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Abstract

Saticredundancy allocationisinappropriatein hard real -
time systems that operate in variable and dynamic environ-
ments, (e.g., radar tracking, avionics). Adaptive Fault Tol-
erance (AFT) can assure adequatereliability of critical mod-
ules, under temporal and resources constraints, by allocating
just as much redundancy to less critical modules as can be
afforded, thusgracefully reducing their resource requirement.

In this paper, we propose a mechanism for supporting
adaptive fault tolerance in a real-time system. Adaptation
is achieved by choosing a suitable redundancy strategy for
a dynamically arriving computation to assure required relia-
bility and to maximize the potential for fault tolerance while
ensuring that deadlines are met. The proposed approach is
evaluated using a real-life workload simulating radar track-
ing software in AWACS early warning aircraft. The results
demonstrate that our technique outperforms static fault tol-
erance strategies in terms of tasks meeting their timing con-
straints. Further, we show that the gain in thistiming-centric
performance metric does not reduce the fault tol erance of the
executing tasks below a predefined minimum level. Overall,
the evaluation indicates that the proposed ideas result in a
system that dynamically provides QOS guarantees along the
fault-tolerance dimension.

1 Introduction
1.1 Complex Systemsneed AFT

Mission-critical real-time applications require a reliable
environment to guarantee that their deadlines are met despite
the occurrence of faults either in hardware, software, work-
load, or the environment. Many current fault tolerance sys-
tems devel oped for real-time distributed applicationsare ded-
icated to specific applications, suffer substantia performance
overheads, or require special hardware[15]. Staticfault toler-
ancetechniquesallocate an amount of redundancy that isfixed
at design time, and the system is sized appropriately. Under
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high loads with dynamic arrival, this capacity can befound to
be inadequate leading to some critical tasks getting rejected
while earlier less critical tasks have been guaranteed at high
redundancy. Increasing system capacity to avoid thisis often
not meaningful due to system weight and power constraints
inherent in embedded systems.

Flexibility in the management of redundancy is desirable
in applications where drastic changes in environmenta con-
ditionsand/or workload take place rapidly. Examples of such
applications include air traffic control [5], digital avionics
[3, 18], satellite systems and Radar Tracking (AWACYS) and
Digital Flight Control Systems.

If a unified framework can be designed to combine the
different types of fault tolerance approaches and in addition,
explicitly address rea-time scheduling to meet timing and
fault tolerance requirements, then some of the performance
overheads and costs associated with static fault tol erance tech-
niques can be reduced. Such a framework is essential for
applications that operate in dynamic environments, and has
not been adequately studied thus far.

What is desired in such environments is an assurance of
high reiability for critical processes, and an attempt at the
best possible allocation of the remaining resources to the less
critical processes depending on dynamic arrival patterns. An
efficient integration of fault tolerance and real-time schedul -
ingisthereforecalled for. A promising approach for dynamic
environmentsisthe use of adaptive fault tol erance techniques
in conjunction with a reflective real-time OS. Adaptive fault
tolerance is defined as “an approach to meeting the dynam-
icaly and widely changing fault tolerance requirements by
efficiently and adaptively utilizing a limited and dynami-
cally changing amount of available redundant processing re-
sources’ [7]. The main advantage of this approach is the
addition of flexibility for managing redundancy while pre-
serving timing-rel ated predictability [2].

1.2 AFT inaHard Real Time System

A key issuein devel oping such aframework isthe efficient
integration of on-line adaptive management of redundancy
and the real-time scheduler in a multi-processor hard real-



time environment. Since an adaptive technique must function
under timing constraints and effect the reconfiguration in a
stable and predictable manner, it is desirable to implement
it within the scope of a dynamic scheduler that guarantees
predictabl e task execution.

In this paper, we take the Spring [20] system as a concrete
example of a dynamic rea-time system. With appropriate
adaptations, our work should be applicable to other similar
dynamic real-time systems.

The Spring system is a distributed testbed composed of
multi processor nodes with both local and global shared mem-
ory aswell as areflective memory synchronized between the
nodes with afiber optic ring, and is supported by a dynamic
planning mode schedul er, and related compiler tools.

The AFT dtrategies of each type of task is specified using
the FERT notation [2], whichistrandated into process groups
in the System Description Language, SDL, and submitted to
Spring by the adaptive redundancy allocator, along with re-
flective information (e.g., importance, deadline, precedence
congtraints, fault tolerance requirement, etc.). An aternative
would be selected in such a way that the corresponding pro-
cess group has the highest specified reliability that can be
guaranteed by Spring to finish by its deadline.

As new tasks arrive, the kernd takes advantage of this
reflective information and attemptsto guarantee each of them
at the highest requested redundancy level that isfeasible. An
advantage of aplanning-mode scheduler isitsability to predict
that atiming constraint will be violated, enabling early action
to handle the fault.

1.3 AFT Techniques Studied, and Results

To evauate the performance of the AFT mechanism, we
compare an adaptive fault tolerance technique with Triple-
Modular Redundancy (TMR), Primary/Backup (PB) and Pri-
mary/Exception (PE) techniques. The set of aternativesin
the adaptive technique is constructed from the three individ-
ual static techniques.

Wefirst study the characteristics of different adaptive fault
tolerance mechanisms using a synthetic workload. Then the
results are finally verified using the redistic FERTSt ones
benchmark [19], which simulates the demanding workload
generated by the radar tracking application in AWACS air-
borne radar systems. The synthetic workload is parameter-
ized for different overload and failure situations, since timing
congtraintsin dynamic systems are often violated under these
conditions. Also, experiments are conducted to determine
the influence of tightness of the deadline, task value and the
scheduling costs on the effectiveness of the adaptive tech-
nique.

Results of the performance tests indicate that al the AFT
techni ques studied achieve higher or comparabl e task schedu-
[ability compared to using static fault tolerance strategiesin a
real-time multiprocessor system, and they do thisat areliabil-
ity level that is no worse than the minimum specified for the
respective modules. Further, the best adaptive technique sig-
nificantly increases the task schedulability without lowering
thereliability of any modul e bel ow specification by agraceful

degradation of redundancy allocated to non-critical tasks.

A second important result isthe observation that when the
AFT mechanism selects an aternative strategy under dynamic
arrival of tasks, it must be capable of rescinding prior strategy
selectionsif theload generated by futuretask arrivalsdemand
it. The AFT agorithm needs to be able to assure a minimal
acceptable redundancy early upon task arrival, perhaps only
provisionaly guaranteeing any redundancy higher than that
minimum. It must be able to postpone the final commitment
of increases of redundancy until it becomes clear that such
an increase can be actually afforded with alow probability of
affecting the minimal performance of future tasks. Naturally,
it needs to be ableto do thisrescinding of provisional accep-
tance of a higher strategy with an assurance of never dropping
the task redundancy below acceptable limits.

Other contributionsinclude: the development, implemen-
tation and evaluation of an adaptive fault tolerance mecha-
nism supported by extensionsto areal -time schedul er operat-
ing in planning-mode, a detail ed performance eval uation that
compares the adaptive strategy with static fault tol erance tech-
niques; and easy and cost effective extensionsto the schedul er
to accomplish this selection.

The remainder of this paper is organized as follows: Sec-
tion 2 discussesrelated work. Section 3 containsadescription
of the fault tolerance techniques and how they are integrated
in our adaptive fault tolerant strategy. This section also de-
scribes the extensions made to the Spring kerndl in order to
dynamically support adaptive fault tolerance, and includes a
discussion of the important design and research issues that
require attention. We then discuss the metrics and results of
the experimental study, first with a synthetic workload in sec-
tion 4 and with a real-world workload in section 5. Finally,
section 6 summarizes and concludes the paper.

2 Redated Work

Static approaches as represented by MARS [9], and those
capableof tolerating limited faults, asin[10], proveto beover-
constrained and inflexiblein dealing with dynamic overl oads.
This motivates the need for an integrated approach to fault
tolerance and real -time scheduling.

Different modificationsto static real-time scheduling a go-
rithms to provide for redundant tasks, as by Liestman [13],
and Krishna et al. [10] have been proposed. More recently,
Oh et al. have studied the dynamic scheduling of copies of
tasks on redundant CPUs[17], and in combination with Rate-
Monotonic Scheduling. As far as we know, none of these
projects has provided support for adaptive fault tolerance to
deal with overloads and specificationsof graceful degradation.

In [11], Laprie discusses the need for an assurance of
dependability in complex systems, the kind where adaptive
fault tolerance would be required. In [7], Kim and Lawrence
provide a concrete definition of adaptive fault tolerance and
identify major research issues that need to be resolved. The
authors proposed that each distinct mode of operation of a
system should have adifferent and effective set of fault toler-
ance mechanisms. Aspart of our study, we addresstwo of the
research topicsdiscussed in[7]: adaptive decision under time



congtraints and cost-effective integration of fault tolerance
techniques.

Bondavalli, Stankovic and Strigini introduce a framework
for software implemented, adaptive fault tolerance in a real-
time context [2]. The authors present the design of FERT
(Fault Tolerant Entities for Real-Time), a specification nota-
tion which alows the abstraction of the functionality, timing
congtraint and adaptive fault-tol erance requirements of a par-
ticular application module. By using the design notation, a
designer of aFERT isableto specify alternativefault tolerance
strategies for amodule. The information can be accessed by
both off-line and on-line schedulers to select strategies, and
control their execution, adapting to the actual 1oad and fault
Situations [2].  The authors describe the on-line scheduling
support needed by the framework. In our study, we imple-
ment a mechanism for supporting the on-line scheduling of
adaptivefault tolerance techniques. A comprehensive survey
in software fault tolerance and the necessary support mecha-
nisms needed in the operating system can befound in [21].

Tal [23] introduces performability concepts and modeling
methods to adaptive fault tolerance. The purpose of this
work isto demonstrate thefeasibility of performability-driven
redlization of adaptive fault tolerance. The target system is
amultiprocessor environment supporting adaptation between
Recovery Blocksand Distributed Recovery Blocks. Our fault
tolerancetechniquesare different than the ones studiedin [23]
and the focus of our work is on dynamically scheduled hard
real-time systems.

Ghosh, Melhem and Mossé [6] present a fault-tolerant
scheduling approach for real-time multiprocessors systems.
A Primary/Backup technique is used to schedule tasks. To
achieve high schedulability and till provide fault tolerance,
backup overl oading and dynamic deal | ocation of backup tech-
niques are incorporated for aperiodic tasksin adynamic real-
time multiprocessor system. We are interested in a similar
task and system model, but consider other fault tolerance
techniques in addition to Primary/Backup. Additiona work
infault tolerant scheduling can befoundin [4, 13, 17]. Adap-
tive fault-tolerance has been studied in the context of routing
in multiprocessor interconnects, for examplein [22].

Lee and Shinintroduced an active reconfiguration strategy
for a degradabl e multi-modul ecomputing system witha static
set of tasks [12]. They recognized that the system should
reconfigure itself after a certain amount of mission time has
passed, even without any failure. Their modd is a state-
based approach which is represented as a Markov reward
process. In[16] Muppal a, Woolet, and Trivedi have combined
two approaches for modeling soft and hard real -time systems.
Their approach is based on the addition of transitionsto the
Markov model of a system’s behavior for modeling a system
failure due to the missing of a hard deadline. The system’s
response time and throughput distributionsare used to denote
the reward rates.

The Simplex architecture, in [1], provides a different ap-
proach to software fault tolerance. A high performance soft-
ware system is combined with a highly reliable one in order
to exploit their differences. This approach anticipates when
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afailure is about to occur in order to activate an adaptation
mechanism. When this happens, the high performance soft-
ware is replaced by the reliable one. But this architecture
does not deal explicitly with issues related to guarantee of
schedulability.

3 AdaptiveFault Tolerance (AFT)

As mentioned in the introduction, adaptation is achieved
by choosing a suitable fault tolerance technique from a set
of aternatives for each instance of a dynamically arriving
computation. The fault tolerance techniques considered as
aternatives are Triple Modular Redundancy (TMR), Pri-
mary/Backup (PB) and Primary/Exception (PE). In all cases
here, we have studied exact replicas, given identica inputs
and producing identical outputsunder fault-free conditions.

Triple modular redundancy (TMR) is a technique where
three copies of a computation are scheduled on different pro-
cessors, introducing location constraints. The copies are ex-
ecuted and error checking is done by comparing the results
after completion [6]. The execution order between the copies
and the error checking task (EC) is enforced by placing prece-
dence constraints as shown in figure 1 (a).

In the Primary/Backup (PB) technique, two copies of a
computation are scheduled on different processors (location
congtraints), but the backup task (B) is executed only in case
the primary task (P) produces incorrect results. The prece-
dence constraints between the tasks in PB are shown in fig-
ure 1 (b). Primary/Exception (PE) is similar to PB. The only
difference is that in case of failure of the primary task, an
exception handler is executed instead of the backup task, see
figure 1 (c).

In al of the techniques the task graph as a whole has a
single deadline.

In the case of the FERTst ones benchmark, the PB strat-
egy is used to implement a hybrid scheme, called hybrid-
SCP-TMR. In this scheme, two copies are executed first, im-



plementing a Self Checking Pair (SCP). If they terminatewith
unequal results, or asignaled fault, athird copy is executed as
abackup and the three results are voted for a mgjority agree-
ment, thusgiving the same reliability level as(TripleModular
Redundancy) TMR, but with a lower CPU utilization under
no-fault conditions. A suitable mechanism for ensuring exact
consistency of inputs to the replicas is assumed, the costs of
such a mechanism are subsumed within the execution time
per task as seen by the real-time scheduler.

Fig. 2 shows the three different software redundancy
schemes in a tracking FERT - hybrid-SCP/TMR scheme,
TMR and Primary-Exception. Note that no one scheme is
awinner in al circumstances. TMR is preferable when the
dack islessthan half thedeadline, and ahigh reliability isde-
sired; thispreference isirrespective of global conditions. Un-
der higher total system loads, the hybrid self-checking/ TMR
set becomes preferable, but is ruled out for tasks that have
a dack less than half their deadline. Under heavier system
loads, and lower reliability requirements, the primary-backup
schemeis preferable, but again isapplicable only to instances
with large dack. Clearly this shows the need for adaptive
fault-tolerance.

3.1 Characteristics of an Adaptation Mechanism

In order for a framework to effectively support adap-
tive fault tolerance within a real-time context, the adaptation
mechani sm needsto beinexpensive, simpleto implement, and
have aflexible and efficient selection strategy.

The adaptation needs to be as inexpensive as possible, in
order to keep to a minimum the overhead costs introduced
by the dynamic adaptation. Overheads must be smdl in
planning-based scheduling a gorithms operating in highly dy-
namic environments, so asto not impinge on thetime already
guaranteed to the application tasks or other system activities.

Smple and easy to understand schemes are not only more
likely to be more reliable compared to a more complex one,
but also enable us to obtain much needed data [7] to charac-
terize and understand the behavior of adaptive fault tolerance
techniques under various conditions.

A magjor problem in AFT is the implementation of an ad-
equate selection strategy among the different fault tolerance
techniques. We identify two types of selection strategies: (i)
sequential selection and (ii) dynamic selection. In sequential
selection, alist of different fault tolerance techniques created
off-line specifies the order in which each of the techniques
should be considered. In the dynamic strategy, an on-line
evaluation module decides the order in which each of the
fault tolerance mechanisms of the predefined set will be con-
sidered. The evaluation modul e takesinto account the current
system conditions(i.e., load, componentsfailures, forecast of
faults and their type, etc) to form the list of aternative fault
tolerant techniques.

On the one hand, a clear advantage of the first formisits
ease of implementation. There is no significant extra over-
head cost added to the on-line scheduler. Ironically, its ma-
jor disadvantage is its inability to adapt, at a finer level of
granularity, to new environmenta conditions. The dynamic

strategy will not only add cost to the scheduling process, but
requires the implementation of the evaluation module. We
believe that finding an appropriate parameter or mechanism
for the evaluation module is an open research question and
a better understanding of different sequential strategies under
different conditionsis needed before an effective dynamic se-
lection strategy can be designed. Therefore, in this paper we
report on work done using a sequentia aternative selection
mechanism.

3.2 The Adaptive Mechanism

Our adaptive fault tolerance (AFT) mechanism is based
on the combination of the three software fault tol erance tech-
niques described in the previous section.

Software modules are programmed in the FERT notation,
where a FERT encapsulates a set of aternative strategies for
the same functional goal. The fault tolerance mechanism
appropriate for aparticular task is chosen when it arrives.

The tempora parameters include the task’s deadline, type
of deadline and laxity. The redundancy strategy indicates
the precedence constraints between the various subtasks and
congtraints on their layout (such as, redundant copies must
execute on different processing el ements) that make up the
computation and the redundancy of the computation. Loca
tion constraints are placed at run-time. Finally, the selection
strategy isan ordered list of possiblefault tolerancetechniques
that should be considered at run-time.

Astasks arrive in the system, the scheduler uses informa
tion about the task and attempts to guarantee the new task.
If the new task has an alternative list, then the scheduler at-
temptsto build afeasible schedul e using thefirst fault tolerant
alternative on the list. If no guarantee can be provided using
the selected alternative, the next aternative is selected and
the scheduler makes another attempt. The process continues
until afeasible schedule isfound or the alternative list is ex-
hausted. Inthelatter case, thetask isrejected. Whilebuilding
a feasible schedule, the planning-mode scheduler takes into
account the location of task code and precedence constraints
that each fault tol erance technique requires.

In this paper, we evauate three adaptive fault-tolerance
techniques.

1. AFT-3: AdaptiveFault Tolerance wherethe alternative
list has the following three options: TMR, PB and PE.

2. AFT-2: AdaptiveFault Tolerance wherethealternative
list has the following two options: TMR and PE.

3. AFT-quarantine: Adaptive Fault Tolerance, with re-
scindable provisiona acceptance, where the run-time
provides an irreevocable guarantee of the primary ex-
ception for all non-critical tasks, holding up the alo-
cation of greater redundancy in quarantaine till such a
later point in time when it becomes clear that it isleast
likely to affect allocation of resources to critial tasks.

Whereas AFT-2 and AFT-3 are easy to understand, AFT-
guarantine perhaps needs some explanation. It allowsfor the
provisiona acceptance of some tasks, with a possibility of
rescinding the guarantee upon the arrival of overloadsin the
future. Specificdly, critical tasks are processed in the same



way, but non-critica tasks are handled a bit differently. They
arefirst splitinto two component tasks upon arrival, inaman-
ner that is specified off-line. The first component reserves
resources for enough redundancy to satisfy the minimum ac-
ceptable redundancy specification of thetask in question. The
second component attempts to increase the redundancy level
allocated to the first component of the the same task. The
second component is provisionally accepted but held in quar-
antine for a fixed delay, which is an adjustable parameter. A
committed guarantee is given only at the expiry of the quar-
antineinterval.

The above mechanism takes full advantage of the reflec-
tive architecture of the Spring system and its planning-mode
scheduler. These two key features provide a solid foundation
that supports adaptive decisions, with respect to the manage-
ment of redundancy, under time constrainsin aflexible, pre-
dictable and cost effective way. In our approach, the adaptive
selection between the different fault-tolerance alternativesis
driven by the current system state and timing constraints of
tasks, enabling fast response to rapid changes in the environ-
ment.

4 Performance Evaluation,
with Synthetic Wor kload

41 Synthetic Workload Generator

A task generator creates a task set and the workload for
each of the experiments. The task set is described in terms
of information such as worst case execution time, deadline,
precedence constraints, and fault tol erance requirements. The
generator also creates the workload by creating a sequence of
aperiodic arrivals of the tasks in the set. Each task arrival is
described by its arrival time and the type of fault tolerance
technique associated with thetask. The following parameters
are used to generate the task set and workload.

e Min.WCET, Max_'WCET: the minimum and maxi-
mum worst case execution time of each task (WCET).

e Mean interarrival rate, a: thetask interarrival timeis
assumed to be an exponential distributionwith mean a.

e RP: thereplication probability. RPisused to determine
the percentage of arrivalsrequiring fault tolerance. For
example, if RP = 0.5 then 50% of the arrivalswill be
replicated. A uniform distribution between 0 and 1 is
used to determine whether a task isreplicated.

e DF: thedeadlinefactor, alaxity parameter that denotes
the tightness of the deadline.

e L:thelength of the simulationin number of arrivals.

The worst case execution time, WCET, of each of the
tasksisrandomly chosen using auniformdistributionbetween
the minimum and maximum worst case execution times. The
deadlineof ataskissetto2« WCET + (1+ DF) T, where
T is obtained uniformly between 1 and 25 units. Hence a
tighter deadline can be specified by reducing the range of T
or by reducing DF'. For al of the experiments the value of
Min WCET isequa to 20 and thevalue of Maz WCET
isequal to 40 units.

3000 dynamic arrivals are considered for each run. Tasks
in the set are assumed to be independent of each other. The
interarrival timeisused to control the load of the system. All
of the fault tolerance techniques are evaluated over a wide
range of load conditions.

Each point in the graphs (Figures 3 - 10) is the average
of 5 simulationsruns. The variance for these averages were
computed and they were within 5% of the average in each
case.

4.2 Performance Metrics

The experiments were conducted using Spring’s schedul -
ing simulator. The simulator accurately reproduces many
aspects of the actual Spring system. Support mechanisms
for adaptive fault tolerance (section 3.2) were added to the
simulator.

All the AFT mechanisms studied make their adaptive se-
lectionsfor every task arrival, and the best alternative selected
at each instance. While thisincreases the scheduling cost for
each task arrival, we found the overheads to be not signifi-
cant. Further, sincethe experimentsweredesigned to compare
the maximum short-term gains in performance and reliability
that can be extracted without unduly compromising minimum
requirements for both performance and reliability in thelong-
term, reevaluating the dynamic selection of aternatives for
each task arrival is appropriate.

In dl of the experiments, the static fault tolerance tech-
niques described in section 3 are compared with the adaptive
techniques, also described in section 3.2.

Assuming independent faults, al of the techniques can
detect a single transient or permanent fault. TMR and PB
are able to tolerate the fault since task replication is used to
achieve acorrect result despitethe occurrence of thefault. By
increasing the redundancy of tasks, tasks are able to complete
under the presence of faults. However thisreducesthenumber
of taskswhichthesystemisabletoguarantee. Thesimulations
enable us to quantify the tradeoffs between performance and
redundancy levels of each of the fault tolerance techniques.

To estimate the performance overhead costs of providing
fault tolerance, all of thetechniqueslisted above are compared
to a system where no redundancy is provided. Throughout
the experiments this baseline is referred to as the No fault
tolerance technique (No FT). A real-time system with no
provisionsfor redundancy is not desirable, since the presence
of a fault could have catastrophic results. Hence, the Pri-
mary/Exception technique serves as a basdlineto estimate the
performance overhead where aminimum degree of reliability
isprovided.

The performance metric used throughout the simulation
is the guarantee ratio. The redundancy metric used is the
average replication factor. The definition of these metrics
are:

Guarantee Ratio (GR) : ratio of the number of tasks guaran-
teed by the schedul er to thetotal number of task arrivals,
separately for critical tasks and non-critical tasks.

Average Replication Factor (ARF) : ratio of the sum of the
number of compl eted task copiesto the sum of the num-



ber of total task arrivals to the system, separately for
critical tasksand non-critical tasks. Giventhat fault tol-
erance is achieved viaredundancy the rationale behind
the use of ARF should be clear: the higher the ARF
value, the higher the expected fault tolerance.

An exception task in the PE technique does not count as
one copy, instead the number of copies used for an exception
task is obtained by dividing the worst case execution time of
the exception by theworst case execution time of the primary.
In al of the experiments with the synthetic workload, this
ratio was set to 0.2 alowing the exception task enough time
to deal with the fault. Thus, the number of copies for a task
instance schedule using TMR, PB, PE and NoFT are 3, 2, 1.2
and 1 respectively.

4.3 Experiments

The simulation experiments are divided into two types.
In the first type of experiments (experiment 1 through 4),
different fault tolerance techniques are compared to the no
fault tolerant basdline (NoFT) in an effort to estimate the
loss of schedulability caused by the added redundancy and
measure their redundancy levels using the ARF metric. For
these types of experiments a fault-free model is assumed.
in order to understand the effect of different adaptive fault
tolerance techniques under severa conditions(e.g., overload,
tighter deadlines, percentage of replication of tasks, etc.).

The second type of experiments is designed to demon-
strate the efficacy and power of the adaptive technique using
arealistic AWACSworkload. The FERTst onesbenchmark
suite generates a workload that simulates the highly variable
conditions in a radar tracking system. The different AFT
mechanisms were tested against this workload, and the per-
formance of adaptivefault tolerance was verified asindicated
by thefirst set of experiments.

In al the experimentsthe number of number of processors
per node is 3, and the scheduling is performed on a separate
systems processor, as described in [20].

4.3.1 Expt. 1: Performance and Replication Factor

The performance results of al of the fault tolerance tech-
nigques as a function of load without considering scheduling
costs, with RP = 1 and DF = 1 are shown in Figure 3.
As expected, the guarantee ratio of al of the fault tolerance
techniques increases with decreasing load. The results show
that Primary/Exception (PE) performs much better than TMR
technique, in particular under overload conditions. For exam-
ple, when the mean interarrival rateis 20 units, the guarantee
ratio for PE is near 100% and the guarantee ratio for TMR
is down to 55%. The performance of both adaptive tech-
niques (AFT-3 and AFT-2) and Primary/Backup is very sm-
ilar throughout the range of interarrival rates. The guarantee
ratio of these techniques is acceptable even under overload
conditions, for example 80% at interarrival rates of 20 units.
The results show that adaptive techniques are bounded by PB.
This is because the adaptive techniques first try to schedule
atask using TMR, leaving less cpu time available for future
tasks compared to the sametask scheduled using PB. Fromthe
results, we can conclude, as expected, that redundancy affects
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the guarantee ratio. PE is the technique with the highest per-
formance and it achieves similar level of schedulability asthe
no fault tolerance (NoFT) baseline, except in overload con-
ditions. On the other hand, the adaptive techniques provide
performance similar to PB.

Figure 4 shows the average replication factor, of al of the
fault tolerance techniques. The resultsillustrate the tradeoff
between redundancy level sand performancefor TMR, PB and
PE. For mean inter-arrival values greater than 10, the ARF of
the adaptive techniques is higher than that of PB and TMR,
and the GR of the adaptive techniques is similar to PB and
higher than TMR.

This clearly shows that adaptive techniques produce a
higher average redundancy than any static technique, a a
guarantee ratio that is comparable to PB. The guarantee ratio
is poorer only to PE, which has no redundancy.

4.3.2 Experiment 2: Effectsof Scheduling Costs

The effects of the Spring scheduling costs on the guarantee
ratio and average replication factor are shown in Figures 5
and 6 respectively. The scheduling costs are calculated be-
fore each invocation as follows SC = overhead_cost + n *
per_task_cost, wheren isthenumber of tasksto bescheduled
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for the current invocation. The vaues used inthe experiments
for overhead_cost = 12.7 units and per _task _cost = 0.04
units. These values produce scheduling costs that agree with
measurements taken from the actua Spring system. It is
important to notice that the scheduling costs are quite conser-
vative, since these costs are on a 68020, which is quite slow
compared to current processors.

Taking into account scheduling costs, we can see a de-
crease inthe guarantee ratio for all of the techniques, with the
exception of PE. Both TMR and AFT-3 are more sensitiveto
this effect under heavy loads. Under these conditions AFT-2
achieves a dightly better GR than PB. This is because the
overhead of scheduling delays the start time of guaranteed
tasks, which reduces the available interval for scheduling a
task. A less drastic effect can be seen in the average repli-
cation factor. PB and TMR are affected more with respect
to ARF. The ARF of both adaptive techniques (AFT-3 and
AFT-2) issimilar to the one obtained in experiment 1.

In conclusion, scheduling overheads do not significantly
skew the results of Experiment 1.
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4.3.3 Experiment 3: Effectsof Deadline Factor

Figure 7 shows the guarantee ratio of all five techniques and
the NoFT baseline, as afunction of load with a smaller dead-
linefactor (DF) and scheduling cost included.

It is clear that GR of al of the techniquesis significantly
lower under overload conditions. However, notice that the
performance of AFT-3 drops for al interarrival rates. This
is because AFT-3 is not able to schedule some tasks under
TMR and PB duetothetigher deadline. AFT-2 isnot affected
as much as AFT-3 with tighter deadlines, since the schedul-
ing of the feasible PE technique only inccurs one scheduling
overhead cost. Theimportant aspect isthat under tight dead-
lines the performance of adaptive techniques with a signifi-
cant number of alternatives may suffer. Thisresult indicates
that with tight deadlines dynamic sel ection strategy should be
used.

The adaptive techniques continue to achieve high ARF
compared to the other techniques, even asthe deadlines of the
tasks get tighter. In particular AFT-2 continues to perform
well.
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434 Experiment 4: Effectsof Probability of Replication
Figures 8 and 9 show the guarantee ratio of all the techniques
as afunction of 1oad with a probability of replication of 0.75
and 0.25 respectively. As expected, the guarantee ratio for
all of the techniques improves and the gap between them
reduces (compare with Figure 5) as less tasks are replicated.
TMR is the technique that benefits the most. Similarly, the
average replication factor reduces for al of the techniques,
see Figure 10 and 6 for probability of replication of 0.25 and
1.0 respectively. Therefore, to take advantage of the benefits
of adaptivefault tol erance techniques, applications must need
moderate to high level of replication of tasks.

Thus, static TMR isshown to be most sensitiveto changes
inprobability of replication. Further, both adaptivetechniques
continueto perform adequately, in particular AFT-2 provides
the best guarantee ratio at its average replication factor.

5 Performance Evaluation,
with Real-World Wor kload

We wanted to evaluate our ideas in real-world environ-
ments in a way that different adaptive fault-tolerance ap-
proaches can be evaluated. To this end we studied sev-

eral benchmarks in the literature, and finally developed the
FERTst ones workload generator. It is based on a radar
tracking and control application. This was developed after
a study of the AOCP program (Airborne Operations Con-
trol Program) used on the currently deployed AVWACS air-
craft (Airborne Warning And Control System), and certain
anticipated requirements of future generations of similar sys-
tems. FERTst ones furnishes a large variance of dynam-
ically generated application load, and supports an adaptive
fault-tol erance requirement specification.

Other benchmarks have been suggested in the literature
[14, 24, 8]. However, these benchmarks do not make it easy
to compare, qualitatively or quantitatively, resultsof different
experiments of adaptive fault-tolerance mechanisms. Also,
these do not lend themselves to experiments subjecting dif-
ferent implementationsof adaptivefault-tolerancein compar-
itive tests under conditions that produces a workload similar
to the high loads and high variability found in a rea-world
complex hard real-time application operating in a dynamic
environment with adaptive fault-tol erance requirements.

51 FERTst ones- Radar Tracking Benchmark

Radar tracking is a very good example of a complex soft-
ware application operating under hard temporal deadlinesthat
requiresassurance of continued operation tolerant of hardware
faults due to the hostile environment. Also, it operates in a
dynamic environment subject to unpredi ctable overloads (due
to targets arriving in bursts, and high-G maneuvers being per-
formed by aircraft), so the worst case characteristics of the
stimulus received by the system or the computational load
generated by the software cannot be bounded. Thismakesthe
application interesting in that it captures some properties of a
periodic real -time workload while at the same time modelling
very bursty arrivalsover larger periodsof time. Such an appli-
cation requires the engineering of a dynamic system capable
of adaptive fault-tolerance, and hence is agood candidate for
a benchmark.

The radar antenna carried in a radome above the aircraft
has a range of 200 miles or more with a 360 degree view of
the horizon and the ability to “look-down” on low-flying or
surface targets. In atactica role, such radars usualy have a
rate of scan of between 2to 13 seconds, with targets capabl e of
speeds greater that Mach 2.3 and maneuvers of 7-G or more.
The FERTst onesismodeled to simulate these conditions.

5.2 Characteristics of the Generated Wor kload

Radar returns are generated either by noise sources, or
by reflection from actual target aircraft. A set of returns
over multiple scans that corresponds to an identified target is
classified as a confirmed track, each of which is tracked by
one instance of a tracker task. Typicaly, about 1000 radar
returns can be seen in every scan, each a potential target or
threat. About a 100 of these prove to be confirmed targets
that are tracked through multiple scans, but these number can
show wide variations, and burstiness.

The benchmark simulates the CPU processing time de-
manded by the MultipleHypothesis Testing (MHT) agorithm



Generator Parameter

1 LogNormal(5.454,1.667)
(target creation) || Exp(0.007)

p2 (lifetime) Beta(3.000,1.455) * 720

Table 1. Standard Benchmark, FERTst ones
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Figure 11. Target lifetime

[25], so named after the approach of hypothesising the ma
neuvers possibly being executed by a confirmed target from a
previous scan, and extending its track with one of the returns
from the current scan. The computation time required for
each return depends on the number of such hypotheses to be
tested per track, and therefore on dynamic conditionssuch as
the number of radar returns that were observed with a small
azimuth angle from a confirmed track.

Confirmed tracks require significant computation time, the
requirement being proportional to the number of hypotheses
being generated, ranging from 4.2 to 35.125 msec per track,
and they are mandated to be run with the highest level of
redundancy available. The remaining time is to be used to
increase the redundancy level allocated to the unconfirmed
tracks. Since this computation time for each unconfirmed
track, 4.2msec, istoo small to be handled efficiently by the
the Spring dynamic scheduler, and since they occur in large
numbers, they arebunched together to amorti zethe scheduling
costs per invocation.

The FERTst ones benchmark suite has composite prob-
ablisitic generators, listed in Table 1 and described below,
that simulate the bursty arrival of true targets (aircraft), and
noise echosintheradar. It also estimatesthevariability of the
computation load under different target arrival patterns, and
variation in target life-time on the radar.

521 Track creation

Tracks are generated by p; using two generators, one gen-
erating true targets (aircrafts) and the other smulating false
reports (Table 1). Every track is specified as performing one
input and one output interaction per iteration.

Truetargets are created with alog-normal interarrival time
distribution, with the parameters p = 5.545 and ¢ = 1.667.
Noise reports are generated with an exponential distribution
of interarrival timeswith amean of 0.007 seconds.

Thedistinction between thesetwo typesof tracksisinternal
to the statistical generators, and not intended to be visibleto

the system under test. Both of these are combined together
and presented as undistinguished new track creation events.

5.2.2 Track deletion
The library internally generates ssmulated life-times of each
target, based on a simplified simulation of the expected life-
time of trueand falsetracksin atypical tracking radar system.
It keeps track of event-lists of each track that it has issued
an arrival event for, and it issues the deletion events in the
appropriate chronological order.

Thelifetimeof targetsisgenerated internally with p,, using
a beta distribution, with the parameters «; = 3.000, and
ay = 1.455, with scale = 720 (Table 1). Noise returnsonly
last for one scan, or 2 secs. Thissimulates the quick deletion
of false tracks while the distribution of the lifetime of true
tracks is consistent with the behavior of high speed aircraft
overflying the range of the radar, and is shownin Figure 11.

5.2.3 Workload dueto Multiple Track I nstances
Each track-instance arrives with a requirement to be run at
a certain specified redundancy level, which can then change
dynamically. All confirmed tracks are run with the highest
redundancy level that is feasible, with a preference given to
hybrid-SCP-TMR and TMR over Primary-Exception. All un-
confirmed tracks, typically tracksthat have been inthe system
for less than two scans, are specifed to require a minimal re-
dundacy level as provided by Primary-Exception, and any
spare capacity availableis allocated to them to enhance their
redundancy level to hybrid-SCP-TMR or TMR, asfeasible.

The application has statistical generators that trigger the
birth and desth of these tracks, as well as the promotion and
demotion of their importance levels.

The scanning of theradar antennaevery 2 secsissimulated,
and independant sporadic events are generated every scan for
every radar return from atarget or noise source inthe system.

5.24 Computational Load per Track Instance

The FERTst oneslibraries estimate the computationa load
associated with each iteration of each instance, smulating
the MHT agorithmdescribed in section 5.2. Once every scan
cycleof the(simul ated) radar (every 2 secs), thecomputational
load presented by each track is updated. This number is an
integral multiple (n > 1) of the nomina unit computational
load per track.

The internal generator function, included with the bench-
mark, that simulates the estimation of computationa load,
assumes a target detection probability, Pp, of 0.9, and es-
timates the number of hypotheses or models applied to that
track as a function of the total number of reports, both true
and false, currently in the system. It generates this number
by counting the number of radar reports that are in a spec-
ified neighbourhood of an existing track and therefore are
candidates for track extension. Thisyields an execution time
(WCET) for evaluation of each track between 4 msec and 36
mSec.

5.3 Experiment 5. Testing with FERTst ones

This fina experiment was first performed with the
FERTst ones workload and the AFT-2 mechanism. For
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the tasks representing confirmed tracks, we found AFT-2 to
produce results consistent with the earlier experiments, as ex-
pected. However, interestingly we found that the larger dead-
linesin thisworkload | ed to anumber of instances of tasks be-
longingto (less-critical) unconfirmed tracks being guaranteed
withtheaternativesof higher redundancy. Theunrescindable
commitment of the alternative selection of thesetasksledtoa
significant rejection of similar tasks arriving later. Therefore,
developing the AFT-2 and AFT-3 mechanisms further, we de-
fined the AFT-quarantine mechanism, by guaranteeing only
the minimal redundancy alternative upon arrival, provision-
ally accepting feasible aternatives requiring higher resources
and holding the higher redundancy alternatives for a quaran-
tine delay before committing on the allocation.

The amount of delay in the quarantine was varied as a
tunable parameter, adjusted between 0 and deadline, and
its effect on the guarantee ratio and replication factor were
studied.

A delay of 0 isthe case of the earliest possiblecommitment
of resourcesto the aternative with the largest feasible redun-
dancy, and isessentialy thesame as AFT-2. Asexpected, this
strategy tends to generously overallocate resources to tasks
that come earlier, at the expense of the minimal operating
requirements of the tasks arriving later.

Figure 12 showsthe variation of guarantee ratio with quar-
antine delay for the (less critical) tasks which represent un-
confirmed tracks. As the delay is increased above zero, the
guarantee ratio (sum = PE+PB+TMR, where PB implements
h-TMR-SCP) goes up as more tasks are getting their mini-
mal redundancy levels guaranteed. With a quarantine delay
greater than 1300 msec, the guarantee ratio for the higher re-
dundancy aternatives (PB+TMR) begins to drop quickly as
thereisnot enough timel eft before the deadlineto succesfully
schedul e them.

Figure12 a so showsthe average redundancy levels (ARF)
allocated to thetaskswith different values of quarantinedel ay.
Itisuseful to observethat with theintroduction of quarantine

delay, the average redundancy drops only very slowly ini-
tialy. It begins to drop quickly to the redundancy level of
the minimal alternative asthe delay isincreased beyond 1300
msec due to the delay being too much making the delayed
copies infeasible to execute.

A good tradeoff is observed with a quarantine delay of
between 800 to 1000 msec (approximately 40-50% of effec-
tive deadline), with which 69-80% of the nomina deadlines
are met even under heavy overload. At the expense of a
small lowering of the redundancy level of less critical tasks,
(though never bel ow the specified minimum and always with-
out affecting the guarantee of the critica tasks), an increase
in guarantee ratio of 10-20% over no quarantine is obtained.

Thus, this scheme shows a graceful degradation of the
levelsof redundancy provisionally alocated to tasksthat have
arrived earlier in order to favour transfer of resources to the
minimal strategy for more arrivals.

6 Concluson

Thework presented in thisarticle hasintegrated the frame-
work for software implemented adaptive fault tolerance pro-
posed in [2] with a dynamic rea-time system in an effort to
demonstrate the effectiveness of AFT. We have devel oped an
efficient on-line mechanism that dynamically addresses the
real-time constraints and fault tolerance properties of a soft-
ware module. The idea of an adaptive strategy based on an
ordered list of alternative fault tolerance techniquesis pre-
sented.

A performance study shows the excellent performance of
adaptive fault tolerance techniques in norma and overload
conditions. Theresultswereverifiedwith areal-lifeworkl oad,
the FERTst ones benchmark. This benchmark is based on
a study of the computational needs of radar tracking software
in AWACS early warning aircraft. We found that the adaptive
approaches devel oped here are effective in that application.

Specifically, in experiments 1 through 4, we evaluated the
performanceof two adaptivefault tolerancestrategies, AFT- 2
and AFT- 3, with avery demanding synthetic workload. The
performance of both was compared with static fault-tolerance
strategies, and the impact of scheduling costs was also evalu-
ated. It was concluded that AFT- 2 performed the best under
most conditions of dynamic task arrival, and further outper-
formed all static fault-tol erance schemes.

We then tested the performance of the AFT- 2 mechanism
with the realistic radar tracking workload generated by the
FERTst ones benchmark. While the results were found to
be as expected, the longer deadlines in this workload sug-
gested that further gains could be had by the introduction of
provisiona guarantees that are rescindable. This led to the
development of of AFT- quar ant i nemechanism, which
gave an additional improvement af 10% in the guarantee ra-
tio.

We al so examined various design issuesrel ated to the sup-
port mechanism of aternative selection in adaptivefault toler-
ance. Two types of strategies were introduced: (i) sequential
selection and (ii) dynamic selection. In this paper, we eval-
uated sequential selection, which was shown to be simple,



and yet quite effective. The dynamic selection strategy which
interacts efficiently with an eva uation module might provide
additiond flexibility for managing redundancy under work-
loads that have tasks with very tight deadlines, but such tasks
are not seen in the radar tracking benchmark and therefore
this possibility is open for future work.

An important result is the observation that whenever an
AFT mechanism sel ectsan aternativestrategy under dynamic
arrival of tasks, significant gains in overall guarantee ratios
were not obtained if the AFT mechanism was a so incapable
of rescinding prior strategy selection whenever future task
arrivals proved to demand it. An effective policy was found
to be onethat (a) allocated resources for minimal redundancy
levels soon after arrival to provide a high guarantee ratio
but with minimum redundancy, (b) provisionally accepted
alternatives with greater redundancy and (c) committed the
alternatives only later when it proves prudent.

Future work includes the devel opment of agorithms that
support adaptive fault tolerance in a distributed environment,
performing additional experiments under different fault mod-
els and environment, evaluating other lists of aternatives,
support for dynamic selection of AFT-strategy depending
on some suitable system state-variables and comparing the
performance of adaptive techniques with other models of
scheduling which do not include planning. In addition, we
need to address the deallocation of a backup (in the case of
PB and PE) upon the successful completion of the primary
component, since previous studies have demostrated [6] that
resource reclamation increases the schedul ability of rea -time
tasks on a multiprocessor system.
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