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Abstract

The need to measure sequence similarity
arises in information extraction, object iden-
tity, data mining, biological sequence analy-
sis, and other domains. This paper presents
discriminative string-edit CRFs, a finite-
state conditional random field model for edit
sequences between strings. Conditional ran-
dom fields have advantages over generative
approaches to this problem, such as pair
HMMs or the work of Ristad and Yiani-
los, because as conditionally-trained meth-
ods, they enable the use of complex, arbitrary
actions and features of the input strings. As
in generative models, the training data does
not have to specify the edit sequences be-
tween the given string pairs. Unlike genera-
tive models, however, our model is trained on
both positive and negative instances of string
pairs. We present positive experimental re-
sults on several data sets.

1 Introduction

Parameterized string similarity models based on string
edits have a long history (Levenshtein, 1966; Needle-
man & Wunsch, 1970; Sankoff & Kruskal, 1999). How-
ever, there are few methods for learning model pa-
rameters from training data, even though, as in other
tasks, learning may lead to greater accuracy on real-
world problems.

Ristad and Yianilos (1998) proposed an expectation-
maximization-based method for learning string edit
distance with a generative finite-state model. In their
approach, training data consists of pairs of strings that
should be considered similar, and the parameters are
probabilities of certain edit operations. In the E-step,
the highest probability edit sequence is found using the
current parameters; in the M-step the probabilities are

re-estimated using the expectations determined in the
E-step so as to reduce the cost of the edit sequences ex-
pected to have caused the match. A useful attribute of
this method is that the edit operations and parameters
can be associated with states of a finite state machine
(with probabilities of edit operations depending on
previous edit operations, as determined by the finite-
state structure.) However, as a generative model, this
model cannot tractably incorporate arbitrary features
of the input strings, and it cannot benefit from nega-
tive evidence from pairs of strings that (while partially
overlapping) should be considered dissimilar.

Bilenko and Mooney (2003) extend Ristad’s model to
include affine gaps, and also present a learned string
similarity measure based on unordered bags of words,
with training performed by an SVM. Cohen and Rich-
man (2002) use a conditional maximum entropy clas-
sifier to learn weights on several sequence distance fea-
tures. A survey of string edit distance measures is pro-
vided by Cohen et al. (2003). However, none of these
methods combine the expressive power of a Markov
model of edit operations with discriminative training.

This paper presents an undirected graphical model for
string edit distance, and a conditional-probability pa-
rameter estimation method that exploits both match-
ing and non-matching sequence pairs. Based on con-
ditional random fields (CRFs), the approach not only
provides powerful capabilities long sought in many ap-
plication domains, but also demonstrates an interest-
ing example of discriminative learning of a probabilis-
tic model involving structured latent variables.

The training data consists of input string pairs, each
associated with a binary label indicating whether the
pair should be considered a “match” or a “mismatch.”
Model parameters are estimated from both positive
and negative examples, unlike in previous generative
models (Ristad & Yianilos, 1998; Bilenko & Mooney,
2003). As in those models, however, it is not necessary
to provide the desired edit-operations or alignments—
the alignments that enable the most accurate discrimi-



nation will be discovered automatically through an EM
procedure. Thus this model is an example of an inter-
esting class of graphical models that are trained condi-
tionally, but have latent variables, and find the latent
variable parameters that maximize discriminative per-
formance. Another recent example includes work on
CRFs for object recognition from images (Quattoni
et al., 2005).

The model is structured as a finite-state machine
(FSM) with a single initial state and two disjoint sets
of non-initial states with no transitions between them.
State transitions are labeled by edit operations. One
of the disjoint sets represents the match condition, the
other the mismatch condition. Any non-empty tran-
sition path starting at the initial state defines an edit
sequence that is wholly contained in either the match
or mismatch subsets of the machine. By marginalizing
out all the edit sequences in a subset, we obtain the
probability of match or mismatch.

The cost of a transition is a function of its edit opera-
tion, the previous state, the new state, the two input
strings, and the starting and ending position (the po-
sition of the match-so-far before and after performing
this edit operation) for each of the two input strings.
In applications, we take full advantage of this flexi-
bility. For example, the cost function can examine
portions of the input strings both before and after the
current match position, it can examine domain knowl-
edge, such as lexicons, or it can depend on rich con-
junctions of more primitive features.

The flexibility of edit operations is possibly even more
valuable. Edits can make arbitrarily-sized forward
jumps in both input strings, and the size of the jumps
can be conditioned on the input strings, the current
match points in each, and the previous state of the
finite state process. For example, a single edit oper-
ation could match a three-letter acronym against its
expansion in the other string by consuming three cap-
italized characters in the first string, and consuming
three matching words in the second string. The cost of
such an operation could be conditioned on the previous
state of the finite state process, as well as the appear-
ance of the consumed strings in various lexicons, and
the words following the acronym.

Inference and training in the model depends on a com-
plex dynamic program in three dimensions. We em-
ploy various optimizations to speed learning.

We present experimental results on five standard text
data sets, including short strings such as names and
addresses, as well as longer more complex strings, such
as bibliographic citations. We show significant error
reductions in all but one of the data sets.

2 Discriminatively Trained String
Edit Distance

Let x = x1 · · ·xm and y = y1 · · · yn be two strings or
symbol sequences. This pair of input strings is associ-
ated with an output label z ∈ {0, 1} indicating whether
or not the strings should be considered a match (1) or
a mismatch (0).1 As we now explain, our model scores
alignments between x and y as to whether they are
a match or a mismatch. An alignment a is a four-
tuple consisting of a sequence of edit operations, two
sequences of string positions, and a sequence of FSM
states.

Let a.e = e1 · · · ek indicate the sequence edit op-
erations, such as delete-one-character-in-x, substitute-
one-character-in-x-for-one-character-in-y, or delete-all-
characters-in-x-up-to-its-next-nonalphabetic. Each edit
operation ep in the sequence consumes either some of
x (deletion), some of y (insertion), or some of both
(substitution), up to positions ip in x and jp in y. We
have therefore corresponding non-decreasing sequences
a.ix = i1, . . . , ik and a.iy = j1, . . . , jk of edit-operation
positions for x and y.

To classify alignments into matches or mismatches, we
take edits as transition labels for a non-deterministic
FSM with state set S = {q0} ∪ S0 ∪ S1. There are
transitions from the initial state q0 to states in the
disjoint sets S0 and S1, but no transitions between
those two sets. In addition to the edit sequence and
string position sequences, we associate the alignment
a with a sequence of consecutive destinations states
a.q = q1 · · · qk, where ep labels an allowed transition
from qp−1 to qp. By construction, either a.q ⊆ S0 or
a.q ⊆ S1. Alignments with states in S1 are supposed
to represent matches, while alignments with states in
S0 are supposed to represent mismatches.

In summary, an alignment is specified by the four-
tuple a = 〈a.e = e1 · · · ek,a.ix = i1 · · · ik,a.iy =
j1 · · · jk,a.q = q1 · · · qk〉. For convenience, we also
write a = a0, a1 · · · ak with ap = 〈ep, ip, jp, qp〉, 1 ≤
p ≤ k and a0 = 〈−, 0, 0, q0〉 where − is a dummy ini-
tial edit.

Given two strings x and y, our discriminative string
edit CRF defines the probability of an alignment be-
tween x and y as

p(a|x,y) =
1

Zx,y

|a|∏
i=1

Φ(ai−1, ai,x,y),

1One could also straightforwardly imagine a different
regression-based scenario in which z is real-valued, or also
a ranking-based criteria, in which two pairs are provided
and z indicates which pair of strings should be considered
closer.



where the potential function Φ(·) is a non-negative
function of its arguments, and Zx,y is the normalizer
(partition function). In our experiments we parame-
terize these potential functions as an exponential of a
linear scoring function

Φ(ai−1, ai,x,y) = exp Λ · f(ai−1, ai,x,y),

where f is a vector of feature functions, each taking
as arguments two consecutive states in the alignment
sequence, the corresponding edits, and their string po-
sitions, which allow the feature functions to depend on
the context of ai in x and y. A typical feature function
combines some predicate on the input, orinput feature,
with a predicate over the alignment itself (edit opera-
tion, states, positions).

To obtain the probability of match given simply the
input strings, we marginalize over all alignments in
the corresponding state set:

p(z|x,y) =
∑

a.q⊆Sz

1
Zx,y

|a|∏
i=1

Φ(ai−1, ai,x,y),

Fortunately, this sum can be calculated efficiently by
dynamic programming. Typically, for any given edit
operation, starting positions and input strings, there
are a small number of possible resulting ending posi-
tions. Max-product (Viterbi-like) inference can also
be performed efficiently.

3 Parameter Estimation

Parameters are estimated by penalized maximum like-
lihood on a set of training data. Training data consists
of a set of N string pairs 〈x(j),y(j)〉 with correspond-
ing labels z(j) ∈ {0, 1}, indicating whether or not the
pair is a match. We use a zero-mean spherical Gaus-
sian prior

∑
k λ2

k/σ2 for penalization.

The incomplete (non-penalized) log-likelihood is then

LI =
( ∑

j

log p(z(j)|x(j),y(j))
)

and the complete log-likelihood is

LC =
( ∑

j

∑
a

log(p(z(j)|a,x(j),y(j))p(a|x(j),y(j)))
)

We maximize this likelihood with EM, estimating
p(a|x(j),y(j)) given current parameters Λ in the E-
step, and maximizing the complete penalized log-
likelihood in the M-step. For optimization in the M-
step we use BFGS. Unlike CRFs without latent vari-
ables, the objective function has local maxima. To
avoid getting stuck in poor local maxima, the param-
eters are initialized to yield a reasonable default edit
distance.

Dynamic programming for this model fills a three-
dimensional table (two for the two input strings, and
one for the states in S). The table can be moderately
large in practice (n = m = 100 and |S| = 12, resulting
in 120,000 entries), and beam search may effectively be
used to increase speed, just as in speech recognition,
where even larger tables are common.

It is interesting to examine what alignments will be
learned in S0, the non-match portion of the model. To
attain high accuracy, these states should attract string
pairs that are dissimilar. But even similar strings have
bad alignments, for example the alignment that first
deletes all of x, and then inserts all of y. Fortunately,
finding how dissimilar two strings are requires finding
as good an alignment as is possible, and then deciding
that this alignment is not very good. These as-good-
as-possible alignments are exactly what our learning
procedure discovers: driven by an objective function
that aims to maximize the likelihood of the correct
binary match/non-match labels, the model finds the
latent alignment paths that enable it to maximize this
likelihood.

This model thus falls in a family of interesting tech-
niques involving discrimination among complex struc-
tured objects, in which the structure or relationship
among the parts is unknown (latent), and the latent
choice has high impact on the discrimination task.
Similar considerations are at the core of discrimina-
tive non-probabilistic methods for structured problems
such as handwriting recognition (LeCun et al., 1998)
and speech recognition (Woodland & Povey, 2002),
and, more recently, computer vision object recogni-
tion (Quattoni et al., 2005). We discuss related work
further in Section 6.

4 Implementation

The model has been implemented as part of the
finite-state transducer classes in Mallet (McCallum,
2002). We map three-dimensional dynamic program-
ming problems over positions in x and y and states
S to Mallet’s existing finite-state forward-backward
and Viterbi implementations by encoding the two po-
sition indices into a single index in a diagonal crossing
pattern that starts at (0, 0). For example, a single-
character delete operation, which would be a hop to an
a adjacent vertical or horizontal in the original table,
is a longer, one-dimensional (but deterministically-
calculated) jump in the encoding.

In addition to the standard edit operations (inser-
tion, deletion, substitution), we have also more pow-
erful edits that fit naturally into this model, such
as delete-until-end-of-word, delete-word-in-lexicon, and
delete-word-appearing-in-other-string.



5 Experimental Results

We show experimental results on one synthetic and six
real-world data sets, all of which have been used in pre-
vious work evaluating string edit measures. The first
two data sets are the name and address fields of the
Restaurant database. Among its 864 records, 112 are
matches. The last four data sets are citation strings
from the standard Reasoning, Constraint, Reinforce-
ment and Face sections of the CiteSeer data. The ra-
tios of citations to unique papers for these are 514/196,
349/242, 406/148 and 295/199 respectively. Making
the problem more challenging than certain other evalu-
ations on these data sets, our strings are not segmented
into fields such as title or author, but are each treated
as a single unsegmented character sequence. We also
present results on synthetic noise on person names,
generated by the UIS Database generator. This pro-
gram produces perturbed names according to modifi-
able noise parameters, including the probability of an
error anywhere in a record, the probability of single
character insertion, deletion or swap, and the proba-
bility of a word swap.

5.1 Edit Operations and Features

One of the main advantages of our model is the abil-
ity to include non-independent input features and ex-
tremely flexible edit operations. The input features
used in our experiments include subsets of the follow-
ing, described as acting on cell i, j in the dynamic pro-
gramming table and the two input strings x and y.

• same, different : xi and yj match (do not match);
• same-alphabetic, different-alphabetic : xi and yj

are alphabetic and they match (do not match);
• same-numeric, different-numeric : xi and yj are nu-

meric and they match (do not match);
• punctuation-x, punctuation-y : xi and yj are punc-

tuation, respectively;
• alphabet-mismatch, number-mismatch : One of xi

and yj is alphabetic (numeric), the other is not;
• end-of-x, end-of-y : i = |x| (j = |y|);
• same-next-character, different-next-character: xi+1

and yi+1 match (do not match).

Edit operations on FSM transitions include:

• Standard string edit operations: insert, delete and
substitute.

• Two character operations: swap-two-characters.
• Word skip operations: skip-if-word-in-lexicon, skip-

word-if-present-in-other-string, skip-parenthesized-
words and skip-any-word .

• Operations for handling acronyms and abbrevia-
tions by inserting, deleting, or substituting spe-
cific types of substrings.

Learned parameters are associated with the input fea-
tures as well as with state transitions in the FSM. All
transitions entering a state may share tied parameters
(first order), or have different parameters (second or-
der). Since the FSM can have more states than edit
operations, it can remember the context of previous
edit actions.

5.2 Experimental Methodology

Our model exploits both positive and negative exam-
ples during training. Positive training examples in-
clude all pairs of strings referring to the same object
(the matching strings). However, the total number
of negative examples is quadratic in the number of
objects. Due to both time and memory constraints,
as well as a desire to avoid overwhelming the positive
training examples, we sample the negative (mismatch)
string pairs so as to attain a 1:10 ratio of match to mis-
match pairs. In order to preferentially sample “near
misses” we filter negative examples in one of two ways:

• Remove negative examples that are too dissimilar
according to a suitable metric. For the Citeseer
datasets we use the cosine metric to measure sim-
ilarity of two citations; for other datasets we use
the metric of Jaro (1989).

• Select the best matching negative pairs according
to a CRF with parameters set by hand to reason-
able values.

As in Bilenko and Mooney (2003), we use a 50/50
train/test split of the data, and repeat the process
with the folds interchanged. With the restaurant name
and restaurant address dataset, we run our algorithm
with different choices of features and states, and 4 ran-
dom splits of the data. With the Citeseer datasets, we
have results for two random splits of the data.

To give EM training a reasonable starting point, we
hand-set the initial parameters to somewhat arbitrary,
yet reasonable parameters. (Of course, hand-setting of
string edit parameters is the standard for all the non-
learning approaches.) We examined a small held-out
set of data to verify that these initial parameters were
reasonable. We set the parameters on the match por-
tion of the FSM to provide good alignments; then we
then copy these parameters to the mismatch portion of
the model, offseting them by bringing all values closer
to zero by a small constant.



Distance Metric Restaurant name Restaurant address Reasoning Face Reinforcement Constraint

Edit Distance 0.290 0.686 0.927 0.952 0.893 0.924
Learned Edit Distance 0.354 0.712 0.938 0.966 0.907 0.941
Vector-space 0.365 0.380 0.897 0.922 0.903 0.923
Learned Vector-space 0.433 0.532 0.924 0.875 0.808 0.913
CRF Edit Distance 0.448 0.783 0.964 0.918 0.917 0.976

Table 1: Averaged F-measure for detecting matching field values on several standard data sets (bold indicates
highest F1). The top four rows are results duplicated from Bilenko and Mooney (2003); the bottom row is the
performance of the CRF method introduced in this paper.

Lexicons were populated automatically by gathering
the most frequent words in the training set. (Alter-
natively one could imagine lexicon feature values set
to inverse-document-frequency values, or similar infor-
mation retrieval metrics.) In some cases, before train-
ing, lexicons were edited to remove author surnames.

The equations in section 3 are used to calculate
p(z|x,y), with a first-order model. A threshold of 0.5
predicts whether the string pair is a match or a mis-
match. (Note that alternative thresholds could easily
be used to trade of precision and recall, and that CRFs
are typically good at predicting calibrated posterior
probabilities needed for such tuning as well as accu-
racy/coverage curves.) Bilenko and Mooney (2003)
found transitive closure to improve F1, and use it for
their results; we did not find it to help, and do not.

Precision is calculated to be the ratio of the number
of correctly classified duplicates to the total number
of duplicates identified. Recall is the ratio of correctly
classified duplicates to the total number of duplicates
in the dataset. We report the mean performance across
multiple random splits.

5.3 Results

In experiments on the six real-world data sets we com-
pare our performance against results in a recent bench-
mark paper by Bilenko and Mooney (2003); Bilenko
recently completely thesis work in this area. These re-
sults are summarized in Table 1, where the top four
rows are duplicated from Bilenko and Mooney (2003),
and the bottom row shows the results of our method.
The entries are the average F1 measure across the
folds. We observe large performance improvements on
most datasets. The fact that the difference in perfor-
mance across our trials is typically around 0.01 sug-
gests strong statistical significance. Our average F1
on the Face dataset was 0.04 less than the previous
best. The examples on which we made errors gener-
ally had a large venue, authors, or URL field in one
string but not in the other.

We also evaluate the effect on performance of us-
ing Viterbi (max-product) inference in training in-

Dataset Viterbi Forward-Backward
Restaurant name 0.689 0.720
Restaurant address 0.708 0.651

Table 2: Averaged F-measures for Viterbi vs. forward-
backward on (trained and evaluated on a subset of the
data; smaller test set yields higher accuracy).

stead of forward-backward (sum-product) inference.
Except for the restaurant address dataset, forward-
backward performs significantly better than Viterbi on
all datasets. The restaurant address data set contains
positive examples with a large unmatched suffix in one
of the strings, which may lead to an inappropriate dilu-
tion of probability amongst many alignments. Average
F1 measures for the restaurant datasets using Viterbi
and forward-backward are shown in Table 2. All re-
sults shown in Table 1 use forward-backward proba-
bilities.

In the other tables we present results showing the im-
pact of various edit operations and features.

Table 3 shows F1 on the restaurant data set as vari-
ous edit operations are added to the model: i denotes
insert, d denotes delete, s denotes substitute, paren de-
notes skip-parenthesized-word, lex denotes skip-if-word-
in-lexicon, and pres denotes skip-word-if-present-in-
other-string. All use the same-alphabets and different-
alphabets input features. As can be seen from the re-
sults, adding “skip” edits improves performance. Al-
though skip-parenthesized-words gives better results on
the smaller data set used for the experiments in the
table, skip-if-word-in-lexicon produces a higher accu-
racy on larger data sets, because of peculiarities in
how restaurants with the same name and different lo-
cations are named in the data set. We also see that
a second-order model performs less well, presumably
because of data sparseness.

Table 4 shows the benefits of including various features
for the restaurant address data set, while fixing the edit
operations (insert, delete and substitute). In the table,
s and d denote the same and different features, salp



Run F1
i, d, s 0.701
i, d, s, paren 0.835
i, d, s, lex 0.769
i, d, s, lex 2nd order 0.742
i, d, s, paren,lex,pres 0.746
i, d, s, paren,lex,pres, 2nd order 0.699

Table 3: Averaged maximum F-measure for differ-
ent state combinations on a subset of restaurant name
(trained and evaluated on the same train/test split).

Run F1
s, d 0.944
salp, dalp, snum, dnum 0.973

Table 4: Averaged maximum F1-measure for differ-
ent feature combinations on a subset of the restaurant
address data set.

and dalp stand for the same-alphabets and different-
alphabets features, and snum and dnum stand for the
same-numbers and different-numbers features. The s
and d features are different from the salp,dalp,snum,
and dnum features in that the weights learned for the
former depend only on whether the two characters are
equal or not, and no separate weights are learned for
a number match or an letter match. We conjecture
that a number mismatch in the address data needs to
be penalized more than a letter mismatch. Separating
the same and different features into features for letters
and numbers reduces the error from about 6% to 3%.

Finally, Table 5 demonstrates the power of CRFs to in-
clude extremely flexible edit operations that examine
arbitrary pieces of the two input strings. In particu-
lar we measure the impact of including the skip-word-
if-present-in-other-string operation, (“skip” for short).
Here we train and test on the UIS synthetic name
data, in which the error probability is 40%, the typo
error probability is 40% and the swap first and last
name probability is 50%; (the rest of the parameters
were unchanged from the default values). The differ-
ence in performance is dramatic, bringing error down
from about 14% to less than 2%. Of course, arbi-
trary substring swaps are not expressible in standard
dynamic programs, but the skip operation gives an ex-
cellent approximation while preserving efficient finite-
state inference. Typical improved alignments with the
new operation may skip over a matching swapped first
name, and then proceed to correct individual typo-
graphic errors in the last name.

An example alignment found by our model on restau-
rant name is shown in Table 7. As discussed in Sec-

Run F1
Without skip 0.856
With skip 0.981

Table 5: Average maximum F-measure for synthetic
name dataset with and without skip-if-present-in-other-
string state.

ε r e s t a u r a n t : k a t z u ε
ε l s
k s
a s
t s
s s
u s
ε -

Table 6: Alignment in both the match and mismatch
subsets of the model, with correct prediction. Opera-
tions causing edits are in bold.

Table 7: Alignment in both the match and mismatch
subsets of the model, with correct prediction. Opera-
tions causing edits in bold.

tion 3, the mismatch portion of the model indeed
learns the best possible latent alignments in order to
measure distance with the most salient features. This
example’s alignment score from the match portion is
higher. The entries in the dynamic programming ta-
ble i, d, s, l, and p correspond to states reached by the
operations insert, delete,substitute, skip-word-in-lexicon,
and skip-parenthesized-word respectively. The symbol
- denotes a null transition.

6 Related Work

String (dis)similarity metrics based on edit distance
are widely used in applications ranging from approx-
imate matching and duplicate removal in database
records to identifying conserved regions in compara-
tive genomics. Levenshtein (1966) introduced least-
cost editing based on independent symbol insertion,
deletion, and substitution costs, and Needleman and
Wunsch (1970) extended the method to allow gaps.
Editing between strings over the same alphabet can
be generalized to transduction between strings in dif-
ferent alphabets, for instance in letter-to-sound map-
pings (Riley & Ljolje, 1996) and in speech recognition
(Jelinek et al., 1975).

In most applications, the edit distance model is de-
rived by heuristic means, possibly including some
data-dependent tuning of parameters. For exam-
ple, Monge and Elkan (1997) recognize duplicate cor-
rupted records using an edit distance with tunable



edit and gap costs. Hernandez and Stolfo (May 1995)
merge records in large databases using rules based on
domain-specific edit distances for duplicate detection.
Cohen (2000) use a token-based TF-IDF string simi-
larity score to compute ranked approximate joins on
tables derived from Web pages. Koh et al. (2004) use
association rule mining to check for duplicate records
with per-field exact, Levenshtein or BLAST 2 gapped
alignment (Altschul et al., 1997) matching. Cohen
et al. (2003) surveys edit and common substring simi-
larity metrics for name and record matching, and their
application in various duplicate detection tasks.

In bioinformatics, sequence alignment with edit costs
based on evolutionary or biochemical estimates are
common (Durbin et al., 1998). Position-independent
costs are normally used for general sequence similar-
ity search, but position-dependent costs are often used
when searching for specific sequence motifs.

In basic edit distance, the cost of individual edit op-
erations is independent of the string context. How-
ever, applications often require edit costs to change
depending on context. For instance, the characters in
an author’s first name after the first character are more
likely to be deleted than the first character. Instead
of specialized representations and dynamic program-
ming algorithms, we can instead represent context-
dependent editing with weighted finite-state transduc-
ers (Eilenberg, 1974; Mohri et al., 2000) whose states
represent different types of editing contexts. The
same idea has also been expressed with pair hidden
Markov models for pairwise biological sequence align-
ment (Durbin et al., 1998).

If edit costs are identified with − log probabilities
(up to normalization), edit distance models and cer-
tain weighted transducers can be interpreted as gen-
erative models for pairs of sequences. Pair HMMs
are such generative models by definition. Therefore,
expectation-maximization using an appropriate ver-
sion of the forward-backward algorithm can be used
to learn parameters that maximize the likelihood of
a given training set of pairs of strings according to
the generative model (Ristad & Yianilos, 1998; Ristad
& Yianilos, 1996; Durbin et al., 1998). Bilenko and
Mooney (2003) use EM to train the probabilities in
a simple edit transducer for one of the duplicate de-
tection measures they evaluate. Eisner (2002) gives
a general algorithm for learning weights for transduc-
ers, and notes that the approach applies to transduc-
ers with transition scores given by globally normalized
log-linear models. These models are to CRFs as pair
HMMs are to HMMs.

The foregoing methods for training edit transduc-
ers or pair HMMs use positive examples alone, but

do not need to be given explicit alignments because
they do EM with alignment as a latent (structured)
variable. Joachims (2003) gives a generic maximum-
margin method for learning to score alignments from
positive and negative examples, but the training ex-
amples must include the actual alignments. In ad-
dition, he cannot solve the problem exactly because
he does not exploit factorizations of the problem that
yield a polynomial number of constraints and efficient
dynamic programming search over alignments.

While the basic models and algorithms are expressed
in terms of single letter edits, in practice it is con-
venient to use a richer application-specific set of edit
operations, for example name abbreviation. For ex-
ample, Brill and Moore (2000) use edit operations de-
signed for spelling correction in a spelling correction
model trained by EM. Tejada et al. (2001) has edit op-
erations such as abbreviation and acronym for record
linkage.

7 Conclusions

We have presented a new discriminative model for
learning finite-state edit distance from postive and
negative examples consisting of matching and non-
matching strings. It is not necessary to provide se-
quence alignments during training. Experimental re-
sults show the method to outperform previous ap-
proaches.

The model is an interesting member of a family of
models that use a discriminative objective function
to discover latent structure. The latent edit opera-
tion sequences that are learning by EM are indeed the
alignments that help discriminate matching from non-
matching strings.

We have described in some detail the finite-state ver-
sion of this model. A context-free grammar version of
the model could, through edit operations defined on
trees, handle swaps of arbitrarily-sized substrings.
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