

• Chen et al. [18] proposed a mechanistic model for the breakage of drops incorporat-

ing both interfacial tension and viscosity.

g(v) = k1 exp

[
−k2σ(1 + φ)2

ρdv5/9ε2/3
− k3ηd(1 + φ)

ρdv4/9ε1/3

]
(1.6)
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These equations involve system properties like dispersed phase volume fraction (φ),

interfacial tension (σ), dispersed phase density and viscosity (ρd, ηd), energy dissipa-

tion rate (ε) and proportionality constants (k′s).

It is also important to consider the number of drops formed on breakage and their dis-

tribution. Some drops break in a large number of small drops called thorough breakage

(Narsimhan et al. [72]). Under erosive breakage conditions a number of small drops are

stripped out of a large one. Binary breakup is also possible and most of the modeling

works generally view breakage as a series of binary breakage events. Multiple drop break-

age has also been used by some authors [24, 40, 49, 109]. Starting initially with binary

breakage, we have later used a power law product form of the generalized Hill-Ng distribu-

tions [24, 40, 125]. Some of the commonly used daughter distribution functions are listed

below.

• Uniform Distribution

β(v, v′) =
1

v′
(1.7)

• Truncated normal density function with maximum probability of equal size drops.

β(v, v′) =
2.4

v′
exp

[
− 4.5

(2v − v′)2

(v′)2

]
(1.8)

• Beta distribution

β(v, v′) = 30

(
v

v′

)2(
1− v

v′

)2

such that,
∫ 1

0

β(v, v′)d
(

v

v′

)
= 1 (1.9)
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• U-shaped distribution with zero probability of two equal size drops

β(v, v′) =

(
1

v
v′ + b

+
1

1− v
v′ + b

+
2(g − 1)

b + 0.5

)
I

v′

I =
0.5

ln(1 + b)− ln(b) + g−1
b+0.5

g =
0.5a

2b(1 + b)(1− a)
(1.10)

• Power-law product- This is the only daughter drop distribution function for multiple

drop breakage that we have considered

β(v, v′) =
p

B(q, r)

( v

v′

)q−1 (
1− v

v′

)r−1

, r = q(p− 1) (1.11)

Even though coalescence has been neglected for most of the cases, it would be worth-

while to look at the coalescence functions used. According to Coulaloglou and Tavlar-

ides [19], the coalescence frequency of drops of size v and v′ is given by the product of the

drop collision frequency (h(v, v′)) and the coalescence efficiency (λ(v, v′)) as follows

F (v, v′) = h(v, v′)λ(v, v′)n(v)n(v′) (1.12)

• Collision Frequency - The commonly used collision frequency is based on the as-

sumption that drops in turbulent flow behave like gas molecules.

h(v, v′) = k1
ε1/3

1 + φ
(v2/3 + v′2/3)(v2/9 + v′2/9)1/2 (1.13)

• Coalescence Efficiency - According to Coulaloglou and Tavlarides coalescence oc-

curs when the contact time is greater than time required for coalescence i.e. the time

required for the liquid film between two drops to drain out.

λ(v, v′) = exp

[
− k2

Cµcρcε

σ2

(
v1/3v′1/3

v1/3 + v′1/3

)4]
(1.14)
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Sovova [102, 103] suggested that above relation favors coalescence of smaller drops

and proposed a function based on energy of drop collision. Here the exponential

term represents the ratio of interfacial energy over the energy of collision. Many

other coalescence functions have been proposed most of which are modifications of

the one by Coulaloglou and Tavalarides [19].

λ(v, v′) = exp

[
− k2

σ(v2/3 + v′2/3)

ρdN2D
4/3
i (v11/3 + v′11/3)

]
(1.15)

Organization of the thesis

So far we have reviewed the relevant literature related to PBE modeling, the remainder

of the thesis includes my contribution towards using population balance equation model

for predicting emulsion drop size distribution. In chapter 2, I have used the inverse method

based on concept of self-similarity to extract functions for breakage rate and distribution

functions. We examined the sensitivity of the method for errors in input data which was

generated from simulation. The method was found to be highly sensitive even to small

errors in input and also required re-estimation of the functions for different experiments.

Hence, for all future studies we used the direct version of the PBE model as given in

equation 1.2 and tried to include mechanistic functions for breakage and coalescence. In

chapter 3, we develop such a PBE model considering turbulence and binary breakage of

drops and also tested extensibility of the model for changes in formulation variables and

pressure. In chapter 4, we extended our model to a pilot-plant scale homogenizer and also

relaxed the assumption of binary breakage. In the chapter 5, we improved the pressure

dependance in our model and made an attempt at using the model for design.
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CHAPTER 2

INVERSE POPULATION BALANCE EQUATION MODELING:
SENSITIVITY TO MEASUREMENT ERRORS

In this chapter, we consider an inverse PBE modeling method developed by [84] and

co-workers, which is based on the concept of self-similar solutions [52, 53, 85, 86]. Tran-

sient particle size distribution data is first tested for self-similarity, and then used for non-

parametric reconstruction of the functions for drop breakup and the creation of daughter

drops if the self-similarity property holds. This inverse PBE method has been applied to

both simulated and experimental data for various dispersions prepared with turbulent agita-

tion in well-mixed batch vessels [71,72,83,95,96,122]. Because different combinations of

single drop functions can provide agreement with the limited transient drop size distribu-

tion data typically available for estimation, the inverse problem is inherently ill-posed [84].

Consequently, function approximation results are expected to be highly sensitive to the

quality and quantity of the input data.

Techniques for measuring emulsion drop size distributions include optical microscopy

and various light scattering techniques. Dynamic light scattering (DLS) [97] allows for

measurement of droplets in the 10 -1000 nm range, and is ideal for many pharmaceutical

applications that target droplets in the 100 nm range. These small droplets cannot be ob-

served by optical microscopy. In addition, DLS enables much larger sample volumes to be

probed than is possible using optical microscopy. However, DLS measurements are subject

to various errors that degrade data quality like sensor noise. Because larger drops scatter

more strongly than small drops, DLS has a tendency to skew the size distribution towards

larger drops. Dust particles can introduce artificial peaks at large drop sizes that may be

difficult to remove. Automated signal filtering can inadvertently remove signals associated
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with large droplets, while emulsion sample filtering can induce changes in the the drop size

distribution due to shearing. The calculation of the autocorrelation function and subsequent

inversion to produce the particle size distribution involves binning operations that reduce

resolution. While numerous application studies of the inverse PBE approach have been

reported, we are not aware of any investigations focusing on the effects of such input data

errors.

In this chapter, we utilize a previously published model of a well-mixed batch emulsi-

fication vessel [96] to examine the effect of transient drop size distribution measurement

errors on the quality of the function approximation results obtained with the inverse PBE

method of Ramkrishna and co-workers. The remainder of the chapter is organized as fol-

lows. The PBE model and the inverse PBE method are described in sections 2.1 and 2.2,

respectively. New results on the sensitivity of the PBE method to input data errors are pre-

sented and discussed in section 2.3. Finally, we summarize our main findings and discuss

their implications for PBE modeling of drop size distributions in pharmaceutical emulsions

prepared with high pressure homogenization in section 2.4.

2.1 Population Balance Equation Model

The population balance equation (PBE) describes the evolution of the drop size distri-

bution that results from particulate processes such as formation, aggregation and breakup.

We utilize a volume structure model in which drops are characterised by their volume. The

population balance requires that for any volume element dv, the number of drops moving

in and out of the element are balanced by drops accumulating within the element. Let

n(v, t)dv represent the number of drops per unit volume of the dispersion at time t with

volumes between v and v+dv. We neglect drop coalescence by assuming a small dispersed

phase volume fraction and the presence of large amount of surfactant.

This formulation yields the following PBE for a well-mixed, batch vessel [19, 84]:
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dn(v, t)

dt
= −Γ(v)n(v, t) +

∫ ∞

v

β(v, v′)ν(v′)Γ(v′)n(v′, t)dv′ (2.1)

where Γ(v) is the breakage rate (fraction of drops of volume v breaking per unit time),

β(v, v′) is the probability density function (probability of forming drops of volume v from

breakage of drops of volume v′), and ν(v′) is the number of daughter drops formed by

breakage of drop of volume v′. The initial condition n(v, 0) is the number density of the

coarse emulsion introduced to the vessel and can be measured experimentally.

For application of the inverse modeling approach of Ramkrishna and co-workers [84],

the PBE model is conveniently reformulated in terms of the cumulative distribution rather

than the number distribution as in (2.1). In this case, the PBE for a pure breakage process

assumes the form:

∂F (v, t)

∂t
=

∫ ∞

0

Γ(v′)G(v, v′)∂vF (v′, t) (2.2)

where F (v, t) is the cumulative volume fraction of drops of volume less than or equal to

v at time t, Γ(v) is the breakage rate of drops of volume v, and G(v, v′) is the cumulative

volume fraction of drops of volume less than or equal to v formed by breakage of drop of

volume v′. The function G(v, v′) combines the two functions β(v, v′) and ν(v′) in (2.1).

The PBE model (2.2) is completed by specifying the breakage rate Γ(v) and the daugh-

ter drop distribution function G(v, v′). A wide variety of functional forms have been pro-

posed for dispersed phase systems [84]. In this chapter, we employ the functions introduced

in [96] for drop breakage in a well-mixed dispersion. While these functions were not de-

termined from experimental data, the inverse PBE method has been extensively studied

for this problem under the assumption of perfect input data. We will utilize these results

as the basis for assessing the impact of input data errors on the quality of the function

approximation results. The breakage rate function used in our analysis has the form [96]:

Γ(v) = 1.2 exp[0.12(ln v + 3.5)− 0.20(ln v)2 − 12.25] (2.3)
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The assumption of self-similarity allows the daughter drop distribution function to be rep-

resented compactly as:

G(v, v′) = g(x) = g

[
Γ(v)

Γ(v′)

]
(2.4)

We have used the following function in our analysis [96]:

g(x) =
8

3

√
x− 5

3
x0.8 (2.5)

2.2 Inverse Population Balance Equation Modeling

The objective of the inverse PBE modeling approach of Ramkrishna and co-workers [84,

Chpt. 6] is to construct functions for single particle processes from transient measurements

of the particle size distribution. A desirable feature of this methodology is that a priori

specification of functional forms is not required. The concept of self-similarity is exploited

repeatedly, starting with the assumption that the daughter drop distribution function can be

represented as a function of the breakage rate function as in (2.4). While this functional

form might appear to be highly restrictive, it subsumes power law relationships often used

to describe drop breakage processes [72, 96]. The interested reader is referred elsewhere

for a detailed treatment of self-similarity [84, Chpt. 6]. In this chapter, we investigate ap-

proximation of the breakage rate function Γ(v) and the daughter drop distribution function

g(x) from transient drop volume distributions obtained by simulating the PBE model (2.2)

with the functions in (2.3) and (2.4). This simulation approach allows direct comparison

of the approximated and actual functions to assess the impact of input data errors on the

effectiveness of the inversion procedure.

2.2.1 Breakage Rate Function

The calculation of the breakage rate function requires testing of the similarity hypothe-

sis and then determination of the breakage function if the similarity hypothesis is valid [84,
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96, Chpt. 6]. Curves of lnt versus lnv are plotted for different values of the cumulative dis-

tribution F . The similarity property can be tested by evaluating the arc lengths of different

lnt versus ln v curves using the following formula:

s(x) =

∫ x

x0

[
1 +

(
dy

dx

)2
]1/2

dx (2.6)

where x=lnv and y=lnt. The arc length calculation requires evaluation and integration of

the first derivative. If a single arc length curve is obtained from the different lnt versus

ln v curves, then the data is self-similar. Typically, self-similarity is validated by visual

inspection of the arc length curves. We found that each lnt versus lnv curve must be fit to

a different linear or quadratic equation to obtain acceptable results.

From the arc length equation (2.6), a relation for the complete lnt versus lnv curve can

be obtained:

d ln t

d ln v
=

[(
ds

d ln v

)2

− 1

]1/2

(2.7)

This relation can be used to evaluate the partial derivative in the following equation, which

allows calculation of the breakage function up to a multiplicative constant γ:

Γ(v) = γ exp

[
−

∫ ln v

ln v0

(
∂ ln t

∂ ln v

)

F

d ln v

]
(2.8)

where γ is the breakage function evaluated at the reference volume v0 used in the arc length

calculations: γ = Γ(v0). The unknown constant γ is determined as part of the procedure

for approximating the daughter drop distribution function.

2.2.2 Daughter Drop Distribution Function

The calculational procedure for the daughter drop distribution function utilizes the sim-

ilarity variable defined as:
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ξ =
Γ(v)t

γ
(2.9)

where the ratio Γ(v)/γ is obtained from the breakage rate calculation (2.8). Application

of the similarity transformation F (v, t) → f(ξ) to the cumulative form of the PBE (2.2)

yields the following equation for the similarity distribution ξf ′(ξ) [84, 96]:

ξf ′(ξ) =

∫ 1

0

ξ2

x3
f ′

(
ξ

x

)
γg(x)dx (2.10)

where x = Γ(v)/Γ(v′) as in (2.4). This equation is the basis for determining the daughter

drop distribution function g(x) and the unknown breakage constant γ.

As suggested in [96], the unknown product γg(x) is expanded in terms of orthogonal

basis functions chosen to be the modified Jacobi polynomials [1]:

γg(x) =
nb∑
i=1

ajGj(x) =
nb∑
i=1

ajx
µJj(x) (2.11)

Three basis functions were used for our analysis. We found that nb = 3 was the minimum

number of basis function required for approximating the distribution function without the

need for regularization [96]. Because ξf ′(ξ) ∼ ξµ for ξ ≈ 0, the power µ can be obtained

from the behavior of the self-similar distribution as ξ → 0. We found that small, trial-and-

error adjustments in this µ value may produce improved distribution predictions. Once the

product γg(x) is determined via the procedure described below, the constant γ is readily

determined since g(1) = 1.

The similarity variable ξ is discretized to generate {ξi} and the matrix X = {Xij}
associated with (2.10) is defined as:

Xij =

∫ 1

0

ξ2
i

x3
f ′

(
ξi

x

)
Gj(x)dx (2.12)

As suggested in [96], the similarity distribution ξf ′(ξ) was expanded in terms of gamma

distributions:
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ξf ′(ξ) =
nterm∑

k=1

Akξ
αk−1 exp(−βkξ) (2.13)

We used two-term expansions (nterm = 2) for our analysis. The unknown parameters (Ak,

αk, βk) of the expansion are determined from the known similarity distribution using non-

linear regression. By substituting the expansion (2.13) into (2.12) and performing the nec-

essary integration, an explicit formula for the elements Xij can be derived [96]:

Xij =
√

2j
nterm∑

k=1

Ak

j∑
m=1

(−1)m−1 (2j −m)!

(m− 1)!(j −m)!(j −m + 1)!
ξj−m+µ
i

γc(αk + m− j − µ, βkξi)

βαk+m−j−µ

(2.14)

where γc is the complementary incomplete gamma function.

Let the vector a contain the coefficients aj of the expansion (2.11) and define the vec-

tor Φ = {Φi} = ξif
′(ξi). Then the inverse problem arising from (2.10) can be written

as: Φ = Xa. This inverse problem is ill-posed in the sense that small changes in the

similarity distribution ξf ′(ξ) can induce large changes in the approximated function γg(x).

This difficulty is addressed by posing the inverse problem as a least-squares minimization

problem:

min
a∈<nb

||Xa− Φ|| (2.15)

that is solved subject to the following constraints on the daughter distribution function:

g(x) > 0, g′(x) ≥ 0, g′(1) = 0 (2.16)

The first two constraints ensure that the distribution function is positive and monotonically

increasing. The third constraint results from the assumption that breakup cannot produce
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daughter drops of near zero volume. The minimization problem equation (2.15) can be

rewritten as

min
a∈<nb

aT XT Xa− 2aT XT Φ (2.17)

The least-squares problem (2.17) is solved by enforcing the constraints (2.16) at each dis-

cretization point ξi [96].

2.3 Simulation Results and Discussion

The number distribution form of the PBE model (2.1) was solved numerically by ap-

proximating the integral expression using Simpson’s Rule with 500 equispaced node points,

which was sufficient to obtain a converged solution. This discretization method was used

primarily due to its simplicity and ease of implementation. The daughter drop distribution

function G(v, v′) (2.4) was converted to the form β(v, v′) used in the number distribution

PBE model. The resulting system of 500 nonlinear ordinary differential equations describ-

ing the evolution of the number distribution at each node point (vi) was solved using Matlab

integration code ode45. A single simulation run was used to generate transient drop vol-

ume distribution data for the initial coarse distribution:

n(v) =
1

σ
√

2π
exp

(
−a(v − µ)2

2σ2

)
=

1

50
√

2π
exp

[−5000(v − µ)2
]

(2.18)

Unless otherwise stated, the number distributions at six time points t = 5, 10, 15, 30, 60

and 90 minutes were converted to cumulative distributions for the inverse algorithm [96].

These time points were chosen to concentrate data at small times when rapid changes were

observed and to include a single data point at a large time when the cumulative distribution

was changing very slowly. In the subsequent figures, result at only 4 time points are shown

for better readability of the plots. For each test presented below, the cumulative distribu-
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tions were manipulated before being used as input data to the inverse algorithm to mimic

various types of measurement errors. Each data was judged to be self-similar by visual

inspection of the arc length curves and allowed application of the inversion procedure. The

approximate functions for the breakage rate Γ(v) and the daughter drop distribution g(x)

were compared directly to the actual functions. The impact of measurement errors were

further assessed by performing dynamic simulation with the approximate functions and

comparing the computed cumulative distributions with the original distributions obtained

with the actual functions.

2.3.1 “Perfect” Data

We first solved the inverse problem with six unaltered, transient drop volume distribu-

tions generated directly from the PBE model. This data was not manipulated by introducing

measurement errors and was used to determine the upper limit of estimation performance.

The term “perfect data” thus denotes data without any manipulation. Turbulent agitation

reduced the mean drop size and produced a more monodispersed emulsion than the orig-

inal coarse emulsion (Figure 2.1(a)). Good approximation results were obtained for both

the breakage rate and the daughter distribution function (Figure 2.1(b)) over a wide range

of drop volumes. PBE model simulation with the approximated functions produced good

agreement with the actual cumulative (Figure 2.1(c)) and number (Figure 2.1(d)) distribu-

tions).

We recalculated the cumulative distributions using two other combinations of the break-

age and daughter distribution functions to assess the impact of each function on prediction

accuracy. When the approximate breakage function was combined with the actual daughter

distribution function (Figure 2.2(a)), the cumulative distribution (t = 5 min) was skewed

towards larger drops for small drop volumes and skewed towards smaller drops for large

drop volumes. These errors were a direct result of the breakage rate (Figure 2.1(b)), which

was slightly underestimated for small drop volumes and overestimated for large drop vol-
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umes. When the approximate distribution function was combined with the actual breakage

function (Figure 2.2(b)), the cumulative distribution was skewed towards smaller drops for

small drop volumes. This trend was caused by the distribution function being skewed to-

wards smaller x values (Figure 2.1(b)), which corresponds to a larger distribution of small

drops.

The interpretation of results is more complicated when both approximate functions

were used to generate the cumulative distributions, which is the case of primary interest.

The individual errors obtained with the approximate breakage function (Figure 2.2(a)) and

the approximate distribution function (Figure 2.2(b)) were largely cancelled when the ap-

proximate functions were combined to generate the final distribution (Figure 2.2(c)). How-

ever, the effects of the approximation errors were more evident in the transient prediction

(Figures 2.1(c), 2.1(d)). The distributions were skewed towards smaller drops at small

times due to underprediction of the distribution function, while they were skewed towards

larger drops at large times due to underprediction of the breakage rate.

2.3.2 Noisy data

To investigate the impact of measurement noise, we corrupted the drop volume distri-

bution data with artificial noise as follows:

n̄(v, t) = n(v, t) + ν(r − 0.5)n(v, t) (2.19)

where n(v, t) is the number distribution data obtained with the actual functions (see Fig-

ure 2.1(a)), r is a random number between 0 and 1, ν = 0.3 and n̄(v, t) is the noisy number

distribution data used to generate the input data for the inverse algorithm. We utilized uni-

form rather than normal noise to ensure that the noisy data n̄(v, t) remained positive, which

is expected from any measurement device.

First we solved the inverse problem with six cumulative distributions generated from the

noisy number distributions at t = 5, 10, 15, 30, 60, and 90 minutes (Figure 2.3(a)). Figure
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2.4(a) shows the associated cumulative distributions. The noisy cumulative distributions

had fewer large drops than the noise-free distributions, leading to underestimation of the

breakage rate at large drop volumes (Figure 2.3(b)). More difficult to explain was the

behavior of the daughter distribution function, which produced a larger number distribution

of small drops and a smaller number distribution of large drops than the actual function

(Figure 2.3(b)). These approximation errors were manifested in the predicted cumulative

(Figure 2.3(c)) and number (Figure 2.3(d)) distributions. Both functions were important

at short times, thereby yielding overprediction of small drops and underprediction of very

large drops. At longer times the breakage rate became dominant, and a larger proportion of

large drops was predicted compared to the original noise-free data.

We repeated the noisy data test with twelve cumulative distributions generated from the

noisy number distributions at t = 5, 7.5, 10, 12.5, 15, 22.5, 30, 45, 60, 75, 90 and 105 min-

utes with the expectation that more transient data would improve the function approxima-

tion results. The daughter distribution function was significantly improved, while the break-

age rate was slightly degraded (Figure 2.4(b)). Consequently, only modest improvements

in transient distribution predictions at short times were obtained (Figure 2.4(c), 2.4(d)). Be-

cause the noisy cumulative distributions were skewed towards smaller drops, these results

suggest that the collection of more transient data will prove largely ineffective if the data is

uniformly skewed.

2.3.3 Skewed Data

Available technologies such as dynamic light scattering (e.g. [97]) have a tendency to

skew measured drop size distributions. To examine the impact of such measurement errors,

we skewed the drop volume distribution data as follows:

n̄(v, t) = n(v̄, t), v̄ = v ± δv (2.20)
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where n(v, t) is the number distribution data obtained with the actual functions (Figure

2.1(a)), v̄ is the skewed volume. δ determines the amount of skewness, the sign determines

the direction of skewness, either towards smaller drops (negative) or larger drops (positive),

and n̄(v, t) is the skewed distribution. Skewed distributions at t = 5, 10, 15, 30, 60,and 90

minutes were used as input data to the inverse algorithm.

First, we examined skewing towards larger drops with δ = +0.0005, which produced

number distributions that increasingly deviated from the original distributions at large drop

volumes (Figure 2.5(a)). Substantial underestimation of the breakage rate was observed,

while only small errors were obtained in the daughter distribution function (Figure 2.5(b)).

The predicted cumulative distributions consistently trailed the actual distributions (Fig-

ure 2.5(c)) in that the number of large drops was generally overpredicted. This behavior is

easily interpreted from the number distribution predictions (Figure 2.5(d)), which show an

overprediction of small drops at small times and a consistent overprediction of large drops.

Next, the number distributions were skewed towards smaller drops with δ = − 0.0005.

Because the number distributions were more skewed towards small drops at large drop vol-

umes (Figure 2.6(a)), the breakage rate function only agreed with the actual function at

very small drop volumes (Figure 2.6(b)). Interestingly, the daughter distribution was signif-

icantly underestimated except at large drop volumes where the data was most skewed (Fig-

ure 2.6(b)). The predicted cumulative distributions led the actual distributions until the ap-

proximate breakage function approached the actual function at large times (Figure 2.6(c)).

The predicted number distributions produced a larger number of small drops than the ac-

tual distributions (Figure 2.6(d)), which was consistent with overprediction of the breakage

rate.

2.3.4 Dust Particles

Drop size distribution measurements produced by dynamic light scattering are sensi-

tive to contaminants such as dust particles that create artificial peaks at large drop sizes [97].
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For emulsions, dust particles are not easily removed by filtering because shearing can cause

drop breakage. While dust peaks can be eliminated by restricting the size range analyzed,

this approach requires a priori knowledge about the drop size distribution. Therefore, we

investigated the effect of artificial peaks in the number distribution data at large drop vol-

umes. For simplicity, a single peak was assumed to be normally distributed about a large

drop volume and to remain constant with time (Figure 2.7(a)). This peak caused significant

underestimation of the breakage rate (Figure 2.7(b)) and produced a daughter distribution

that predicted a larger proportion of small drops (Figure 2.7(b)). The tradeoff between

these two errors was evident in the predicted cumulative (Figure 2.7(c)) and number (Fig-

ure 2.7(d)) distributions, where the daughter distribution function was dominant for small

drop volumes and the breakage rate function was dominant for large drop volumes. The

breakage function became dominant at longer times when the predicted distributions trailed

the actual distributions due to underestimation of drop breakage.

2.3.5 Binned Data

In the previous simulation tests, the distribution data was essentially a continuous func-

tion of the drop volume due to the large number (500) of node points used for numerical

solution. By contrast, drop size distributions measured by dynamic light scattering (DLS)

have limited resolution due to binning operations. We have used DLS (Brookhaven Instru-

ments) to measure drop size distributions for mineral oil (≈ 0.04 wt%) in water emulsions

with Pluronic F-68 (≈ 0.008 wt%) as the surfactant. Initial coarse emulsions prepared us-

ing a stator-rotor device (Ultra-Turrax, T 25 basic, IKA Works, Inc.) were introduced to

a high pressure homogenizer (Emulsiflex C-3, Avestin, Inc.) operated at 25,000 psig. The

mean and variance of the coarse drop size distribution (Figure 2.8(a)) were significantly re-

duced by a single homogenization pass (Figure 2.8(b)). However, the instrument produced

low resolution distributions due to the small number of bins used.
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We conducted a final set of simulation tests to investigate the impact of drop size bin-

ning on the inverse algorithm. Number drop distributions were used as input data by hold-

ing the distribution constant at the mean volume across each bin. Each number distribution

was converted to a cumulative distribution from which volume values were interpolated to

generate the ln t vs ln v plots. Then the inversion procedure was implemented as described

earlier. Initially, 10 bins were used to mimic the DLS experimental results (Figure 2.9(a)).

The breakage rate was underestimated at large drop volumes, and the daughter distribution

function exhibited errors at intermediates volumes (Figure 2.9). Consequently, the pre-

dicted cumulative distributions (Figure 2.9(c)) trailed the actual continuous distributions.

The number distributions (Figure 2.9(d)) showed that a greater number of large drops are

predicted due to the underestimation of the breakage rate.

We repeated the test with 50 bins to determine if the continuous data results could be re-

covered (Figure 2.10). While the breakage rate was estimated slightly more accurately than

with 10 bins, the daughter distribution function exhibited larger errors at large drop volumes

(Figure 2.10). As a result, the predicted cumulative distributions (Figure 2.10(c)) were only

slightly improved compared to ten bins (Figure 2.9) and significantly degraded compared

to continuous data (Figure 3.5). The number distributions (Figure 2.10(d)) showed un-

derprediction of small drops and overprediction of large drops, especially at long times.

To validate the binning procedure, we repeated the test with 200 bins (Figure 2.11). The

breakage rate and daughter distribution functions (Figure 2.11), the cumulative distribu-

tions (Figure 2.11(c)), and the number distributions (Figure 2.11(d) compared favorably to

those obtain with continuous data (Figure 3.5). Very close agreement was obtained when

500 bins were used (results not shown). Taken together, these results suggest that the in-

verse method can be rather sensitive to data binning.
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2.4 Conclusions and Future Work

We investigated the impact of measurement errors in transient particle size distribu-

tions on the inverse population balance equation modeling method of Ramkrishna and co-

workers. A previously published model of liquid-liquid dispersion drop volume evolution

in a turbulently agitated batch vessel was used to generate transient distribution data, which

were subjected to various types of errors before being used as input data to the inverse al-

gorithm. The quality of the inversion results were assessed by comparing the estimated

breakage rate and daughter distribution functions, as well as predicted distributions, to the

original model.

We found that most errors considered degraded estimation of the breakage rate function

at large drop volumes, presumably due to the limited data available for large drops in the

transient distributions used as input data. The daughter distribution function also exhibited

significant errors for most of the cases considered. However, the breakage function, and

to a lesser extent the distribution function, often showed good agreement with the actual

functions at small drop volumes. Consequently, predicted distributions tended to be more

accurate at longer times when there was a preponderance of small drops due to repeated

breakage. Our results suggest that the inverse algorithm can generate PBE functions that

allow sufficiently accurate prediction of final drop size distributions despite errors in mea-

sured distributions used as input data.

Our long-term goal is to develop inverse-based methods for extracting PBE model func-

tions of emulsion drop breakage and coalescence in high-pressure homogenization. This

future work will require modification of the inverse method presented because homoge-

nization is not properly modeled as a well-mixed, batch process. However, the sensitivity

analysis techniques presented in this chapter will provide a suitable framework for assess-

ing the impact of distribution measurement errors on the inversion procedure.
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Figure 2.1. Inverse population balance modeling results for perfect drop volume distribu-
tion data. (a) Transient number drop distributions. (b) Predicted and actual drop breakage
rate and daughter drop distribution functions. (c) Predicted and actual transient cumulative
drop distributions. (d) Predicted and actual transient number drop distributions.
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Figure 2.2. Effect of the drop breakage and daughter drop distribution functions on the
predicted cumulative distribution (t = 5 min). (a) Estimated breakage function and actual
distribution function. (b) Actual breakage function and estimated distribution function. (c)
Estimated breakage and distribution functions.
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Figure 2.3. Inverse population balance modeling results with six noisy drop volume dis-
tributions. (a) Noisy and actual transient number drop distributions. (b) Predicted and
actual drop breakage rate and daughter drop distribution functions. (c) Predicted and ac-
tual transient cumulative drop distributions. (d) Predicted and actual transient number drop
distributions.
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Figure 2.4. Inverse population balance modeling results with twelve noisy drop volume
distributions. (a) Noisy and actual transient cumulative drop distributions. (b) Predicted
and actual drop breakage rate and daughter drop distribution functions. (c) Predicted and
actual transient cumulative drop distributions. (d) Predicted and actual transient number
drop distributions.
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Figure 2.5. Inverse population balance modeling results with transient drop volume distri-
butions skewed towards larger drops. (a) Skewed and actual transient number drop distribu-
tions. (b) Predicted and actual drop breakage rate and daughter drop distribution functions.
(c) Predicted and actual transient cumulative drop distributions. (d) Predicted and actual
transient number drop distributions.
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Figure 2.6. Inverse population balance modeling results with transient drop volume dis-
tributions skewed towards smaller drops. (a) Skewed and actual transient number drop
distributions. (b) Predicted and actual drop breakage rate and daughter drop distribution
functions. (c) Predicted and actual transient cumulative drop distributions. (d) Predicted
and actual transient number drop distributions.
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Figure 2.7. Inverse population balance modeling results with transient drop volume distri-
butions skewed by dust peak. (a) Skewed transient number drop distributions. (b) Predicted
and actual drop breakage rate and daughter drop distribution functions. (c) Predicted and
actual transient cumulative drop distributions. (d) Predicted and actual transient number
drop distributions.
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Figure 2.8. Drop size distribution measurements obtained with dynamic light scattering
for a mineral oil in water emulsion with Pluronic F-68 as the surfactant. (a) Results for a
coarse emulsion obtained with a stator-rotor device. (b) Results for a processed emulsion
obtained with a single pass of a high-pressure homogenizer.
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Figure 2.9. Inverse population balance modeling results with transient drop volume distri-
butions represented by 10 bins. (a) The binned transient number drop distribution at t = 5
min. (b) Predicted and actual drop breakage rate and daughter drop distribution functions.
(c) Predicted and actual transient cumulative drop distributions. (d) Predicted and actual
transient number drop distributions.
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Figure 2.10. Inverse population balance modeling results with transient drop volume dis-
tributions represented by 50 bins. (a) The binned transient number drop distribution at t =
5 min. (b) Predicted and actual drop breakage rate and daughter drop distribution functions.
(c) Predicted and actual transient cumulative drop distributions. (d) Predicted and actual
transient number drop distributions.
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Figure 2.11. Inverse population balance modeling results with transient drop volume dis-
tributions represented by 200 bins. (a) The binned transient number drop distribution at t =
5 min. (b) Predicted and actual drop breakage rate and daughter drop distribution functions.
(c) Predicted and actual transient cumulative drop distributions. (d) Predicted and actual
transient number drop distributions.

50



CHAPTER 3

EXPERIMENTAL STUDIES AND POPULATION BALANCE
EQUATION MODELS FOR BREAKAGE PREDICTION OF

EMULSION DROP SIZE DISTRIBUTIONS

In this chapter, we develop a PBE model for pure drop breakage processes by fitting

model parameters to data collected from high-pressure homogenization experiments and

evaluate model extensibility over a range of emulsion formulation and homogenizer op-

erating variables. Homogenizer flow regimes are investigated using computational fluid

dynamics (CFD) to better understand relevant drop breakage mechanisms and to motivate

development of two mechanistic breakage functions. Nonlinear least-squares optimization

is used to estimate adjustable parameters in breakage rate functions from measured drop

volume distributions. Model extensibility is evaluated by comparing predictions generated

with the base case parameters to drop volume distributions measured for different dispersed

phase volume fractions, interfacial tensions, continuous phase viscosities, and homogenizer

pressures.

3.1 Experimental Methods

3.1.1 Materials

We used soybean oil (Spectrum Organic) as the dispersed phase, nanopure water as

the continuous phase, and the non-ionic surfactant Pluronic F-68 (Sigma Aldrich) as the

emulsifier. The base case emulsion consisted of 0.5wt% oil and 0.1wt% surfactant with

the remainder water (Table 3.1). Relatively low oil and high surfactant concentrations

were used to minimize the possibility of coalescence, an assumption tested experimentally
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through a specific coalescence experiment (see section 3.3.2). Emulsions were prepared

at concentrations different than the base case listed in Table 3.2 to test extensibility of the

PBE model for varying bulk emulsion properties. The dispersed phase volume fraction

was changed by adjusting the amount of oil, and the interfacial tension was changed by

adjusting the amount of surfactant. To change the continuous phase viscosity, varying

amounts of sucrose (Fisher Scientific) were added to the nanopure water.

3.1.2 Emulsion Preparation

Emulsions were prepared using a two-step process. First about 100 ml of coarse pre-

emulsion was prepared by mixing the chemical ingredients in a stator-rotor device (Ultra-

Turrax Model T25, Rose Scientific Ltd.) at 13000 rpm for 1 minute (Table 3.1). Approxi-

mately 5 ml of the pre-emulsion was sampled for measuring the drop size distribution (see

below). The pre-emulsion was then processed in a high-pressure homogenizer (Emulsiflex

C-3, Avestin Inc.) where the liquid was pressurized to 10000 Psig (68.95 MPa) and then

expanded through a narrow valve gap to create turbulent shear conditions favoring drop

breakage. Multiple passes each approximately 2 min long were performed by reprocessing

the emulsion obtained from the previous homogenizer pass. Five passes were performed

for each experiment, and after each pass 5 ml of the emulsion was sampled for drop size

distribution measurement. Experiments were also performed at different pressures (5000–

20000 Psig) than the base case value to test extensibility of the PBE model (Table 3.2).

3.1.3 Emulsion Characterization

Drop size distributions were measured using a static light scattering device (Coulter

LS230 Particle Size Analyzer, Beckman Coulter). Optical microscopy (Olympus IX71

Inverted Microscope, Olympus) at a magnification of 20x and 40x was used to visually

analyze drop sizes. Oil-water interfacial tensions were measured by drop shape analy-

sis (KRUSS Instruments Model DSA-10 Tensiometer, KRUSS) at 25oC. Continuous and

dispersed phase viscosities were measured using a Ubbelohde type capillary viscometer
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(Model CT-1000, Canon Instruments Company) at 25oC. We found that large amounts of

added sucrose designed to vary the continuous phase viscosity also slightly changed the

interfacial tension. This issue is discussed further in the results section.

3.2 Theory

3.2.1 Computational Fluid Dynamics

A computational fluid dynamics (CFD) study was performed to better understand the

flow field near the homogenizer valve. Because our goal was to identify possible turbulent

mechanisms for drop breakage rather than to model the effects of inhomogeneous flow

fields on drop breakage, the CFD computations were performed separately from the PBE

model solution. The interested reader is referred elsewhere for CFD studies in which the

PBE model is coupled to the flow field calculations [25, 32, 43, 46, 121].

Because our intention was to analyze bulk flow fields and not to track droplets, only

continuous phase properties were considered under the assumption that the flow proper-

ties of our very dilute emulsions were dictated by the continuous phase fluid (water). The

CFD analysis was restricted to a two-dimensional axisymmetric representation of the ho-

mogenizer valve near the narrow gap shown in Figure 3.3 [45, 57, 69]. The geometry was

meshed using Gambit v2.2.30, and the flow field calculations were performed using Flu-

ent v6.2.16 [34]. Interactions between the water liquid and vapor phases were captured

using the Fluent cavitation model. The standard k-ε model was used for turbulence with

no-slip boundary condition at the walls, and pressure-velocity coupling was captured using

the SIMPLEC algorithm. A constant velocity of 0.42 m/s calculated from the homogenizer

flow rate and the valve gap was introduced normal to the inlet plane, and the outlet pressure

was set to 950 psig (6.5 MPa) since only a truncated section of the homogenizer was con-

sidered. The numerical solution was considered converged when the normalized residuals

were less than 10−5 and subsequent iterations did not change the flow field results.
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3.2.2 Population Balance Equation Model

The analysis in this chapter is restricted to pure breakage processes under the assump-

tion of negligible drop coalescence [99]. Under this assumption, the population balance

equation for a batch system can be written as [16, 18, 19],

∂n(v, t)

∂t
= −g(v)n(v, t) +

∫ ∞

v

β(v, v′)ν(v′)g(v′)n(v′, t)dv′ (3.1)

where: n(v, t)dv is the number of drops with volume in the range [v, v + dv] per unit vol-

ume of the dispersion; g(v) is the breakage rate representing the fraction of drops of volume

v breaking per unit time; ν(v) is the number of daughter drops formed by breakage of a

mother drop of volume v; and β(v, v′) is the daughter drop distribution function represent-

ing the probability of forming a daughter drop of size v from breakage of a mother drop of

size v′. We model the high-pressure homogenizer as a well-mixed batch system in which

the initial drop volume distribution is the measured distribution of the coarse pre-emulsion,

and each pass corresponds to one dimensionless time unit. Our particle size analyzer pro-

vided measurements of the volume percent distribution np(v, t) rather than the number

density n(v, t) as in PBE model (3.1). Consequently, the PBE model was reformulated in

terms of volume percent distribution using the following relation based on the assumption

of spherical drops consistent with experiments,

n(v, t) =
Vtotnp(v, t)

v
(3.2)

where Vtot is the conserved total volume of the drops. Simple manipulations produced the

following alternative form of the PBE model:

∂np(v, t)

∂t
= −g(v)np(v, t) + v

∫ ∞

0

g(v′)ν(v′)β(v, v′)np(v
′, t)

v′
dv′ (3.3)

The PBE model (3.3) contains three breakage kernels (g(v), β(v, v′), ν(v)) that must be

specified to generate predictions. To our knowledge, mechanistic functions are not avail-

able for the number of drops formed upon breakage ν(v) and the daughter drop distribution
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β(v, v′). Although the breakage of mother drops into multiple daughter drops has been re-

ported by some investigators [50,95,109,113], we have assumed binary breakage such that

ν(v) = 2 for simplicity and to examine the possible limitations of assuming that multiple

breakage events can be modeled as a series of binary breakage events. We further assumed

that β(v, v′) follows the truncated normal distribution such that breakage has the highest

probability of forming two equally sized daughter drops [63, 92, 101]:

β(v, v′) =
2.4

v′
exp

[
− 4.5

(2v − v′)2

(v′)2

]
(3.4)

We limited our consideration of the breakage rate g(v) to two mechanistic functions

that explicitly depend on the physical properties of the emulsion and allowed the resulting

PBE models to account for chemical composition variations. The first function g1(v) is a

modified version of two previously proposed functions [18,19] which were derived assum-

ing that breakage results from drop collision with turbulent eddies. Unlike the breakage

function proposed by Chen et al. [18], our function does not account for the small effect of

the dispersed phase viscosity, but the breakage time tB is assumed to be dependent on drop

volume rather than being constant:

tB = c1v
2/9

(
ε

ρd

)−1/3

(3.5)

The breakage function was specialized to high-pressure homogenizers by using the fol-

lowing relation between the energy dissipation rate ε and the homogenization pressure

P [9, 10, 27, 28, 116]:

ε = c2P
3/2v−1/3ρ

−3/2
d (3.6)

Following the procedure in Chen et al. [18], the following breakage rate function was

derived,
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g1(v) = K1v
−1/3P 1/2ρ

−1/2
d exp

[
−K2σ(1 + φ)2

v1/3P

]
(3.7)

where K1 and K2 are parameters determined from measured drop size distributions (see

below). Note that the breakage rate depends on the homogenizer pressure P and bulk

emulsion properties including the dispersed phase volume fraction φ, the dispersed phase

density ρd, and the interfacial tension σ.

The second breakage rate function g2(v) accounts for drop breakage resulting from

turbulent shear. The derivation shown in the Appendix A produces the following functional

form,

g2(v) = K3

(
2

π

)1/2
(

P 3/4

η
1/2
d ρ

1/4
d v1/6

)
exp

(
−2K4σ

2λ

ηcP 3/2ρ
−1/2
d v1/3

)
(3.8)

where λ = ηd

ηc
and K3 and K4 are adjustable constants. In addition to depending on the

same emulsion properties as g1(v), the turbulent shear function g2(v) also depends on the

continuous phase viscosity ηc and the dispersed phase viscosity ηd.

A variety of numerical techniques have been developed for solving PBE models of

particulate processes [25, 32, 52, 84]. In this study, the PBE model (3.3) was solved nu-

merically by approximating the integral expression using Simpson’s Rule with 100 equally

spaced node points. The resulting system of 100 nonlinear ordinary differential equations

describing the time evolution of the volume percent distribution at each node point was

solved using the Matlab integration code ode45. The measured distribution of the coarse

pre-emulsion was used as the initial condition np(v, 0).

3.2.3 Parameter Estimation

The constants K1–K4 in the breakage rate functions (3.7) and (3.8) were estimated

from drop volume distribution measurements using a systematic nonlinear optimization

procedure rather than an inefficient trial-and-error procedure. The data available for param-

eter estimation consisted of measured bulk emulsion properties (φ, σ, ρd, ηd, ηc) and drop
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volume distribution measurements for the coarse pre-emulsion n(v, 0) and the processed

emulsion obtained after the ith homogenizer pass n(v, i). In addition to approximating

the integral expression with Simpson’s rule, the PBE model (3.3) was spatially and tem-

porally discretized to produce a large set of nonlinear algebraic equations suitable for the

application of constrained optimization codes. Spatial discretization in the volume space

was performed using a finite difference approximation with 100 node points. Temporal dis-

cretization was performed using orthogonal collocation on finite elements where each pass

corresponded to a single finite element and 2 internal collocation points were employed

within each finite element. We found that additional spatial node points, finite elements,

and/or collocation points had a negligible effect on the parameter estimates but increased

the computational effort significantly.

The parameter estimation problem was posed as the constrained minimization of the

following least-squares objective function,

Ψ =
N∑

i=1

n∑
j=1

[n̂p(vj, i)− np(vj, i)]
2

[np(vj, i)]2
(3.9)

where np(vj, i) is the measured value of the drop volume distribution at drop volume vj and

homogenizer pass i, n̂p(vj, i) is corresponding predicted value from the PBE model (3.3),

n is the total number of spatial node points, and N is the number of passes. The objective

function was minimized subject to a large number of equality constraints representing the

discretized model equations and continuity conditions across the finite elements. The deci-

sion variables in optimization problem were the constants K1 and K2 if g(v) = g1(v), the

constants K3 and K4 if g(v) = g2(v), or the four constants K1–K4 if g(v) = g1(v) + g2(v).

The optimization problem was formulated in AMPL [29] and solved using the nonlinear

program code CONOPT. For some cases, multiple data sets were used and the objective

function Ψ included a third sum over the data sets. Relative values of the objective func-

tion were used to judge the quality of model predictions.
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3.3 Results and Discussion

3.3.1 Homogenized Drop Volume Distributions

We prepared 5 sample emulsions at the base case conditions (Table 3.1), performed 5

homogenization passes for each sample, and measured the drop volume distribution after

each pass for each sample to analyze data reproducibility. The maximum standard deviation

in the measured drop size distribution based on five repeats for any pass was about 9%,

indicating that the experimental procedure and the distribution measurements were quite

reproducible.

Figure 3.1(a)a shows a representative set of drop distribution measurements for the base

case conditions. The pre-emulsion produced a bimodal distribution with the two peaks ex-

hibiting large differences in drop diameter. Successive homogenizer passes had the effect

of reducing the volume percentage of large drops, increasing the percentage of small drops,

and sharpening the two peaks. The peak diameter of larger drops was noticeably reduced

with successive passes, while the peak diameter of smaller drops remained roughly constant.

Each pass produced a smaller relative change in the distribution, indicating that the break-

age rate decreased with decreasing drop size. Figures 3.1 (b–d) show optical microscopy

images at 20x magnification of the pre-emulsion, the first pass, and the fifth pass, respec-

tively. The images were consistent with the measured drop distributions, with subsequent

passes producing a larger fraction of small drops and all three samples having a noticeable

bimodal nature.

3.3.2 Recoalescence Test

The PBE model (3.3) used in this study is based on the assumption of negligible drop

coalescence in the homogenizer. The term recoalescence is used to denote coalescence

occuring in the homogenizer from newly formed drops. While the base case emulsion

(Table 3.1) was formulated to have a low dispersed phase volume fraction and a high sur-

factant concentration to minimize recoalescence, we performed a targeted experiment to
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test this assumption. A base case emulsion was prepared and successively homogenized

for six passes at 10000 psig (68.95 MPa) until the Sauter mean diameter and drop distribu-

tion remained approximately constant, at which time the rates of drop breakage and drop

coalescence (if present) were expected to be equal. The sample obtained after the sixth pass

at 10000 psig was reprocessed with five additional passes at 5000 psig (34.47 MPa), which

was expected to produce a reduced breakage rate and an increased coalescence rate if sig-

nificant recoalescence was occurring. If the mean diameter and drop volume distribution

remained approximately constant after successive passes at 5000 psig, then the coalescence

rate was judged to be negligible relative to the breakage rate.

Figures 3.2(a) and 3.2(b) show the results of this experiment, with the six passes at

10000 psig (68.95 MPa) labeled H10K-1–H10K-6 and the five passes at 5000 psig labeled

H5K-1–H5K-5. Convergence of the Sauter mean diameters and the drop distributions sup-

port the assumption of negligible coalescence at the base case condition. While this as-

sumption was not validated for the other conditions studied, we were confident that the

coalescence rate remained small. We also calculated the theoretical surface load from mea-

sured values of the interfacial tension versus surfactant concentration. The ratio of the

adsorption to collision time scale [117] shown below provides a qualitative measure of the

extent of recoalescence,

τads

τcoll

=
6πΓφ

dCs

(3.10)

where Γ is the surface load and Cs is surfactant concentration. For negligible recoalescence,

the ratio of τads/τcoll should be less than 1. At our base case conditions this ratio was in the

range of 0.15− 0.3, further indicating that recoalescence is negligible.

3.3.3 Computational Fluid Dynamics

Figure 3.3 shows CFD results for the homogenizing valve and the truncated section near

the valve that constituted the domain for flow field calculations. Although not included in
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our simple PBE model, the CFD calculations indicated strong spatial heterogeneities over

the homogenizer domain. The contours demonstrated that the turbulence intensity was

large in and at the exit of the valve gap and comparatively small elsewhere. Reynolds num-

bers in the range of 2000-4000 were calculated for most of the gap section, indicating the

presence of a turbulent flow field. These results suggested that turbulence is an important

mechanisms for drop breakage in the gap region and provided a mechanistic basis to apply

the breakage rate functions (3.7) and (3.8) to our system.

3.3.4 Base Case Parameter Estimation

We performed parameter estimation for the base case emulsion (Table 3.1) to better

understand the relevant mechanisms for drop breakage. First parameter estimation was

performed using the breakage rate function g1(v) (3.7) derived under the assumption that

breakage results from drop collision with turbulent eddies. Measured drop volume distri-

butions for the pre-emulsion and for the five processed emulsions sampled after each pass

were used to estimate the unknown constant K1 and K2. Figure 3.4(a) shows the resulting

dependence of g1(v) on the drop diameter. The breakage function exhibited a maximum

rate at a drop diameter of approximately 5 µm, suggesting reduced breakage for very large

drops, and small breakage rates below 1 µm, indicating negligible breakage of small drops.

The corresponding drop distribution predictions are shown in Figure 3.4(b) along with the

objective function value Ψ. The parameterized PBE model generated poor predictions,

with the peak for larger drops poorly tracked and the movement of the peak for smaller

drops not captured whatsoever due to the negligible breakage rates predicted at small drop

sizes. The decreasing breakage rate above 5 µm appeared to have a relatively small effect

on drop distribution predictions as the model emulsions had only a small number of such

large drops.

Next parameter estimation was performed to determine the constants K3 and K4 of the

breakage rate function g2(v) (3.8) derived under the assumption that turbulent shear was
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the primary mechanism for drop breakage. The results (Figure 3.5(a)–3.5(b)) were very

similar to those obtained for the other breakage function. The optimizer determined that

the objective function Ψ was minimized by placing the breakage rate peak at a relatively

large drop diameter due to the greater contribution of the large drop region to Ψ. As a

result, very little breakage of small drops was predicted and the experimentally observed

movement of the smaller drop peak could not be tracked. These results demonstrated that

neither of two breakage rate functions alone could capture experimentally observed trends

and suggested that some relevant physics were not modeled.

Although the large deviations observed between experimental and predicted drop dis-

tributions could be attributed to other factors, we investigated the possibility that the two

turbulent breakage mechanisms were simultaneously active. For this case, the breakage

rate function g(v) = g1(v) + g2(v) and the four constants K1–K4 were estimated. We

found that the optimizer could converge to two locally optimal solutions that produced

identical Ψ values depending on the initial parameter guesses. Each solution produced

a slightly bimodal breakage function, with the first peak for small drops corresponding

to one function and the second peak for large drops corresponding to the other function.

The solutions differed according to which function corresponded to which peak. Based

on timescale arguments presented in Appendix B, we determined that the more physically

meaningful solution was g1(v) representing the first peak and g2(v) representing the second

peak (Figure 3.5(c)). The combined breakage function produced much closer agreement to

the experimental data (Figure 3.5(d)) than either function alone, as reflected by the smaller

Ψ value (0.202 versus 0.414 in Figure 3.4(b). The movement of both peaks in the drop dis-

tribution was qualitatively captured, although noticeable differences between the measured

and predicted distributions remained. We judged these base case modeling results to be

acceptable.
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3.3.5 PBE Model Extensibility

We sought to investigate the extensibility of the PBE model with the combined breakage

rate function to conditions other than the base case. The dispersed phase volume fraction

(φ), the interfacial tension (σ), the continuous phase viscosity (ηc), and the homogenizer

pressure (P ) were varied from their base case values (Table 3.1) to determine if the K1–K4

values estimated from the base case data could produce satisfactory drop distribution predic-

tions over a range of conditions. For each case, the four parameters were also re-estimated

from a combined data set that included variations in the associated emulsion property or

the homogenizer pressure to determine if improved predictions could be generated.

First we compared experimental and predicted values of the De Brouckere mean mo-

ment diameter d43 [68] to determine if the PBE model could capture the general trends

observed experimentally. The mean diameter d43, which is defined as the ratio of the fourth

moment over the third moment of the drop distribution, provides a meaningful scalar mea-

sure of the mean diameter for the bimodal distributions observed in our data sets. To

investigate the effect of the dispersed phase volume fraction (φ), the oil concentration was

reduced by 50% (φ = 2.78×10−3) and increased by 200% (φ = 0.0112) and 400% (φ =

0.0228) from the base case value (φ = 5.59×10−3). The experimental (Figure 3.6(a)) and

predicted (Figure 3.6(b)) results show good agreement, demonstrating that the model can

capture trends in φ. The effect of the interfacial tension (σ) was examined by varying the

surfactant concentration by 50% (σ = 14.32 mN/m), 200% (σ = 13.06 mN/m), and 300% (σ

= 12.68 mN/m) from the base case value (σ = 13.68 mN/m). The model (Figure 3.6(d)) cap-

tured the decreasing mean diameter observed experimentally (Figure 3.6(c)) for increasing

surfactant concentration.

The continuous phase viscosity (ηc) was increased from its base value (ηc = 1 cP) by

adding varying amounts of sucrose to the water. While the model (Figure 3.7(b)) cap-

tured the decreasing mean diameter observed experimentally (Figure 3.7(a)) for increasing

continuous phase viscosity, the results for the largest value (ηc = 1.3 cP) were only qual-
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itatively correct. The homogenizer pressure (P ) was varied over the range 5000–20000

Psi (34.47–137.9 MPa), with the nominal value being P = 10000 Psi. The model (Figure

3.7(d)) reproduced the experimental trend (Figure 3.7(c)) that the mean diameter decreased

with increasing pressure. However the predicted results show significant errors, especially

for the lowest pressure (P = 5000 Psi). Taken collectively, these results suggested that the

functional dependencies of the combined breakage rate functions g(v) was reasonable but

that quantitative predictions with the base case model parameters may be difficult. Below

we further examine this issue by analyzing results for the full drop size distribution.

Dispersed phase volume fraction

The base case dispersed phase volume fraction was reduced by half (φ = 2.78×10−3)

and doubled (φ = 0.0112) by changing the oil concentration. Drop distributions predicted

with the base case parameter values are compared to experimentally measured distributions

in Figures 3.8(a) and 3.8(c). Also shown are objective function Ψ values calculated directly

from (5.15). For the reduced φ value, re-estimation of the K1–K4 parameters did not

provide any improvement in prediction accuracy (Figure 3.8(b)). By contrast, re-estimation

produced significant improvement for the increased φ value (Figure 3.8(d)). We concluded

that the functional dependence of the breakage rate on the dispersed phase volume fraction

was reasonable, but that parameter estimation with data generated for varying φ would be

necessary to more accurately predict the effect of this formulation variable.

Interfacial tension

The base case surfactant concentration was reduced by half and doubled, and the result-

ing changes in the interfacial tension σ were measured to be 14.32 mN/m and 13.06 mN/m,

respectively. Comparison of predicted drop distributions obtained with the base case pa-

rameter values and experimentally measured distributions showed that the PBE model was

better able to predict the effects of surfactant concentration increases (Figures 3.9(a) and

3.9(c)). Re-estimation of the K1–K4 parameters produced small decreases in the objective
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function values at the expense of degraded distribution predictions at large drop diameters

and eventual disappearance of model bimodality (Figures 3.9(b) and 3.9(d)). We concluded

that the PBE model satisfactorily accounted for surfactant concentration changes, but that

parameter estimation with data generated for varying σ may not improve predictive capa-

bility with respect to this formulation variable.

Continuous phase viscosity

The continuous phase viscosity ηc was changed by adding varying amounts of sucrose

to nanopure water used for emulsion preparation. Moderate and large additions of sucrose

produced increased continuous phase viscosities of 1.09 cP and 1.195 cP, respectively,

compared to the base case. The large sucrose addition also produced a slight change in

interfacial tension, which was incorporated within the breakage rate function. Predicted

drop distributions obtained with the base case parameter values are compared to experi-

mentally measured distributions in Figures 3.10(a) and 3.10(c). As measured by relative

objective function values, the PBE model predictions showed larger deviations from data

than observed for φ and σ variations. However, significantly improved predictions were

obtained when the K1–K4 parameters were re-estimated (Figures 3.10(b) and 3.10(d)). We

concluded that the functional dependence of the breakage rate on the continuous phase

viscosity was reasonable, but that parameter estimation with data generated for varying ηc

would be necessary to satisfactorily predict the effect of this formulation variable.

Multiple formulation variables

Rational design of emulsified products will require models capable of predicting the

coupled effects of multiple formulation variables. To this end, we performed additional ex-

periments in which the dispersed phase volume fraction, interfacial tension, and continuous

phase viscosity were changed simultaneously from their base case values. Predicted drop

distributions obtained with the base case parameter values are compared to experimen-

tally measured distributions for a representative case in Figure 3.11(a). The PBE model
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captured most of the qualitative trends with the exception of the predicted distributions ap-

proaching unimodality more quickly than the measured distributions. Re-estimation of the

K1–K4 parameters with a combined data set in which all the formulation variables were

changed simultaneously produced a significant decrease in the objective function value

(Figure 3.11(b)), but the predicted distributions become unimodal even more rapidly than

with the base case parameters. We concluded that the PBE model was capable of captur-

ing the coupled effects of multiple formulation variables given an appropriate data set for

parameter estimation.

Homogenization pressure

The homogenization pressure P was lowered to 5000 psig (34.47 MPa) and increased

to 15000 psig (103.42 MPa) from the base case value. Comparison of predicted drop

distributions obtained with the base case parameter values and experimentally measured

distributions showed that the PBE model was not able to satisfactorily capture pressure

variations (Figures 3.12(a) and 3.12(c)). Moreover, re-estimation of the K1–K4 parameters

with a combined data set in which the pressure was varied did not substantially improve

the model predictions (Figures 3.12(b) and 3.12(d)). These results suggest that the pressure

dependence of the energy dissipation rate (3.6) was incorrect. However, additional param-

eter estimation tests in which the pressure exponent in (3.6) was considered to be another

adjustable parameter did not significantly improve the model predictions (not shown).

We believe that our CFD study may provide insights into this model deficiency. The

turbulence intensity contours in Figure 3.3 show strong spatial heterogeneities over the

homogenizer domain, while the PBE model treats the homogenizer as a well-mixed system.

Similar heterogeneities were observed in the pressure contours (not shown), with a large

pressure drop from the valve gap inlet to the outlet. Accordingly, the assumption of a single

homogenizer pressure is questionable and improved predictions over large pressure ranges

may require the incorporation of spatial heterogeneities into the PBE model [63].
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3.4 Conclusion

We believe that the population balance equation (PBE) modeling approach presented

in this chapter represents a necessary first step towards addressing the emulsion design

problem for homogenized products. By invoking assumptions such as negligible drop coa-

lescence, binary drop breakage and homogeneous flow fields in the homogenizer, we inves-

tigated the ability of a simplified PBE model to match experimental data. Drop breakage

functions that depend explicitly on formulation and processing variables were used such

that the PBE model has the potential to reproduce qualitative trends in the drop volume

distribution that result when these variable are changed. Consequently, the model can be

used to predict the effects of different formulation properties before performing the asso-

ciated experiments. This capability will not only allow new formulations to be identified

but also will enable unacceptable solutions to be eliminated more rapidly and with less

experimental effort. The current version of our PBE model does not adequately describe

the effects of the homogenization pressure. Our future work will focus on better capturing

the pressure effect, relaxing the assumption of binary breakage, including mechanistic de-

scriptions of drop coalescence, and combining predicted drop distributions with physical

property estimation techniques to allow the prediction of end-use characteristics.
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Table 3.1. Base case emulsion formulation and homogenization values

Soybean Oil 0.5 wt %
Pluronic F-68 0.1 wt%
Dispersed phase volume fraction (φ) 5.59×10−3

Interfacial tension (σ) 13.68 mN/m
Continuous phase viscosity (ηc) 1 cP
Homogenizer pressure (P ) 10000 psig (68.95 MPa)

Table 3.2. Range of emulsion formulations and homogenization pressures studied

Dispersed phase volume fraction (φ) 2.78×10−3 – 0.0228
Interfacial tension (σ) 14.318 – 12.68 mN/m
Continuous phase viscosity (ηc) 1 – 1.3 cP
Homogenizer pressure (P ) 5000 – 20000 psig (34.48 – 137.9 MPa)
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Figure 3.1. (a) Measured drop volume distributions for the base case conditions. Opti-
cal microscopy image at 20x magnification of (b) the pre-emulsion, (c) the homogenized
sample after the first pass, and (d) the homogenized sample after the fifth pass.
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Figure 3.2. Recoalescence test where the base case formulation was homogenized for six
passes at 10000 psig (labeled H10K-1 through H10K-6) and then homogenized for five
passes at 5000 psig (labeled as H5K-1 through H5K-5). (a) Sauter mean diameters d32. (b)
Drop volume distributions.
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Figure 3.3. Computational fluid dynamics simulation of the homogenizing valve gap show-
ing contours of turbulence intensity (%) near the valve. The section of the homogenizing
valve is shown at the extreme left. The portion of the valve gap used for CFD calculation
is shown in the center. Enlarged sections of the gap inlet, the middle part of the gap, and
the gap outlet are shown on the right.
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Figure 3.4. Base case parameter estimation results with the drop-eddy collision breakage
function g1(v). (a) Breakage rate. (b) Predicted and experimental drop volume distributions
for the pre-emulsion (P), the first pass (1), the third pass (3), and the fifth pass (5). Ψ is the
objective function value.
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Figure 3.5. Base case parameter estimation results with the shear breakage function g2(v).
(a) Breakage rate. (b) Predicted and experimental drop volume distributions. Base case
parameter estimation results with the combined breakage function g(v) = g1(v) + g2(v).
(c) Breakage rate. (d) Predicted and experimental drop volume distributions.
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Figure 3.6. Effect of dispersed phase volume fraction and interfacial tension on the exper-
imental and predicted mean diameters. a) Experimental mean diameters d43 for changes in
dispersed phase volume fraction. b) Predicted mean diameters d43 using base case values
for changes in dispersed phase volume fraction. c) Experimental mean diameters d43 for
changes in interfacial tension. d) Predicted mean diameters d43 using base case values for
changes in interfacial tension.

73



pe 1pass 2pass 3pass 4pass 5pass
0

1

2

3

4

5

number of passes

M
e

a
n

 d
ia

m
e

te
r 

(d
4

3
)

 

 

η
c
=1cP

η
c
=1.095cP

η
c
=1.195cP

η
c
=1.3cP

(a)

pe 1pass 2pass 3pass 4pass 5pass
0

1

2

3

4

5

number of passes

M
e

a
n

 d
ia

m
e

te
r 

(d
4

3
)

 

 

η
c
=1cP

η
c
=1.095cP

η
c
=1.195cP

η
c
=1.3cP

(b)

pe 1pass 2pass 3pass 4pass 5pass
0

1

2

3

4

5

number of passes

M
e

a
n

 d
ia

m
e

te
r 

(d
4

3
)

 

 

P=5000 Psi
P=10000 Psi
P=15000 Psi
P=20000 Psi

(c)

pe 1pass 2pass 3pass 4pass 5pass
0

1

2

3

4

5

number of passes

M
e

a
n

 d
ia

m
e

te
r 

(d
4
3
)

 

 

P=5000 Psi
P=10000 Psi
P=15000 Psi
P=20000 Psi

(d)

Figure 3.7. Effect of continuous phase viscosity and pressure on the experimental and
predicted mean diameters. a) Experimental mean diameters d43 for changes in continuous
phase viscosity. b) Predicted mean diameters d43 using base case values for changes in
continuous phase viscosity. c) Experimental mean diameters d43 for changes in pressure.
d) Predicted mean diameters d43 using base case values for changes in pressure.
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Figure 3.8. Effect of the dispersed phase volume fraction on predicted drop volume distri-
butions with the combined breakage function g(v) for the pre-emulsion (P), the first pass
(1), the third pass (3), and the fifth pass (5). Ψ is the objective function value. The base case
values were used for the adjustable breakage parameters K1–K4. (a) φ = 2.78×10−3. (c) φ
= 0.0112. The parameters K1–K4 were re-estimated using a combined data set containing
the dispersed phase volume fraction variations. (b) φ = 2.78×10−3. (d) φ = 0.0112.
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Figure 3.9. Effect of the interfacial tension on predicted drop volume distributions with
the combined breakage function g(v). The base case values were used for the adjustable
breakage parameters K1–K4. (a) σ = 14.318 mN/m. (c) σ = 13.056 mN/m. The parame-
ters K1–K4 were re-estimated using a combined data set containing the interfacial tension
variations. (b) σ = 14.318 mN/m. (d) σ = 13.056.
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Figure 3.10. Effect of the continuous phase viscosity on predicted drop volume distribu-
tions with the combined breakage function g(v). The base case values were used for the
adjustable breakage parameters K1–K4. (a) ηc = 1.09 cP. (c) ηc = 1.195 cP. The parame-
ters K1–K4 were re-estimated using a combined data set containing the continuous phase
viscosity variations. (b) ηc = 1.09 cP. (d) ηc = 1.195 cP.
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Figure 3.11. Effect of simultaneous changes in the dispersed phase volume fraction, inter-
facial tension, and continuous phase viscosity with the combined breakage function g(v).
(a) The base case values were used for the adjustable breakage parameters K1–K4. (b) The
parameters K1–K4 were re-estimated using a combined data set containing variations in
the three formulation variables.
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Figure 3.12. Effect of the homogenization pressure on predicted drop volume distribu-
tions with the combined breakage function g(v). The base case values were used for the
adjustable breakage parameters K1–K4. (a) P = 5000 psig (34.47 MPa). (c) P = 15000
psig (103.42 MPa). The parameters K1–K4 were re-estimated using a combined data set
containing the pressure variations. (b) P = 5000 psig (34.47 MPa). (d) P = 15000 psig
(103.42 MPa).
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CHAPTER 4

PREDICTION OF EMULSION DROP SIZE DISTRIBUTIONS
WITH POPULATION BALANCE EQUATION MODELS OF

MULTIPLE DROP BREAKAGE

In this chapter, we develop a PBE model with multiple drop breakage and evaluate

model predictions for an oil-in-water emulsion processed in a pilot-scale homogenizer. Two

distinct rate functions [81], one for drop breakage due to turbulent eddies and another for

turbulent shear are used to reproduce the observed bimodal distributions. Multiple drop

breakage is modeled using the generalized Hill-Ng distribution [24, 40, 125] and determin-

ing the assumed number p of daughter drops formed that provides the best agreement with

measured drop size distributions. The PBE model with multiple drop breakage is com-

pared to the analogous binary breakage PBE model when adjustable model parameters are

determined by nonlinear optimization. The multiple breakage PBE model is evaluated for

different emulsion formulations by using the base case model parameters to predict the

effects of oil concentration, surfactant concentration, oil to surfactant ratio and emulsion

premix distribution on predicted drop size distributions.

4.1 Experimental Methods

4.1.1 Materials

Oil-in-water emulsions were prepared using sunflower oil (Albert Heijn brand) as the

dispersed phase, water as the continuous phase, and the non-ionic surfactant Pluronic F-

68 (Sigma) as the emulsifier. The base case emulsion consisted of 5wt% oil and 0.1wt%

surfactant with the remainder water as listed in Table 4.1. Experiments were performed at
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the base case conditions and at other concentrations different from the base case conditions.

Additional oil and/or surfactant were added to the base case amounts to obtain the desired

concentrations.

4.1.2 Emulsion Preparation

All the experiments were performed at the Unilever Food & Health Research Institute,

Vlaardingen, Netherlands with a pilot plant scale homogenizer. Emulsions were prepared

using a two-step process. First a coarse pre-emulsion was prepared by mixing the chemical

ingredients in a stirred tank device (Silverson L4RT). For most of the experiments, the mix-

ing speed and time used were 5000 rpm and 3 minutes, respectively (Table 4.1). For testing

the effect of the premix on homogenized drop size distributions, two other speeds (5000

and 7500 rpm) and three other mixing times (1,3 and 5 minutes) were used. About 2 liters

of premix was prepared, of which approximately 100 ml were sampled for measuring the

premix drop size distribution (see below). The premix was then processed in a two-stage,

high-pressure homogenizer (APV Gaulin, Niro Soavi). For all the reported experiments,

only a single stage was used and the pressure was fixed at 650 bars. Multiple passes were

performed by reprocessing the emulsion obtained from the previous homogenizer pass. All

the passes had about the same processing time and the time between passes was limited to

less than a minute. Three passes were performed for most of the experiments, and after each

pass about 100 ml of the emulsion was sampled for drop size distribution measurement. A

set of experiments was also performed at zero pressure applied on the homogenizer.

Emulsion compositions for the different cases studied are listed in Tables (4.2-4.4). For

most of the emulsions tested, identical premixes were prepared at the base composition,

mixer speed and stirring time (Table 4.1). To vary the oil concentration, premixes at 5wt%

oil were diluted and additional surfactant was added to reach the desired composition as

listed in Table 4.2. The premixes were then homogenized at 650 bar for 3 passes, and the

drop size distribution was measured after each pass. To increase the surfactant concentra-
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tion, additional surfactant was added to the premix to reach the desired concentration while

the reduced concentration case of 0.05wt% surfactant was prepared separately (Table 4.3).

For the third set of tests, the oil and surfactant concentrations were varied such that the

ratio of oil to surfactant was kept constant at 5 (Table 4.4). The effect of the premix was

investigated using the base case formulation and changing the mixing properties. Six differ-

ent premixes were prepared by varying the mixing speed (5000 and 7500 rpm) and stirring

times (1,3, and 5 minutes) were used. All these premixes were homogenized at 650 bar for

3 passes.

4.1.3 Emulsion Characterization

Drop size distributions were measured using a Malvern Mastersizer 2000 particle size

analyzer. Oil-water interfacial tensions were measured by drop shape analysis using Tracker,

automatic drop tensiometer (IT Concept, Teclis) at 25oC. Optical microscopy was per-

formed on some of the premix and homogenized samples using a Zeiss Axioplan-2 micro-

scope. Sample densities were measured using Bio-Rad 36XMX densitometer and viscosi-

ties were measured using a TA Ar-2000 stress controlled rheometer (Texas Instruments).

4.2 Theory

4.2.1 Population Balance Equation Model

We assumed that the high pressure homogenizer was a pure breakage process and uti-

lized the population balance equation (PBE) model developed in our previous work [81] to

predict evolution of the drop size distribution. The assumption of negligible coalescence

is reasonable when the dispersed phase volume fraction is small and excess surfactant is

present, conditions which generally held for the experiments performed. Experiments for

which this assumption may have been violated were also performed to identify possible

areas of improvement for the model.
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Under the breakage only assumption, the PBE for a batch system was written as [16,

18, 19],

∂n(v, t)

∂t
= −g(v)n(v, t) +

∫ ∞

v

β(v, v′)ν(v′)g(v′)n(v′, t)dv′ (4.1)

where: n(v, t)dv is the number of drops with volume in the range [v, v + dv] per unit

volume of the dispersion; g(v) is the breakage rate representing the fraction of drops of

volume v breaking per unit time; ν(v) is the number of daughter drops formed by breakage

of a mother drop of volume v; and β(v, v′) is the daughter drop distribution function rep-

resenting the probability of forming a daughter drop of size v from breakage of a mother

drop of size v′. As in our previous work [81], we modeled the high-pressure homogenizer

as a well-mixed batch system in which the initial drop volume distribution was the mea-

sured distribution of the premix and each pass corresponded to one dimensionless time

unit. Since the particle size analyzer provided measurements of the volume percent distri-

bution np(v, t), we reformulated the PBE model in terms of volume percent distribution as

follows,

∂np(v, t)

∂t
= −g(v)np(v, t) + v

∫ ∞

0

g(v′)ν(v′)β(v, v′)np(v
′, t)

v′
dv′ (4.2)

The PBE model (4.2) required specification of three functions: the breakage rate g(v),

the daughter drop distribution β(v, v′) and the number of daughter drops formed ν(v). Fol-

lowing our previous work [81], the breakage rate was assumed to be determined by tur-

bulent breakage of drops by both inertial and viscous forces. The first breakage function

g1(v) was a modified version of two previously proposed functions [18, 19], which were

derived assuming that breakage results from drop collision with turbulent eddies, extended

to high-pressure homogenizers,

g1(v) = K1v
−1/3P 1/2ρ

−1/2
d exp

[
−K2σ(1 + φ)2

v1/3P

]
(4.3)
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where K1 and K2 are adjustable constants. The second breakage rate function g2(v) was

derived under the assumption that drop breakage results from turbulent shear [81],

g2(v) = K3

(
2

π

)1/2
(

P 3/4

η
1/2
d ρ

1/4
d v1/6

)
exp

(
−2K4σ

2λ

ηcP 3/2ρ
−1/2
d v1/3

)
(4.4)

where K3 and K4 are adjustable constants. The total breakage rate was assumed to be the

sum of the two individual rates,

g(v) = g1(v) + g2(v) (4.5)

One objective of this study was to determine if the dependence of the breakage rate function

g(v) on emulsion parameters (φ, σ, ρd, ηd) and the homogenization pressure (P ) was suf-

ficient to allow prediction of chemical and process variations on the drop size distribution.

Our experiments revealed that substantial drop breakage occurred even with no applied

pressure on the homogenizer. Since g1(v) and g2(v) are pressure dependent functions that

account for turbulent drop breakage, we derived (see Appendix C) a new breakage function

that described drop breakage due to laminar shear applicable under low homogenization

pressures,

g3(v) = K5

(
2

π

)1/2

Q exp

[
−

(
K6

2Cacσπ1/3

ηcQ(6v)1/3

)2
]

(4.6)

For consistency with our previous work, we first considered binary breakage (ν(v)=2)

and used the truncated normal distribution as the daughter drop distribution function (β(v, v′))

such that breakage had the highest probability of forming two equally sized daughter

drops [63, 92, 101],

β(v, v′) =
2.4

v′
exp

[
− 4.5

(2v − v′)2

(v′)2

]
(4.7)

Motivated by laminar flow experiments showing multiple daughter drops can be formed

from a single mother drop [82, 105, 126] as well as other emulsion modeling studies [7, 49,
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109, 115], we also considered the possibility of multiple daughter drop formation. For this

purpose, we used the power law product form of the generalized Hill-Ng distribution [24,

40, 125],

β(v, v′) =
p

B(q, r)

( v

v′

)q−1 (
1− v

v′

)r−1

, r = q(p− 1) (4.8)

This equation represents the generalized beta distribution function where p ≥ 2 is the

number of daughter drops formed, q > 0 determines the shape of the distribution and

B(q, r) is the beta function. To utilize equation 4.8, the parameter p must be specified a

priori. When q = 1, equation 4.8 reduces to the uniform distribution for p daughter drops,

β(v, v′) = p(p− 1)
(
1− v

v′

)p−2

(4.9)

The effect of the two parameters of the distribution function on the drop size distribution

predictions is discussed in detail in the results section

The PBE model was solved numerically by spatially discretizing the integro-differential

equation (4.2) with a fixed pivot method [52] with 100 node points over the volume domain

of interest. The resulting system of 100 nonlinear ordinary differential equations describing

the time evolution of the volume percent distribution at each node point was solved using

the Matlab integration code ode45. The measured distribution of the coarse premix was

used as the initial condition np(v, 0), and the distribution after the ith homogenizer pass

was np(v, i).

4.2.2 Parameter Estimation

The constants K1–K4 in the turbulent breakage rate functions (equations 4.3 and 4.4)

were treated as adjustable parameters to be estimated from homogenization experiments.

Available experimental data for parameter estimation included emulsion ingredient prop-

erties (φ, σ, ρd, ηd, ηc) that are measured a priori and drop size distributions for the pre-

mix np(v, 0) and the processed emulsion obtained after the ith homogenizer pass np(v, i).
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The PBE model (equation 4.2) was spatially discetized by finite differences with 100 node

points. The resulting set of nonlinear ordinary differential equations was reduced to a large

system of nonlinear algebraic equations suitable for incorporation into nonlinear optimiza-

tion codes through temporal discretization with orthogonal collocation on finite elements.

For this purpose, we used Radau collocation where each pass corresponded to 2 finite el-

ement and 2 internal collocation points were employed within each finite element. We

determined that these numbers of node points, finite elements and collocation provided an

acceptable compromise between solution accuracy and computational efficiency. The pa-

rameter estimation problem was posed as a constrained minimization problem with the fol-

lowing objective function and equality constraints corresponding to the discretized model

equations and continuity conditions across the finite elements,

Ψ =
N∑

i=1

n∑
j=1

[n̂p(vj, i)− np(vj, i)]
2

[np(vj, i)]2
(4.10)

where np(vj, i) is the measured drop size distribution corresponding to drop volume vj and

the ith homogenizer pass, n̂p(vj, i) is corresponding predicted value from the PBE model,

n is the total number of node points, and N is the number of passes. The optimization

problem was formulated in AMPL [29] and solved using the nonlinear solver CONOPT.

Extent of Recoalescence

Recoalescence is a important phenomenon that can occur if there is insufficient surfac-

tant to stabilize drops resulting from breakage [28]. The ratio of the adsorption to collision

time scales [117] shown below can be used as a qualitative measure of the extent of recoa-

lescence,

τads

τcoll

=
6πΓφ

dCs

(4.11)

where Γ is the surface load and Cs is the surfactant concentration. Recoalescence was

assumed to be negligible when τads/τcoll << 1, which is favored under conditions of low
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oil concentration and high surfactant concentration. The surface load Γ was calculated by

balancing the amount of added surfactant and the surfactant adsorbed at the interface. Other

parameters in equation 4.11 were calculated from the emulsion composition and the Sauter

mean diameter d32 as described elsewhere [117].

4.3 Results and Discussion

4.3.1 Reproducibility of Measured Drop Volume Distributions

To test the reproducibility of measured drop volume distributions, we performed 5 ho-

mogenization experiments at the base case conditions (Table 4.1). The data set for each ex-

periment included the measured drop volume distributions of the premix and the processed

emulsions obtained after the first, second and third homogenization passes. The mean and

the standard deviation of the measured distributions in each bin were calculated individ-

ually for each pass from the 5 data sets (Figure 4.1a). The maximum standard deviation

for any bin was 0.41, 0.53 and 0.58 for passes 1, 2, and 3, respectively, indicating that the

experimental procedure and the distribution measurements were very reproducible. The

measured distributions were used to calculate the mean and standard deviation of Sauter

mean diameters (d32) for the premix and each pass 4.1b). In addition to exhibiting good

reproducibility, the d32 values show that most size reduction occurred during the first pass

and very little breakage was observed during the third pass.

4.3.2 Base Case Parameter Estimation

Using measured drop size distributions obtained for the base case homogenization con-

ditions (Table 4.1), we attempted to estimate the breakage rate parameters K1-K4 (equa-

tions 4.3 and 4.4) with the measured distribution for the premix used as the initial condition

in the PBE model (equation 4.2). First we performed parameter estimation assuming binary

breakage and using the truncated normal distribution function (equation 4.7) to model the

daughter drop distribution. While accurate model predictions were obtained when the distri-
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bution data was fit for individual passes (Figures 4.2(a), 4.2(b) and 4.2(d)), poor predictions

were generated when all the distribution data were fit simultaneously (Figures 4.2(c) and

4.2(d)). Both the individual pass distributions and the Sauter mean diameters were poorly

predicted in the latter case due to underprediction of breakage during the first two passes

and overprediction during the third pass.

Next we performed parameter estimation assuming multiple daughter drop formation

using the uniform version of the generalized power law product function (equation 4.9) to

model the daughter drop distribution. The number of daughter drops formed from a single

drop was assumed to be p=20. The effect of the two adjustable parameters q and p on

predicted drop size distributions are examined in detail below. In addition to accurately

fitting individual pass data (Figures 4.3(a) and 4.3(b)), the multiple drop breakage model

was able to yield substantially improved predictions when all the distribution data were fit

simultaneously (Figures 4.3(c) and 4.3(d)) compared to the binary breakage model (Fig-

ures 4.2(c) and 4.2(d)). The objective function value, which is the error measure we have

used, obtained with multiple breakage (Ψ=0.35) was much smaller than the value obtained

with binary breakage (Ψ=1.25). Based on these results, we concluded that multiple drop

formation was a likely breakage outcome as observed experimentally [82,105,126] and did

not consider binary breakage further.

We varied the adjustable parameters q and p in the generalized Hill-Ng distribution

(equation 4.8) in an effort to identify suitable values without resorting to mixed-integer

nonlinear optimization. The q value was found to have a minimal effect on the objective

function (Figure 4.4(b)), while increasing p values were shown to monotonically decrease

the objective function (Figure 4.4(a)). Based on these results, we chose q=1 corresponding

to the simplest case of a uniform daughter drop distribution. Because the objective function

was shown to asymptote at large p values and experimental studies [82, 105, 126] suggest

that drop breakage into a very large number of daughter drops is unlikely, we used p=20

for all future simulations.
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4.3.3 Model Extensibility to New Emulsification Conditions

Because the third homogenizer pass produced the final emulsion product, we focused

our subsequent analysis on prediction of the drop size distribution and Sauter mean diam-

eter for the third pass only. The PBE model with multiple drop breakage (p=20, q=1) was

used to generate estimates of the breakage rate parameters K1–K4 using the measured ini-

tial and third pass drop size distributions obtained for the base case conditions (Table 4.1).

The constants were fixed at these optimal values and the PBE model was used to generate

predictions for different oil concentrations, surfactant concentrations and premix distribu-

tions by changing the associated model variables as explained below for each case.

Oil concentration

To vary the oil concentration, premixes at 5wt% oil were diluted as necessary and ad-

ditional surfactant was added to reach the desired compositions listed in Table 4.2. The

premixes were then homogenized at 650 bar for 3 passes, and the drop size distribution

was measured after each pass. Increasing oil concentrations shifted the drop size distribu-

tion (Figure 4.5(a)) and the Sauter mean diameter d32 (Figure 4.5(c)) towards larger drop

diameters. The drop size distributions obtained at 0.5wt% and 1wt% oil were similar, while

much larger differences were observed at higher oil concentrations. Simulated variations

in the oil concentration were implemented by changing the dispersed volume fraction φ in

the breakage rate function (equation 4.3). Although the model also predicted a shift of the

drop size distribution (Figure 4.5(b)) and Sauter mean diameter d32 (Figure 4.5(c)) towards

larger drops with increasing oil concentrations, the model generated much smaller changes

than observed experimentally. We believe that this difference was partially attributable to

surfactant limitations present at higher oil concentrations, as the model did not account for

recoalescence due to partial drop coverage by available surfactant. Because the multiple

drop breakage model produced marginally improved predictions as compared to the binary
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breakage model for this parameter (Figure 4.5(d)) and the parameters discussed below, the

binary breakage model is not discussed further in this chapter.

Surfactant concentration

The impact of varying the surfactant concentration was investigated indirectly by vary-

ing the interfacial tension in the PBE model. The interfacial tension at the oil-water inter-

face decreases as the concentration of surfactant in the system increases, which facilitates

droplet disruption. The interfacial tension for a given surfactant concentration was mea-

sured using drop tensiometer. To vary the surfactant concentration, additional surfactant

was added to the premix at 5wt% oil to reach the desired concentration while the small-

est concentration of 0.05wt% surfactant was prepared separately (Table 4.3). Increasing

surfactant concentrations shifted the drop size distribution (Figure 4.6(a)) and Sauter mean

diameter (Figure 4.6(c)) towards smaller drop diameters and produced a noticeable sharp-

ening of the drop size distribution. Simulated variations in the oil concentration were im-

plemented by changing the interfacial tension σ in both breakage rate functions (equations

4.3 and 4.4). The model produced qualitatively correct predictions, as increasing surfactant

concentrations shifted the drop size distribution (Figure 4.6(b)) and Sauter mean diameter

(Figure 4.6(c)) towards smaller drop diameters. Although the model failed to capture the

distribution sharpening behavior observed experimentally, the effects of variable surfactant

concentration were predicted more accurately than those of variable oil concentrations. We

believe that this difference was attributable to limited drop recoalescence occurring at high

surfactant concentrations.

Constant oil to surfactant ratio

The oil and surfactant concentrations were varied to maintain a constant oil to surfac-

tant ratio of 5 (Table 4.4). While the drop size distributions showed less variability than

when the oil and surfactant concentrations were varied individually, higher oil concentra-

tions shifted the drop size distribution (Figure 4.7(a)) and Sauter mean diameter (Figure
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4.7(c)) towards smaller drop diameters. Simulated variations in the oil and surfactant con-

centration were implemented by changing the dispersed volume fraction φ and the interfa-

cial tension σ, respectively, in both breakage rate functions (equations 4.3 and 4.4). The

model produced qualitatively similar results, with the dominant effect of increasing sur-

factant concentrations shifting the drop size distribution (Figure 4.7(b)) and Sauter mean

diameter (Figure 4.7(c)) towards smaller drop diameters. However, the model produced

broader distributions and failed to capture the distribution sharpening behavior observed

experimentally.

The previous results were generated using the breakage rate constants estimated for

the base case conditions. We assembled a data set for variable oil to surfactant ratios and

re-estimated the breakage parameters from this data to determine if improved drop size

distribution predictions could be obtained. Results for 4 of the 6 ratios used show that

re-estimation produced improved predictions compared to predictions obtained with the

base case parameters (Figure 4.8). However, model predictions continued to deviate from

experimental data at the higher oil to surfactant ratios. We hypothesize that this behavior

might be partially attributable to reduced drop recoalescence occurring at high surfactant

concentrations.

Recoalescence

We calculated the ratio of the adsorption to collision time scales τads/τcoll (equation

4.11) for the various experiments performed to obtain a qualitative measure of the extent

of recoalescence. The τads/τcoll ratio increased as the oil concentration increased (Figure

4.9(a) or the surfactant concentration decreased (Figure 4.9(b)), producing conditions that

favored recoalescence. The ratio was never sufficiently small (τads/τcoll << 1) in these

experiments to rule out the possibility of recoalescence and a corresponding shift of the

size distribution towards larger drops. This analysis provides a possible explanation for the

inability of the model fit at the base case conditions to predict drop size distributions at
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other oil and surfactant concentrations. Homogenization at the base case conditions likely

involved significant recoalescence while the model used in this study only accounted for

drop breakage. As a result, parameter estimation produced a model in which the effects of

drop breakage and recoalescence were lumped into the breakage functions and the model

was not capable of producing accurate distribution predictions at other conditions for which

the balance of drop breakage and recoalescence differed from the base case conditions (Fig-

ures 4.5 and 4.6). By contrast the τads/τcoll ratio remained approximately constant when the

oil to surfactant ratio was held constant (Figure 4.9(c)), conditions under which the model

produced more accurate drop size distribution predictions (Figure 4.7) than when the ratio

was varied. Parameter re-estimation tests (Figure 4.8) also suggested the presence of drop

recoalescence at large oil to surfactant ratios, as re-estimation only produced significantly

improved predictions when the oil to surfactant ratio was relatively small. When τads/τcoll

was plotted as a function of the oil to surfactant ratio for all the experiments performed, a

monotonically increasing curve was produced (Figure 4.9(d)). This result suggested that

the oil to surfactant ratio determined the size distribution by balancing the extent of surfac-

tant adsorption at the drop interface and the frequency of drop collisions.

Premix drop size distribution

Six premixes prepared by varying the mixing speed and mixing time of the stirred tank

device produced a range of drop size distributions (Figure 4.10(a)). However the third pass

homogenized samples obtained from these premixes were characterized by nearly identical

size distributions (Figure 4.10(b)), suggesting that drop breakage was dominated by sur-

factant or energy limitations of the homogenizer rather than by the initial distribution. The

model was able to capture this behavior very faithfully, predicting nearly identical third pass

size distributions for all six premixes (Figure 4.10(c)). A plot of Sauter mean diameters for

all six premixes showed that experimental third pass values were largely independent of the

premix despite large difference in premix mean diameters (Figure 4.10(d)). A similar re-
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sult was obtained for simulated first pass size distributions, suggesting that nearly constant

size distributions were obtained after a single homogenization pass. The model with binary

breakage did not produce good agreement with the experimental data as very different third

pass distributions were predicted for the six premixes (not shown).

Zero applied pressure

To investigate the role of homogenizer geometry on drop breakage, we performed ex-

periments in which the premix prepared at the base case conditions was passed through

the homogenizer without applying any external pressure on the homogenizing valve. Even

under these laminar flow conditions, a significant amount of breakage was observed dur-

ing the first pass (Figure 4.11(a)) and additional breakage occurred during the third pass

(Figure 4.11(b)). We developed a pressure independent breakage rate function g3 (equa-

tion 4.6) applicable to laminar flow conditions to account for these observations. When

the adjustable constants K5 and K6 were estimated from the individual pass distributions,

the predicted distributions were quite accurate (Figures 4.11(a) and 4.11(b)). However, the

predictions were degraded significantly when measured distributions for all three passes

were used simultaneously for parameter estimation (Figure 4.11(c)). In this case, the fitted

breakage function (Figure 4.11(d)) was not able to accurately predict over the wide range

of drop sizes encountered. Additional studies are necessary to access the usefulness of the

proposed function.

4.4 Conclusions

We developed a population balance equation (PBE) model that described the breakage

of oil-in-water emulsion drops into a prespecified number of daughter drops according to

a uniform distribution. Following our previous work, two distinct rate functions for drop

breakage due to turbulent eddies and turbulent shear were used to reproduce the bimodal

nature of measured drop size distributions from a pilot-scale high-pressure homogenizer.
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Nonlinear optimization was used to find optimal values of four adjustable parameters in

the breakage rate functions that minimized the least-squares difference between measured

and predicted drop size distributions. If the number of daughter drops produced was cho-

sen to be sufficiently large, the PBE model with multiple drop breakage produced more

accurate predictions of measured size distributions than an analogous model based on the

usual assumption of binary drop breakage. Using optimal parameter values for the base

case conditions, the multiple breakage PBE model was shown to produce qualitatively cor-

rect predictions for different emulsion conditions obtained by varying the oil concentration,

surfactant concentration, oil to surfactant ratio and emulsion premix distribution. More

accurate predictions were obtained when the oil to surfactant ratio was relatively small, as

unmodeled effects of drop recoalescence were minimized. An analysis of surfactant adsorp-

tion and drop collision time scales indicated that the oil to surfactant ratio strongly affected

the obtained drop sizes and that recoalescence was not clearly negligible under any of the

conditions studied in this chapter. The model was able to reproduce the experimental ob-

servation that homogenized drop size distributions were largely independent of the premix

drop distribution. Experiments revealed that substantial breakage of the premix occurred

during the first homogenization pass even under zero applied pressure operation. We pro-

posed a new pressure independent breakage rate function and showed that the PBE model

based on this function was able to partially reproduce experimentally observed behavior.
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Table 4.1. Base case emulsion formulation and homogenization values

Sunflower Oil 5 wt %
Pluronic F-68 Surfactant 0.1 wt%
Interfacial tension (σ) 18.68 mN/m
Continuous phase viscosity (ηc) 1 cP
Premix speed and time 5000 rpm, 3 minutes
Homogenizer pressure (P ) 650 bar

Table 4.2. Variable oil concentrations

Oil concentration (wt%) Surfactant concentration (wt%)
0.5 0.1 wt%
1 0.1 wt%
2 0.1 wt%
5 0.1 wt%

Table 4.3. Variable surfactant concentrations

Oil concentration (wt%) Surfactant concentration (wt%)
5 0.05 wt%
5 0.1 wt%
5 0.2 wt%
5 0.3 wt%
5 0.5 wt%
5 1.0 wt%

95



Table 4.4. Concentrations used to maintain constant oil to surfactant ratio

Oil concentration (wt%) Surfactant concentration (wt%)
0.5 0.1 wt%
1 0.2 wt%
2 0.4 wt%
5 1.0 wt%
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Figure 4.1. Experimental variability calculated from 5 repeats of the base case emulsifica-
tion procedure. (a) Average drop size distributions and standard deviations for the first three
homogenization passes. (b) Average Sauter mean diameters d32 and standard deviations for
the premix and the first three homogenization passes.
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Figure 4.2. Drop size distribution predictions assuming binary breakage (equation (4.7)).
(a) Predicted first pass drop size distribution. (b) Predicted third pass drop size distributions
(c) Prediction drop size distributions for all 3 passes. (d) Experimental and predicted Sauter
mean diameters d32 for all three passes.
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Figure 4.3. Drop size distribution predictions assuming multiple breakage (equation (4.9))
with q=1 and p=20. (a) Predicted first pass drop size distribution. (b) Predicted third pass
drop size distributions (c) Prediction drop size distributions for all 3 passes. (d) Experimen-
tal and predicted Sauter mean diameters d32 for all three passes.
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Figure 4.4. Effect of the multiple drop breakage parameters p and q on objective function
values. (a)Effect of p. (b) Effect of q
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Figure 4.5. Effect of variable oil concentrations. (a) Experimental drop size distributions
for the third pass. (b) Predicted drop size distributions for the third pass. (c) Experimen-
tal and predicted Sauter mean diameter d32 for all three passes. (d) Predicted drop size
distributions for the third pass assuming binary drop breakage.
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Figure 4.6. Effect of variable surfactant concentrations. (a) Experimental drop size dis-
tributions for the third pass. (b) Predicted drop size distributions for the third pass. (c)
Experimental and predicted Sauter mean diameter d32 for all three passes.
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Figure 4.7. Effect of constant oil to surfactant ratio. (a) Experimental drop size distribu-
tions for the third pass. (b) Predicted drop size distributions for the third pass. (c) Experi-
mental and predicted Sauter mean diameter d32 for all three passes.
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Figure 4.8. Re-estimation of the breakage rate parameters from a data set containing vari-
able oil to surfactant ratios. Experimental and predicted drop size distributions for: a)
0.5wt% oil and 0.1wt% surfactant; b) 1.0wt% oil and 0.1wt% surfactant; c) 5.0wt% oil and
0.2wt% surfactant; and d) 5.0wt% oil and 0.3wt% surfactant.
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Figure 4.9. Ratio of adsorption to collision timescales. (a) Effect of oil concentration. (b)
Effect of surfactant concentration. (c) Constant oil to surfactant ratio. (d) Effect of oil to
surfactant ratio.
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Figure 4.10. Effect of premix preparation. (a) Drop size distributions for the premixes. (b)
Experimental drop size distributions for the third pass. (c) Predicted drop size distributions
for the third pass. (d) Experimental Sauter mean diameters for the premixes and the third
pass and predicted Sauter mean diameters for first pass.
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Figure 4.11. Effect of homogenization at no applied pressure. (a) Experimental and pre-
dicted first pass drop size distributions. (b) Experimental and predicted third pass drop size
distributions, (c) Experimental and predicted drop size distributions for all three passes. (d)
Breakage rate function g3(v) estimated for all three passes.
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CHAPTER 5

PREDICTING THE EFFECT OF HOMOGENIZATION PRESSURE
ON THE DROP SIZE DISTRIBUTIONS OF EMULSIONS IN A

HIGH PRESSURE HOMOGENIZER

In this chapter, we attempt to improve upon the previously encountered deficiencies

in the model in terms of pressure predictions. We identified some effects which could

be incorporated to have more realistic predictions. These were added sequentially to the

model and their contribution to model improvement was evaluated. The effects considered

include sample heating, interfacial tension increase with passes, maximum stable diameter,

surfactant depletion and number of daughter drops. The critical effects were found to

be maximum stable diameter and the number of daughter droplets. The improved model

extensibility was also successfully tested for a range of formulation but at constant ratio

of oil to surfactant with the aim of keeping coalescence to the minimum. We also made a

preliminary attempt at using the model for designing of experiments for target formulation.

The concept of attainable region was used and the model design predictions were also tested

experimentally.

5.1 Materials and Methods

5.1.1 Experimental Methods

Materials

We used soybean oil (Spectrum Organic) as the dispersed phase, nanopure water as

the continuous phase, and the non-ionic surfactant Pluronic F-68 (Sigma Aldrich) as the

emulsifier. The base case emulsion consisted of 5wt% oil and 1wt% surfactant with the
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remainder water. High surfactant concentrations were used to minimize the possibility of

coalescence. Emulsions were also prepared at concentrations different than the base case

but keeping the ratio of oil to surfactant constant at the base case value of 5. The different

dispersed phase and surfactant concentrations are listed in Table 5.1

Emulsion Preparation

Emulsions were prepared using a two-step process. First a coarse premix was prepared

by mixing the different ingredients in a stator-rotor device (Ultra-Turrax Model T25, Rose

Scientific Ltd.) at 16000 rpm for 15 minutes. A standard premix was made at 40 wt%

oil and 8 wt% surfactant and then diluted to concentrations in table 5.1 to ensure similar

initial drop size distribution for all the experiments. The premix was then processed in

a high-pressure homogenizer (Emulsiflex C-3, Avestin Inc.) where it was homogenized

to a fine emulsion at the studied pressures to generate the first pass. The first pass was

then repassed to generate subsequent passes. 5 passes were collected in total and along

with premix analyzed for the drop size distribution. 5 homogenization pressures were used

ranging from 250 bar to 1250 bar in steps of 250 bar.

Emulsion Characterization

Drop size distributions were measured using a static light scattering device (Malvern

Mastersizer S). Oil-water interfacial tensions were measured by drop shape analysis (KRUSS

Instruments Model DSA-10 Tensiometer, KRUSS) at 25oC. Densities of the emulsion sam-

ples was measured using a Densitometer. Viscosities of the constituent phases were mea-

sured using a TA-Ar stress controlled rheometer (Texas Instruments).

5.1.2 Theory

Population Balance Equation Model

We used the population balance equation (PBE) model similar to our previous work for

a pure breakage process of emulsification through a high pressure homogenizer [81]. We
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assumed coalescence to be negligible which is reasonable when the amount of surfactant is

high enough. Considering the limiting case of breakage, the population balance equation

can be written as [16, 18, 19]

∂n(v, t)

∂t
= −g(v)n(v, t) +

∫ ∞

0

β(v, v′)g(v′)n(v′, t)dv′ (5.1)

here: n(v, t)dv is the number of drops in the volume range [v, v+dv] per unit volume of the

dispersion; g(v) is the breakage rate i.e. the fraction of drops of volume v breaking per unit

time; and β(v, v′) is the daughter drop distribution function representing the probability

of forming a daughter drop of size v from breakage of a mother drops of size v′. The

high-pressure homogenizer was modeled as a well-mixed batch system with each pass

corresponds to one dimensionless time unit. The initial condition is the measured drop

volume distribution of the premix.

We use the reformulated version of the PBE model in terms of volume percent distribu-

tion as in equation 5.2 since the particle size analyzer provides measurements of the volume

percent distribution np(v, t),

∂np(v, t)

∂t
= −g(v)np(v, t) + v

∫ ∞

0

g(v′)β(v, v′)np(v
′, t)

v′
dv′ (5.2)

We need to specify the breakage rate g(v) and the daughter drop distribution function

β(v, v′) which includes the number of daughter drops formed on breakage. Consistent with

our prior work, we have considered breakage of drops by both inertial (g1(v)) and viscous

forces g2(v) under turbulent conditions [81]. The turbulent inertial breakage rate g1(v) is

modified version of previously proposed function [19] and then extended to high-pressure

homogenizer using equation (5.6) for energy dissipation rate.

g1(v) = K1v
−2/9ε1/3 exp

[
−K2σ(1 + φ)2

ρdv5/9ε2/3

]
(5.3)

110



The second breakage rate g2(v) was derived considering breakage of drops due to tur-

bulent viscous forces [81].

g2(v) = K3

(
2

π

)1/2 (
ερd

ηd

)1/2

exp

( −K4σ
2λ

ηcv2/3ερd)

)
(5.4)

The resultant breakage rate is the sum of the two individual breakage rates representing

the two mechanisms. In these two equations, K1 − K4 are adjustable constants to be

calculated from parameter estimation.

g(v) = g1(v) + g2(v) (5.5)

We have used the following description for the energy dissipation rate ε term (equation

5.6) [113, 114]

ε =
∆PQ

Vdiss

(5.6)

where, ∆P is the applied pressure, Q is the flowrate and Vdiss is valve gap volume

which is given by equation (5.7). The valve gap hgap was calculated by rearranging the

following expression (equation 5.8) of Phipps [77] retaining only the last term.

Vdiss =
π

4
(D2

o −D2
i )hgap (5.7)

∆P =
ρc

4

(
Q

πDihgap

)2

−ρc

2

(
Q

πDohgap

)2

−
(

5ρc

h3
gap

) (
ηc

ρc

)3/5 (
Q

2π

)7/5
[(

Di

2

)−2/5

−
(

De

2

)−2/5
]

(5.8)

hgap =

(
5ρc

∆P

)1/3 (
ηc

ρc

)1/5 (
Q

2π

)7/15
[(

Di

2

)−2/5

−
(

De

2

)−2/5
]1/3

(5.9)
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For the daughter drops formation from mother drop we considered multiple drop gener-

ation. The daughter drop distribution function was considered to be the power law product

form of the generalized Hill-Ng distribution [24, 40, 125].

β(v, v′) =
p

B(q, r)

( v

v′

)q−1 (
1− v

v′

)r−1

, r = q(p− 1) (5.10)

In this the number of daughter drops is included in the daughter drop distribution function

itself through the parameter p. This is a generalized beta daughter distribution function for

p daughter drops such that p ≥ 2 and q > 0. B(q, r) is a beta function and q decides the

shape of the distribution function. For q = 1, we get the following simplified equation 5.11

which is uniform distribution for p daughter drops. p needs to be specified a priori and its

effect on the predictions is discussed in detail later.

β(v, v′) = p(p− 1)
(
1− v

v′

)p−2

(5.11)

We also used the full version of the PBE model as listed in equation (5.12) for testing

the significance of coalescence in our experimental system

dn(v, t)

dt
= −g(v)n(v, t)−

∫ ∞

0

β(v, v′)g(v′)n(v′, t)dv′

−n(v, t)
∫∞

0
C(v, v′)n(v′, t)dv′ + 1

2

∫∞
0

C(v − v′, v′)n(v′, t)n(v − v′, t)dv′ (5.12)

where: C(v, v′) is the coalescence frequency and is the product of collision frequency

h(v, v′) and coalescence efficiency λ(v, v′). The following functions were used for collision

frequency and coalescence efficiency [19]

h(v, v′) = K5
ε1/3

1 + φ
(v2/3 + v′2/3)(v2/9 + v′2/9)1/2 (5.13)

λ(v, v′) = exp

[
−K6

Cµcρcε

σ2

(
v1/3v′1/3

v1/3 + v′1/3

)4]
(5.14)
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The PBE model (5.2) was solved numerically by discretizing the integro-differential

equation with 100 node points. The resulting system of 100 nonlinear ordinary differential

equations describing the time evolution of the volume percent distribution at each node

point was solved using the Matlab integration code ode45. The measured distribution of

the coarse emulsion i.e. the premix was used as the initial condition np(v, 0).

Parameter Estimation

The PBE model has terms which depend on the constituent ingredient properties and

some adjustable constants. Formulation properties i.e. density, viscosity, interfacial tension

can be measured experimentally and can be used as inputs to the model. However, the

model constants K1 − K4 need to be estimated and is done using a systematic nonlinear

optimization approach instead of trial-and-error approach. The PBE model was spatially

discretized using 100 node points and temporally discretized using orthogonal collocation

on finite elements. 5 finite elements with 2 internal collocation points were used such that

each pass was at the end of a finite element. We observed that addition of points and/or

finite elements did not change the parameter estimates but increased the computational

effort and on the other hand decreasing the number of points produces substandard solution.

We pooled in all the pressure sets and a combined set of parameters K1 − K4 which are

the decision variables and were estimated for the entire range of pressure. The problem

is then posed as a constrained minimization problem with the following objective function

(equation 5.15) and equality constraints corresponding to the discretized model equations

and continuity conditions across the finite elements.

ΨT =

Np∑
p=1

N∑
i=1

n∑
j=1

[n̂p(p, vj, i)− np(p, vj, i)]
2

[np(p, vj, i)]2
(5.15)

where np(vj, i) is the measured drop size distribution corresponding to drop volume vj

and ith homogenizer pass, n̂p(vj, i) is corresponding predicted value from the PBE model

(5.2), n is the total number of node points, N is the number of passes, and Np is the
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number of pressure sets. From the results point of view we also estimated the pass by

pass objective function Ψj as well the objective function for each pressure set Ψi. The

optimization problem was formulated in AMPL [29] and solved using the nonlinear solver

CONOPT.

Surfactant concentration and interfacial tension [68]

The role of surfactant is to adsorb at the oil-water interface and thereby reduce the

interfacial tension facilitating breakup. In addition to this it also stabilizes the newly formed

emulsion droplets. The reduction in the interfacial tension in the presence of a surfactant

is referred to as surface pressure Π (equation 5.16) and is proportional to the surfactant

concentration.

Π = σo/w − σ (5.16)

Here, σo/w is the interfacial tension in the absence of surfactant i.e. pure oil-water, and

σ is the interfacial tension corresponding to the amount of surfactant present in solution.

The Gibb’s adsorption isotherm (equation 5.17) can be used to relate the surface load (Γ)

which is the amount of surfactant present at the interface to the interfacial tension and the

surfactant concentration in the bulk solution. These can be obtained experimentally from

measurements of oil-water interfacial tension for various amounts of surfactant.

Γ = − 1

aRT

dσ

dln(c)
(5.17)

where, a is the parameter which depends on the solute and is 1 for non-ionic and 2 for

ionic surfactants. c is the aqueous phase surfactant concentration, R is the gas constant and

T is the absolute temperature. Thus Γ can be estimated from the first order derivative of

σ versus ln(c) plot as given in equation 5.17. The Gibbs adsorption isotherm also allows

expression of the surface pressure Π in terms of the surface load Γ.

Π = σo/w − σ = aRT

∫ c

0

Γ(c)dlnc (5.18)
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The Langmuir adsorption isotherm (equation 5.19) relates the amount of surfactant at the

interface to its concentration c and surface activity 1/c1/2

Γ

Γ∞
=

c/c1/2

1 + c/c1/2

(5.19)

Γ∞ is the surface load when all the interface is completely covered with surfactant, and

c1/2 is the surfactant concentration when Γ = 1/2Γ∞. Substituting equation 5.19 in the

equation 5.18 for surface pressure, we can get the interfacial tension as a function of bulk

concentration as follows

σ = σo/w − aRTΓ∞ln

(
1 +

c

c1/2

)
(5.20)

The surfactant concentration c in solution can be calculated by subtracting the amount

of surfactant adsorbed at the interface from the initial amount added. The amount of sur-

factant adsorbed can be calculated from equation 5.21.

cads =
6Γφ

d32

(5.21)

Heating effect and Critical diameter

Significant amount of sample heating occurs in a high pressure homogenizer and the

temperature rise increases with increase in pressure applied. Part of the energy applied

is thus lost to the sample and also to the instrument. Knowing the specific heats of the

constituents Cpoil
&Cpwater and the temperature rise of the sample ∆T and the instrument

∆Tins, the thermal losses can be estimated by equation 5.22

EH = ρs(φCpoil
+ (1− φ)Cpwater)∆T + ρcCpwater∆Tins (5.22)

where, EH is the thermal loss and ρs is the sample density.
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The maximum stable diameter for the turbulent inertial breakup is given by equation

5.23. This is the critical diameter below which drops cannot be broken down but can only

be formed from breakup of bigger drops. The term on the right hand side of equation 5.23

except the proportionality is labeled as dti and listed in equation 5.24.

dmax = c1
σ3/5

ε2/5ρ
1/5
c

(5.23)

dti =
σ3/5

ε2/5ρ
1/5
c

(5.24)

5.2 Results and Discussion

5.2.1 Base case model

The base case model is the version of the model with minimal features added and is

the reference point for all future comparisons. For the base case, we used 5 wt% oil and 1

wt% surfactant and prepared emulsions at 5 different pressures (250 bar - 1250 bar) and 5

passes were collected for each pressure. We used the breakage rate to be sum of turbulent

inertial and viscous breakage (equation 5.3 & 5.4 ) with the energy dissipation rate given by

equation 5.6. Consistent with our previous work [80], we used multiple drop breakage with

20 drops. Nonlinear optimization involving minimization of the total objective function

to estimate the decision variables K1 − K4 was performed. The pass by pass objective

function Ψj , objective function for a particular pressure Ψ and total objective function ΨT

(equation 5.15) were used as the error measures to analyze the deviations of the predicted

distribution from the experimental data . For the base case, the value of the total objective

function ΨT was observed to be 4.46. The model results for the base case is shown in

figure (5.1(a))-(5.1(c)) for three of the five pressures studied. Each pressure set shows the

experimental data and the model prediction for 1st, 3rd and 5th pass and also reports the

objective function for that pressure. The lower and higher pressures have higher objective
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function values compared to the 750 bar indicating underprediction at lower pressures and

overprediction at higher pressures. Figure (5.1(d)) shows the trends in the pass by pass

objective function with respect to the number of passes. It is seen from figure (5.1(d)) that

for 250 bar the deviation is higher at initial passes and decreases towards higher passes.

This is consistent with the underprediction observed for this pressure. For higher pressures,

the deviation is more at initial and final passes and minimum in the middle.

We also tested the full version of the PBE model including coalescence and tried to

estimate all 6 constants, i.e. 4 for breakage and 2 for coalescence. For coalescence, we

could estimate with only one pressure set at a time because of the limitations in problem

size that AMPL can handle. For the base case formulation at all pressures, the optimizer set

K6 equal to zero implying the zero coalescence frequency. This occurred over a wide range

of initial guesses implying that breakage was dominant over coalescence. In our previous

work [81], we did an explicit test for coalescence for 0.5 wt% oil and 0.1 wt% surfactant

and found it to be negligible under these conditions. Although, we have used a higher oil

concentration in this work, we expect coalescence to be minimal here as well since the ratio

of oil to surfactant is same as used in the test. This being the case, we used the breakage

only model for all the future tests and did not pursue coalescence any further.

5.2.2 Heating effects

Substantial rise in temperature of the emulsion was observed at the exit of the homog-

enizer which increases as the pressure was increased. This temperature rise at the end of

each pass was measured and the emulsion was cooled back down to starting temperature

before generating the next pass. The temperature rise was averaged over all the 5 passes for

each pressure and is reported in figure (5.2(a)) with the error bars representing the standard

deviation. This rise in temperature was used to calculate the loss in energy due to thermal

effects i.e. heating of the sample. Some of energy is also lost to heating of the homogenizer

which was measured by passing water and measuring the rise in temperature. Since part of
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the available energy is lost to heating the sample, not all of it available for drop disruption.

The available mechanical energy can be calculated by subtracting the thermal contribution

EH calculated using equation 5.22 from the applied pressure.

The resultant effective pressure is also represented in figure (5.2(a)). The model now

with the effective pressure was re-optimized for the constants K1 − K4. The model pre-

dictions after including the heating effects is shown in figure (5.2). The objective function

decreases from 4.46 to 3.89 which is a 13 % improvement over the base case. Bigger im-

provement is obtained for 250 bar and 1250 bar whereas the predictions at 750 bar continue

to be reasonably good as before as seen in figures 5.2(b)-5.2(c).

5.2.3 Interfacial tension effect

The oil-water interfacial tension in the presence of surfactant is related to the surfactant

concentration as explained in section 5.1.2. The interfacial tension was measured as a

function of concentration using drop shape analysis tensiometer and the data is shown in

figure (5.3(a)). The interfacial tension data was fit to a quadratic equation and the first order

derivative was used to calculate the surface load as a function of concentration using the

equation (5.17). The normalized value of surface load (Γ/Γ∞) is shown in figure (5.3(b))

and was used to estimate c1/2 . These values can be used to correlate the interfacial tension

to the amount of surfactant remaining in solution using equation (5.20) described in section

5.1.2.

To include the effect of interfacial tension in our model, we start with the interfacial

tension value corresponding to the amount of surfactant added. Then as the drops get

smaller and smaller more and more surfactant is adsorbed at the interface and so the amount

of free surfactant decreases. Since the amount of surfactant in solution decreases with

successive passes, the resultant interfacial tension increases and therefore the breakup rate

goes down. With this feature included in the model, re-optimization was performed to get

the best values of the parameters K1−K6. Incorporating the increase in interfacial tension
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with subsequent passes in our model, the predictions were improved and hence the objective

function decreased by 17% over the base case (figure(5.4)), the new value of objective

function being 3.68. The increase in interfacial tension with the number of passes is shown

in figure (5.4(a)). It is seen from this figure that the increase is not substantial at lower

pressures but significant at higher pressures. The model predictions with the experimental

data is shown in figures (5.4(b)-5.4(d)). Including this effect shows maximum benefit at

1250 bar and although the overall improvement is not huge, it does need to be incorporated

to have the correct physics included in the model

5.2.4 Critical diameter limit

To get an estimate of the maximum stable diameter from experimental data we observed

the drop distributions for all the sets. The drop distribution was seen to stabilize around the

fourth and fifth pass and hence the Sauter mean diameter d32 for the fifth pass was consid-

ered to be the steady state diameter possible. The proportionality constant c1 in equation

5.23 was estimated by fitting the fifth pass d32 to the critical diameter dti from equation

5.24. Figures (5.5(a))-(5.5(c)) show the fitting relations for two formulations namely 5wt%

oil with 1wt% surfactant and 10wt% oil with 2wt% surfactant. The slopes in case of both

formulations are similar indicating that any one of the formulation set is sufficient to esti-

mate the proportionality constant. Since the maximum stable is the limiting diameter below

which drops cannot break further, this concept was included in our PBE model such that

when the ratio of mean diameter d32 to dmax falls below unity, the breakage rate is set to

zero.

We have shown the effect of including this limit in our model in figures (5.6(a))-(5.6(c)).

From figure (5.6(d)), we see that the ratio of d32/dmax starts to fall below 1 at about 750

bar and does so till 1250 bar. Since the limit is not active for 250 and 500 bar pressure, this

case was not shown in figure 5.6(d). The critical diameter limit becomes active between

the 3rd pass and 4th pass for 750 bar and between the 2nd pass and 3rd pass for 1250
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bar set. Including this effect helps to correct the model overprediction observed at higher

pressures seen by the reduction in objective function for 1250 bar (figure 5.6(c)). The

overall objective function on inclusion of this effect decreased to 2.85 which was a 36%

improvement over the base case.

5.2.5 Surfactant limit

We also included the effect of surfactant concentration in addition to the interfacial

tension. If there is insufficient amount of surfactant in the system, there might not be

enough breakage. Hence, if the ratio of added surfactant to adsorbed surfactant drops below

1, we imposed that the breakage rate goes to zero. The amount of surfactant adsorbed is

calculated from equation 5.21. We tried to include this effect alongwith all the above

discussed effects. However, in all the cases discussed above we had sufficient amount of

surfactant and this effect does not occur independent of the critical diameter effect. So,

we tried it on another independent test case with 5 wt% oil and 0.1 wt % surfactant for

250 bar pressure. Only at lower pressure, we observed that the surfactant limit goes below

unity without the critical diameter limit doing the same. From figure (5.7(b)), we see that

the surfactant limit becomes active after the 3rd pass even though the diameter ratio is

always above 1. The model predictions with this limit included is shown in figure (5.7(a)).

Although not important in our case, this test proves that the effect maybe dominant under

certain conditions especially when coalescence is also present.

5.2.6 Effect of number of daughter drops

In all the cases considered above we assumed the number of daughter drops to be 20

similar to our previous work. However, we thought it would be worthwhile to check the

effect of number of daughter droplets which was hence varied from 10 to 500 and the model

was reoptimized to get new objective function values. In figure (5.8(a)), is plotted the

objective function versus the number of daughter drops formed on breakage. The objective

function decreases on increasing the number of daughter drops till about 150 drops and then
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it increases with increasing the number of drops further. Since a minimum was observed

at 150 drops, all the above effects were added to the base case model but with 150 drops

instead of 20. From figures (5.8(b)-5.8(d)), we see a large improvement in the objective

function in all the cases. The total objective function reduced significantly to 1.69 which in

total is 62 % improvement.

5.2.7 Overall trends in the objective function

The contribution of all the different effects discussed above towards the objective func-

tion is shown in figure (5.9). We also simulated other oil and surfactant concentrations

listed in table 5.1 using the constants optimized for the base case formulation. The heating

effect affects positively for 5 wt % oil, negatively for 10 wt% oil and no effect for 20 wt%

oil. All the other effects considered improve the total objective function uniformly over

all the formulations tested. The objective function values and the percentage improvement

is tabulated in table 5.2 for the base case formulation. Significant reduction in objective

function was observed on including the critical diameter effect since it helps to avoid the

overprediction of the distributions observed at higher pressures. Increasing the number of

daughter drops from 20 to 150 also shows a substantial decrease in objective function over

all the pressures and formulations considered. This test enabled us to weigh the contribu-

tions of the different effects towards reducing the objective function. We think that the most

important effects to include would be the critical diameter and daughter drop distribution

function.

5.2.8 Design

The PBE model was improved over the basic version by adding features which resulted

in a final reduction of about 62% in the objective function value and the constants eval-

uated were applicable over a wide range of operating pressure. The next step once we

had a decent model was to use it for experimental design. For this, the model predicted

mean diameters d32 and d43 for 5 wt% oil and 1 wt% surfactant were used to construct the
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attainable region of drop sizes for the high pressure homogenizers. At a given pressure,

the successive passes can be considered to be homogenizers in series. The starting point

is the initial condition and the d43 versus 1/d32 is plotted for different passes at a given

pressure (figure 5.10(b)) which is analogous to residence time for reactor networks [23,31].

For an emulsion breakup process, the d43 decreases with increasing homogenizers in series

equivalent of number of passes whereas the 1/d32 increases. This allows construction of a

convex attainable region with easy visualization of the average properties. Although only

two mean properties are not enough to characterize the whole distribution, this method al-

lows us to generate possible alternatives for target emulsions with desired properties. The

whole PBE model can then be used to evaluate the entire distribution and compare with the

target.

In figure (5.10(c)), we plot d43 versus 1/d32 for all passes and pressures. The vertical

lines are lines of constant d32 and the dashed lines correspond to different values of poly-

dispersity defined in equation (5.25). The premix is omitted in this figure to expand the

scale.

p.d. =
d43

d32

(5.25)

From the figure (5.10(c)), we see that it is not possible to get a monodispersed (p.d.=1)

emulsion with any configuration since it is outside the attainable region. Possible values of

polydispersity are 2 or higher.

As examples, we have considered 2 targets, Target I: mean diameter d32 of 500 nm

or 0.5 µm and a polydispersity of 2, p.d. = 2, and Target II: mean diameter d32 of 250

nm or 0.25 µm and a polydispersity of 2, p.d. = 2. To identify possible combination

we need to see which pressure lines lie at the intersection of p.d. = 2 and the vertical

line for corresponding d32. From the plot, we see that there are 2 possible options for

reaching either of the two targets: 3.5 passes at 500 bar and 2.25 passes (slightly above 2

passes) at 750 bar for Target I and 2.75 passes at 1000 bar and 2.33 for 1250 bar. These

options are listed in table 5.3 and the best choice in either case would be the one with the
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minimum energy requirement. However, since it not possible to generate fractional passes,

we generate a whole pass at a lower pressure which has the same energy requirement as the

fractional pass. The energy dissipation rate versus pressure curve in figure 5.10(a) can be

used as a guide to choose an intermediate pressure which has same ε as the fractional pass.

To implement the options in table 5.3, the experimental strategy in table 5.4 based on

matched energy dissipation rate was used. The experimentally obtained d32 and polydis-

persities are listed in the same table. The model predictions using the following strategy

is also listed. The model predicts that the conditions listed yield the right d32 and p.d. as

expected. However, for the first case the experimental d32 were lower than the target value

but the polydispersities were correct. Although the experimental d32 for first target were

lower, they maybe acceptable since the target size has been crossed. For the second case,

both the schemes yield the desired d32 and polydispersity p.d.. From energy requirement

standpoint, the best choice in both cases would be to operate more passes at lower pressure.

5.3 Conclusion

The previous version of the PBE model was improved upon to get better agreements

with experimental data over a wide range of operating pressure as well as formulations by

adding various features to the model. Substantial heating of the emulsion at the exit of the

homogenizer suggested loss in mechanical energy available for drop disruption. Incorpo-

rating thermal losses improved model predictions to some extent. Adding the change in

interfacial tension with successive passes and the effect of critical diameter further helped

in proposed aim of improving predictions. Considerable improvements could be obtained

on increasing the number of daughter droplets on top of the above effects and a final 62 %

total reduction in the objective function value was obtained. Based on all the results, the

most promising features to be included in the model were the maximum stable diameter

and the number of daughter drops. To use all the features discussed, in addition to experi-

mental drop size distribution data and physical properties of the constituent ingredients, we
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need the temperature rise, the interfacial tension as a function of the concentration as well

as the final pass d32. However, this data once collected for one of the formulation holds

true for other cases in the range considered. We also used our model to guide the design

of some target emulsions. The design approach alongwith our model was found to be quite

successful in being able to guide manufacturing of emulsions with target properties.
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Table 5.1. Oil and surfactant concentrations

Oil concentration (wt%) Surfactant concentration (wt%)
5 1

10 2
20 4

Table 5.2. Objective function values for 5 wt% oil and 1 wt% surfactant

Effect Objective function ΨT % improvement
Base case 4.46 -
Heating 3.89 13

Interfacial tension 3.68 17
Critical diameter 2.85 36
Daughter drops 1.69 62

Table 5.3. Design options

Pressure (bar) #passes ε (W/m3)
d32=0.5 µm, p.d.=2

500 3.5 5.6e11
750 2.25 6.2e11

d32=0.25 µm, p.d.=2
1000 2.75 1.1e12
1250 2.33 1.26e12
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Table 5.4. Design strategy with experimental and model results

Pressure (bar) #passes d32 (expt) p.d. (expt) d32 (model) p.d. (model)
Target I: d32=0.5 µm, p=2

500 3
Set I 0.29 2.0 0.47 2.0

300 1
750 2

Set II 0.3 2.1 0.45 2.24
300 1

Target II: d32=0.25 µm, p=2
1000 2

Set III 0.23 1.91 0.25 1.86
800 1
1250 2

Set IV 0.25 2.12 0.27 2.27
550 1
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Figure 5.1. Base case parameter estimation for different pressures with experimental and
predicted drop volume distributions for the (P) premix, (1) the first pass, (3) the third pass,
and (5) the fifth pass. Ψ is the objective function value for a particular pressure set. (a)
250 bar pressure set. (b) 750 bar pressure set. (c) 1250 bar pressure set. (d) Pass by pass
objective function as a function of the number of passes for the different pressures.
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Figure 5.2. Effect of the inclusion of heating effects on parameter estimation for different
pressures with experimental and predicted drop volume distributions. (a) Average temper-
ature difference and the effective pressure as a function of the applied pressure with error
bar representing the standard deviation. (b) 250 bar pressure set. (c) 750 bar pressure set.
(d) 1250 bar pressure set.
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Figure 5.3. Experimental data and model fits for interfacial tension. (a) Interfacial tension
as a function of surfactant concentration with a fit to quadratic equation. (b) Γ/Γ∞ as a
function of concentration.
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Figure 5.4. Effect of the inclusion of change in interfacial tension with passes on param-
eter estimation for different pressures with experimental and predicted drop volume distri-
butions. (a) Interfacial tension as a function of the number of passes for different pressures.
(b) 250 bar pressure set. (c) 750 bar pressure set. (d) 1250 bar pressure set.
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Figure 5.5. Critical diameter fits to experimental 5th pass d32. (a) Mean diameter d32 with
dti for 5wt% oil and 1wt% surfactant. (b) Mean diameter d32 with pressure for 5wt% oil
and 1wt% surfactant. (c) Mean diameter d32 with dti for 10wt% oil and 2wt% surfactant.(b)
Mean diameter d32 with pressure for 10wt% oil and 2wt% surfactant
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Figure 5.6. Effect of critical diameter limit on parameter estimation for different pressures
with experimental and predicted drop volume distributions. (a) 250 bar pressure set. (b)
750 bar pressure set. (c) 1250 bar pressure set. (d) Diameter ratio versus number of passes
for different pressures before and after inclusion of the critical diameter limit.
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Figure 5.7. Effect of inclusion of the surfactant depletion limit. (a) 5 wt % oil and 1 wt
% surfactant at 250 bar case with experimental data and model predictions. (b)Surfactant
ratio and diameter ratio versus number of passes before and after inclusion of the surfactant
limit.
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Figure 5.8. Effect of the number of daughter drops on parameter estimation for different
pressures with experimental and predicted drop volume distributions. (a) Objective func-
tion value for different number of daughter drops. (b) 250 bar pressure set for p = 150
and all the previously mentioned effects. (c) 750 bar pressure set for p = 150 and all the
previously mentioned effects. (d) 1250 bar pressure set for p = 150 and all the previously
mentioned effects.
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Figure 5.9. Trends in Objective function for different formulations and the effect of dif-
ferent cases discussed. 3 different formulations as listed in table 5.1 were simulated using
constants optimized for 5 wt% oil and 1 wt% surfactant.

135



200 400 600 800 1000 1200 1400
0

1

2

3

4

5

6
x 10

11

Pressure (bar)

ε
 (

W
/m

3
)

(a) (b)

p=1

p=5

p=3p=2

0 1 2 3 4 5
0

1

2

3

4

5

6

7

1/d
32

d 43

 

 

250 bar
500 bar
750 bar
1000 bar
1250 bar

(c)

Figure 5.10. Design of target emulsions. (a) Energy dissipation rate as a function of
pressure. (b) Attainable region of drops sizes at 250 bar pressure. (c) Attainable region
of drops sizes for all pressures with lines of constant polydispersity and constant d32 as
guides.
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CHAPTER 6

CONCLUSIONS AND FUTURE WORK

6.1 Summary

We have developed a population balance equation based model for predicting the drop

size distributions of emulsions resulting from a high pressure homogenization process. This

work involved using appropriate mechanistic functions for the physical processes occurring

in the homogenizer namely, breakage. Our focus was primarily on breakage and care was

taken to keep coalescence to the minimum. We identified that two functions corresponding

two breakage mechanisms under turbulent conditions were necessary for successful repro-

duction of the key features of the experimental drop size distribution. Starting with the

assumption of binary breakup of drops, we improved the model by using multiple drop

breakage which is a more common occurrence according to some experimental studies.

Extensibility tests with the model were successful for changes in the formulation variables

but were unsuccessful for changes in operating variable which is the pressure applied. The

pressure predictions were improved upon by adding more features to the model like heating

losses, changes in interfacial tension, critical diameter effect and number of daughter drops.

Of these, the key features to be included were found to be the maximum stable diameter

and number of daughter drops. The use of mechanistic functions allowed us to apply the

model as a predictive tool under conditions not explored experimentally. An attempt was

also made to validate the capability of the model as a design tool. Using the attainable

region approach for design, we were able to successfully develop experimental plans for

some example target emulsions.
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6.2 Future Work

Our primary focus in this dissertation was developing a PBE model for emulsion break-

age and identifying appropriate candidate functions for the same. Although coalescence

was added to the model, it was not extensively explored. Moreover, we tried to main-

tain conditions where coalescence would not be significant, like using low dispersed phase

volume fractions and plenty of surfactant which was verified by independent coalescence

experiments. However for most practical applications, for instance mayonnaise, it is nec-

essary to have a high dispersed phase fraction. It is therefore necessary to explore these

high concentration systems using the PBE model. For this case, including coalescence is

crucial since it is most likely to occur when the dispersed case concentration is high. Sur-

factant effects are also significant under this scenario since in industrial situations material

cost is a limiting factor and hence we cannot overload the system with surfactant to avoid

coalescence.

We have probed changes in formulation variables to some extent but never changed

the constituent ingredients. It is also important to explore different types of surfactant

and dispersed phases. Depending on the choice of formulation ingredients, the physical

properties will be different and will directly impact the breakage and coalescence processes

in the homogenizer, ultimately affecting the final product. Emulsion systems in itself are

worth exploring in detail and in addition the applicability of emulsions for delivery of

active components should also be studied. Use of emulsions as delivery systems adds

further complexity since their interactions with the formulation ingredients needs to be

considered.

We also have not explored the effect of the homogenizing geometry in detail. A sim-

plistic description introduced through the energy dissipation rate ε was used. This in itself

is not enough if we are interested in comparing different equipments or scaling them up.

A detailed study is necessary and computational fluid dynamics can be probably used as a

guide.
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Many times from an application point of view, the final emulsion properties are more

important and need to modeled. For example, emulsion rheology is affected by the vis-

cosity of the continuous phase, dispersed phase volume fraction, temperature, drop size

distribution, and drop shape factor. Using physical property models, more tangible final

properties like rheology, stability, and release rate of active ingredients can be predicted

which however needs detailed study. Another applicability of the PBE model is for design-

ing experiments to make emulsions with pre-specified properties. We did a preliminary

investigation of the design methodology using the attainable region approach with reason-

able success. We used mean properties of the distribution i.e. the d43 and d32 for this

purpose and in Section 1.2 we have discussed what properties of emulsions are important.

However, depending on the application it may be necessary to identify what key properties

of these emulsions should be modeled and used for design. The design approach allows us

to identify what combinations of process and formulation would give the target properties.
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APPENDIX A

DERIVATION OF THE TURBULENT VISCOUS BREAKAGE
RATE FUNCTION

The breakage rate is considered to be exponentially distributed as described by [119],

g(d) =

(
2

π

)1/2
∆u

di

exp

(−∆u2
b

∆u2

)
(A.1)

where ∆u is the rms velocity difference across distance di, and ∆ub is the critical velocity

difference at which drop breakage occurs. The local shear rate is approximated as:

G =
∆u

di

(A.2)

Substituting for ∆u and ∆ub yields,

g(d) =

(
2

π

)1/2

G exp

(−G2
b

G2

)
(A.3)

where Gb is the critical shear rate that causes drop breakup. The Capillary number (Ca) for

a drop of diameter d is given as,

Cad =
ηcGd

2σ
(A.4)

where ηc is the continuous phase viscosity, and σ is the interfacial tension. If Cad > Cac

(the critical capillary number), the drop is unstable and will eventually break. The critical

shear rate can be written in terms of the critical capillary number Cac as [23]:

Gb =
2Cacσ

ηcd
(A.5)

Therefore, the breakage rate can be written as:
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g(d) =

(
2

π

)1/2

G exp

(−(2Cacσ)2

(ηcGd)2

)
(A.6)

For turbulent flow, G can be related to energy dissipation rate ε and the kinematic

viscosity ν [66, 119]. The resulting expression based on dispersed phase properties is:

G =

√
ε

ν
=

√
ερd

ηd

(A.7)

Substituting for G in the breakage rate yields,

g(d) =

(
2

π

)1/2 (
ερd

ηd

)1/2

exp

(−(2Cacσ)2λ

(ηcd2ερd)

)
(A.8)

where λ = ηd/ηc is viscosity ratio. Expressing ε in terms of pressure yields the final result:

ε =
c1

d

(
P

ρd

)3/2

(A.9)

g(v) = g2(v) = K3

(
2

π

)1/2
(

P 3/4

η
1/2
d ρ

1/4
d v1/6

)
exp

(
−c2(2Cacσ)2λ

ηcP 3/2ρ
−1/2
d v1/3

)
(A.10)

This function depends on the pressure P , interfacial tension σ, dispersed phase density

ρd, continuous phase viscosity ηc, dispersed phase viscosity ηd, and the critical capillary

number Cac. The critical capillary number is expected to depend on the viscosity ratio and

the type of flow ( [35, 48]). However, for turbulent viscous flows the dependance on the

viscosity ratio is not strong. Therefore, we invoke the assumption that Cac is constant and

incorporate Cac into the adjustable constant K4.

g(v) = g2(v) = K3

(
2

π

)1/2
(

P 3/4

η
1/2
d ρ

1/4
d v1/6

)
exp

(
−2K4σ

2λ

ηcP 3/2ρ
−1/2
d v1/3

)
(A.11)
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APPENDIX B

MAXIMUM STABLE DROP SIZES

From turbulence theory, drops can break by collisions with turbulent eddies (function

g1) or due to viscous stress (function g2). The size of the smallest eddy is given by [?, 68,

113, 116, 118]

λ0 ≈ ε−1/4η3/4
c ρ−1/2

c (B.1)

where ε is the energy dissipation rate per unit volume of fluid. The maximum stable drop

size in the inertial turbulent regime is given by

di ≈ σ3/5ε−2/5ρ−1/5
c (B.2)

For the case of shear or viscous turbulent flow, the maximum stable drop diameter is

dv ≈ σε−1/2η−1/2
c (B.3)

For our base case conditions dv ≈ λ0 ≈ di, which implies that both inertial and viscous

forces are important [113].

The deformation time scale is given by [116, 118]

tdef ≈ ηd

Cρ
1/3
c ε2/3d2/3 − 4σ/d

(B.4)

The lifetime of the eddy is
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teddy ≈ ρ
1/3
c d2/3

ε1/3
(B.5)

Because the deformation time is smaller than eddy lifetime for most of the size range

considered, drops can be broken by inertial forces and viscous forces. Therefore, either

function could be used to describe breakage at small drop sizes. Because dv was larger

than di, we used the turbulent eddy function (g1) to describe breakup of small drops and

turbulent shear function (g2) to describe breakup of large drops.
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APPENDIX C

DERIVATION OF THE NO APPLIED PRESSURE BREAKAGE
RATE FUNCTION

If the breakage rate is considered to be exponentially distributed [119],

g(d) =

(
2

π

)1/2
∆u

di

exp

(
−∆u2

b

∆u2

)
(C.1)

G =
∆u

di

=
u

L
(C.2)

where u is the velocity in the homogenizer and L is the length over which the velocity

changes. Rewriting this equation in terms of flowrate Q,

G =
Q

AL
=

Q

Vd

(C.3)

where Vd is the dispersion volume or the effective volume over which the change occurs.

The breakage rate becomes,

g(d) =

(
2

π

)1/2

G exp

(
−G2

b

G2

)
(C.4)

where Gb is the critical shear rate. Expressing Gb in terms of the critical Capillary number

Cac,

Gb =
2Cacσ

ηcd
(C.5)

g(d) =

(
2

π

)1/2

G exp

(
−

(
2Cacσ

ηcGd

)2
)

(C.6)

If G is expressed is rewritten using equation (C.3),
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g(d) =

(
2

π

)1/2
Q

Vd

exp

(
−(2CacσVd)

2

(ηcQd)2

)
(C.7)

Converting the breakage rate to drop volume assuming spherical drops, the following equa-

tion is obtained,

g(v) =

(
2

π

)1/2
Q

Vd

exp

[
−

(
2CacσVdπ

1/3

ηcQ(6v)1/3

)2
]

(C.8)

The final equation is obtained by expressing unmeasurable quantities in terms of the ad-

justable parameters K5 and K6,

g(v) = K5

(
2

π

)1/2

Q exp

[
−

(
K6

2Cacσπ1/3

ηcQ(6v)1/3

)2
]

(C.9)
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