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Abstract— Computational steering provides many opportu-
nities to gain additional insight into a numerical simulation,
for example by facilitating “what-if” experimentation, detec-
tion of unstable situations and termination of uninteresting
runs. When performing steering, it is important that steering
changes are quickly reflected in the state of the simulation, so
that cause and effect are clearly linked. However, this places
constraints on the simulation: it must produce data quickly.
The resolution of the simulation is often reduced to allow
this. These two competing requirements of response and
resolution must be balanced in a usable steering system. This
paper proposes a technique, simulation trails, that addresses
this issue of balance for simulations where the transient
solutions are as important as the final state, and applies it
to a simulation using the Smoothed Particle Hydrodynamics
method from the domain of astrophysics.
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1. Introduction
The growth of the field of computational science over the

past twenty years has had a significant impact on the work
of physical scientists. By supplementing the existing modes
of experimentation (or directed observation, in sciences
where experimentation is difficult or impossible) and theory,
simulations and computer models support the development
of insight and understanding of ever-more complex systems.

Within computational science, visualization plays an im-
portant role in the research workflow. The data produced by
simulations needs to be presented such that the important
features of the results are easily identifiable, since further
simulations with different parameters may need to be per-
formed before useful final results are gained. By performing
computational steering and changing parameters while the
simulation progresses, the time required can be significantly
reduced.

However, for many applications, the evolution of the
simulation is of equal importance to the end state. What
is required, then, is a technique that allows useful steering
of simulations of this type without requiring repeated input
after each time step from a physical scientist. In this paper,

background and related work are discussed before introduc-
ing simulation trails, a technique for usefully steering such
simulations. The technique is then applied to a problem
from the domain of astrophysics and the results considered.
Finally, conclusions are drawn and future work is discussed.

2. Background and Related Work
Marshall et al.[1] classify visualization techniques based

on the degree of integration between simulation and visual-
ization software as either post-processing, tracking or steer-
ing. In post-processing, the simulation is run to completion
and visualization is performed as part of the analysis stage.
This is often also referred to as batch-mode simulation.
In tracking, the results of the simulation are visualized as
soon as they become available. Finally, in steering, direct
control of an in-progress simulation is offered. Batch-mode
simulation developed from a mismatch in computing power:
the simulation needed to run on a supercomputer or similar,
while the visualization could be performed on much lower
specification hardware. With the growth in desktop com-
puting power, and the development of distributed and Grid
simulations, the use of tracking and steering has increased.

Within steering, Mulder et al.[2] categorise its uses. Model
exploration is concerned with exploration of the parameter
space of simulation; algorithm experimentation allows use
of different numerical techniques within the simulation;
and finally performance optimization focuses on steering to
improve the computational performance of the simulation. It
may be, though, that both model exploration and algorithm
experimentation require the simulation to be performed
again—for such simulations, these techniques would be
described as tracking rather than steering according to the
classification given above.

Steering for performance optimization has more potential
for interactivity in such simulations. Since the user of the
system is an expert in the domain, it may be possible to
direct computation to areas of greatest scientific import.
By controlling the level of detail, the time required to
produce results could be reduced while still providing greater
accuracy in regions where it is required. This approach is
typified by schemes such as dynamic local adaptive mesh
refinement[3], where features are tracked across time steps
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Fig. 1: The simulation is first run at a low resolution (with steering feedback). The results are visualized and a simulation
trail is produced. Then a second, higher resolution simulation is performed using the trail as an additional input. By following
the trail, computation is directed at areas of greatest scientific interest.

and the grid resolution is altered accordingly. This feature
tracking can be automated, or driven by user input[4].

User-based steering systems can suffer from the problem
of steering lag[5], [6], defined as the time between the user
performing a steering action and the simulation responding
to the action. Minimal lag promotes user interaction with
the system, but must be balanced against the resolution of
the simulation: higher resolution simulations will take longer
to respond because each time step takes longer to generate.
These two competing requirements of response and accuracy
are at the heart of the solution discussed in the following
section.

3. Steering with Simulation Trails
Computational steering works on the assumption that a

domain expert is controlling the process, and that they
have additional information about the simulation that cannot
necessarily be captured in an automated fashion. Their
interaction with the simulation through the steering system
helps gain insight into the system being modelled, and also
helps the simulation proceed more efficiently. A large gap
between steering action and simulation response makes it
harder to gain insight: if the effects of a steering change are
only visible five hours later, then it is unlikely to be viewed
as a direct result of that one action. But to reduce the lag
and increase interactivity requires sacrificing accuracy.

Steering actions for performance optimization through
level of detail control can be easily recorded. Taken over the
entire simulated time period, this indicates which regions of
the simulation were considered interesting from a scientific

perspective at each time step. This information, referred to
hereafter as a simulation trail, is a concrete representation of
expert input to the simulation process. It can be visualized
separately, and, most importantly, it can be re-used.

Many modern compilers employ a technique called
Profile-Guided Optimization (PGO)[7] to improve runtime
performance. Programs are run and profiled, then re-
compiled using this profile to optimize the code paths used
most frequently. A simulation trail can be considered to
be a profile for a simulation. Once produced, a simulation
trail can be applied to subsequent simulations of the same
phenomenon at higher resolutions in batch-mode. This elim-
inates the problems associated with steering lag.

The question, then, is how to produce this simulation trail?
If a broad-strokes approach to marking regions of interest
is adopted, then a lower resolution simulation may suffice.
By reducing the resolution, lag is reduced. By applying the
trail marked using a lower resolution to subsequent, higher
resolution simulations, accuracy is maintained.

4. Trails In Astrophysical Simulations
Numerical simulation is widely used in astrophysics.

Observations of astrophysical phenomena are made, then a
theoretical model developed that appears to explain these
observations. This model is tested through experimentation
using numerical simulation, compared to observations and
refined. Transient solutions are important in this process
because they can aid understanding of the processes that
formed the structures that are now observable. In this section,
the simulation trails technique is applied to simulations
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Fig. 2: Splitting a particle. (a) Four (eight in 3D) sub-particles (shown in blue) are placed at the vertices of a square
(cube in 3D) around the original particle (shown in red)(b) This arrangement is rotated by a random angle, then values are
interpolated at the sub-particle positions (c) Finally, the original particle is removed.

of star formation using Smoothed Particle Hydrodynamics
(SPH). The SPH method is described briefly, followed by
an outline of the SimTrails environment[8], a simulation,
visualization and steering application for SPH. A specific
scenario is then considered from the domain of astrophysics.
A simulation trail is mapped using a low resolution data set.
This trail is then applied to higher resolution simulations and
the results analysed.

4.1 Smoothed Particle Hydrodynamics
Gingold and Monaghan[9] (and, independently, Lucy[10])

developed Smoothed Particle Hydrodynamics, a meshfree,
particle method, to model astrophysical phenomena. The
fluid is represented by a set of particles, each of which has
mass, density and numerous other properties. These particles
move according to equations for the conservation of mass,
momentum and energy much as in N-body simulations.
However, the key element of the SPH method is its use
of a weighted averaging scheme to determine the value of
a property at a given point. Each particle has an associated
smoothing length, h, which is adjusted after each time step
so that the number of particles contained within a distance of
2h of the particle remains constant. This smoothing length
is used together with a smoothing function, W , to determine
the value of a function at particle i.

〈f(xi)〉 =
N∑

j=1

mj

ρj
f(xj)Wij (1)

where mj is the mass of particle j, ρj is the density of
particle j and

Wij = W (xi − xj , h)

This states that the value of a function at particle i is
approximated using the weighted average by distance of
the values of the function at all the particles in the support
domain of particle i.

The variable particle smoothing length gives the method
adaptive resolution. This means that SPH is computationally

efficient when there exist large regions of empty or nearly
empty space. As with other meshfree methods, SPH copes
particularly well with problems involving complex rotational
behaviour, and those with no definite boundaries.

The computational cost per time step of an SPH simula-
tion increases as the number of particles in the simulation is
increased. However, as the particle resolution increases, the
smoothing length decreases and so does the time step. Thus
the increase in computational cost of an SPH simulation as
the number of particles is increased may be exponential.

4.2 The SimTrails Environment
The SimTrails environment combines an extended and

refactored C++ version of the SPH simulation of Miao et
al.[11] with a visualization tool that offers coordinated mul-
tiple and multiform views[12]. A scientist using the system
can work interactively with the simulation generating new
results in the background in response to steering changes,
or with the data from a completed simulation run.

The system offers visualization in the form of contour
plots, 3D scatterplots, isosurfaces and a point-splatting tech-
nique for density, temperature and velocity. Contour plots
can be generated automatically or with a slicing gesture on
a 3D view. Views can be linked so that changes made to
one view such as filtering, panning and zooming also affect
linked views. This approach facilitates exploration of links
between properties.

4.2.1 Mapping Trails

A trail is mapped by selecting, at each time step, the
regions that are of scientific interest. In 3D views, this is
accomplished by placing ellipsoids directly into 3D space,
while in 2D views a small ellipsoid is used that contains
the 3D equivalent of the 2D projection. Selected regions
are shown as overlays in all views, and the points at which
a trail has been marked are also shown graphically in the
interface. Since the trail is tied to positions in space rather
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Fig. 3: Steps in simulation trail at (a) t=193k years (b) t=248k years (c) t=313k years. In each case, only regions outside
the dense core are marked for additional resolution

Run id Initial particle count Splitting enabled Final particle count No. of time steps Runtime (s)
7S 7000 Yes 34202 814 43411

30NS 30000 No 30000 749 27895
70NS 70000 No 70000 1639 164996

Table 1: Performance data for IC63 simulations. All simulations were performed on a 3.6GHz Pentium P4 with 2GB of
RAM. Run ids are provided for reference in text.

than particle positions, it can then be saved and usefully
applied to subsequent simulations.

4.2.2 Adaptive Resolution

While the SPH method already provides a form of
adaptive resolution through varying per-particle smoothing
lengths, the local resolution of the simulation is determined
by the number of particles in a given region. Since the
distribution of particles cannot be predicted beforehand, this
may have important consequences: in particular, significant
features in the data set may be resolved by only a small
number of particles relative to the total particle count.
Increasing the overall number of particles gives no guarantee
that features will be better resolved. It has been observed[13]
that particles tend to cluster in regions of high physical
density. So while features in high density areas may be well
resolved, the same is not necessarily true for lower density
regions.

To address this problem, techniques such as sink
particles[13] and particle resampling[14] have been devel-
oped to adjust local resolution directly. However, considering
the goals of the simulation trails technique, the most natural
method is particle splitting[15], [16], [17]. A particle can be
split by redistributing its mass and other physical properties
over a number of subparticles. For example, splitting a
particle in four requires the creation of four new particles,
each with a mass of 1/4 that of the original particle. The
SPH estimation technique of Equation 1 is then used to

interpolate values of density and other physical properties
at the positions of each of the new particles. Finally, the
original particle is removed from the simulation. This pro-
cess is shown in Figure 2.

4.2.3 Following a Trail
When a trail is applied to a simulation in batch-mode,

the appropriate trail step is selected based on the simulated
time, then applied by the simulation. Particles are split if
necessary to ensure that the particle resolution in the trail
areas is kept above a threshold level (typically five times the
average particle resolution at the start of the simulation).

5. Modelling IC63
5.1 Experimental Scenario

IC63 is a reflection nebula that lies at a distance of
around 230 parsecs from the Earth. It can be modelled as
a molecular cloud with initial mass 1.6 Msun, initial radius
0.085 pc and initial temperature 60K. The nebula is subject
to a strong z-directional ionization field, and an isotropic
interstellar radiation field. The cloud is evolved for a period
of 526,000 years, and the results analysed and compared to
previous simulations and observations[18].

5.2 Formulating a Trail
Of particular interest in this scenario is the temperature

profile of the cloud as the simulation progresses. While the



Fig. 4: IC63 x-z particle count plots for y = 0. Particles are gridded and grid squares are coloured according to the number
of particles they contained. The spatial extent of each plot is -1.8 to 1.8 parsecs, and the images show, from left to right,
runs 30NS, 7S and 70NS at t = 525k years.

Fig. 5: IC63 x-z temperature plots for y = 0. The spatial extent of each plot is -2.2 to 2.2 parsecs, and the images show,
from left to right, runs 30NS, 7S and 70NS at t = 525k years.

core is likely to be denser (and hence be resolved by more
particles), the outer edges of the cloud will be more affected
by the ionization field but less well resolved. Accordingly,
a trail that specifies the edges of the cloud as requiring
additional resolution was applied, by observing the size
of the core region on a simulation using 2000 particles
and producing a trail that only splits particles outside this
region. This trail, shown in Figure 3, was then applied to a
simulation with an initial particle count of 7000.

5.3 Analysing Results

Run 7S was found to have a final particle count of 34,202
at t = 525k years. Figure 4 shows comparisons of the parti-
cle distributions for runs 30NS and 70NS with the 7S results.
As can be seen, run 7S has a markedly different distribution
of particles from run 30NS, even though the number of
particles is similar. Figure 5 shows the temperature profiles
for runs 30NS, 7S and 70NS at the end of the simulation. The
temperature profile for run 7S is significantly different to that
for run 30NS, and is more in line with the higher resolution
run 70NS while requiring only 26% of the runtime. Table 1



shows the computational cost for each run.

6. Conclusions and Future Work
Using a simulation trail for the IC63 scenario allowed

the expert direction of computational effort to where the
low resolution results suggested it would be most useful.
In this case, by using a very simple trail and splitting
particles and raising resolution outside the core region, the
temperature profile was resolved more accurately. While this
process could be automated, the very act of visualizing and
examining the low resolution results to formulate a trail can
help develop insight and understanding into the model and
the simulation. By avoiding direct user steering of the higher
resolution simulation, the simulation response time is kept
low while accuracy is maintained by the second simulation
using the trail. As future work, many obvious technical
improvements could be made to the existing system—
merging as well as splitting particles for example, and a
more sophisticated trail selection technique. It would be
interesting to investigate the use of simulation trails in other
applications, for example in adaptive mesh refinement codes,
or for steering of aspects other than resolution.
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