
University of Massachusetts Amherst
ScholarWorks@UMass Amherst
Computer Science Department Faculty Publication
Series Computer Science

2005

Incremental Test Collections
Ben Carterette
University of Massachusetts - Amherst

James Allan
University of Massachusetts - Amherst

Follow this and additional works at: https://scholarworks.umass.edu/cs_faculty_pubs

Part of the Computer Sciences Commons

This Article is brought to you for free and open access by the Computer Science at ScholarWorks@UMass Amherst. It has been accepted for inclusion
in Computer Science Department Faculty Publication Series by an authorized administrator of ScholarWorks@UMass Amherst. For more information,
please contact scholarworks@library.umass.edu.

Recommended Citation
Carterette, Ben and Allan, James, "Incremental Test Collections" (2005). Computer Science Department Faculty Publication Series. 25.
Retrieved from https://scholarworks.umass.edu/cs_faculty_pubs/25

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarWorks@UMass Amherst

https://core.ac.uk/display/13602882?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholarworks.umass.edu?utm_source=scholarworks.umass.edu%2Fcs_faculty_pubs%2F25&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/cs_faculty_pubs?utm_source=scholarworks.umass.edu%2Fcs_faculty_pubs%2F25&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/cs_faculty_pubs?utm_source=scholarworks.umass.edu%2Fcs_faculty_pubs%2F25&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/cs?utm_source=scholarworks.umass.edu%2Fcs_faculty_pubs%2F25&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/cs_faculty_pubs?utm_source=scholarworks.umass.edu%2Fcs_faculty_pubs%2F25&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.umass.edu%2Fcs_faculty_pubs%2F25&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/cs_faculty_pubs/25?utm_source=scholarworks.umass.edu%2Fcs_faculty_pubs%2F25&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@library.umass.edu

Incremental Test Collections

Ben Carterette and James Allan
{carteret,allan}@cs.umass.edu

Center for Intelligent Information Retrieval
Department of Computer Science

University of Massachusetts Amherst
Amherst, MA 01003

ABSTRACT
Corpora and topics are readily available for information re-
trieval research. Relevance judgments, which are necessary
for system evaluation, are expensive; the cost of obtain-
ing them prohibits in-house evaluation of retrieval systems
on new corpora or new topics. We present an algorithm
for cheaply constructing sets of relevance judgments. Our
method intelligently selects documents to be judged and de-
cides when to stop in such a way that with very little work
there can be a high degree of confidence in the result of the
evaluation. We demonstrate the algorithm’s effectiveness by
showing that it produces small sets of relevance judgments
that reliably discriminate between two systems. The algo-
rithm can be used to incrementally design retrieval systems
by simultaneously comparing sets of systems. The number
of additional judgments needed after each incremental de-
sign change decreases at a rate reciprocal to the number
of systems being compared. To demonstrate the effective-
ness of our method, we evaluate TREC ad hoc submissions,
showing that with 95% fewer relevance judgments we can
reach a Kendall’s tau rank correlation of at least 0.9.

Categories and Subject Descriptors
H.3 [Information Storage and Retrieval]; H.3.4 [Systems
and Software]: Performance Evaluation

General Terms
Algorithms, Experimentation, Measurement

Keywords
information retrieval, evaluation, test collections, algorithms

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CIKM’05, October 31–November 5, 2005, Bremen, Germany.
Copyright 2005 ACM 1-59593-140-6/05/0010 ...$5.00.

1. INTRODUCTION
System-based information retrieval evaluation requires a

test collection: a set of items to search (a corpus), a set of
topics from which we can extract queries, and a set of rele-
vance judgments that tell us which documents are relevant
to which topics [12]. The test collections put together by
NIST for the Text Retrieval Conferences (TREC) are well-
known and widely used in the IR community [13]. Each
TREC collection consists of a corpus of mostly news articles,
50 subject-based topics, and tens of thousands of relevance
judgments made by NIST.

Researchers may want to put together their own test col-
lections. They may have acquired a new corpus or created a
new set of topics. Search engine designers in a practical set-
ting have a set of documents that will be searched and can
solicit topics from the people that will be using the system.
Corpora are readily available; the problem is that relevance
judgments are very expensive. Researchers must hire an-
notators to read documents and decide whether they are
relevant to each topic. Judging every document in a large
corpus is impossible. Judging only a subset raises questions
about how well the subset represents the document space
and how well it will generalize to new systems [5, 14]. NIST
has addressed this by judging a large subset of documents
retrieved by actual retrieval systems, but most developers
and researchers do not have the resources to judge the tens
of thousands of documents that NIST judges. We need a
way to minimize the cost of relevance judgments but still
have confidence in the result of an evaluation.

Retrieval system design is typically an iterative process:
we make design decisions based on the results of evaluations
of previous systems. We can exploit the iterative nature of
the design process to construct sets of judgments incremen-
tally. At each step we judge only the documents that are
most important to the evaluation at that step. Of course
there is a tradeoff in that we will have less confidence in
the result of a comparison because the judgments are not
complete, but after each iteration we add more documents
to the collection and thus gain confidence in the result.

In section 2 we describe an algorithm that produces a set
of relevance judgments while comparing two systems. In sec-
tion 3 we present results of comparisons of pairs of systems
submitted to the TREC ad hoc tracks, showing that with
as little as two judgments per topic we can correctly iden-
tify significant differences in over 93% of cases. In section 4
we describe how our algorithm generalizes to an evaluation
of multiple systems. In section 5, the main experimental re-

sults are presented. We simulate the iterative design process
to show how the number of necessary judgments increases
as new systems are developed. We also use our algorithm
to rank TREC systems, achieving a Kendall’s tau correla-
tion greater than 0.9 with 95% fewer judgments than done
by NIST. In sections 6 and 7 we analyze the algorithm and
compare it to previous work. We conclude in section 8.

2. ALGORITHM DESCRIPTION
Given two systems, the algorithm is to identify documents

that inform us most about the difference between them, and
to decide when we have enough information to stop judging.
We use heuristics that have intuitive appeal; we have not yet
formally proved anything about this algorithm.

2.1 Identifying Important Documents
Intuitively, a document that appears at the same rank

in two lists provides no information about the difference
between the systems, while a top-ranked document in one
system that is not ranked at all by the other may provide a
lot of information.

Average precision (AP) of a ranked list is the sum of the
precisions at each rank at which a relevant document was
retrieved, divided by the total number of relevant documents
known for the topic.

AP =
1

|R|
∑
d∈R

prec@rank(d)

AP is computed for a ranked list of a single topic. Mean
average precision (MAP) is the average of the APs for each
topic in the test collection. MAP is a standard evaluation
measure, and is known to be stable [2].

Unjudged documents are usually assumed to be nonrele-
vant for the purpose of computing AP. We could calculate
AP using some incomplete set of judgments R, judge an un-
judged document, and recalcuate AP with the new set of
judgments R′. The difference in the two calculations is the
effect on AP of judging that document. Applying our in-
tuition, we want to find the document that maximizes the
difference in two MAP scores. That document is the one
that, if relevant, would have the greatest difference in its
effects on the APs of the topics for which it was retrieved
by both systems.

When we begin, there are no relevance judgments and
average precision for each topic is 0. The first relevant doc-
ument we find has an effect of 1/r1(d) on AP1 and 1/r2(d)
on AP2, where ri(d) is the rank of document d in ranked list
i. Since we want to find the greatest difference in effects, we
initially assign each document a weight wd = | 1

r1(d)
− 1
r2(d)
|.

Documents are presented to an assessor for judging in non-
increasing order by weight, ignoring topic.

When there are some relevance judgments, the effect a
document might have on AP is dependent on other rele-
vant documents found for that topic. For example, suppose
documents at ranks 1, 2, 4, and 5 in ranked list 1 are rel-
evant, nonrelevant, nonrelevant, and relevant, respectively,
and the document at rank 3 is unjudged. Then AP1 =
(1/1+2/5)

2
. If we subsequently judged the document at rank

3 to be relevant, the new AP would be AP ′1 = (1/1+2/3+3/5)
3

.
The effect of the judgment on the numerator of AP1 is
3AP ′1−2AP1|R| = (1/1+2/3+3/5)−(1/1+2/5) = 2/3+1/5.
After a similar calculation for ranked list 2, the difference in

effects is |(effect on AP1) - (effect on AP2)|.
In general,

wd =

∣∣∣∣∣
prec@r1(d) +

1

r1(d)
+

∑
d′∈Rj

r1(d′)>r1(d)

1

r1(d′)

−

prec@r2(d) +
1

r2(d)
+

∑
d′∈Rj

r2(d′)>r2(d)

1

r2(d′)

∣∣∣∣∣

where Rj is the set of relevant documents after j documents
have been judged. The effect on APi of finding d relevant
is the precision at the rank of d plus the reciprocal rank of
d (to account for d being assumed relevant) plus the recip-
rocal rank of every relevant document that follows d in the
ranking; the weight of document d is the difference in effects.

2.2 Stopping Condition for Topics
After finding a relevant document for topic t, we may, if

it seems clear that the systems are quite different, want to
stop judging documents from that topic. We calculate the
average precision of both systems’ ranked lists for topic t. If
one is greater than the other, we want to guess how likely it
is that the other can catch up given more judgments. If it
is unlikely, we can stop.

We calculate a lower bound `t on the number of judg-
ments it would take to catch up. Assuming a best-case sce-
nario in which every unjudged document retrieved by the
worse system will be judged relevant, we count from the
top-ranked unjudged document down until the hypothetical
average precision of the worse system is equal to or greater
than the average precision of the better system. We know it
will take at least that many documents to catch up. If that
number is high, it is unlikely that the lists are equal and we
can stop judging documents for the topic; if it is low, we
must continue. When we stop judging for a topic, we flag
that topic “done”.

The algorithm takes as a parameter a cutoff c. If the
lower bound `t > c, we stop judging documents from that
topic. The choice of cutoff reflects a tradeoff between costs
of judgments and costs of accuracy errors. As we shall see,
a higher cutoff results in greater accuracy but more judg-
ments. The cutoff can also be thought of as the point at
which you believe the probability of judging c consecutive
documents relevant is nil.

2.3 Stopping Condition for Systems
If it becomes obvious in the course of judging documents

that one system is far better than the other, we may want to
stop judging early. We perform a one-tailed sign test using
the “done” topics; if the difference is significant, we stop
judging documents altogether.

Our use of the sign test is a heuristic, and the result of
the test should not be taken to mean the difference actually
is significant, except to the degree that we correctly predict
significance. Note that our use of the sign test makes the
assumption that topics that are tied or not yet “done” pro-
vide no information. This is a strong assumption. We might
make a weaker assumption, e.g. that any topic that is not
“done” is equally likely to go to either system.

topic no. judg- no. %
TREC numbers runs ments rels signif

TREC-3 151-200 40 97,319 9,805 79.2
TREC-4 202-250 33 87,069 6,503 75.0
TREC-5 251-300 61 133,681 5,524 71.5
TREC-6 301-350 74 72,270 4,611 75.1
TREC-7 351-400 103 80,345 4,674 77.8
TREC-8 401-450 129 86,830 4,728 77.1

Table 1: TREC corpora. “% signif” is the percent
of pairs with a significant difference by the sign test.

3. EXPERIMENTS
We downloaded submissions to the ad hoc tracks of TRECs

3 through 8. Table 1 shows the number of runs, topic
numbers, number of relevance judgments and relevant doc-
uments, and percent of pairs significantly different by the
sign test for each TREC.

3.1 Implementation
Because there are many pairs of systems (e.g. 40 systems

submitted to TREC-3 gives 780 possible pairs), we used
some approximation in the implementation to save compu-
tation time. We only update the weights after every 50 rele-
vant documents. We only judge documents that are ranked
between 1 and 100 by either system. We only calculate the
lower bound for a topic when we find a relevant document
in that topic, but because a nonrelevant judgment may in-
crease the lower bound, we also calculate the lower bound
for every topic after every 25 judgments. For TRECs 3 and
4 we compared every pair of systems using our algorithm.
For TRECs 5 through 8 we picked 25% of the pairs (or 1000,
whichever is greater) at random.

3.2 Evaluation
The algorithm produces a set of relevance judgments. To

evaluate the set, we want to know:

1. How often does it indicate a significant difference when
a significant difference exists (by the NIST judgments)?
We think of this as “recall of significant pairs”.

2. How often does it correctly identify the relative differ-
ence when it indicates a significant difference? This is
“precision of significant pairs.”

3. How often does it correctly identify the relative dif-
ference regardless of whether it indicates a significant
difference? This is “overall accuracy.”

4. How often does it identify a difference as significant
when it is not truly significant? These are “false alarms.”

3.3 Results
The results are shown in Figure 1. Each point in the

figure is the average over more than 6500 pairs of systems
from all TRECs at a given cutoff. We see that as the number
of judgments increases (by increasing the cutoff), precision,
recall, and accuracy increase, while false alarms decrease (1-
FA increases). With only 59 judgments, an average of just
over one per topic, we can correctly identify a significant dif-
ference when one exists 82% of the time, and we correctly
identify the sign of the difference 93% of the time. Table 2
shows the numbers. “Acc” is the overall accuracy; remem-
ber that it includes pairs with a nonsignificant difference.

 0.8

 0.82

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 0 100 200 300 400 500 600 700 800 900 1000
Number of judgments

precision
recall

overall accuracy
1 - false alarms

Figure 1: Number of judgments vs. precision and
recall as cutoff increases. Points are, from left to
right, cutoffs c = 0, 1, 2, 3, 4, 5, 10, 20.

c prec rec acc false judgments rels
0 92.8 82.3 84.4 15.5 59 20
1 93.4 83.0 85.1 14.7 60 20
2 95.0 86.7 87.6 13.8 120 52
3 96.0 88.6 87.9 13.5 146 68
4 96.6 88.2 89.5 13.2 181 88
5 97.0 92.3 90.3 13.0 213 106
10 97.9 95.5 92.5 11.9 409 199
20 98.0 96.2 93.1 11.8 919 405

Table 2: Results by cutoff averaged over pairs of
systems from all TRECs.

The false alarm rate is relatively high; this is because of
the strong assumption we make about topics that are not
“done”.

For comparison, Table 3 shows results using mean average
precision calculated using a pool of depth k, which is the
NIST approach. Note that it requires many more relevance
judgments to achieve the same rate of differentiation, though
the traditional measures are more accurate. Compare k = 5
to our method with cutoff 10: with approximately the same
number of judgments, the accuracy on significant pairs is
the same, but our method finds many more significant pairs.
(Recall and accuracy on a pool of depth 100 fall short of 1.0,
which may be surprising considering that NIST uses pools
of depth 100. In this case, the pool is only formed from the
two systems being compared, not the full set of systems, so
some relevant documents are not found.)

Table 4 shows results at cutoff c = 4 broken out by TREC.
Note that more documents are judged in earlier TRECs than
in later. We believe that this is because systems from later
TRECs overlap more in the documents they retrieve. As
systems get more similar, the weights of documents decrease,
and it becomes more clear exactly which documents need to
be judged to differentiate between two systems.

The number of judgments produced is influenced by a
number of factors, including the number of relevant docu-
ments in the topic, the number of relevant documents re-

k prec rec acc false judgments rels
1 97.0 62.8 83.5 7.9 93 45
5 97.5 77.2 87.9 8.7 444 190
10 98.0 81.4 89.7 8.2 867 336
20 98.7 85.3 91.6 7.5 1700 570
50 99.5 89.1 93.0 5.9 4127 1077
100 99.8 91.5 94.9 5.1 7993 1653

Table 3: Evaluation by AP calculated using a pool
of depth k averaged over pairs of systems from all
TRECs.

TREC prec rec acc false judgments rel
TREC-3 97.3 90.1 90.5 11.2 170 99
TREC-4 94.9 87.8 85.2 13.3 222 101
TREC-5 97.0 92.0 91.4 14.3 192 85
TREC-6 97.8 91.4 89.7 12.8 179 80
TREC-7 96.7 90.7 90.0 13.0 166 83
TREC-8 96.1 91.7 89.0 13.7 158 81

Table 4: Results by TREC for cutoff c = 4.

trieved by both systems, the percent difference in average
precision in the two systems, and the similarity (in terms of
documents retrieved) between the two systems. The algo-
rithm judges documents from every topic, on average. The
Pearson correlation between predicted MAP and the “true”
MAP calculated using the NIST judgments ranges from 0.44
to 0.87 (when c = 0 and c = 20 respectively). The cor-
relation between the difference in predicted MAP of both
systems and the difference in NIST MAP ranges from 0.75
to 0.96 (c = 0 and 20 respectively), indicating that this al-
gorithm is better at predicting the difference between two
MAPs then actually predicting MAP.

These results show that the algorithm can successfully
find a difference between two systems when one exists with
a small number of judgments. Next we want to know how
many additional judgments it would take as more systems
are developed.

4. COMPARING MULTIPLE SYSTEMS
Information retrieval system design is typically iterative,

with design decisions at step n influenced by evaluations of
the previous n−1 systems. Our algorithm leaves uncertainty
in the results of previous evaluations, so we do not want to
assume that an evaluation was correct and never look at
it again. We want to reevaluate systems as we accumulate
more data. As we repeatedly compare any two systems,
if the result is the same each time, it becomes less likely
that there is an error in the evaluation. So each time we
develop a new system, we want to produce a set of relevance
judgments that we can use to compare all S existing systems
simultaneously.

We view the comparison as O(S2) simultaneous pairwise
comparisons, and generalize as follows: the document weight
is the maximum of its weight in each pair. As before, we
sort documents by weight. We stop judging a topic when the
ranking of lists by average precision is unlikely to change,
and stop judging altogether when the ranking of lists by
mean average precision is unlikely to change. This is de-

scribed in more detail below.

4.1 Identifying Important Documents
The document most likely to tell us something about the

ranking of systems is the one that provides the most infor-
mation about the differences between each pair of systems.
That suggests using the average weight of a document in all
pairs. The problem with using the average is that a docu-
ment that has low weight in a few pairs may have a relatively
high average weight compared to one that has high weight in
a few pairs but low weight in most pairs. These documents
are poor discriminators, but will be judged first.

Instead of average weight, we use the maximum weight
of a document in any pair of systems it appears in: wd =
maxi<j | 1

ri(d)
− 1

rj(d)
|. This way we are guaranteed to judge

documents that are ranked at the top of a list and that will
also discriminate at least one pair of systems. Since many
documents will have the same maximum weight, we use the
average weight as a tiebreaker. We update weights as in
section 2.1.

4.2 Stopping Condition for Topics
We want to stop judging a topic when the ordering of

ranked lists by average precision is unlikely to change. We
assign to each pair of ranked lists (ti, tj) a probability of
swapping: Pswap (ti, tj) = 0 if `t > c, or Pswap (ti, tj) ∝
exp(−`2t) if `t ≤ c, where `t is the lower bound on judgments
to catch up as described in section 2.2. If additional judg-
ments would not change the ranking significantly, we can
accept some uncertainty because it will get averaged out in
the mean average precision calculation. We calculate the ex-
pected rank correlation between our current ranking and a
future ranking given the probabilities of each pair swapping.
If the expected rank correlation is high, we do not expect
the ranking to change much, so we stop judging the topic.
We set the correlation cutoff at 0.9 to reflect Voorhees’ con-
jecture that that is the highest correlation that we should
expect to achieve simply because of inter-annotator disagree-
ment [11].

4.3 Stopping Condition for Systems
We likewise stop judging documents when the system rank-

ing is unlikely to change. Each pair of systems (si, sj) is
assigned a probability of swapping: Pswap(si, sj) = 0 if the
systems have been found to be significantly different (us-
ing the sign test as in section 2.3); if not, we calculate the
probability that one system can catch up to the other, with
Pswap(si, sj) = 0.5 if the number of topics favoring si equals
the number favoring sj , and Pswap(si, sj) = P (T ≥ 25−Tj)
where T ∼ Binom(50 − (Ti − Tj), 1/2), i.e. the probability
that sj will accumulate enough topics in its favor (among
the ones not yet decided) to have a majority. With those
probabilities we calculate E [τ] and stop if it is greater than
0.9.

Voorhees previously used a definition of Pswap that was
calculated using mean average precision differences on mul-
tiple sets of relevance judgments [10]. Since our judgments
are incomplete, and we only have one set, we cannot use the
same definition.

5. EXPERIMENTS
The first experiment is to verify that the algorithm can

produce a set of judgments that correctly rank TREC sys-

tems. We take the full sets of systems submitted to TRECs
3, 4, 5, and 6 and run the algorithm with cutoffs ranging
from 0 to 20.

For the second experiment, we wish to simulate the itera-
tive design process. We do not know what a typical design
process looks like, and it is not obvious how to simulate the
process. Options we considered are:

1. Simulate different systems by running our in-house re-
trieval engine with different parameter settings. One
problem with this is that it does not provide much
variance in systems. Another is that it would be hard
for other researchers to duplicate our experiments.

2. Use TREC systems from a single site. There are only a
few systems from each site, and they frequently differ
only in whether they use title, description, or narrative
queries. Again, there is not a lot of variance.

3. Use all TREC systems, starting with two chosen ran-
domly and adding an additional randomly selected sys-
tem at each iteration.

The experiment we decided on is selecting S systems at ran-
dom, starting at S = 2 and working up. Each evaluation of
S systems is independent of any other evaluation. We expect
that on average this simulates the iterative design process.

An additional advantage of selecting random subsets of
systems is that we do not make the mistake of designing our
algorithm so that it performs well only on full sets of TREC
systems, which are comparatively easy to rank correctly.

For each TREC we ran the algorithm at least 100 times
with S randomly selected systems, for more than 600 total
algorithm runs for each S up to 60. We used cutoff c = 4 to
keep the computation time low.

5.1 Implementation
Finding the maximum weight document is computation-

ally expensive: O(S2D2 lnD), where D is the number of
unique documents ranked by all S systems and assuming
sorting documents by weight is in O(D lnD). To reduce
computation time, we recalculate the weights after every 25
relevant documents are found. We only judge documents
that appear above rank 50 in at least one system (meaning
that we can never do better than a set of judgments formed
from a pool of depth 50). If there are more than 40 systems,
we find the maximum weight in a random sample of pairs.

5.2 Evaluation
A comparison among a set of systems produces a set of

relevance judgments. We rank systems by mean average
precision calculated using that set. To estimate the quality
of the ranking, we calculate its correlation to the ranking of
systems by MAP calculated using the full set of judgments.
We use the rank correlation measure Kendall’s tau [6], which
has become a de facto standard in this type of study.

Kendall’s tau is a function of the number of concordant
and discordant pairs between rankings: τ = C−D

(n2)
. It ranges

from -1 if the two lists are inverted to 1 if they are identical.
It is 0 if there is no correlation. If we know the τ correlation,
we also know that the percentage of pairs that were correctly
differentiated is .5(1 + τ).

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 0 2000 4000 6000 8000 10000

ta
u

co
rr

el
at

io
n

Total number of relevance judgments

TREC-3
TREC-4
TREC-5
TREC-6

Figure 2: Number of judgments vs. tau correlation
for complete sets of TREC systems. Points from left
to right are cutoffs c = 0, 1, 2, 3, 4, 5, 7, 10, 15, 20.

5.3 Results

5.3.1 Full sets of TREC systems
Figure 2 shows the result of using our algorithm to pro-

duce judgments for evaluation of TREC systems. High cor-
relations are achieved with very small sets of judgments. A
set of 2000 judgments is less than one judgment per topic
per system, but that is enough to achieve τ ≈ .85 on the
TREC-6 collection.

TREC-3 did not quite achieve τ ≥ 0.9 in any of our exper-
iments, but with 95% fewer judgments than done by NIST,
we have τ = 0.87. For TREC-4, we achieve τ > 0.9 with
95% fewer judgments than done by NIST. TREC-5 is a bit
harder, but we achieve τ > 0.9 with 94% fewer judgments.
For TREC-6, with 95% fewer judgments we achieve τ = 0.9.
In general, tau correlation and judgments increase as cutoff
increases.

Table 5 shows the numbers for each set of TREC sys-
tems. Compare the TREC-6 numbers to Table 6, which
shows numbers for different pool depths. Pooling is surpris-
ingly effective, with a correlation of .82 with a depth of only
1! Although shallow pools work well with the TREC-6 cor-
pora, it does not necessarily follow that a shallow pool would
be sufficient for any corpora. For the TREC-3 systems, for
instance, a pool of depth 1 results in a correlation of only
.71 with 973 judgments.

5.3.2 Subsets of TREC systems
Figure 3 shows the size of the test collection produced by

the algorithm increasing as systems are incrementally de-
signed and added to the set. Accuracy was about τ = 0.77,
which implies that 88.4% of the pair differences were cor-
rectly identified—consistent with the 89.5% shown in Ta-
ble 2. With two systems, we make about 200 judgments,
also consistent with Table 2. When we add a third system,
we nearly triple the number of judgments—with more than
two systems, it is less likely that a single document will be
retrieved at the same rank by all systems. Subsequent sys-
tems add fewer and fewer judgments to the set. Figure 2, in
which number of judgments increases with cutoff, suggests

 0

 500

 1000

 1500

 2000

 2500

 0 10 20 30 40 50 60 70 80

To
ta

l n
um

be
r o

f j
ud

gm
en

ts

Number of systems

average
TREC-3
TREC-4
TREC-5
TREC-6

Figure 3: Number of systems simultaneously com-
pared vs. number of judgments made when c = 4.
Rank correlation remains approximately constant at
τ = 0.77.

that higher values of c would result in approximately par-
allel curves higher up. The fit curve is y = a logS, which
implies that the rate of increase in the number of judgments
is inversely proportional to the number of systems being
compared.

Figure 3 also shows the size of the test collections pro-
duced by simultaneous comparisons of the 40, 33, 61, and
74 systems from TRECs 3, 4, 5, and 6 respectively at c = 4.
They are close to the fit log function. They have higher cor-
relations than the random samples, probably because there
is more overlap between systems.

The correlation between number of judgments made for
each topic and number of true relevant documents in each
topic is 0.47, indicating that more documents are judged
from topics that have more relevant documents. A correla-
tion of 0.76 between NIST MAP and number of documents
judged from each system indicates that more documents are
judged from systems that are better. The correlation be-
tween predicted MAP and NIST MAP is 0.81. We expect
these correlations to increase at higher cutoffs.

6. ANALYSIS
The results are somewhat unbelievable. With an average

of just over one judgment per topic (at cutoff 0) we can dis-
tinguish between 82% of the systems that have a significant
difference, and we get 93% of the differences we find correct.
Increasing to only eight judgments per topic (at cutoff 10)
we distinguish between 93% of the systems with a significant
difference, and we get 98% of comparisons correct. How is
that possible?

In general, one system will be better than another if it
tends to retrieve more relevant documents at higher ranks.
Mean average precision is higher in that case, as are most
evaluation measures. Consider cutoff c = 0 and a simpli-
fied case in which the two systems do not overlap at all in
retrieved documents. When we sort documents by weight,
the top-ranked documents by both systems in all topics will
be tied with weight wd = 1. When we begin to judge, if the
better system ranked more relevant documents first, there is

a higher probability that when we find a relevant document
it is from the better system. If one system is better on a
majority of topics, there is a high probability that we will
find more relevant documents from that system, and if the
majority is enough to be significant, it is likely that we will
discover that quickly.

Of course we can imagine circumstances under which the
algorithm would fail, but if it is correct on x out of T topics
on average and on the other T − x it is essentially random,
the expected number of topics correctly sorted is x+T

2
. If

x = 20 and T = 50, the algorithm will be right on a majority
of topics.

In light of the results for single pairs, the results for mul-
tiple comparisons make sense. If the accuracy at c = 0
is 84%, the expected τ is .688, which is a bit higher than
we observe in TREC collections due to overlap in retrieved
sets. Accuracy at c = 10 is 92.5%, implying a τ of .85, a bit
lower than we observe, again due to overlap. Overlap affects
pairwise comparisons as follows: at low cutoff, more over-
lap means more error, because judging a single document
from one pair will “decide” any pair that document occurs
in. At high cutoff, more overlap means less error, because
more documents are judged from each pair before the pair
is completed.

Iteratively comparing the systems gives more confidence
in the results of each individual pair. It results in the same
pairs being compared over and over again, so if the result of
the comparison is the same each time, it becomes less and
less likely that it is a mistake. Additionally, the size of the
test collection keeps increasing, and more judgments always
means more confidence.

7. PREVIOUS WORK
The traditional means of obtaining a set of relevance judg-

ments is by system pooling, as we mentioned in section 1.
At TREC, NIST pools the top N documents retrieved for
each topic by each system and judges the entire pool. Usu-
ally N = 100; sometimes N = 50 or 200. Table 1 shows the
number of relevance judgments this entails. If an assessor
can make one judgment every 30 seconds, the 72,270 judg-
ments collected for TREC-6 would take 25 days of around-
the-clock work to produce—and that is for only 0.26 percent
of the 27.8 million judgments that could be obtained for 50
topics on the entire 556,000-document collection. Even this
small set is infeasible for most researchers.

Although the pooling method results in a small subset of
the total number of possible judgments, it is sufficient for
research purposes [14, 10]. This suggests that it might not
be necessary to pool 100 documents. Pools of depth 20, 10,
or even 5 result in good correlation to the NIST ranking of
TREC systems by MAP with a pool of depth 100 (Table 6).

Another option is to construct topics such that only a
subset of the collection could be relevant. An example is
restricting topics to events that happened on a certain date.
Another example is known item retrieval, in which topics are
defined to have only one relevant document [1]. These sorts
of topics do not provide enough variance to allow us to make
general statements about differences between systems [9].

Soboroff et al. investigated a way to construct test col-
lections with no judgments at all [8]. Using a model of how
relevant documents occur in pools, they randomly selected
documents from a pool and assigned relevance to all the cho-
sen documents. Ranking systems by MAP calculated using

TREC-3 TREC-4 TREC-5 TREC-6
c tau judgments rels tau judgments rels tau judgments rels tau judgments rels
0 .531 60 (99.9%) 50 .530 70 (99.9%) 50 .601 285 (99.8%) 118 .628 234 (99.7%) 93
1 .592 186 (99.8%) 125 .667 316 (99.6%) 175 .635 670 (99.5%) 250 .686 491 (99.3%) 200
2 .728 502 (99.5%) 325 .784 874 (99.0%) 450 .751 1166 (99.1%) 450 .805 1327 (98.2%) 475
3 .744 942 (99.0%) 575 .814 1201 (98.6%) 600 .799 1562 (98.8%) 600 .853 1860 (97.4%) 675
4 .774 1201 (98.8%) 675 .830 1409 (98.4%) 625 .842 2147 (98.4%) 850 .885 2355 (96.7%) 825
5 .762 1545 (98.4%) 900 .845 1755 (98.0%) 850 .855 2872 (97.9%) 1075 .900 3649 (95.0%) 1300
7 .821 1864 (98.1%) 1025 .856 2298 (97.4%) 1100 .882 4554 (96.6%) 1615 .919 6367 (91.2%) 1800
10 .844 2858 (97.1%) 1500 .875 3657 (95.8%) 1575 .914 7573 (94.3%) 2213 .955 13060 (81.9%) 2391
15 .856 3224 (96.7%) 1625 .913 4395 (95.0%) 1900 .944 13067 (90.2%) 2933 .967 15426 (78.7%) 2928
20 .872 5090 (94.8%) 2455 .920 5362 (93.8%) 2150 .953 16766 (87.5%) 3237 .976 24187 (66.5%) 3706

Table 5: Results for evaluations of TRECs 3–6 at various cutoffs. The number in parentheses is percent
decline from full NIST judgment count.

depth tau judgments rels
1 .820 1747 460
5 .899 6652 1216
10 .930 12209 1747
20 .964 22937 2477
50 .981 52874 3575

Table 6: Total number of judgments in a pool of
depth k and tau correlation to the NIST ranking of
TREC-6 systems.

these so-called “pseudo-rels”, they achieved a rank correla-
tion of between .4 and .6 with the NIST ranking.

Sanderson and Joho judged documents from a single sys-
tem (or a subset of systems) and, when the system was a
good one, achieved high rank correlations [7]. They also
used successive relevance feedback runs to incrementally add
documents to the pool, and achieved a high rank correlation
with that method as well. These methods emulate “Interac-
tive Searching and Judging”, described in more detail below.
They require many more judgments than our algorithm.

Results of experiments with shallow pools, no pools, or
single-system pools suggest to us that TREC systems are
getting more similar in terms of the sets of documents they
retrieve. Further evidence is that the average number of doc-
uments a system contributes to the pool has decreased. We
could imagine that retrieval systems that use very different
algorithms to retrieve from a very large corpus might over-
lap very little in the documents they retrieve, and in that
case we would not expect any of these methods (excluding
a pool of reasonable depth) to provide a stable evaluation.

A different way to construct a test collection called “In-
teractive Searching and Judging” (ISJ) was presented by
Cormack et al. [4]. In ISJ, users submit queries to a re-
trieval system and judge retrieved documents, formulating
and submitting new queries as they learn about the topic
and corpus. They found that with a few hours of work, an-
notators could produce as many relevant documents as exist
in the official set of judgments. Interestingly, there was only
33% overlap between the ISJ set and the official set, but the
evaluation results were nearly the same [10]

Although Cormack et al. convincingly show that ISJ
works with the TREC-6 corpus, whether it would work with
a larger corpus is an open question. ISJ does not necessar-

ily judge documents from any submitted run, which means
it is conceivable, though perhaps not likely, that the set of
judgments it produces does not intersect with any system.

Sanderson and Joho conclude that their simulation of ISJ
confirms that it works, but our belief is that their results
are due to TREC systems getting more similar. In TREC-7
and TREC-8, more than half the systems retrieved 60% or
more of the relevant documents. This suggests not that sys-
tems are getting better at finding relevant documents, but
that they are finding the same relevant documents, and as
a result, the judged pool is a smaller sample of the full cor-
pus. Judging documents from one or several decent systems
will, therefore, result in an evaluation with high rank corre-
lation simply because it is very likely that the other systems
retrieved the same documents, and if they did not, they
probably did not retrieve very many relevant documents.

“Move-to-Front pooling” (MTF) was proposed by Cor-
mack et al. [4]. It imposes a priority ordering on the pool
based on the assumptions that higher-ranked documents are
more likely to be relevant and documents from systems that
have recently discovered a relevant document are more likely
to be relevant. MTF discovers relevant documents faster
than traditional pooling, and achieves high positive rank
correlations with much less work. Zobel proposed a similar
method [14] that first judges a shallow pool, then, based
on the results of the evaluation, extrapolates which systems
and topics are likely to provide more relevant documents,
and extends the pool using more documents from those. Zo-
bel also discovers relevant documents faster than traditional
pooling.

It is worth considering the performance of MTF and our
algorithm on two extreme cases.

1. Consider two systems that retrieve two mutually ex-
clusive sets of documents. In this case, our algorithm’s
weights are equal to the reciprocal ranks of each doc-
ument, and therefore the ordering by weight is identi-
cal. MTF is likely to be slightly superior in this case,
because it makes an additional assumption that if a
system is good on one topic, it is likely to be good on
other topics.

2. Consider two systems that are identical. In our algo-
rithm, every document has weight 0. The algorithm
does not have to judge any documents to know the
systems are equivalent. MTF has no way of knowing
that.

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0 1000 2000 3000 4000 5000 6000

ta
u

co
rr

el
at

io
n

Total number of relevance judgments

ours
global MTF

TREC pooling
pseudo-rels

Figure 4: A comparison of four algorithms for pro-
ducing test collections from TREC-3 systems.

Figure 4 shows a comparison of our algorithm, MTF pool-
ing, TREC pooling, and Soboroff et al.’s pseudo-rels. The
curve representing our algorithm is the same as the one for
TREC-3 in Figure 2. For the other methods, we created
a pool of documents of the same size as the one our al-
gorithm produced, so that we could directly compare the
performances on test collections of the same size. We av-
eraged over trials of each method with random topic order-
ings. Our method outperforms all the others, though MTF
catches up at the final point in the curve. Our algorithm
has the advantage over the other methods that, through the
cutoff parameter, it attempts to select documents that will
maximize the utility of the evaluation while minimizing the
cost.

8. CONCLUSION
We have presented an algorithm that researchers can use

in-house to build test collections incrementally. The algo-
rithm selects documents that are likely to contribute a lot of
information about the difference in mean average precision,
and stops when it is likely that the difference is meaningful.
Our algorithm performs as well as any pooling method and
is more likely to generalize to non-TREC collections.

The algorithm uses heuristics that “feel” right. There may
be a better weighting scheme, or better stopping conditions.
If nothing else, it would be wise to incorporate the inter-
topic assumption made by MTF. In the future, we intend to
analyze the algorithm more formally to justify or derive its
heuristics. We hope that we can quantify the amount of un-
certainty in an evaluation with a set of relevance judgments.
We’d also like to evaluate our sets of relevance judgments
using the bpref measure [3] instead of mean average preci-
sion, and investigate selecting documents by their effect on
bpref.

The algorithm will make it possible for researchers to do
in-house evaluations on new corpora and new topics. It is
not, however, meant to be a replacement for NIST’s pro-
cesses, where an overriding goal is the creation of a reusable
test collection that can be adopted with some confidence by
a non-participating system. Our approach may result in a
broadly useful set of judgments, but it is intented to differ-

entiate between a small set of systems and cannot guarantee
more general value.

9. ACKNOWLEDGEMENTS
This work was supported in part by the Center for Intelli-

gent Information Retrieval and in part by SPAWARSYSCEN-
SD grant number N66001-02-1-8903. Any opinions, findings
and conclusions or recommendations expressed in this ma-
terial are the authors’ and do not necessarily reflect those of
the sponsor.

10. REFERENCES
[1] S. M. Beitzel, E. C. Jensen, A. Chowdhury,

D. Grossman, and O. Frieder. Using manually-build
web directories for automatic evaluation of
known-item retrieval. In Proceedings of SIGIR ’03,
pages 373–374, 2003.

[2] C. Buckley and E. M. Voorhees. Evaluating
Evaluation Measure Stability. In Proceedings of SIGIR
’00, pages 33–40, 2000.

[3] C. Buckley and E. M. Voorhees. Retrieval evaluation
with incomplete information. In Proceedings of SIGIR
’04, pages 25–32, 2004.

[4] G. V. Cormack, C. R. Palmer, and C. L. Clarke.
Efficient Construction of Large Test Collections. In
Proceedings of SIGIR ’98, pages 282–289, 1998.

[5] S. P. Harter. Variations in relevance assessments and
the measurement of retrieval effectiveness. JASIS,
47(1):37–49, 1996.

[6] M. Kendall. Rank Correlation Methods. Griffin,
London, UK, fourth edition, 1970.

[7] M. Sanderson and H. Joho. Forming test collections
with no system pooling. In Proceedings of SIGIR ’04,
pages 33–40, 2004.

[8] I. Soboroff, C. Nicholas, and P. Cahan. Ranking
Retrieval Systems without Relevance Judgments. In
Proceedings of SIGIR ’01, pages 66–73, 2001.

[9] K. Sparck Jones and C. J. van Rijsbergen.
Information Retrieval Test Collections. Journal of
Documentation, 32(1):59–75, 1976.

[10] E. Voorhees. Variations in Relevance Judgments and
the Measurement of Retrieval Effectiveness. In
Proceedings of SIGIR ’98, pages 315–323, 1998.

[11] E. M. Voorhees. Evaluation by highly relevant
documents. In Proceedings of SIGIR ’01, pages 74–82,
2001.

[12] E. M. Voorhees. The philosophy of information
retrieval evaluation. In CLEF ’01: Revised Papers
from the Second Workshop of CLEF, pages 355–370,
London, UK, 2002. Springer-Verlag.

[13] E. M. Voorhees and D. Harman. Overview of the
Eighth Text REtrieval Conference (TREC-8). In
Proceedings of TREC-8, pages 1–24, 1999. NIST
Special Publication 500-246.

[14] J. Zobel. How Reliable are the Results of Large-Scale
Information Retrieval Experiments? In Proceedings of
SIGIR ’98, pages 307–314, 1998.

	University of Massachusetts Amherst
	ScholarWorks@UMass Amherst
	2005

	Incremental Test Collections
	Ben Carterette
	James Allan
	Recommended Citation

	tmp.1273158746.pdf.WgRKD

