
University of Massachusetts Amherst
ScholarWorks@UMass Amherst
Computer Science Department Faculty Publication
Series Computer Science

1997

Adaptive Fault Tolerance and Graceful
Degradation Under Dynamic Hard Real-time
Scheduling
Oscar González
University of Massachusetts - Amherst

H. Shrikumar
University of Massachusetts - Amherst

John A. Stankovic
University of Virginia

Krithi Ramamritham
University of Massachusetts - Amherst

Follow this and additional works at: https://scholarworks.umass.edu/cs_faculty_pubs

Part of the Computer Sciences Commons

This Article is brought to you for free and open access by the Computer Science at ScholarWorks@UMass Amherst. It has been accepted for inclusion
in Computer Science Department Faculty Publication Series by an authorized administrator of ScholarWorks@UMass Amherst. For more information,
please contact scholarworks@library.umass.edu.

Recommended Citation
González, Oscar; Shrikumar, H.; Stankovic, John A.; and Ramamritham, Krithi, "Adaptive Fault Tolerance and Graceful Degradation
Under Dynamic Hard Real-time Scheduling" (1997). Computer Science Department Faculty Publication Series. 188.
Retrieved from https://scholarworks.umass.edu/cs_faculty_pubs/188

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarWorks@UMass Amherst

https://core.ac.uk/display/13602791?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholarworks.umass.edu?utm_source=scholarworks.umass.edu%2Fcs_faculty_pubs%2F188&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/cs_faculty_pubs?utm_source=scholarworks.umass.edu%2Fcs_faculty_pubs%2F188&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/cs_faculty_pubs?utm_source=scholarworks.umass.edu%2Fcs_faculty_pubs%2F188&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/cs?utm_source=scholarworks.umass.edu%2Fcs_faculty_pubs%2F188&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/cs_faculty_pubs?utm_source=scholarworks.umass.edu%2Fcs_faculty_pubs%2F188&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.umass.edu%2Fcs_faculty_pubs%2F188&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/cs_faculty_pubs/188?utm_source=scholarworks.umass.edu%2Fcs_faculty_pubs%2F188&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@library.umass.edu


Adaptive Fault Tolerance and Graceful Degradation
Under Dynamic Hard Real-time Scheduling
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Abstract

Static redundancy allocation is inappropriate in hard real-
time systems that operate in variable and dynamic environ-
ments, (e.g., radar tracking, avionics). Adaptive Fault Tol-
erance (AFT) can assure adequate reliability of critical mod-
ules, under temporal and resources constraints, by allocating
just as much redundancy to less critical modules as can be
afforded, thus gracefully reducing their resource requirement.

In this paper, we propose a mechanism for supporting
adaptive fault tolerance in a real-time system. Adaptation
is achieved by choosing a suitable redundancy strategy for
a dynamically arriving computation to assure required relia-
bility and to maximize the potential for fault tolerance while
ensuring that deadlines are met. The proposed approach is
evaluated using a real-life workload simulating radar track-
ing software in AWACS early warning aircraft. The results
demonstrate that our technique outperforms static fault tol-
erance strategies in terms of tasks meeting their timing con-
straints. Further, we show that the gain in this timing-centric
performance metric does not reduce the fault tolerance of the
executing tasks below a predefined minimum level. Overall,
the evaluation indicates that the proposed ideas result in a
system that dynamically provides QOS guarantees along the
fault-tolerance dimension.

1 Introduction

1.1 Complex Systems need AFT

Mission-critical real-time applications require a reliable
environment to guarantee that their deadlines are met despite
the occurrence of faults either in hardware, software, work-
load, or the environment. Many current fault tolerance sys-
tems developed for real-time distributed applications are ded-
icated to specific applications, suffer substantial performance
overheads, or require special hardware [15]. Static fault toler-
ance techniques allocate an amount of redundancy that is fixed
at design time, and the system is sized appropriately. Under

high loads with dynamic arrival, this capacity can be found to
be inadequate leading to some critical tasks getting rejected
while earlier less critical tasks have been guaranteed at high
redundancy. Increasing system capacity to avoid this is often
not meaningful due to system weight and power constraints
inherent in embedded systems.

Flexibility in the management of redundancy is desirable
in applications where drastic changes in environmental con-
ditions and/or workload take place rapidly. Examples of such
applications include air traffic control [5], digital avionics
[3, 18], satellite systems and Radar Tracking (AWACS) and
Digital Flight Control Systems.

If a unified framework can be designed to combine the
different types of fault tolerance approaches and in addition,
explicitly address real-time scheduling to meet timing and
fault tolerance requirements, then some of the performance
overheads and costs associated with static fault tolerance tech-
niques can be reduced. Such a framework is essential for
applications that operate in dynamic environments, and has
not been adequately studied thus far.

What is desired in such environments is an assurance of
high reliability for critical processes, and an attempt at the
best possible allocation of the remaining resources to the less
critical processes depending on dynamic arrival patterns. An
efficient integration of fault tolerance and real-time schedul-
ing is therefore called for. A promising approach for dynamic
environments is the use of adaptive fault tolerance techniques
in conjunction with a reflective real-time OS. Adaptive fault
tolerance is defined as “an approach to meeting the dynam-
ically and widely changing fault tolerance requirements by
efficiently and adaptively utilizing a limited and dynami-
cally changing amount of available redundant processing re-
sources” [7]. The main advantage of this approach is the
addition of flexibility for managing redundancy while pre-
serving timing-related predictability [2].

1.2 AFT in a Hard Real Time System

A key issue in developing such a framework is the efficient
integration of on-line adaptive management of redundancy
and the real-time scheduler in a multi-processor hard real-
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time environment. Since an adaptive technique must function
under timing constraints and effect the reconfiguration in a
stable and predictable manner, it is desirable to implement
it within the scope of a dynamic scheduler that guarantees
predictable task execution.

In this paper, we take the Spring [20] system as a concrete
example of a dynamic real-time system. With appropriate
adaptations, our work should be applicable to other similar
dynamic real-time systems.

The Spring system is a distributed testbed composed of
multiprocessor nodes with both local and global shared mem-
ory as well as a reflective memory synchronized between the
nodes with a fiber optic ring, and is supported by a dynamic
planning mode scheduler, and related compiler tools.

The AFT strategies of each type of task is specified using
theFERTnotation [2], which is translated into process groups
in the System Description Language, SDL, and submitted to
Spring by the adaptive redundancy allocator, along with re-
flective information (e.g., importance, deadline, precedence
constraints, fault tolerance requirement, etc.). An alternative
would be selected in such a way that the corresponding pro-
cess group has the highest specified reliability that can be
guaranteed by Spring to finish by its deadline.

As new tasks arrive, the kernel takes advantage of this
reflective information and attempts to guarantee each of them
at the highest requested redundancy level that is feasible. An
advantage of a planning-mode scheduler is its ability to predict
that a timing constraint will be violated, enabling early action
to handle the fault.

1.3 AFT Techniques Studied, and Results

To evaluate the performance of the AFT mechanism, we
compare an adaptive fault tolerance technique with Triple-
Modular Redundancy (TMR), Primary/Backup (PB) and Pri-
mary/Exception (PE) techniques. The set of alternatives in
the adaptive technique is constructed from the three individ-
ual static techniques.

We first study the characteristics of different adaptive fault
tolerance mechanisms using a synthetic workload. Then the
results are finally verified using the realistic FERTstones
benchmark [19], which simulates the demanding workload
generated by the radar tracking application in AWACS air-
borne radar systems. The synthetic workload is parameter-
ized for different overload and failure situations, since timing
constraints in dynamic systems are often violated under these
conditions. Also, experiments are conducted to determine
the influence of tightness of the deadline, task value and the
scheduling costs on the effectiveness of the adaptive tech-
nique.

Results of the performance tests indicate that all the AFT
techniques studied achieve higher or comparable task schedu-
lability compared to using static fault tolerance strategies in a
real-time multiprocessor system, and they do this at a reliabil-
ity level that is no worse than the minimum specified for the
respective modules. Further, the best adaptive technique sig-
nificantly increases the task schedulability without lowering
the reliability of any module below specification by a graceful

degradation of redundancy allocated to non-critical tasks.
A second important result is the observation that when the

AFT mechanism selects an alternative strategy under dynamic
arrival of tasks, it must be capable of rescinding prior strategy
selections if the load generated by future task arrivals demand
it. The AFT algorithm needs to be able to assure a minimal
acceptable redundancy early upon task arrival, perhaps only
provisionally guaranteeing any redundancy higher than that
minimum. It must be able to postpone the final commitment
of increases of redundancy until it becomes clear that such
an increase can be actually afforded with a low probability of
affecting the minimal performance of future tasks. Naturally,
it needs to be able to do this rescinding of provisional accep-
tance of a higher strategy with an assurance of never dropping
the task redundancy below acceptable limits.

Other contributions include : the development, implemen-
tation and evaluation of an adaptive fault tolerance mecha-
nism supported by extensions to a real-time scheduler operat-
ing in planning-mode, a detailed performance evaluation that
compares the adaptive strategy with static fault tolerance tech-
niques; and easy and cost effective extensions to the scheduler
to accomplish this selection.

The remainder of this paper is organized as follows: Sec-
tion 2 discusses related work. Section 3 contains a description
of the fault tolerance techniques and how they are integrated
in our adaptive fault tolerant strategy. This section also de-
scribes the extensions made to the Spring kernel in order to
dynamically support adaptive fault tolerance, and includes a
discussion of the important design and research issues that
require attention. We then discuss the metrics and results of
the experimental study, first with a synthetic workload in sec-
tion 4 and with a real-world workload in section 5. Finally,
section 6 summarizes and concludes the paper.

2 Related Work

Static approaches as represented by MARS [9], and those
capable of tolerating limited faults, as in [10], prove to be over-
constrained and inflexible in dealing with dynamic overloads.
This motivates the need for an integrated approach to fault
tolerance and real-time scheduling.

Different modifications to static real-time scheduling algo-
rithms to provide for redundant tasks, as by Liestman [13],
and Krishna et al. [10] have been proposed. More recently,
Oh et al. have studied the dynamic scheduling of copies of
tasks on redundant CPUs [17], and in combination with Rate-
Monotonic Scheduling. As far as we know, none of these
projects has provided support for adaptive fault tolerance to
deal with overloads and specifications of graceful degradation.

In [11], Laprie discusses the need for an assurance of
dependability in complex systems, the kind where adaptive
fault tolerance would be required. In [7], Kim and Lawrence
provide a concrete definition of adaptive fault tolerance and
identify major research issues that need to be resolved. The
authors proposed that each distinct mode of operation of a
system should have a different and effective set of fault toler-
ance mechanisms. As part of our study, we address two of the
research topics discussed in [7]: adaptive decision under time



constraints and cost-effective integration of fault tolerance
techniques.

Bondavalli, Stankovic and Strigini introduce a framework
for software implemented, adaptive fault tolerance in a real-
time context [2]. The authors present the design of FERT
(Fault Tolerant Entities for Real-Time), a specification nota-
tion which allows the abstraction of the functionality, timing
constraint and adaptive fault-tolerance requirements of a par-
ticular application module. By using the design notation, a
designer of a FERT is able to specify alternative fault tolerance
strategies for a module. The information can be accessed by
both off-line and on-line schedulers to select strategies, and
control their execution, adapting to the actual load and fault
situations [2]. The authors describe the on-line scheduling
support needed by the framework. In our study, we imple-
ment a mechanism for supporting the on-line scheduling of
adaptive fault tolerance techniques. A comprehensive survey
in software fault tolerance and the necessary support mecha-
nisms needed in the operating system can be found in [21].

Tai [23] introduces performability concepts and modeling
methods to adaptive fault tolerance. The purpose of this
work is to demonstrate the feasibility of performability-driven
realization of adaptive fault tolerance. The target system is
a multiprocessor environment supporting adaptation between
Recovery Blocks and Distributed Recovery Blocks. Our fault
tolerance techniques are different than the ones studied in [23]
and the focus of our work is on dynamically scheduled hard
real-time systems.

Ghosh, Melhem and Mossé [6] present a fault-tolerant
scheduling approach for real-time multiprocessors systems.
A Primary/Backup technique is used to schedule tasks. To
achieve high schedulability and still provide fault tolerance,
backup overloading and dynamic deallocation of backup tech-
niques are incorporated for aperiodic tasks in a dynamic real-
time multiprocessor system. We are interested in a similar
task and system model, but consider other fault tolerance
techniques in addition to Primary/Backup. Additional work
in fault tolerant scheduling can be found in [4, 13, 17]. Adap-
tive fault-tolerance has been studied in the context of routing
in multiprocessor interconnects, for example in [22].

Lee and Shin introduced an active reconfiguration strategy
for a degradable multi-module computing system with a static
set of tasks [12]. They recognized that the system should
reconfigure itself after a certain amount of mission time has
passed, even without any failure. Their model is a state-
based approach which is represented as a Markov reward
process. In [16] Muppala, Woolet, and Trivedi have combined
two approaches for modeling soft and hard real-time systems.
Their approach is based on the addition of transitions to the
Markov model of a system’s behavior for modeling a system
failure due to the missing of a hard deadline. The system’s
response time and throughput distributions are used to denote
the reward rates.

The Simplex architecture, in [1], provides a different ap-
proach to software fault tolerance. A high performance soft-
ware system is combined with a highly reliable one in order
to exploit their differences. This approach anticipates when
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a failure is about to occur in order to activate an adaptation
mechanism. When this happens, the high performance soft-
ware is replaced by the reliable one. But this architecture
does not deal explicitly with issues related to guarantee of
schedulability.

3 Adaptive Fault Tolerance (AFT)

As mentioned in the introduction, adaptation is achieved
by choosing a suitable fault tolerance technique from a set
of alternatives for each instance of a dynamically arriving
computation. The fault tolerance techniques considered as
alternatives are Triple Modular Redundancy (TMR), Pri-
mary/Backup (PB) and Primary/Exception (PE). In all cases
here, we have studied exact replicas, given identical inputs
and producing identical outputs under fault-free conditions.

Triple modular redundancy (TMR) is a technique where
three copies of a computation are scheduled on different pro-
cessors, introducing location constraints. The copies are ex-
ecuted and error checking is done by comparing the results
after completion [6]. The execution order between the copies
and the error checking task (EC) is enforced by placing prece-
dence constraints as shown in figure 1 (a).

In the Primary/Backup (PB) technique, two copies of a
computation are scheduled on different processors (location
constraints), but the backup task (B) is executed only in case
the primary task (P) produces incorrect results. The prece-
dence constraints between the tasks in PB are shown in fig-
ure 1 (b). Primary/Exception (PE) is similar to PB. The only
difference is that in case of failure of the primary task, an
exception handler is executed instead of the backup task, see
figure 1 (c).

In all of the techniques the task graph as a whole has a
single deadline.

In the case of the FERTstonesbenchmark, the PB strat-
egy is used to implement a hybrid scheme, called hybrid-
SCP-TMR. In this scheme, two copies are executed first, im-



plementing a Self Checking Pair (SCP). If they terminate with
unequal results, or a signaled fault, a third copy is executed as
a backup and the three results are voted for a majority agree-
ment, thus giving the same reliability level as (Triple Modular
Redundancy) TMR, but with a lower CPU utilization under
no-fault conditions. A suitable mechanism for ensuring exact
consistency of inputs to the replicas is assumed, the costs of
such a mechanism are subsumed within the execution time
per task as seen by the real-time scheduler.

Fig. 2 shows the three different software redundancy
schemes in a tracking FERT - hybrid-SCP/TMR scheme,
TMR and Primary-Exception. Note that no one scheme is
a winner in all circumstances. TMR is preferable when the
slack is less than half the deadline, and a high reliability is de-
sired; this preference is irrespective of global conditions. Un-
der higher total system loads, the hybrid self-checking/TMR
set becomes preferable, but is ruled out for tasks that have
a slack less than half their deadline. Under heavier system
loads, and lower reliability requirements, the primary-backup
scheme is preferable, but again is applicable only to instances
with large slack. Clearly this shows the need for adaptive
fault-tolerance.

3.1 Characteristics of an Adaptation Mechanism

In order for a framework to effectively support adap-
tive fault tolerance within a real-time context, the adaptation
mechanism needs to be inexpensive, simple to implement, and
have a flexible and efficient selection strategy.

The adaptation needs to be as inexpensive as possible, in
order to keep to a minimum the overhead costs introduced
by the dynamic adaptation. Overheads must be small in
planning-based scheduling algorithms operating in highly dy-
namic environments, so as to not impinge on the time already
guaranteed to the application tasks or other system activities.

Simple and easy to understand schemes are not only more
likely to be more reliable compared to a more complex one,
but also enable us to obtain much needed data [7] to charac-
terize and understand the behavior of adaptive fault tolerance
techniques under various conditions.

A major problem in AFT is the implementation of an ad-
equate selection strategy among the different fault tolerance
techniques. We identify two types of selection strategies: (i)
sequential selection and (ii) dynamic selection. In sequential
selection, a list of different fault tolerance techniques created
off-line specifies the order in which each of the techniques
should be considered. In the dynamic strategy, an on-line
evaluation module decides the order in which each of the
fault tolerance mechanisms of the predefined set will be con-
sidered. The evaluation module takes into account the current
system conditions (i.e., load, components failures, forecast of
faults and their type, etc) to form the list of alternative fault
tolerant techniques.

On the one hand, a clear advantage of the first form is its
ease of implementation. There is no significant extra over-
head cost added to the on-line scheduler. Ironically, its ma-
jor disadvantage is its inability to adapt, at a finer level of
granularity, to new environmental conditions. The dynamic

strategy will not only add cost to the scheduling process, but
requires the implementation of the evaluation module. We
believe that finding an appropriate parameter or mechanism
for the evaluation module is an open research question and
a better understanding of different sequential strategies under
different conditions is needed before an effective dynamic se-
lection strategy can be designed. Therefore, in this paper we
report on work done using a sequential alternative selection
mechanism.

3.2 The Adaptive Mechanism

Our adaptive fault tolerance (AFT) mechanism is based
on the combination of the three software fault tolerance tech-
niques described in the previous section.

Software modules are programmed in the FERT notation,
where a FERT encapsulates a set of alternative strategies for
the same functional goal. The fault tolerance mechanism
appropriate for a particular task is chosen when it arrives.

The temporal parameters include the task’s deadline, type
of deadline and laxity. The redundancy strategy indicates
the precedence constraints between the various subtasks and
constraints on their layout (such as, redundant copies must
execute on different processing elements) that make up the
computation and the redundancy of the computation. Loca-
tion constraints are placed at run-time. Finally, the selection
strategy is an ordered list of possible fault tolerance techniques
that should be considered at run-time.

As tasks arrive in the system, the scheduler uses informa-
tion about the task and attempts to guarantee the new task.
If the new task has an alternative list, then the scheduler at-
tempts to build a feasible schedule using the first fault tolerant
alternative on the list. If no guarantee can be provided using
the selected alternative, the next alternative is selected and
the scheduler makes another attempt. The process continues
until a feasible schedule is found or the alternative list is ex-
hausted. In the latter case, the task is rejected. While building
a feasible schedule, the planning-mode scheduler takes into
account the location of task code and precedence constraints
that each fault tolerance technique requires.

In this paper, we evaluate three adaptive fault-tolerance
techniques.

1. AFT-3: Adaptive Fault Tolerance where the alternative
list has the following three options: TMR, PB and PE.

2. AFT-2: Adaptive Fault Tolerance where the alternative
list has the following two options: TMR and PE.

3. AFT-quarantine: Adaptive Fault Tolerance, with re-
scindable provisional acceptance, where the run-time
provides an irreevocable guarantee of the primary ex-
ception for all non-critical tasks, holding up the allo-
cation of greater redundancy in quarantaine till such a
later point in time when it becomes clear that it is least
likely to affect allocation of resources to critial tasks.

Whereas AFT-2 and AFT-3 are easy to understand, AFT-
quarantine perhaps needs some explanation. It allows for the
provisional acceptance of some tasks, with a possibility of
rescinding the guarantee upon the arrival of overloads in the
future. Specifically, critical tasks are processed in the same



way, but non-critical tasks are handled a bit differently. They
are first split into two component tasks upon arrival, in a man-
ner that is specified off-line. The first component reserves
resources for enough redundancy to satisfy the minimum ac-
ceptable redundancy specification of the task in question. The
second component attempts to increase the redundancy level
allocated to the first component of the the same task. The
second component is provisionally accepted but held in quar-
antine for a fixed delay, which is an adjustable parameter. A
committed guarantee is given only at the expiry of the quar-
antine interval.

The above mechanism takes full advantage of the reflec-
tive architecture of the Spring system and its planning-mode
scheduler. These two key features provide a solid foundation
that supports adaptive decisions, with respect to the manage-
ment of redundancy, under time constrains in a flexible, pre-
dictable and cost effective way. In our approach, the adaptive
selection between the different fault-tolerance alternatives is
driven by the current system state and timing constraints of
tasks, enabling fast response to rapid changes in the environ-
ment.

4 Performance Evaluation,
with Synthetic Workload

4.1 Synthetic Workload Generator

A task generator creates a task set and the workload for
each of the experiments. The task set is described in terms
of information such as worst case execution time, deadline,
precedence constraints, and fault tolerance requirements. The
generator also creates the workload by creating a sequence of
aperiodic arrivals of the tasks in the set. Each task arrival is
described by its arrival time and the type of fault tolerance
technique associated with the task. The following parameters
are used to generate the task set and workload.� Min WCET, Max WCET: the minimum and maxi-

mum worst case execution time of each task (WCET).� Mean interarrival rate, a: the task interarrival time is
assumed to be an exponential distribution with mean a.� RP: the replication probability. RP is used to determine
the percentage of arrivals requiring fault tolerance. For
example, if RP = 0:5 then 50% of the arrivals will be
replicated. A uniform distribution between 0 and 1 is
used to determine whether a task is replicated.� DF: the deadline factor, a laxity parameter that denotes
the tightness of the deadline.� L: the length of the simulation in number of arrivals.

The worst case execution time, WCET , of each of the
tasks is randomly chosen using a uniform distributionbetween
the minimum and maximum worst case execution times. The
deadline of a task is set to 2�WCET +(1+DF )�T , whereT is obtained uniformly between 1 and 25 units. Hence a
tighter deadline can be specified by reducing the range of T
or by reducing DF . For all of the experiments the value ofMin WCET is equal to 20 and the value of Max WCET
is equal to 40 units.

3000 dynamic arrivals are considered for each run. Tasks
in the set are assumed to be independent of each other. The
interarrival time is used to control the load of the system. All
of the fault tolerance techniques are evaluated over a wide
range of load conditions.

Each point in the graphs (Figures 3 - 10) is the average
of 5 simulations runs. The variance for these averages were
computed and they were within 5% of the average in each
case.

4.2 Performance Metrics

The experiments were conducted using Spring’s schedul-
ing simulator. The simulator accurately reproduces many
aspects of the actual Spring system. Support mechanisms
for adaptive fault tolerance (section 3.2) were added to the
simulator.

All the AFT mechanisms studied make their adaptive se-
lections for every task arrival, and the best alternative selected
at each instance. While this increases the scheduling cost for
each task arrival, we found the overheads to be not signifi-
cant. Further, since the experiments were designed to compare
the maximum short-term gains in performance and reliability
that can be extracted without unduly compromising minimum
requirements for both performance and reliability in the long-
term, reevaluating the dynamic selection of alternatives for
each task arrival is appropriate.

In all of the experiments, the static fault tolerance tech-
niques described in section 3 are compared with the adaptive
techniques, also described in section 3.2.

Assuming independent faults, all of the techniques can
detect a single transient or permanent fault. TMR and PB
are able to tolerate the fault since task replication is used to
achieve a correct result despite the occurrence of the fault. By
increasing the redundancy of tasks, tasks are able to complete
under the presence of faults. However this reduces the number
of tasks which the system is able to guarantee. The simulations
enable us to quantify the tradeoffs between performance and
redundancy levels of each of the fault tolerance techniques.

To estimate the performance overhead costs of providing
fault tolerance, all of the techniques listed above are compared
to a system where no redundancy is provided. Throughout
the experiments this baseline is referred to as the No fault
tolerance technique (No FT). A real-time system with no
provisions for redundancy is not desirable, since the presence
of a fault could have catastrophic results. Hence, the Pri-
mary/Exception technique serves as a baseline to estimate the
performance overhead where a minimum degree of reliability
is provided.

The performance metric used throughout the simulation
is the guarantee ratio. The redundancy metric used is the
average replication factor. The definition of these metrics
are:

Guarantee Ratio (GR) : ratio of the number of tasks guaran-
teed by the scheduler to the total number of task arrivals,
separately for critical tasks and non-critical tasks.

Average Replication Factor (ARF) : ratio of the sum of the
number of completed task copies to the sum of the num-



ber of total task arrivals to the system, separately for
critical tasks and non-critical tasks. Given that fault tol-
erance is achieved via redundancy the rationale behind
the use of ARF should be clear: the higher the ARF
value, the higher the expected fault tolerance.

An exception task in the PE technique does not count as
one copy, instead the number of copies used for an exception
task is obtained by dividing the worst case execution time of
the exception by the worst case execution time of the primary.
In all of the experiments with the synthetic workload, this
ratio was set to 0:2 allowing the exception task enough time
to deal with the fault. Thus, the number of copies for a task
instance schedule using TMR, PB, PE and NoFT are 3, 2, 1:2
and 1 respectively.

4.3 Experiments

The simulation experiments are divided into two types.
In the first type of experiments (experiment 1 through 4),
different fault tolerance techniques are compared to the no
fault tolerant baseline (NoFT) in an effort to estimate the
loss of schedulability caused by the added redundancy and
measure their redundancy levels using the ARF metric. For
these types of experiments a fault-free model is assumed.
in order to understand the effect of different adaptive fault
tolerance techniques under several conditions (e.g., overload,
tighter deadlines, percentage of replication of tasks, etc.).

The second type of experiments is designed to demon-
strate the efficacy and power of the adaptive technique using
a realistic AWACS workload. The FERTstonesbenchmark
suite generates a workload that simulates the highly variable
conditions in a radar tracking system. The different AFT
mechanisms were tested against this workload, and the per-
formance of adaptive fault tolerance was verified as indicated
by the first set of experiments.

In all the experiments the number of number of processors
per node is 3, and the scheduling is performed on a separate
systems processor, as described in [20].

4.3.1 Expt. 1: Performance and Replication Factor
The performance results of all of the fault tolerance tech-
niques as a function of load without considering scheduling
costs, with RP = 1 and DF = 1 are shown in Figure 3.
As expected, the guarantee ratio of all of the fault tolerance
techniques increases with decreasing load. The results show
that Primary/Exception (PE) performs much better than TMR
technique, in particular under overload conditions. For exam-
ple, when the mean interarrival rate is 20 units, the guarantee
ratio for PE is near 100% and the guarantee ratio for TMR
is down to 55%. The performance of both adaptive tech-
niques (AFT-3 and AFT-2) and Primary/Backup is very sim-
ilar throughout the range of interarrival rates. The guarantee
ratio of these techniques is acceptable even under overload
conditions, for example 80% at interarrival rates of 20 units.
The results show that adaptive techniques are bounded by PB.
This is because the adaptive techniques first try to schedule
a task using TMR, leaving less cpu time available for future
tasks compared to the same task scheduled using PB. From the
results, we can conclude, as expected, that redundancy affects
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Figure 3. GR: no costs, RP=1.0, DF=1.0
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Figure 4. ARF: no costs, RP=1.0, DF=1.0

the guarantee ratio. PE is the technique with the highest per-
formance and it achieves similar level of schedulability as the
no fault tolerance (NoFT) baseline, except in overload con-
ditions. On the other hand, the adaptive techniques provide
performance similar to PB.

Figure 4 shows the average replication factor, of all of the
fault tolerance techniques. The results illustrate the tradeoff
between redundancy levels and performance for TMR, PB and
PE. For mean inter-arrival values greater than 10, the ARF of
the adaptive techniques is higher than that of PB and TMR,
and the GR of the adaptive techniques is similar to PB and
higher than TMR.

This clearly shows that adaptive techniques produce a
higher average redundancy than any static technique, at a
guarantee ratio that is comparable to PB. The guarantee ratio
is poorer only to PE, which has no redundancy.

4.3.2 Experiment 2: Effects of Scheduling Costs
The effects of the Spring scheduling costs on the guarantee
ratio and average replication factor are shown in Figures 5
and 6 respectively. The scheduling costs are calculated be-
fore each invocation as follows SC = overhead cost + n �per task cost, wheren is the number of tasks to be scheduled
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Figure 5. GR: with costs, RP=DF=1.0
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Figure 6. ARF: with costs, RP=DF=1.0

for the current invocation. The values used in the experiments
for overhead cost = 12:7 units and per task cost = 0:04
units. These values produce scheduling costs that agree with
measurements taken from the actual Spring system. It is
important to notice that the scheduling costs are quite conser-
vative, since these costs are on a 68020, which is quite slow
compared to current processors.

Taking into account scheduling costs, we can see a de-
crease in the guarantee ratio for all of the techniques, with the
exception of PE. Both TMR and AFT-3 are more sensitive to
this effect under heavy loads. Under these conditions AFT-2
achieves a slightly better GR than PB. This is because the
overhead of scheduling delays the start time of guaranteed
tasks, which reduces the available interval for scheduling a
task. A less drastic effect can be seen in the average repli-
cation factor. PB and TMR are affected more with respect
to ARF . The ARF of both adaptive techniques (AFT-3 and
AFT-2) is similar to the one obtained in experiment 1.

In conclusion, scheduling overheads do not significantly
skew the results of Experiment 1.
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Figure 7. GR: w/costs, RP=1.0, DF=0.5
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Figure 8. GR: w/costs, RP=0.75, DF=1.0

4.3.3 Experiment 3: Effects of Deadline Factor

Figure 7 shows the guarantee ratio of all five techniques and
the NoFT baseline, as a function of load with a smaller dead-
line factor (DF) and scheduling cost included.

It is clear that GR of all of the techniques is significantly
lower under overload conditions. However, notice that the
performance of AFT-3 drops for all interarrival rates. This
is because AFT-3 is not able to schedule some tasks under
TMR and PB due to the tigher deadline. AFT-2 is not affected
as much as AFT-3 with tighter deadlines, since the schedul-
ing of the feasible PE technique only inccurs one scheduling
overhead cost. The important aspect is that under tight dead-
lines the performance of adaptive techniques with a signifi-
cant number of alternatives may suffer. This result indicates
that with tight deadlines dynamic selection strategy should be
used.

The adaptive techniques continue to achieve high ARF
compared to the other techniques, even as the deadlines of the
tasks get tighter. In particular AFT-2 continues to perform
well.
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Figure 9. GR: w/costs, RP=0.25, DF=1.0
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Figure 10. ARF: w/costs, RP=0.25, DF=1.0

4.3.4 Experiment 4: Effects of Probability of Replication
Figures 8 and 9 show the guarantee ratio of all the techniques
as a function of load with a probability of replication of 0:75
and 0:25 respectively. As expected, the guarantee ratio for
all of the techniques improves and the gap between them
reduces (compare with Figure 5) as less tasks are replicated.
TMR is the technique that benefits the most. Similarly, the
average replication factor reduces for all of the techniques,
see Figure 10 and 6 for probability of replication of 0:25 and1:0 respectively. Therefore, to take advantage of the benefits
of adaptive fault tolerance techniques, applications must need
moderate to high level of replication of tasks.

Thus, static TMR is shown to be most sensitive to changes
in probability of replication. Further, both adaptive techniques
continue to perform adequately, in particular AFT-2 provides
the best guarantee ratio at its average replication factor.

5 Performance Evaluation,
with Real-World Workload

We wanted to evaluate our ideas in real-world environ-
ments in a way that different adaptive fault-tolerance ap-
proaches can be evaluated. To this end we studied sev-

eral benchmarks in the literature, and finally developed the
FERTstonesworkload generator. It is based on a radar
tracking and control application. This was developed after
a study of the AOCP program (Airborne Operations Con-
trol Program) used on the currently deployed AWACS air-
craft (Airborne Warning And Control System), and certain
anticipated requirements of future generations of similar sys-
tems. FERTstones furnishes a large variance of dynam-
ically generated application load, and supports an adaptive
fault-tolerance requirement specification.

Other benchmarks have been suggested in the literature
[14, 24, 8]. However, these benchmarks do not make it easy
to compare, qualitatively or quantitatively, results of different
experiments of adaptive fault-tolerance mechanisms. Also,
these do not lend themselves to experiments subjecting dif-
ferent implementations of adaptive fault-tolerance in compar-
itive tests under conditions that produces a workload similar
to the high loads and high variability found in a real-world
complex hard real-time application operating in a dynamic
environment with adaptive fault-tolerance requirements.

5.1 FERTstones- Radar Tracking Benchmark

Radar tracking is a very good example of a complex soft-
ware application operating under hard temporal deadlines that
requires assurance of continued operation tolerant of hardware
faults due to the hostile environment. Also, it operates in a
dynamic environment subject to unpredictable overloads (due
to targets arriving in bursts, and high-G maneuvers being per-
formed by aircraft), so the worst case characteristics of the
stimulus received by the system or the computational load
generated by the software cannot be bounded. This makes the
application interesting in that it captures some properties of a
periodic real-time workload while at the same time modelling
very bursty arrivals over larger periods of time. Such an appli-
cation requires the engineering of a dynamic system capable
of adaptive fault-tolerance, and hence is a good candidate for
a benchmark.

The radar antenna carried in a radome above the aircraft
has a range of 200 miles or more with a 360 degree view of
the horizon and the ability to “look-down” on low-flying or
surface targets. In a tactical role, such radars usually have a
rate of scan of between 2 to 13 seconds, with targets capable of
speeds greater that Mach 2.3 and maneuvers of 7-G or more.
The FERTstonesis modeled to simulate these conditions.

5.2 Characteristics of the Generated Workload

Radar returns are generated either by noise sources, or
by reflection from actual target aircraft. A set of returns
over multiple scans that corresponds to an identified target is
classified as a confirmed track, each of which is tracked by
one instance of a tracker task. Typically, about 1000 radar
returns can be seen in every scan, each a potential target or
threat. About a 100 of these prove to be confirmed targets
that are tracked through multiple scans, but these number can
show wide variations, and burstiness.

The benchmark simulates the CPU processing time de-
manded by the Multiple Hypothesis Testing (MHT) algorithm



Generator Parameterp1 LogNormal(5.454,1.667)
(target creation) k Exp(0.007)p2 (lifetime) Beta(3.000,1.455) * 720

Table 1. Standard Benchmark, FERTstones
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Figure 11. Target lifetime

[25], so named after the approach of hypothesising the ma-
neuvers possibly being executed by a confirmed target from a
previous scan, and extending its track with one of the returns
from the current scan. The computation time required for
each return depends on the number of such hypotheses to be
tested per track, and therefore on dynamic conditions such as
the number of radar returns that were observed with a small
azimuth angle from a confirmed track.

Confirmed tracks require significant computation time, the
requirement being proportional to the number of hypotheses
being generated, ranging from 4.2 to 35.125 msec per track,
and they are mandated to be run with the highest level of
redundancy available. The remaining time is to be used to
increase the redundancy level allocated to the unconfirmed
tracks. Since this computation time for each unconfirmed
track, 4.2msec, is too small to be handled efficiently by the
the Spring dynamic scheduler, and since they occur in large
numbers, they are bunched together to amortize the scheduling
costs per invocation.

The FERTstonesbenchmark suite has composite prob-
ablisitic generators, listed in Table 1 and described below,
that simulate the bursty arrival of true targets (aircraft), and
noise echos in the radar. It also estimates the variability of the
computation load under different target arrival patterns, and
variation in target life-time on the radar.

5.2.1 Track creation
Tracks are generated by p1 using two generators, one gen-
erating true targets (aircrafts) and the other simulating false
reports (Table 1). Every track is specified as performing one
input and one output interaction per iteration.

True targets are created with a log-normal interarrival time
distribution, with the parameters � = 5:545 and �2 = 1:667.
Noise reports are generated with an exponential distribution
of interarrival times with a mean of 0.007 seconds.

The distinction between these two types of tracks is internal
to the statistical generators, and not intended to be visible to

the system under test. Both of these are combined together
and presented as undistinguished new track creation events.

5.2.2 Track deletion
The library internally generates simulated life-times of each
target, based on a simplified simulation of the expected life-
time of true and false tracks in a typical tracking radar system.
It keeps track of event-lists of each track that it has issued
an arrival event for, and it issues the deletion events in the
appropriate chronological order.

The lifetime of targets is generated internallywith p2, using
a beta distribution, with the parameters �1 = 3:000, and�2 = 1:455, with scale = 720 (Table 1). Noise returns only
last for one scan, or 2 secs. This simulates the quick deletion
of false tracks while the distribution of the lifetime of true
tracks is consistent with the behavior of high speed aircraft
overflying the range of the radar, and is shown in Figure 11.

5.2.3 Workload due to Multiple Track Instances
Each track-instance arrives with a requirement to be run at
a certain specified redundancy level, which can then change
dynamically. All confirmed tracks are run with the highest
redundancy level that is feasible, with a preference given to
hybrid-SCP-TMR and TMR over Primary-Exception. All un-
confirmed tracks, typically tracks that have been in the system
for less than two scans, are specifed to require a minimal re-
dundacy level as provided by Primary-Exception, and any
spare capacity available is allocated to them to enhance their
redundancy level to hybrid-SCP-TMR or TMR, as feasible.

The application has statistical generators that trigger the
birth and death of these tracks, as well as the promotion and
demotion of their importance levels.

The scanning of the radar antenna every 2 secs is simulated,
and independant sporadic events are generated every scan for
every radar return from a target or noise source in the system.

5.2.4 Computational Load per Track Instance
The FERTstoneslibraries estimate the computational load
associated with each iteration of each instance, simulating
the MHT algorithm described in section 5:2. Once every scan
cycle of the (simulated) radar (every 2 secs), the computational
load presented by each track is updated. This number is an
integral multiple (n � 1) of the nominal unit computational
load per track.

The internal generator function, included with the bench-
mark, that simulates the estimation of computational load,
assumes a target detection probability, PD, of 0.9, and es-
timates the number of hypotheses or models applied to that
track as a function of the total number of reports, both true
and false, currently in the system. It generates this number
by counting the number of radar reports that are in a spec-
ified neighbourhood of an existing track and therefore are
candidates for track extension. This yields an execution time
(WCET) for evaluation of each track between 4 msec and 36
msec.

5.3 Experiment 5: Testing with FERTstones

This final experiment was first performed with the
FERTstones workload and the AFT-2 mechanism. For
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Figure 12. AFT-quarantine

the tasks representing confirmed tracks, we found AFT-2 to
produce results consistent with the earlier experiments, as ex-
pected. However, interestingly we found that the larger dead-
lines in this workload led to a number of instances of tasks be-
longing to (less-critical) unconfirmed tracks being guaranteed
with the alternatives of higher redundancy. The unrescindable
commitment of the alternative selection of these tasks led to a
significant rejection of similar tasks arriving later. Therefore,
developing the AFT-2 and AFT-3 mechanisms further, we de-
fined the AFT-quarantine mechanism, by guaranteeing only
the minimal redundancy alternative upon arrival, provision-
ally accepting feasible alternatives requiring higher resources
and holding the higher redundancy alternatives for a quaran-
tine delay before committing on the allocation.

The amount of delay in the quarantine was varied as a
tunable parameter, adjusted between 0 and deadline, and
its effect on the guarantee ratio and replication factor were
studied.

A delay of 0 is the case of the earliest possible commitment
of resources to the alternative with the largest feasible redun-
dancy, and is essentially the same as AFT-2. As expected, this
strategy tends to generously overallocate resources to tasks
that come earlier, at the expense of the minimal operating
requirements of the tasks arriving later.

Figure 12 shows the variation of guarantee ratio with quar-
antine delay for the (less critical) tasks which represent un-
confirmed tracks. As the delay is increased above zero, the
guarantee ratio (sum = PE+PB+TMR, where PB implements
h-TMR-SCP) goes up as more tasks are getting their mini-
mal redundancy levels guaranteed. With a quarantine delay
greater than 1300 msec, the guarantee ratio for the higher re-
dundancy alternatives (PB+TMR) begins to drop quickly as
there is not enough time left before the deadline to succesfully
schedule them.

Figure 12 also shows the average redundancy levels (ARF)
allocated to the tasks with different values of quarantine delay.
It is useful to observe that with the introduction of quarantine

delay, the average redundancy drops only very slowly ini-
tially. It begins to drop quickly to the redundancy level of
the minimal alternative as the delay is increased beyond 1300
msec due to the delay being too much making the delayed
copies infeasible to execute.

A good tradeoff is observed with a quarantine delay of
between 800 to 1000 msec (approximately 40-50% of effec-
tive deadline), with which 69-80% of the nominal deadlines
are met even under heavy overload. At the expense of a
small lowering of the redundancy level of less critical tasks,
(though never below the specified minimum and always with-
out affecting the guarantee of the critical tasks), an increase
in guarantee ratio of 10-20% over no quarantine is obtained.

Thus, this scheme shows a graceful degradation of the
levels of redundancy provisionallyallocated to tasks that have
arrived earlier in order to favour transfer of resources to t he
minimal strategy for more arrivals.

6 Conclusion
The work presented in this article has integrated the frame-

work for software implemented adaptive fault tolerance pro-
posed in [2] with a dynamic real-time system in an effort to
demonstrate the effectiveness of AFT. We have developed an
efficient on-line mechanism that dynamically addresses the
real-time constraints and fault tolerance properties of a soft-
ware module. The idea of an adaptive strategy based on an
ordered list of alternative fault tolerance techniques is pre-
sented.

A performance study shows the excellent performance of
adaptive fault tolerance techniques in normal and overload
conditions. The results were verified with a real-life workload,
the FERTstonesbenchmark. This benchmark is based on
a study of the computational needs of radar tracking software
in AWACS early warning aircraft. We found that the adaptive
approaches developed here are effective in that application.

Specifically, in experiments 1 through 4, we evaluated the
performance of two adaptive fault tolerance strategies, AFT-2
and AFT-3, with a very demanding synthetic workload. The
performance of both was compared with static fault-tolerance
strategies, and the impact of scheduling costs was also evalu-
ated. It was concluded that AFT-2 performed the best under
most conditions of dynamic task arrival, and further outper-
formed all static fault-tolerance schemes.

We then tested the performance of the AFT-2mechanism
with the realistic radar tracking workload generated by the
FERTstonesbenchmark. While the results were found to
be as expected, the longer deadlines in this workload sug-
gested that further gains could be had by the introduction of
provisional guarantees that are rescindable. This led to the
development of of AFT-quarantinemechanism, which
gave an additional improvement af 10% in the guarantee ra-
tio.

We also examined various design issues related to the sup-
port mechanism of alternative selection in adaptive fault toler-
ance. Two types of strategies were introduced: (i) sequential
selection and (ii) dynamic selection. In this paper, we eval-
uated sequential selection, which was shown to be simple,



and yet quite effective. The dynamic selection strategy which
interacts efficiently with an evaluation module might provide
additional flexibility for managing redundancy under work-
loads that have tasks with very tight deadlines, but such tasks
are not seen in the radar tracking benchmark and therefore
this possibility is open for future work.

An important result is the observation that whenever an
AFT mechanism selects an alternative strategy under dynamic
arrival of tasks, significant gains in overall guarantee ratios
were not obtained if the AFT mechanism was also incapable
of rescinding prior strategy selection whenever future task
arrivals proved to demand it. An effective policy was found
to be one that (a) allocated resources for minimal redundancy
levels soon after arrival to provide a high guarantee ratio
but with minimum redundancy, (b) provisionallly accepted
alternatives with greater redundancy and (c) committed the
alternatives only later when it proves prudent.

Future work includes the development of algorithms that
support adaptive fault tolerance in a distributed environment,
performing additional experiments under different fault mod-
els and environment, evaluating other lists of alternatives,
support for dynamic selection of AFT-strategy depending
on some suitable system state-variables and comparing the
performance of adaptive techniques with other models of
scheduling which do not include planning. In addition, we
need to address the deallocation of a backup (in the case of
PB and PE) upon the successful completion of the primary
component, since previous studies have demostrated [6] that
resource reclamation increases the schedulability of real-time
tasks on a multiprocessor system.
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